(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2024-04-08
(45)【発行日】2024-04-16
(54)【発明の名称】予測プログラム、情報処理装置、および予測方法
(51)【国際特許分類】
G16C 60/00 20190101AFI20240409BHJP
G06N 20/00 20190101ALI20240409BHJP
【FI】
G16C60/00
G06N20/00
(21)【出願番号】P 2023213676
(22)【出願日】2023-12-19
(62)【分割の表示】P 2022180078の分割
【原出願日】2022-11-10
【審査請求日】2023-12-19
【早期審査対象出願】
(73)【特許権者】
【識別番号】000002886
【氏名又は名称】DIC株式会社
(74)【代理人】
【識別番号】100185719
【氏名又は名称】北原 悠樹
(74)【代理人】
【識別番号】100150072
【氏名又は名称】藤原 賢司
(72)【発明者】
【氏名】北出 祐也
【審査官】松野 広一
(56)【参考文献】
【文献】米国特許出願公開第2021/0286329(US,A1)
【文献】特開2003-058582(JP,A)
【文献】特開2018-147460(JP,A)
【文献】特開2021-038344(JP,A)
【文献】特開2007-265266(JP,A)
【文献】特開2021-060367(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G16C 10/00-99/00
G06N 20/00
(57)【特許請求の範囲】
【請求項1】
粘接着材料の接着特性を予測するための予測プログラムであって、
前記予測プログラムは、コンピュータに、
粘接着材料の粘弾特性の入力を受けて、当該粘接着材料の接着特性を出力するように学習された予測モデルを取得するステップ
を実行させ、前記予測モデルは、複数の学習用データを用いた学習処理により生成されており、前記複数の学習用データは、複数の第1データを含み、前記複数の第1データの各々は、粘接着材料の粘弾特性に対して当該粘接着材料の接着特性をラベルとして関連付けており、当該粘弾特性は、当該粘接着材料の温度別の貯蔵弾性率を含み、
前記予測モデルに粘弾特性を入力し、他の粘接着材料の接着特性を予測するステッ
プを実行させ
、前記予測モデルに入力される粘弾特性は、当該他の粘接着材料の温度別の貯蔵弾性率を含む、予測プログラム。
【請求項2】
粘接着材料の接着特性を予測するための予測プログラムであって、
前記予測プログラムは、コンピュータに、
粘接着材料の粘弾特性の入力を受けて、当該粘接着材料の接着特性を出力するように学習された予測モデルを取得するステップを実行させ、前記予測モデルは、複数の学習用データを用いた学習処理により生成されており、前記複数の学習用データは、複数の第1データを含み、前記複数の第1データの各々は、粘接着材料の粘弾特性に対して当該粘接着材料の接着特性をラベルとして関連付けており、当該粘弾特性は、当該粘接着材料の温度別の損失弾性率を含み、
前記予測モデルに粘弾特性を入力し、他の粘接着材料の接着特性を予測するステップを実行させ、前記予測モデルに入力される粘弾特性は、当該他の粘接着材料の温度別の損失弾性率を含む、予測プログラム。
【請求項3】
前記予測するステップは、
所望の接着特性の入力を受け付けるステップと、
前記予測モデルから出力される接着特性が前記所望の接着特性となった際に当該予測モデルに入力された粘弾特性を探索するステップとを含む、請求項1
または2に記載の予測プログラム。
【請求項4】
前記複数の学習用データは、さらに、複数の第2データを含み、前記複数の第2データの各々は、粘接着材料以外の高分子材料の粘弾特性に対して当該高分子材料の接着特性をラベルとして関連付けている、請求項3に記載の予測プログラム。
【請求項5】
前記予測モデルに入力される粘弾特性は、
さらに、粘接着材料の貯蔵弾性率から抽出された特徴量と、粘接着材料の損失弾性率から抽出された特徴量と、粘接着材料の損失正接から抽出された特徴量との内の少なくとも1つを含む、請求項1または2に記載の予測プログラム。
【請求項6】
前記粘接着材料は、粘着剤と、当該粘着剤が塗られている基材とを含み、
前記予測モデルは、さらに、前記粘着剤の厚みと、前記基材の厚みと、前記基材の種類との内の少なくとも1つを入力として受けるように構成されている、請求項1または2に記載の予測プログラム。
【請求項7】
前記予測モデルから出力される接着特性は、粘接着材料および被着体の剥離に要する強さを示す特性と、被着体に対する粘接着材料のずれにくさを示す特性と、粘接着材料および被着体の接着のしやすさを示す特性との内の少なくとも1つを含む、請求項1または2に記載の予測プログラム。
【請求項8】
粘接着材料の接着特性を予測するための情報処理装置であって、
前記情報処理装置を制御するための制御部を備え、
前記制御部は、
粘接着材料の粘弾特性の入力を受けて、当該粘接着材料の接着特性を出力するように学習された予測モデルを取得する処理
を実行し、
前記予測モデルは、複数の学習用データを用いた学習処理により生成されており、前記複数の学習用データは、複数の第1データを含み、前記複数の第1データの各々は、粘接着材料の粘弾特性に対して当該粘接着材料の接着特性をラベルとして関連付けており、当該粘弾特性は、当該粘接着材料の温度別の貯蔵弾性率を含み、
前記予測モデルに粘弾特性を入力し、他の粘接着材料の接着特性を予測する処
理を実行し、前記予測モデルに入力される粘弾特性は、
当該他の粘接着材料の温度別の貯蔵弾性率を含む、情報処理装置。
【請求項9】
粘接着材料の接着特性を予測するための情報処理装置であって、
前記情報処理装置を制御するための制御部を備え、
前記制御部は、
粘接着材料の粘弾特性の入力を受けて、当該粘接着材料の接着特性を出力するように学習された予測モデルを取得する処理を実行し、前記予測モデルは、複数の学習用データを用いた学習処理により生成されており、前記複数の学習用データは、複数の第1データを含み、前記複数の第1データの各々は、粘接着材料の粘弾特性に対して当該粘接着材料の接着特性をラベルとして関連付けており、当該粘弾特性は、当該粘接着材料の温度別の損失弾性率を含み、
前記予測モデルに粘弾特性を入力し、他の粘接着材料の接着特性を予測する処理を実行し、前記予測モデルに入力される粘弾特性は、当該他の粘接着材料の温度別の損失弾性率を含む、情報処理装置。
【請求項10】
粘接着材料の接着特性を予測するために情報処理装置が実行する予測方法であって、
粘接着材料の粘弾特性の入力を受けて、当該粘接着材料の接着特性を出力するように学習された予測モデルを取得するステップ
を備え、前記予測モデルは、複数の学習用データを用いた学習処理により生成されており、前記複数の学習用データは、複数の第1データを含み、前記複数の第1データの各々は、粘接着材料の粘弾特性に対して当該粘接着材料の接着特性をラベルとして関連付けており、当該粘接着材料の温度別の貯蔵弾性率を含み、
前記予測モデルに粘弾特性を入力し、他の粘接着材料の接着特性を予測するステッ
プを備え、前記予測モデルに入力される粘弾特性は、
当該他の粘接着材料の温度別の貯蔵弾性率を含む、予測方法。
【請求項11】
粘接着材料の接着特性を予測するために情報処理装置が実行する予測方法であって、
粘接着材料の粘弾特性の入力を受けて、当該粘接着材料の接着特性を出力するように学習された予測モデルを取得するステップを備え、前記予測モデルは、複数の学習用データを用いた学習処理により生成されており、前記複数の学習用データは、複数の第1データを含み、前記複数の第1データの各々は、粘接着材料の粘弾特性に対して当該粘接着材料の接着特性をラベルとして関連付けており、当該粘接着材料の温度別の損失弾性率を含み、
前記予測モデルに粘弾特性を入力し、他の粘接着材料の接着特性を予測するステップを備え、前記予測モデルに入力される粘弾特性は、当該他の粘接着材料の温度別の損失弾性率を含む、予測方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、予測プログラム、情報処理装置、および予測方法に関する。
【背景技術】
【0002】
特開2021-038344号公報(特許文献1)は、優れた接着強度を有する硬化性組成物を容易に探索することを目的とする探索方法を開示している。当該探索方法は、学習済みモデルを用いて硬化性組成物の接着強度を探索する。当該学習済みモデルは、主剤の分子量と、硬化剤の分子量と、主剤中におけるグリシジル基の含有量に対するアミン系硬化剤中におけるアミノ基の含有量の含有モル比と、硬化温度との入力を受けて、硬化性組成物の接着強度を出力するように構成されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
従来の予測方法では、粘接着材料について接着特性を正確に予測することが困難であった。したがって、粘接着材料の接着特性を予測するための新たな技術が望まれている。
【課題を解決するための手段】
【0005】
本開示の一例では、粘接着材料の接着特性を予測するための予測プログラムが提供される。上記予測プログラムは、コンピュータに、粘接着材料の粘弾特性の入力を受けて、当該粘接着材料の接着特性を出力するように学習された予測モデルを取得するステップと、上記予測モデルに粘弾特性を入力し、他の粘接着材料の接着特性を予測するステップとを実行させる。
【0006】
本開示の一例では、上記予測するステップは、所望の接着特性の入力を受け付けるステップと、上記予測モデルから出力される接着特性が上記所望の接着特性となった際に当該予測モデルに入力された粘弾特性を探索するステップとを含む。
【0007】
本開示の一例では、上記予測モデルは、複数の学習用データを用いた学習処理により生成されている。上記複数の学習用データは、複数の第1データを含む。上記複数の第1データの各々は、粘接着材料の粘弾特性に対して当該粘接着材料の接着特性をラベルとして関連付けている。
【0008】
本開示の一例では、上記複数の学習用データは、さらに、複数の第2データを含む。上記複数の第2データの各々は、粘接着材料以外の高分子材料の粘弾特性に対して当該高分子材料の接着特性をラベルとして関連付けている。
【0009】
本開示の一例では、上記予測モデルに入力される粘弾特性は、粘接着材料の貯蔵弾性率と、粘接着材料の損失弾性率と、粘接着材料の損失正接との内の少なくとも1つを含む。
【0010】
本開示の一例では、上記予測モデルに入力される粘弾特性は、粘接着材料の貯蔵弾性率から抽出された特徴量と、粘接着材料の損失弾性率から抽出された特徴量と、粘接着材料の損失正接から抽出された特徴量との内の少なくとも1つを含む。
【0011】
本開示の一例では、上記予測モデルから出力される接着特性は、粘接着材料および被着体の剥離に要する強さを示す特性と、被着体に対する粘接着材料のずれにくさを示す特性と、粘接着材料および被着体の接着のしやすさを示す特性との内の少なくとも1つを含む。
【0012】
本開示の一例では、上記予測モデルから出力される接着特性は、粘接着材料および被着体の剥離に要する強さを示す特性と、被着体に対する粘接着材料のずれにくさを示す特性と、粘接着材料および被着体の接着のしやすさを示す特性との内の少なくとも1つを含む。
【0013】
本開示の他の例では、粘接着材料の接着特性を予測するための情報処理装置が提供される。上記情報処理装置は、上記情報処理装置を制御するための制御部を備える。上記制御部は、粘接着材料の粘弾特性の入力を受けて、当該粘接着材料の接着特性を出力するように学習された予測モデルを取得する処理と、上記予測モデルに粘弾特性を入力し、他の粘接着材料の接着特性を予測する処理とを実行する。
【0014】
本開示の他の例では、粘接着材料の接着特性を予測するための予測方法が提供される。上記予測方法は、粘接着材料の粘弾特性の入力を受けて、当該粘接着材料の接着特性を出力するように学習された予測モデルを取得するステップと、上記予測モデルに粘弾特性を入力し、他の粘接着材料の接着特性を予測するステップとを備える。
【0015】
本発明の上記および他の目的、特徴、局面および利点は、添付の図面と関連して理解される本発明に関する次の詳細な説明から明らかとなるであろう。
【図面の簡単な説明】
【0016】
【
図2】接着特性の予測方法を概念的に示す図である。
【
図3】情報処理装置のハードウェア構成の一例を示す図である。
【
図5】学習用データに規定されている貯蔵弾性率の一例を示す図である。
【
図6】学習用データに規定されている損失弾性率の一例を示す図である。
【
図7】学習用データに規定されている損失正接の一例を示す図である。
【
図8】情報処理装置の機能構成の一例を示す図である。
【
図9】学習部による学習処理を概念的に示す図である。
【
図10】予測部による予測処理を概念的に示す図である。
【
図11】学習処理の流れを示すフローチャートである。
【
図12】探索処理の流れを示すフローチャートである。
【
図13】変形例1に従う学習用データセットの一例を示す図である。
【
図14】変形例1に従う予測モデルを示す図である。
【
図15】変形例1に従う探索処理を概念的に示す図である。
【
図16】変形例2における特徴抽出処理を説明するための図である。
【
図17】予測モデルの性能評価実験の結果を示す図である。
【発明を実施するための形態】
【0017】
以下、図面を参照しつつ、本発明に従う各実施の形態について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。したがって、これらについての詳細な説明は繰り返さない。なお、以下で説明される各実施の形態および各変形例は、適宜選択的に組み合わされてもよい。
【0018】
<A.粘接着材料>
まず、
図1を参照して、粘接着材料について説明する。
図1は、粘接着材料の一例を示す図である。
【0019】
本明細書における「粘接着材料」とは、物と物とを接合する機能を有する材料を意味する。粘接着材料としては、たとえば、粘着テープおよび接着剤などが挙げられる。以下では、粘接着材料として粘着テープを例に挙げて説明を行うが、粘接着材料は、粘着テープに限定されない。
【0020】
粘着テープは、片面テープであってもよいし、両面テープであってもよい。また、粘着テープの用途は、特に限定されず、工業用であってもよいし、家庭用であってもよい。粘着テープの種類としては、たとえば、中芯レステープ、不織布中芯テープ、フィルム中芯テープ、発泡体中芯テープ、金属箔中芯テープなどが挙げられる。
【0021】
図1には、粘接着材料10の一例である片面粘着テープ10Aが示されている。片面粘着テープ10Aは、たとえば、シート状の中芯基材12と、粘着剤14と、剥離剤16とで構成されている。
【0022】
中芯基材12の種類は特に限定されない。中芯基材12は、プラスチックフィルムであってもよいし、紙であってもよいし、発泡体であってもよいし、金属箔であってもよいし、その他の種類のシートであってもよい。
【0023】
中芯基材12の一方の面には、粘着剤14が塗られている。中芯基材12の他方の面には、剥離剤16が塗られている。
【0024】
剥離剤16は、片面粘着テープ10Aがロール状に巻かれている状態で粘着剤14を覆い、接着力が落ちないように粘着剤14を保護する。
【0025】
<B.概要>
以下では、粘接着材料10を構成する粘着剤14の粘性と粘着剤14の弾性との少なくとも一方に関する特性を「粘弾特性」とも言う。一例として、粘弾特性は、粘接着材料10を構成する粘着剤14の粘性を示す物理量と、当該粘着剤の弾性を示す物理量と、当該粘性および当該弾性の両方を示す物理量との少なくとも1つによって表される。粘弾特性の具体例については後述する。
【0026】
また、粘接着材料10の接着に関する特性を「接着特性」とも言う。接着特性は、粘接着材料10の接着力などを示す物理量によって表される。両面テープの場合には粘着剤の面の各々において接着特性を有する。具体例については後述する。
【0027】
以下では、
図2を参照して、粘接着材料10の粘着剤14の粘弾特性から該当面側の粘接着材料10の接着特性を予測する方法について説明する。
図2は、接着特性の予測方法を概念的に示す図である。
【0028】
接着特性の予測機能は、たとえば、情報処理装置100に実装される。情報処理装置100は、たとえば、デスクトップ型のPC(Personal Computer)、ノート型のPC、タブレット端末、スマートフォン、またはその他のコンピュータである。
【0029】
情報処理装置100は、学習済みの予測モデル124を用いて粘接着材料10の接着特性を予測する。予測モデル124は、学習用データセットを用いて予め生成されている。学習用データセットは、様々な粘接着材料の粘弾特性に係る実測データに対して接着特性に係る実測データをラベルとして関連付けている。
【0030】
このような学習用データセットが学習に用いられることで、予測モデル124は、粘接着材料10を構成する粘着剤14の粘弾特性を示すデータの入力を受けると、粘接着材料10の接着特性を示すデータを出力するようになる。異なる言い方をすれば、予測モデル124は、粘接着材料10を構成する粘着剤14の粘弾特性に係るデータを説明変数として受けて、粘接着材料10の接着特性に係るデータを目的変数として出力するようになる。
【0031】
以上のように、粘接着材料10を構成する粘着剤14の粘弾特性と粘接着材料10の接着特性との間の相関関係が学習されることで、情報処理装置100は、粘接着材料10の組成、構造または分子量などに依存せず粘接着材料10の接着特性を予測することが可能になる。
【0032】
<C.情報処理装置100のハードウェア構成>
次に、
図3を参照して、情報処理装置100のハードウェア構成について説明する。
図3は、情報処理装置100のハードウェア構成の一例を示す図である。
【0033】
情報処理装置100は、制御装置101(制御部)と、ROM(Read Only Memory)102と、RAM(Random Access Memory)103と、通信インターフェイス104と、表示インターフェイス105と、入力インターフェイス107と、補助記憶装置120とを含む。これらのコンポーネントは、バス115に接続される。
【0034】
制御装置101は、たとえば、少なくとも1つの集積回路によって構成される。集積回路は、たとえば、少なくとも1つのCPU(Central Processing Unit)、少なくとも1つのGPU(Graphics Processing Unit)、少なくとも1つのASIC(Application Specific Integrated Circuit)、少なくとも1つのFPGA(Field Programmable Gate Array)、またはそれらの組み合わせなどによって構成され得る。
【0035】
制御装置101は、各種プログラムを実行することで情報処理装置100の動作を制御する。制御装置101は、各種プログラムの実行命令を受け付けたことに基づいて、補助記憶装置120またはROM102からRAM103に実行対象のプログラムを読み出す。RAM103は、ワーキングメモリとして機能し、プログラムの実行に必要な各種データを一時的に格納する。
【0036】
通信インターフェイス104には、LAN(Local Area Network)やアンテナなどが接続される。情報処理装置100は、通信インターフェイス104を介して、外部機器との間でデータをやり取りする。当該外部機器は、たとえば、サーバーなどを含む。
【0037】
表示インターフェイス105には、表示デバイス106が接続される。表示インターフェイス105は、制御装置101などからの指令に従って、表示デバイス106に対して、画像を表示するための画像信号を送出する。表示デバイス106は、たとえば、液晶表示ディスプレイ、有機EL(Electro Luminescence)ディスプレイ、またはその他のディスプレイである。なお、表示デバイス106は、情報処理装置100と一体的に構成されてもよいし、情報処理装置100とは別に構成されてもよい。
【0038】
入力インターフェイス107には、入力デバイス108が接続される。入力デバイス108は、たとえば、マウス、キーボード、タッチパネル、またはユーザの操作を受け付けることが可能なその他の装置である。なお、入力デバイス108は、情報処理装置100と一体的に構成されてもよいし、情報処理装置100とは別に構成されてもよい。
【0039】
補助記憶装置120は、たとえば、ハードディスクやフラッシュメモリなどの記憶媒体である。補助記憶装置120は、たとえば、学習用データセット122と、予測モデル124と、学習プログラム126と、予測プログラム128とを格納する。これらの格納場所は、補助記憶装置120に限定されず、制御装置101の記憶領域(たとえば、キャッシュメモリなど)、ROM102、RAM103、外部機器(たとえば、サーバー)などに格納されていてもよい。
【0040】
学習プログラム126は、学習用データセット122を用いて予測モデル124を生成するためのプログラムである。学習プログラム126は、単体のプログラムとしてではなく、任意のプログラムの一部に組み込まれて提供されてもよい。この場合、学習プログラム126による学習処理は、任意のプログラムと協働して実現される。このような一部のモジュールを含まないプログラムであっても、本実施の形態に従う学習プログラム126の趣旨を逸脱するものではない。さらに、学習プログラム126によって提供される機能の一部または全部は、専用のハードウェアによって実現されてもよい。さらに、少なくとも1つのサーバーが学習プログラム126の処理の一部を実行する所謂クラウドサービスのような形態で情報処理装置100が構成されてもよい。
【0041】
予測プログラム128は、学習済みの予測モデル124を用いて、粘接着材料の粘弾特性から当該粘接着材料の接着特性を予測するためのプログラムである。予測プログラム128は、単体のプログラムとしてではなく、任意のプログラムの一部に組み込まれて提供されてもよい。この場合、予測プログラム128による学習処理は、任意のプログラムと協働して実現される。このような一部のモジュールを含まないプログラムであっても、本実施の形態に従う予測プログラム128の趣旨を逸脱するものではない。さらに、予測プログラム128によって提供される機能の一部または全部は、専用のハードウェアによって実現されてもよい。さらに、少なくとも1つのサーバーが予測プログラム128の処理の一部を実行する所謂クラウドサービスのような形態で情報処理装置100が構成されてもよい。
【0042】
<D.学習用データセット122>
次に、
図4~
図7を参照して、
図3に示される学習用データセット122について説明する。
図4は、学習用データセット122の一例を示す図である。
【0043】
学習用データセット122は、複数の学習用データ123を含む。学習用データセット122に含まれる学習用データ123の数は、任意である。一例として、学習用データ123の数は、数十~数万である。
【0044】
学習用データ123は、粘接着材料の粘弾特性に対して当該粘接着材料の接着特性をラベルとして関連付けている。粘弾特性は、学習用データ123において説明変数として規定される。接着特性は、学習用データ123において目的変数として規定される。
【0045】
また、学習用データ123には、テープID(Identification)が関連付けられている。テープIDは、学習用データ123を一意に識別するための情報である。テープIDは、たとえば、重複しないようにユーザによって入力される。
【0046】
学習用データセット122に規定される粘弾特性は、動的粘弾性測定装置を用いて測定された実測値である。当該粘弾特性は、たとえば、粘接着材料の貯蔵弾性率と、粘接着材料の損失弾性率と、粘接着材料の損失正接との内の少なくとも1つを含む。
図4の例では、粘弾特性は、当該貯蔵弾性率と、当該損失弾性率と、当該損失正接との3つを含んでいる。
【0047】
好ましくは、学習用データセット122に規定される粘弾特性は、損失正接を含む。学習用データセット122において損失正接と接着特性との関係が規定されることで、上述の予測モデル124による予測精度がより向上する。
【0048】
貯蔵弾性率は、粘接着材料が変形する際に弾性エネルギーとして粘接着材料内に貯蔵されるエネルギーの成分に相当し、粘接着材料の硬さの程度を表す指標である。
【0049】
図5は、一の学習用データ123に規定されている貯蔵弾性率の一例を示す図である。
図5の例では、温度が「T」で示されており、温度Tにおける貯蔵弾性率が「G1(T)」で示されている。
【0050】
損失弾性率は、粘接着材料が変形する際に内部摩擦などにより散逸される損失エネルギーの成分に相当し、粘接着材料の粘性の程度を表す指標である。
【0051】
図6は、一の学習用データ123に規定されている損失弾性率の一例を示す図である。
図6の例では、温度が「T」で示されており、温度Tにおける損失弾性率が「G2(T)」で示されている。
【0052】
損失正接は、貯蔵弾性率「G1(T)」と損失弾性率「G2(T)」との比で表される。典型的には、損失正接「tanδ(T)」は、下記式(1)で示される。
【0053】
tanδ(T)=G2(T)/G1(T)・・・(1)
図7は、一の学習用データ123に規定されている損失正接の一例を示す図である。
図7の例では、温度が「T」で示されており、温度Tにおける損失正接が「tanδ(T)」で示されている。
【0054】
学習用データ123に規定される接着特性は、試験機などの各種測定装置を用いて測定された実測値である。当該接着特性は、粘接着材料10および被着体の剥離に要する強さ(以下、「接着力」ともいう。)と、被着体に対する粘接着材料10のずれにくさ(以下、「保持力」ともいう。)と、粘接着材料10および被着体の接着のしやすさ(以下、「タック」ともいう。)との少なくとも1つを含む。
図4の例では、接着特性は、接着力と、保持力と、タックとの3つで規定されている。
【0055】
接着力の例としては、ピール接着力、せん断接着力、および割裂接着力などが挙げられる。
【0056】
ピール接着力は、たとえば、被着面に対して直交する方向に粘接着材料を剥がすのに要する力(いわゆる、90°ピール接着力)で表される。あるいは、ピール接着力は、被着面に対して平行な方向に粘接着材料を剥がすのに要する力(いわゆる、180°ピール接着力)で表される。
【0057】
せん断接着力は、粘接着材料によって接合されている被着体同士に対して水平面で反対方向の力(すなわち、せん断応力)を加えて接合部を破断させた際の力に相当する。
【0058】
割裂接着力は、粘接着材料によって接合されている被着体同士に対して垂直面で反対方向の力を加えて被着体同士が剥がれる際の力に相当する。
【0059】
保持力としては、せん断保持力、定荷重保持力などが挙げられる。せん断保持力は、被着体に貼られた粘接着材料に対してせん断方向に荷重を一定時間加えた際に粘接着材料がずれた距離で表される。あるいは、保持力は、被着体に貼られた粘接着材料に対してせん断方向に荷重が加えられてから当該粘接着材料が落下するまでの時間で表される。一方、定荷重保持力は、被着体に貼られた粘接着材料に対して垂直方向に荷重を加えた際に当該粘接着材料がずれた距離、または当該荷重が加えられてから当該粘接着材料が落下するまでの時間で表される。
【0060】
タックの例としては、ボールタックなどが挙げられる。ボールタックは、粘接着材料が貼られた傾斜面に対して径の異なるボールを順に転がすことで測定される。当該ボールタックは、傾斜面上で停止したボールの最大径で表される。
【0061】
なお、学習用データセット122は、粘接着材料に係る学習用データ123(以下、「第1データ群」ともいう。)だけでなく、粘接着材料以外の高分子材料に係る学習用データ123(以下、「第2データ群」ともいう。)を含んでもよい。
【0062】
この場合、第1データ群を構成する各学習用データは、粘接着材料の粘弾特性に対して接着機能を有することを示す接着特性をラベルとして関連付けている。接着機能を有することを示す接着特性は、たとえば、学習用データ123において「0」よりも大きい値で規定される。
【0063】
一方で、第2データ群を構成する各学習用データは、粘接着材料以外の高分子材料の粘弾特性に対して接着機能を有さないことを示す接着特性をラベルとして関連付けている。粘接着材料以外の高分子材料は、粘接着材料としては使用されない、接着機能を有さない高分子材料を意味する。接着機能を有さないことを示す接着特性は、たとえば、学習用データ123において「0」で規定される。
【0064】
粘接着材料に係る学習用データ123だけでなく、粘接着材料以外の高分子材料に係る学習用データ123が後述の学習で用いられることで、予測モデル124による接着特性の予測精度および予測の適用範囲が改善する。
【0065】
<E.情報処理装置100の機能構成>
次に、
図8~
図10を参照して、情報処理装置100の機能構成について説明する。
図8は、情報処理装置100の機能構成の一例を示す図である。
【0066】
図8に示されるように、情報処理装置100は、機能構成として、学習部152と、予測部154と、出力部156とを含む。以下では、これらの機能構成について順に説明する。
【0067】
なお、学習部152、予測部154、および出力部156は、情報処理装置100に実装される必要はない。学習部152、予測部154、および出力部156の一部の機能構成は、情報処理装置100に実装され、残りの機能構成は、サーバーなどの別のコンピュータに実装されてもよい。
【0068】
(E1.学習部152)
まず、
図9を参照して、
図8に示される学習部152の機能について説明する。
図9は、学習部152による学習処理を概念的に示す図である。
【0069】
学習部152は、上述の学習用データ123(
図4参照)を用いて学習処理を実行し、予測モデル124を生成する。採用される機械学習アルゴリズムは、特に限定されず、たとえば、ディープラーニング(深層学習)などのニューラルネットワーク、サポートベクターマシン、または決定木系などの種々の機械学習アルゴリズムが採用され得る。以下では、ニューラルネットワークを用いた学習処理について説明する。
【0070】
予測モデル124は、入力層Xと、中間層Hと、出力層Yとで構成される。
【0071】
入力層Xは、学習用データ123に規定されている粘弾特性の入力を説明変数として受ける。一例として、入力層Xは、ユニット群x1と、ユニット群x2と、ユニット群x3とを含む。
【0072】
ユニット群x1は、たとえば、予測モデル124に規定されている貯蔵弾性率「G1(T)」の入力を受けるように構成される。ユニット群x1を構成するユニット数は、貯蔵弾性率「G1(T)」を構成するデータ数と同数である。一例として、貯蔵弾性率「G1(T)」が「G1(-40)~G1(150)」の190個のデータで構成される場合、ユニット群x1は、190個のユニット数で構成される。ユニット群x1を構成する各ユニットは、入力されたデータを中間層Hの1層目の各ユニットに出力する。
【0073】
ユニット群x2は、たとえば、予測モデル124に規定されている損失弾性率「G2(T)」の入力を受けるように構成される。ユニット群x2を構成するユニット数は、損失弾性率「G2(T)」を構成するデータ数と同数である。一例として、損失弾性率「G2(T)」が「G2(-40)~G2(150)」の190個のデータで構成される場合、ユニット群x2は、190個のユニット数で構成される。ユニット群x2を構成する各ユニットは、入力されたデータを中間層Hの1層目の各ユニットに出力する。
【0074】
ユニット群x3は、たとえば、予測モデル124に規定されている損失正接「tanδ(T)」の入力を受けるように構成される。ユニット群x3を構成するユニット数は、損失正接「tanδ(T)」を構成するデータ数と同数である。一例として、損失正接「tanδ(T)」が「tanδ(-40)~tanδ(150)」の190個のデータで構成される場合、ユニット群x3は、190個のユニット数で構成される。ユニット群x3を構成する各ユニットは、入力されたデータを中間層Hの1層目の各ユニットに出力する。
【0075】
中間層Hは、複数の層で構成されている。中間層Hの層数は、任意である。
図9の例では、中間層Hは、N層(Nは自然数)で構成されている。中間層Hの各層は、複数のユニットを含む。
図9の例では、中間層Hの1層目は、ユニットh
A1,h
A2・・・で構成されている。中間層Hの最終層は、ユニットh
N1,h
N2・・・で構成されている。
【0076】
中間層Hの各層を構成する各ユニットは、前の層の各ユニットと、次の層の各ユニットとに接続されている。各層の各ユニットは、前の層の各ユニットからの各出力値を受けて、各出力値に重みを乗算し、それらの乗算結果を積算し、その積算結果に対して所定のバイアスを加算(または減算)し、その加算結果(または減算結果)を所定の関数(たとえば、シグモナイト関数)に入力し、その関数の出力値を次の層の各ユニットに出力する。
【0077】
出力層Yは、入力層Xに入力された粘弾特性に応じた接着特性を出力する。一例として、出力層Yは、ユニットy1~y3で構成される。以下では、ユニットy1~y3をユニットyとも称する。
【0078】
ユニットyの各々は、中間層Hの最終層の各ユニットhN1,hN2・・・と接続される。ユニットyの各々は、中間層Hの最終層の各ユニットからの出力値を受けて、各出力値に重みを乗算し、それらの乗算結果を積算し、その積算結果に対して所定のバイアスを加算(または減算)し、その加算結果(または減算結果)を所定の関数(たとえば、シグモナイト関数)に入力し、その関数の出力結果を出力値として出力する。
【0079】
出力層Yを構成するユニット数は、学習用データ123に規定される目的変数の数に応じて決定される。一例として、上述の接着力、上述の保持力、および上述のタックを予測する場合、出力層Yを構成するユニット数は、3つとなる。
【0080】
ユニットy1は、予測結果として接着力を出力するように構成される。ユニットy2は、予測結果として保存力を出力するように構成される。ユニットy3は、予測結果としてタックを出力するように構成される。
【0081】
なお、
図9の例では、1つの予測モデル124が接着力、保持力およびタックの3つの予測値を出力するように構成されているが、1つの予測モデル124が1つの予測値を出力してもよい。一例として、第1の予測モデル124は、粘接着材料の粘弾特性の入力を受けて当該粘接着材料の接着力を出力するように構成される。第2の予測モデル124は、粘接着材料の粘弾特性の入力を受けて当該粘接着材料の保持力を出力するように構成される。第3の予測モデル124は、粘接着材料の粘弾特性の入力を受けて当該粘接着材料のタックを出力するように構成される。
【0082】
次に、学習部152による予測モデル124の内部パラメータの更新処理について説明する。
【0083】
学習部152は、1つ目の学習用データ123に規定されている粘弾特性を予測モデル124に入力する。これにより、予測モデル124は、入力された粘弾特性に応じた接着特性を出力する。次に、学習部152は、出力された予測結果「s1」~「s3」と、1つ目の学習用データ123に規定されている目的変数とを比較する。当該目的変数は、たとえば、スコア「sA」~「sC」で表される。
【0084】
学習部152は、予測モデル124の出力結果「s1」~「s3」と、目的変数「sA」~「sC」との間の誤差「Z」を算出する。一例として、誤差「Z」は、下記の式(2)に基づいて算出される。
【0085】
Z={(s1-sA)2+(s2-sB)2+(s3-sC)2}/3・・・(2)
次に、学習部152は、誤差「Z」が小さくなるように、予測モデル124に含まれる各種のパラメータ(たとえば、重みやバイアス)を更新する。当該パラメータの更新は、たとえば、誤差逆伝播法により実現される。
【0086】
学習部152は、予測モデル124の内部パラメータの更新処理を、学習用データセット122に含まれる各学習用データ123について繰り返し行う。その結果、予測モデル124は、学習が進むにつれて正確な予測結果を出力するようになる。
【0087】
なお、学習部152は、学習用データセット122に含まれる全ての学習用データ123を学習処理に用いる必要はなく、学習用データセット122に含まれる一部の学習用データ123を用いて予測モデル124を生成してもよい。残りの学習用データ123は、予測モデル124の評価などに用いられる。
【0088】
(E2.予測部154)
次に、
図10を参照して、
図8に示される予測部154の機能について説明する。
図10は、予測部154による予測処理を概念的に示す図である。
【0089】
予測部154は、所望の接着特性の入力を受け付け、予測モデル124から出力される接着特性が当該所望の接着特性となった際に予測モデル124に入力された粘弾特性を探索する。これにより、所望の物性バランスを有する粘弾特性が探索可能となる。
【0090】
所望の接着特性は、たとえば、上述の表示デバイス106に表示される入力画面に入力される。ユーザは、たとえば、上述の入力デバイス108を用いて当該入力画面に所望の接着特性を入力する。
【0091】
所望の接着特性は、一の数値で指定されてもよいし、数値範囲で指定されてもよい。一例として、所望の接着特性は、接着力の数値範囲Δsαと、保持力の数値範囲Δsβと、タックの数値範囲Δsγとの少なくとも1つで指定される。
【0092】
数値範囲Δsαは、たとえば、接着力の下限値と接着力の上限値との少なくとも一方で指定される。数値範囲Δsβは、たとえば、保持力の下限値と保持力の上限値との少なくとも一方で指定される。数値範囲Δsγは、たとえば、タックの下限値とタックの上限値との少なくとも一方で指定される。
【0093】
予測部154は、予測モデル124の出力が所望の接着特性となるような入力の粘弾特性を探索する。
【0094】
一例として、予測部154は、予測モデル124に入力する粘弾特性の候補(以下、「粘弾特性候補」ともいう。)を生成し、各粘弾特性候補を予測モデル124に順次入力する。そして、予測モデル124から出力される予測結果「s1」が数値範囲Δsαに含まれ、かつ予測モデル124から出力される予測結果「s2」が数値範囲Δsβに含まれ、かつ予測モデル124から出力される予測結果「s3」が数値範囲Δsγに含まれた場合、予測部154は、予測モデル124に入力された粘弾特性候補を記憶する。そうでない場合には、予測部154は、予測モデル124に入力された粘弾特性候補を記憶せずに破棄する。これにより、予測部154は、所望の接着特性を有する粘弾特性を探索することができる。
【0095】
他の例として、予測部154は、SMBO(Sequential Model-based Global Optimization)などの探索アルゴリズムを用いて、所望の接着特性を有する粘弾特性を探索してもよい。
【0096】
なお、所望の接着特性を満たす粘弾特性候補が複数ある場合には、予測部154は、当該粘弾特性候補の全てを探索結果として出力してもよいし、所望の接着特性との誤差が最小となるような粘弾特性候補を探索結果として出力してもよい。
【0097】
以上のように、予測部154は、所望の接着特性を有する粘弾特性を探索する。この探索方法の代替手段として、粘接着材料10を構成する粘着剤14の組成、構造、分子量などから接着特性を予測する方法が考えられる。しかしながら、この方法では、組成、構造、および分子量などが未知の材料については接着特性の予測精度が低くなる。一方で、本実施の形態に従う予測方法は、粘接着材料10を構成する粘着剤14の組成、構造または分子量などに依存せず粘接着材料10の接着特性を予測することができるので、所望の接着特性を有する物性バランスをより正確かつより柔軟に探索することができる。
【0098】
(E3.出力部156)
次に、
図8に示される出力部156の機能について説明する。
【0099】
出力部156は、予測部154による探索結果を出力する。探索結果の出力先は、任意である。一例として、当該探索結果は、情報処理装置100の表示デバイス106に表示される。他の例として、当該探索結果は、データとして保存される。
【0100】
好ましくは、予測部154による探索結果が複数ある場合には、出力部156は、所望の接着特性により近い探索結果を他の探索結果よりも強調して表示する。強調表示の方法は、任意である。一例として、出力部156は、赤色などの所定の色で探索結果を表示することで強調表示を実現する。あるいは、出力部156は、サイズをより大きく表示することで強調表示を実現する。
【0101】
<F.学習処理に係るフローチャート>
次に、
図11を参照して、情報処理装置100による学習処理の流れについて説明する。
図11は、学習処理の流れを示すフローチャートである。
【0102】
情報処理装置100の制御装置101は、上述の学習プログラム126(
図3参照)を実行することにより上述の学習部152(
図8参照)として機能し、
図11に示される学習処理を実行する。他の局面において、学習処理の一部または全部が、回路素子またはその他のハードウェアによって実行されてもよい。
【0103】
ステップS110において、制御装置101は、変数「i」を初期化する。一例として、変数「i」は、「1」に初期化される。
【0104】
ステップS112において、制御装置101は、学習用データセット122に含まれるi番目の学習用データ123を取得する。
【0105】
ステップS114において、制御装置101は、ステップS112で取得した学習用データ123に規定されている粘弾特性を予測モデル124に入力する。これにより、予測モデル124は、入力された粘弾特性に応じた接着特性を予測結果として出力する。
【0106】
ステップS116において、制御装置101は、ステップS112で取得した学習用データ123に規定されている正解値としての接着特性と、ステップS114で得られた予測結果としての接着特性との間の誤差を算出し、当該誤差が現在よりも小さくなるように予測モデル124の内部パラメータを更新する。当該パラメータは、たとえば、誤差逆伝播法により更新される。
【0107】
ステップS120において、制御装置101は、学習処理を終了するか否かを判断する。一例として、制御装置101は、変数「i」が所定値よりも大きい場合に、学習処理を終了すると判断する。あるいは、制御装置101は、学習用データセット122に含まれる全ての学習用データ123を学習に使用した場合に、学習処理を終了すると判断する。制御装置101は、学習処理を終了すると判断した場合(ステップS120においてYES)、
図11に示される処理を終了する。そうでない場合には(ステップS120においてNO)、制御装置101は、制御をステップS122に切り替える。
【0108】
ステップS122において、制御装置101は、変数「i」をインクリメントする。すなわち、制御装置101は、変数「i」を1増加する。その後、制御装置101は、制御をステップS112に戻す。
【0109】
<G.探索処理に係るフローチャート>
次に、
図12を参照して、情報処理装置100による探索処理の流れについて説明する。
図12は、探索処理の流れを示すフローチャートである。
【0110】
情報処理装置100の制御装置101は、上述の予測プログラム128(
図3参照)を実行することにより上述の予測部154(
図8参照)として機能し、
図12に示される探索処理を実行する。他の局面において、探索処理の一部または全部が、回路素子またはその他のハードウェアによって実行されてもよい。
【0111】
ステップS210において、制御装置101は、変数「j」を初期化する。一例として、変数「j」は、「1」に初期化される。
【0112】
ステップS212において、制御装置101は、所望の接着特性の入力を受け付ける。所望の接着特性は、たとえば、表示デバイス106に表示されている入力画面においてユーザによって入力される。
【0113】
ステップS214において、制御装置101は、所望の接着特性を有する可能性のある粘弾特性候補を生成する。粘弾特性候補は、ランダムに生成されてもよいし、予め定められたルールに基づいて生成されてもよい。
【0114】
ステップS216において、制御装置101は、補助記憶装置120から予測モデル124を取得する。あるいは、予測モデル124が他のコンピュータに格納されている場合、制御装置101は、当該他のコンピュータから予測モデル124を取得する。
【0115】
ステップS218において、制御装置101は、ステップS214で生成された粘弾特性候補の内からj番目の粘弾特性候補を取得し、当該粘弾特性候補を予測モデル124に入力する。これにより、予測モデル124は、入力された粘弾特性に応じた接着特性を予測結果として出力する。
【0116】
ステップS220において、制御装置101は、ステップS218で得られた予測結果としての接着特性がステップS212で取得された所望の接着特性を満たすか否かを判断する。制御装置101は、予測結果としての接着特性が所望の接着特性を満たすと判断した場合(ステップS220においてYES)、制御をステップS222に切り替える。そうでない場合には(ステップS220においてNO)、制御装置101は、制御をステップS230に切り替える。
【0117】
ステップS222において、制御装置101は、j番目の粘弾特性候補を補助記憶装置120に記憶する。
【0118】
ステップS230において、制御装置101は、探索処理を終了するか否かを判断する。一例として、制御装置101は、所望の接着特性を満たす粘弾特性が発見された場合に、探索処理を終了すると判断する。あるいは、制御装置101は、変数「j」が所定値よりも大きい場合に、探索処理を終了すると判断する。制御装置101は、探索処理を終了すると判断した場合(ステップS220においてYES)、制御装置101は、制御をステップS232に切り替える。そうでない場合には(ステップS120においてNO)、制御装置101は、制御をステップS234に切り替える。
【0119】
ステップS232において、制御装置101は、ステップS222で記憶した粘弾特性候補を探索結果として出力する。一例として、探索結果は、情報処理装置100の表示デバイス106に表示される。あるいは、探索結果は、データとして出力される。
【0120】
ステップS234において、制御装置101は、変数「j」をインクリメントする。すなわち、制御装置101は、変数「j」を1増加する。その後、制御装置101は、制御をステップS218に戻す。
【0121】
<H.変形例1>
次に、
図13~
図15を参照して、接着特性の予測方法に係る変形例1について説明する。
【0122】
上述の予測モデル124は、粘接着材料の粘弾特性を入力として受けるように構成されていた。これに対して、本変形例に従う予測モデル124は、粘接着材料の粘弾特性だけでなく、粘接着材料に係る他の情報をさらに入力として受けるように構成される。
【0123】
まず、
図13を参照して、変形例1に従う学習用データセット122について説明する。
図13は、変形例1に従う学習用データセット122の一例を示す図である。
【0124】
学習用データセット122は、複数の学習用データ123を含む。本変形例に従う学習用データ123は、説明変数として付加情報が規定されている点で、上述の
図4に示される学習用データ123と異なる。その他の点については上述の通りであるので、以下では付加情報以外の説明については繰り返さない。
【0125】
学習用データ123に規定される付加情報は、たとえば、基材IDと、粘着剤厚みと、基材厚みとを含む。なお、付加情報は、粒子・フィラーなどの添加物の情報をさらに含んでもよい。また、各接着性能を測定する条件(たとえば、接着力測定時に使用する被着体の情報など)をさらに含んでもよい。
【0126】
基材IDは、粘接着材料を構成する基材(たとえば、上述の中芯基材12)の種別を示す情報である。基材IDは、基材の種類に応じて予め決められている。基材IDとして、基材の特性を示す特性値などを使用してもよい。基材IDは、たとえば、ユーザによって入力される。
【0127】
粘着剤厚みは、粘接着材料を構成する粘着剤(たとえば、上述の粘着剤14)の厚みを示す。当該厚みは、実測値である。
【0128】
基材厚みは、粘接着材料を構成する基材(たとえば、上述の中芯基材12)の厚みを示す。当該厚みは、実測値である。
【0129】
次に、
図14を参照して、変形例1に従う予測モデル124について説明する。
図14は、変形例1に従う予測モデル124を示す図である。
【0130】
本変形例に従う予測モデル124は、粘接着材料の粘弾特性だけでなく、基材IDと、粘着剤厚みと、基材厚みとをさらに受けるように構成される点で、上述の予測モデル124と異なる。
【0131】
なお、予測モデル124は、基材IDと、粘着剤厚みと、基材厚みとの全てを付加的に受け付けるように構成される必要はなく、基材IDと、粘着剤厚みと、基材厚みとの内の少なくとも1つを入力として受けるように構成されてもよい。
【0132】
予測モデル124が基材IDを入力として受けるように構成されることで、情報処理装置100は、種々の粘接着材料について粘弾特性と接着特性との間の相関関係を学習することができる。
【0133】
また、予測モデル124が粘着剤厚みを入力として受けるように構成されることで、情報処理装置100は、粘弾特性と接着特性との間の相関関係をより正確に学習することができる。
【0134】
さらに、予測モデル124が基材厚みを入力として受けるように構成されることで、情報処理装置100は、粘弾特性と接着特性との間の相関関係をより正確に学習することができる。
【0135】
次に、
図15を参照して、変形例1に従う探索処理について説明する。
図15は、変形例1に従う探索処理を概念的に示す図である。
【0136】
本変形例に従う予測部154は、予測モデル124の出力が所望の接着特性となるような説明変数の組み合わせを探索する。
【0137】
より具体的な処理として、まず、予測部154は、予測モデル124に入力する粘弾特性候補を生成する。当該粘弾特性候補は、基材IDと、粘着剤厚みと、基材厚みと、粘接着材料の貯蔵弾性率と、粘接着材料の損失弾性率と、粘接着材料の損失正接との組み合わせで規定される。
【0138】
予測部154は、生成した粘弾特性候補を予測モデル124に順次入力する。そして、予測部154は、予測モデル124から出力される予測結果「s1」が数値範囲Δsαに含まれ、かつ予測モデル124から出力される予測結果「s2」が数値範囲Δsβに含まれ、かつ予測モデル124から出力される予測結果「s3」が数値範囲Δsγに含まれた際における粘弾特性候補を記憶する。そうでない場合には、予測部154は、入力された粘弾特性の候補を記憶せずに破棄する。
【0139】
これにより、予測部154は、所望の接着特性を有する粘着特性だけでなく、基材の最適な種類と、粘着剤の最適な厚みと、基材の最適な厚みとをさらに特定することができる。
【0140】
<I.変形例2>
次に、
図16を参照して、接着特性の予測方法に係る変形例2について説明する。
【0141】
上述の
図9および
図10の例では、粘弾特性が予測モデル124にそのまま入力されていた。これに対して、本変形例では、特徴抽出された粘弾特性が予測モデル124に入力される。その他の点については上述の通りであるので、その説明については繰り返さない。
【0142】
図16は、粘弾特性の特徴抽出処理を説明するための図である。粘弾特性に対する特徴抽出は、たとえば、
図16に示される特徴抽出部151によって実行される。
【0143】
特徴抽出部151による特徴抽出後の粘弾特性と接着特性との間の相関値は、特徴抽出部151による特徴抽出前の粘弾特性と接着特性との間の相関値よりも高い。また、特徴抽出部151による特徴抽出後の粘弾特性を表す次元数は、特徴抽出部151による特徴抽出前の粘弾特性を表す次元数よりも低い。特徴量抽出が行われることで予測モデルによる予測精度がさらに向上する。
【0144】
ある局面において、特徴抽出部151は、粘接着材料の貯蔵弾性率「G1(T)」に対して特徴抽出処理を実行し、抽出した特徴量を予測モデル124に入力する。貯蔵弾性率「G1(T)」に対する特徴抽出アルゴリズムには、任意のアルゴリズムが採用され得る。
【0145】
一例として、特徴抽出部151は、予測モデルの予測精度などを指標にして、貯蔵弾性率「G1(T)」から特定の温度の貯蔵弾性率を選定する。選定方法としては、たとえば、フィルタ法、ラッパー法、組み込み法などが活用され得る。他の例として、特徴抽出部151は、貯蔵弾性率「G1(T)」に対して、ニューラルネットワークによる次元削減により情報を圧縮し、当該圧縮した情報を特徴量として予測モデル124に入力してもよい。なお、予測精度を向上するための前処理として、特徴抽出部151の前に微分フィルタ、ノイズ抑制フィルタなどが設けられてもよい。
【0146】
他の局面において、特徴抽出部151は、粘接着材料の損失弾性率「G2(T)」に対して特徴抽出処理を実行し、抽出した特徴量を予測モデル124に入力する。損失弾性率「G2(T)」に対する特徴抽出アルゴリズムには、任意のアルゴリズムが採用され得る。
【0147】
一例として、特徴抽出部151は、予測モデルの予測精度などを指標にして、損失弾性率「G2(T)」から特定の温度の損失弾性率を選定する。選定方法としては、たとえば、フィルタ法、ラッパー法、組み込み法などが活用され得る。他の例として、特徴抽出部151は、損失弾性率「G2(T)」に対して、ニューラルネットワークによる次元削減により情報を圧縮し、当該圧縮した情報を特徴量として予測モデル124に入力してもよい。なお、予測精度を向上するための前処理として、特徴抽出部151の前に微分フィルタ、ノイズ抑制フィルタなどが設けられてもよい。
【0148】
さらに他の局面において、特徴抽出部151は、粘接着材料の損失正接「tanδ(T)」に対して特徴抽出処理を実行し、抽出した特徴量を予測モデル124に入力する。損失正接「tanδ(T)」に対する特徴抽出アルゴリズムには、任意のアルゴリズムが採用され得る。
【0149】
一例として、特徴抽出部151は、予測モデルの予測精度などを指標にして、損失正接「tanδ(T)」から特定の温度の損失正接を選定する。選定方法として、たとえば、フィルタ法、ラッパー法、組み込み法などが活用され得る。他の例として、特徴抽出部151は、損失正接「tanδ(T)」に対して、ニューラルネットワークによる次元削減により情報を圧縮し、当該圧縮した情報を特徴量として予測モデル124に入力してもよい。なお、予測精度を向上するための前処理として、特徴抽出部151の前に微分フィルタ、ノイズ抑制フィルタなどが設けられてもよい。
【0150】
以上のように、本変形例では、予測モデル124に入力される粘弾特性は、粘接着材料の貯蔵弾性率「G1(T)」から抽出された特徴量と、粘接着材料の損失弾性率「G2(T)」から抽出された特徴量と、粘接着材料の損失正接「tanδ(T)」から抽出された特徴量との内の少なくとも1つを含む。これにより、情報処理装置100は、接着特性の予測精度をさらに改善することができる。
【実施例】
【0151】
<J.評価実験>
発明者は、粘接着材料の粘弾特性と粘接着材料の接着特性との間に相関関係が存在することを裏付けるために様々な条件で予測モデル124を生成し、生成した予測モデル124について性能評価実験を行った。
【0152】
図17は、予測モデル124の性能評価実験の結果を示す図である。以下では、
図17を参照して、発明者が行った各性能評価実験と実験結果とについて説明する。
【0153】
(J1.実施例1)
まず、実施例1に従う予測モデル124の性能評価実験について説明する。
【0154】
本実施例では、発明者らは、上述の学習用データセット122から3つの予測モデル(以下、「予測モデル124_1A~124_1C」ともいう。)を生成し、予測モデル124_1A~124_1Cのそれぞれについて性能評価実験を行った。予測モデル124_1A~124_1Cを生成するための学習アルゴリズムには、ニューラルネットワークが使用された。
【0155】
(a)予測モデル124_1A
予測モデル124_1Aの学習には、上述の学習用データセット122(
図13参照)に含まれる335個の学習用データ123が用いられた。予測モデル124_1Aは、粘着剤厚みと、基材厚みと、基材種類と、貯蔵弾性率と、損失弾性率と、損失正接との入力を説明変数として受けて、180°ピール接着力を目的変数として出力するように学習された。また、予測モデル124_1Aは、回帰モデルとして生成された。
【0156】
説明変数としての貯蔵弾性率には、-40℃~150℃における数値が使用された。説明変数としての貯蔵弾性率には、-40℃~150℃における数値が使用された。説明変数としての損失正接には、-40℃~150℃における数値が使用された。
【0157】
予測モデル124_1Aの予測精度を表す指標としては、決定係数が用いられた。決定係数の値が「1.0」に近いほど、予測モデル124_1Aの予測精度が高くなる。
【0158】
学習時に使用された335個の学習用データ123を用いた場合における予測モデル124_1Aの決定係数は、「0.91」であった。また、学習時に使用されなかった18個の学習用データ123を用いた場合における予測モデル124_1Aの決定係数は、「0.86」であった。
【0159】
(b)予測モデル124_1B
予測モデル124_1Bの学習には、上述の学習用データセット122に含まれる212個の学習用データ123が用いられた。予測モデル124_1Bは、保持力を目的変数として出力するように構成され、二値分類モデルとして構成される点で上述の予測モデル124_1Aと異なる。予測モデル124_1Bのその他の構成については、予測モデル124_1Aと同じである。
【0160】
予測モデル124_1Bの予測精度を表す指標としては、AUC(Area Under the Curve)が用いられた。ACUの値が「1.0」に近いほど、予測モデル124_1Bの予測精度が高くなる。
【0161】
学習時に使用された212個の学習用データ123を用いた場合における予測モデル124_1BのAUCは、「0.98」であった。また、学習時に使用されなかった12個の学習用データ123を用いた場合における予測モデル124_1BのAUCは、「1.0」であった。
【0162】
(c)予測モデル124_1C
予測モデル124_1Cの学習には、上述の学習用データセット122に含まれる285個の学習用データ123が用いられた。予測モデル124_1Cは、ボールタックを目的変数として出力するように構成される点で上述の予測モデル124_1Aと異なる。予測モデル124_1Cのその他の構成については、予測モデル124_1Aと同じである。
【0163】
学習時に使用された285個の学習用データ123を用いた場合における予測モデル124_1Cの決定係数は、「0.96」であった。また、学習時に使用されなかった16個の学習用データを用いた場合における予測モデル124_1Cの決定係数は、「0.88」であった。
【0164】
(J2.実施例2)
次に、実施例2に従う予測モデル124の性能評価実験について説明する。
【0165】
本実施例では、発明者らは、上述の学習用データセット122から他の3つの予測モデル(以下、「予測モデル124_2A~124_2C」ともいう。)を生成し、予測モデル124_2A~124_2Cのそれぞれについて性能評価実験を行った。予測モデル124_2A~124_2Cを生成するための学習アルゴリズムには、ニューラルネットワークが使用された。
【0166】
(a)予測モデル124_2A
予測モデル124_2Aは、粘着剤厚みと、基材厚みと、基材種類と、貯蔵弾性率との入力を説明変数として受けて、180°ピール接着力を目的変数として出力するように学習された。予測モデル124_2Aのその他の点については、上述の予測モデル124_1Aと同じである。
【0167】
学習時に使用された335個の学習用データ123を用いた場合における予測モデル124_2Aの決定係数は、「0.90」であった。また、学習時に使用されなかった18個の学習用データ123を用いた場合における予測モデル124_2Aの決定係数は、「0.84」であった。
【0168】
(b)予測モデル124_2B
予測モデル124_2Bは、粘着剤厚みと、基材厚みと、基材種類と、貯蔵弾性率との入力を説明変数として受けて、保持力を目的変数として出力するように学習された。予測モデル124_2Bのその他の点については、上述の予測モデル124_1Bと同じである。
【0169】
学習時に使用された212個の学習用データ123を用いた場合における予測モデル124_2BのAUCは、「0.93」であった。また、学習時に使用されなかった12個の学習用データ123を用いた場合における予測モデル124_2BのAUCは、「0.90」であった。
【0170】
(c)予測モデル124_2C
予測モデル124_2Cは、粘着剤厚みと、基材厚みと、基材種類と、貯蔵弾性率との入力を説明変数として受けて、ボールタックを目的変数として出力するように学習された。予測モデル124_2Cのその他の点については、上述の予測モデル124_1Cと同じである。
【0171】
学習時に使用された285個の学習用データ123を用いた場合における予測モデル124_2Cの決定係数は、「0.80」であった。また、学習時に使用されなかった16個の学習用データ123を用いた場合における予測モデル124_2Cの決定係数は、「0.79」であった。
【0172】
(J3.実施例3)
次に、実施例3に従う予測モデル124の性能評価実験について説明する。
【0173】
本実施例では、発明者らは、上述の学習用データセット122からさらに他の3つの予測モデル(以下、「予測モデル124_3A~124_3C」ともいう。)を生成し、予測モデル124_3A~124_3Cのそれぞれについて性能評価実験を行った。予測モデル124_3A~124_3Cを生成するための学習アルゴリズムには、ニューラルネットワークが使用された。
【0174】
(a)予測モデル124_3A
予測モデル124_3Aは、粘着剤厚みと、基材厚みと、基材種類と、損失弾性率との入力を説明変数として受けて、180°ピール接着力を目的変数として出力するように学習された。予測モデル124_3Aのその他の点については、上述の予測モデル124_1Aと同じである。
【0175】
学習時に使用された335個の学習用データ123を用いた場合における予測モデル124_3Aの決定係数は、「0.90」であった。また、学習時に使用されなかった18個の学習用データ123を用いた場合における予測モデル124_3Aの決定係数は、「0.82」であった。
【0176】
(b)予測モデル124_3B
予測モデル124_3Bは、粘着剤厚みと、基材厚みと、基材種類と、損失弾性率との入力を説明変数として受けて、保持力を目的変数として出力するように学習された。予測モデル124_3Bのその他の点については、上述の予測モデル124_1Bと同じである。
【0177】
学習時に使用された212個の学習用データ123を用いた場合における予測モデル124_3BのAUCは、「0.95」であった。また、学習時に使用されなかった12個の学習用データ123を用いた場合における予測モデル124_3BのAUCは、「0.90」であった。
【0178】
(c)予測モデル124_3C
予測モデル124_3Cは、粘着剤厚みと、基材厚みと、基材種類と、損失弾性率との入力を説明変数として受けて、ボールタックを目的変数として出力するように学習された。予測モデル124_3Cのその他の点については、上述の予測モデル124_1Cと同じである。
【0179】
学習時に使用された285個の学習用データ123を用いた場合における予測モデル124_3Cの決定係数は、「0.86」であった。また、学習時に使用されなかった16個の学習用データ123を用いた場合における予測モデル124_3Cの決定係数は、「0.77」であった。
【0180】
(J4.実施例4)
次に、実施例4に従う予測モデル124の性能評価実験について説明する。
【0181】
本実施例では、発明者らは、上述の学習用データセット122からさらに他の3つの予測モデル(以下、「予測モデル124_4A~124_4C」ともいう。)を生成し、予測モデル124_4A~124_4Cのそれぞれについて性能評価実験を行った。予測モデル124_4A~124_4Cを生成するための学習アルゴリズムには、ニューラルネットワークが使用された。
【0182】
(a)予測モデル124_4A
予測モデル124_4Aは、粘着剤厚みと、基材厚みと、基材種類と、損失正接との入力を説明変数として受けて、180°ピール接着力を目的変数として出力するように学習された。予測モデル124_4Aのその他の点については、上述の予測モデル124_1Aと同じである。
【0183】
学習時に使用された335個の学習用データ123を用いた場合における予測モデル124_4Aの決定係数は、「0.91」であった。また、学習時に使用されなかった18個の学習用データ123を用いた場合における予測モデル124_4Aの決定係数は、「0.86」であった。
【0184】
(b)予測モデル124_4B
予測モデル124_4Bは、粘着剤厚みと、基材厚みと、基材種類と、損失正接との入力を説明変数として受けて、保持力を目的変数として出力するように学習された。予測モデル124_4Bのその他の点については、上述の予測モデル124_1Bと同じである。
【0185】
学習時に使用された212個の学習用データ123を用いた場合における予測モデル124_4BのAUCは、「0.98」であった。また、学習時に使用されなかった12個の学習用データ123を用いた場合における予測モデル124_4BのAUCは、「1.0」であった。
【0186】
(c)予測モデル124_4C
予測モデル124_4Cは、粘着剤厚みと、基材厚みと、基材種類と、損失正接との入力を説明変数として受けて、ボールタックを目的変数として出力するように学習された。予測モデル124_4Cのその他の点については、上述の予測モデル124_1Cと同じである。
【0187】
学習時に使用された285個の学習用データ123を用いた場合における予測モデル124_4Cの決定係数は、「0.90」であった。また、学習時に使用されなかった16個の学習用データ123を用いた場合における予測モデル124_4Cの決定係数は、「0.89」であった。
【0188】
(J5.実施例5)
次に、実施例5に従う予測モデル124の性能評価実験について説明する。
【0189】
本実施例では、発明者らは、上述の学習用データセット122からさらに他の3つの予測モデル(以下、「予測モデル124_5A~124_5C」ともいう。)を生成し、予測モデル124_5A~124_5Cのそれぞれについて性能評価実験を行った。予測モデル124_5A~124_5Cを生成するための学習アルゴリズムには、ニューラルネットワークが使用された。
【0190】
(a)予測モデル124_5A
本例では、貯蔵弾性率と、損失弾性率と、損失正接とのそれぞれに対して、特徴抽出部151においてニューラルネットワークによる次元削減により特徴量抽出が行われた。予測モデル124_5Aは、これらの抽出された特徴量と、粘着剤厚みと、基材厚みと、基材種類とを説明変数として受け、180°ピール接着力を目的変数として出力するように学習された。予測モデル124_5Aのその他の点については、上述の予測モデル124_1Aと同じである。
【0191】
学習時に使用された335個の学習用データ123を用いた場合における予測モデル124_5Aの決定係数は、「0.95」であった。また、学習時に使用されなかった18個の学習用データ123を用いた場合における予測モデル124_5Aの決定係数は、「0.91」であった。
【0192】
(b)予測モデル124_5B
本例では、貯蔵弾性率と、損失弾性率と、損失正接とのそれぞれに対して、特徴抽出部151においてニューラルネットワークによる次元削減により特徴量抽出が行われた。予測モデル124_5Bは、これらの抽出された特徴量と、粘着剤厚みと、基材厚みと、基材種類とを説明変数として受けて、保持力を目的変数として出力するように学習された。予測モデル124_5Bのその他の点については、上述の予測モデル124_1Bと同じである。
【0193】
学習時に使用された212個の学習用データ123を用いた場合における予測モデル124_5BのAUCは、「0.99」であった。また、学習時に使用されなかった12個の学習用データ123を用いた場合における予測モデル124_5BのAUCは、「1.0」であった。
【0194】
(c)予測モデル124_5C
本例では、貯蔵弾性率と、損失弾性率と、損失正接とのそれぞれに対して、特徴抽出部151においてニューラルネットワークによる次元削減により特徴量抽出が行われた。予測モデル124_5Cは、これらの抽出された特徴量と、粘着剤厚みと、基材厚みと、基材種類とを説明変数として受けて、ボールタックを目的変数として出力するように学習された。予測モデル124_5Cのその他の点については、上述の予測モデル124_1Cと同じである。
【0195】
学習時に使用された285個の学習用データ123を用いた場合における予測モデル124_5Cの決定係数は、「0.98」であった。また、学習時に使用されなかった16個の学習用データ123を用いた場合における予測モデル124_5Cの決定係数は、「0.91」であった。
【0196】
(J6.比較例)
次に、比較例に従う予測モデル124の性能評価実験について説明する。
【0197】
本比較例では、発明者らは、上述の学習用データセット122からさらに他の3つの予測モデル(以下、「予測モデル124_5A~124_5C」ともいう。)を生成し、予測モデル124_5A~124_5Cのそれぞれについて性能評価実験を行った。予測モデル124_5A~124_5Cを生成するための学習アルゴリズムには、ニューラルネットワークが使用された。
【0198】
(a)予測モデル124_5A
予測モデル124_5Aは、粘着剤厚みと、基材厚みと、基材種類との入力を説明変数として受けて、180°ピール接着力を目的変数として出力するように学習された。予測モデル124_5Aのその他の点については、上述の予測モデル124_1Aと同じである。
【0199】
学習時に使用された335個の学習用データ123を用いた場合における予測モデル124_5Aの決定係数は、「0.65」であった。また、学習時に使用されなかった18個の学習用データ123を用いた場合における予測モデル124_5Aの決定係数は、「0.60」であった。
【0200】
(b)予測モデル124_5B
予測モデル124_5Bは、粘着剤厚みと、基材厚みと、基材種類との入力を説明変数として受けて、保持力を目的変数として出力するように学習された。予測モデル124_5Bのその他の点については、上述の予測モデル124_1Bと同じである。
【0201】
学習時に使用された212個の学習用データ123を用いた場合における予測モデル124_5BのAUCは、「0.20」であった。また、学習時に使用されなかった12個の学習用データ123を用いた場合における予測モデル124_5BのAUCは、「0.18」であった。
【0202】
(c)予測モデル124_5C
予測モデル124_5Cは、粘着剤厚みと、基材厚みと、基材種類との入力を説明変数として受けて、ボールタックを目的変数として出力するように学習された。予測モデル124_5Cのその他の点については、上述の予測モデル124_1Cと同じである。
【0203】
学習時に使用された285個の学習用データ123を用いた場合における予測モデル124_5Cの決定係数は、「0.20」であった。また、学習時に使用されなかった16個の学習用データ123を用いた場合における予測モデル124_5Cの決定係数は、「0.19」であった。
【0204】
(J7.評価)
図17に示されるように、実施例1~4に係る予測モデルのいずれの予測精度も、比較例に係る予測モデルの予測精度よりも良好となった。これにより、貯蔵弾性率、損失弾性率、および損失正接のいずれを説明変数として使用しても、接着特性を正確に予測することが示された。特に、損失正接が説明変数として使用されることで、接着特性の予測精度が向上した。また、貯蔵弾性率、損失弾性率、および損失正接の3つが説明変数として使用された場合も、接着特性の予測精度が向上した。
【0205】
今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
【符号の説明】
【0206】
10 粘接着材料、10A 片面粘着テープ、12 中芯基材、14 粘着剤、16 剥離剤、100 情報処理装置、101 制御装置、102 ROM、103 RAM、104 通信インターフェイス、105 表示インターフェイス、106 表示デバイス、107 入力インターフェイス、108 入力デバイス、115 バス、120 補助記憶装置、122 学習用データセット、123 学習用データ、124 予測モデル、124 第2の予測モデル、124 第3の予測モデル、124 第1の予測モデル、126 学習プログラム、128 予測プログラム、151 特徴抽出部、152 学習部、154 予測部、156 出力部。
【要約】
【課題】粘接着材料の接着特性を予測するための新たな技術を提供する。
【解決手段】粘接着材料の接着特性を予測するための予測プログラムは、コンピュータに、粘接着材料の粘弾特性の入力を受けて、当該粘接着材料の接着特性を出力するように学習された予測モデルを取得するステップと、予測モデルに粘弾特性を入力し、他の粘接着材料の接着特性を予測するステップとを実行させる。
【選択図】
図2