(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-10
(45)【発行日】2024-04-18
(54)【発明の名称】窒化物半導体素子
(51)【国際特許分類】
H01L 33/38 20100101AFI20240411BHJP
H01L 33/32 20100101ALI20240411BHJP
H01L 33/40 20100101ALI20240411BHJP
【FI】
H01L33/38
H01L33/32
H01L33/40
(21)【出願番号】P 2020157717
(22)【出願日】2020-09-18
【審査請求日】2023-08-03
(73)【特許権者】
【識別番号】303046277
【氏名又は名称】旭化成エレクトロニクス株式会社
(74)【代理人】
【識別番号】100103850
【氏名又は名称】田中 秀▲てつ▼
(74)【代理人】
【識別番号】100066980
【氏名又は名称】森 哲也
(72)【発明者】
【氏名】岸 貴志
【審査官】佐竹 政彦
(56)【参考文献】
【文献】特開2005-244207(JP,A)
【文献】特開2005-123600(JP,A)
【文献】特開2008-41866(JP,A)
【文献】特開2012-248807(JP,A)
【文献】特開2008-210903(JP,A)
【文献】中国特許出願公開第108321276(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 33/00 - 33/64
(57)【特許請求の範囲】
【請求項1】
基板と、
前記基板上に形成された第一導電型の第一窒化物半導体層と、
前記第一窒化物半導体層上の一部に形成された窒化物半導体活性層と、
前記窒化物半導体活性層上に形成された第二導電型の第二窒化物半導体層と、
前記第二窒化物半導体層上の一部に形成された電極と、
前記第二窒化物半導体層の上面の一部、前記電極の側面、および前記電極の上面の一部を覆うように連続的に形成された絶縁性酸化物膜と、を備え、
前記電極は、Auを含む合金部と、Niを含む酸化物部と、を有し、
前記合金部は前記第二窒化物半導体層と接触し、前記酸化物部は、前記合金部の上面の少なくとも一部および側面の少なくとも一部を被覆する窒化物半導体素子。
【請求項2】
前記合金部の膜厚は30nm以上200nm以下であり、前記膜厚のばらつきは20nm以下である請求項1に記載の窒化物半導体素子。
【請求項3】
前記酸化物部の膜厚は25nm以上200nm以下であり、前記膜厚のばらつきは20nm以上200nm以下である請求項1または2に記載の窒化物半導体素子。
【請求項4】
前記合金部はTiAu合金部である請求項1~3のいずれか一項に記載の窒化物半導体素子。
【請求項5】
前記合金部の側面の全てが前記酸化物部により被覆されている請求項1~4のいずれか一項に記載の窒化物半導体素子。
【請求項6】
前記絶縁性酸化物膜はシリコン酸化膜である請求項1~5のいずれか一項に記載の窒化物半導体素子。
【請求項7】
前記基板面に垂直な断面において、前記絶縁性酸化物膜に接する前記酸化物部の側面と前記第二窒化物半導体層の上面とのなす角αは、前記合金部の側面に接する前記酸化物部の内面と前記第二窒化物半導体層の上面とのなす角βよりも小さく、前記角βは鋭角である請求項1~6のいずれか一項に記載の窒化物半導体素子。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、窒化物半導体素子に関する。
【背景技術】
【0002】
窒化物半導体素子の一種である窒化物半導体発光素子は、例えば、基板と、基板上に形成されたn型窒化物半導体層と、n型窒化物半導体層上の一部に形成された窒化物半導体活性層と、窒化物半導体活性層上に形成されたp型窒化物半導体層と、n型窒化物半導体層上に形成されたn電極と、窒化物半導体積層体のp型窒化物半導体層上に形成されたp電極と、で構成されている。
特許文献1には、窒化物半導体層として窒化ガリウム系半導体層を用いた窒化物半導体素子が記載されている。この窒化物半導体素子では、n型窒化物半導体層上に主成分がAuである負電極が形成され、p型窒化物半導体層上に主成分がAuである正電極(p電極)が形成され、各電極上の外部回路との接続部分を除いた部分に絶縁保護層が形成されている。
【0003】
特許文献1に記載された発明は、正負の電極間の絶縁性が高く、主成分がAuである電極及び半導体層の表面が効果的に保護された、信頼性の高い窒化物半導体素子を提供することを目的としている。そのための手段として、絶縁保護層として酸化シリコン又は窒化シリコンを用いるとともに、負電極および正電極と絶縁保護層との間に、金属(W,Ti,Cr,Ni,Cu及びAlからなる群から選ばれた少なくとも1つ)または金属酸化物(上記群から選ばれた少なくとも1つの金属の酸化物)からなる接着強化層を形成することが記載されている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献1に記載の窒化物半導体素子は、p型窒化物半導体層上の電極(p電極)の電気特性が不十分であり、良好な電気特性を得るために例えばアニールを実施すると、p電極とp型窒化物半導体層との密着性が悪化して、窒化物半導体素子の信頼性が低下する恐れがある。
本発明の課題は、第二窒化物半導体層(窒化物半導体活性層上に形成された窒化物半導体層)上の電極の電気特性と、素子としての信頼性の両方に優れた窒化物半導体素子を提供することである。
【課題を解決するための手段】
【0006】
上記課題を達成するために、本発明の一態様の窒化物半導体素子は、下記の構成(1)~(3)を有する。
(1)基板と、基板上に形成された第一導電型の第一窒化物半導体層と、第一窒化物半導体層上の一部に形成された窒化物半導体活性層と、窒化物半導体活性層上に形成された第二導電型の第二窒化物半導体層と、第二窒化物半導体層上の一部に形成された電極と、第二窒化物半導体層の上面の一部(上記電極が形成されていない部分)、上記電極の側面、および上記電極の上面の一部を覆うように連続的に形成された絶縁性酸化物膜と、を備える。
(2)第二窒化物半導体層上に形成された電極は、Auを含む合金部と、Niを含む酸化物部と、を有する。
(3)合金部は第二窒化物半導体層と接触し、酸化物部は、合金部の上面の少なくとも一部および側面の少なくとも一部を被覆する。
【発明の効果】
【0007】
本発明の窒化物半導体素子は、第二窒化物半導体層(窒化物半導体活性層上に形成された窒化物半導体層)上の電極の電気特性と、素子としての信頼性の両方に優れた窒化物半導体素子となることが期待できる。
【図面の簡単な説明】
【0008】
【
図1】実施形態の窒化物半導体素子を示す断面図である。
【発明を実施するための形態】
【0009】
以下、この発明の実施形態について説明するが、この発明は以下に示す実施形態に限定されない。以下に示す実施形態では、この発明を実施するために技術的に好ましい限定がなされているが、この限定はこの発明の必須要件ではない。
この実施形態では、本発明の一態様の窒化物半導体素子が紫外線発光素子に適用された例が記載されている。また、第一窒化物半導体層の導電型をn型、第二窒化物半導体層の導電型をp型としている。
なお、本発明の一態様の窒化物半導体素子は、紫外線発光素子以外の発光素子に適用されてもよいし、発光素子以外の素子に適用されてもよい。また、第一窒化物半導体層の導電型をp型、第二窒化物半導体層の導電型をn型としてもよい。
【0010】
[全体構成]
先ず、
図1および
図2を用いて、この実施形態の紫外線発光素子100の全体構成を説明する。
図1および
図2は、紫外線発光素子100の基板面に垂直な断面を示している。
図1に示すように、紫外線発光素子100は、基板10と、基板10上に形成されたn型窒化物半導体層(第一窒化物半導体層)20と、n型窒化物半導体層20の薄い部分21に形成されたn電極30と、n型窒化物半導体層20の厚い部分22に形成された発光層(窒化物半導体活性層)40と、発光層40上に形成されたp型窒化物半導体層(第二窒化物半導体層)50と、p型窒化物半導体層50上の一部に形成されたp電極60と、絶縁性酸化物膜70と、Pad電極80と、を備える。
【0011】
なお、n型窒化物半導体層20の薄い部分21は、基板10の上に、n型窒化物半導体層20、発光層40、p型窒化物半導体層50をこの順に積層した後、発光層40及びp型窒化物半導体層50を含む積層部の一部をエッチング等により除去して、n型窒化物半導体層20の一部を露出させることにより形成されている。つまり、紫外線発光素子100は、いわゆるメサ構造を有する。
【0012】
絶縁性酸化物膜70はシリコン酸化膜であり、p型窒化物半導体層50の上面の一部(p電極60が形成されていない部分)、n型窒化物半導体層20の薄い部分21の上面の一部(n電極30が形成されていない部分)、n電極30およびp電極60の側面と上面の一部(Pad電極80が形成されていない部分)、およびPad電極80の側面の一部を覆うように連続的に形成されている。
【0013】
図2に示すように、p電極60は、Auを含む合金部61と、Niを含む酸化物部62と、を有する。合金部61はp型窒化物半導体層50と接触し、酸化物部62は、合金部61の上面61aおよび側面61bの全てを被覆している。合金部61のAuを含む合金はTiAuである。なお、Niを含む酸化物部62は半導体的な導電性を有するため、Auを含む合金部61とPad電極80との電気的接続が可能である。
合金部61の膜厚は30nm以上200nm以下であり、膜厚のばらつきは20nm以下である。酸化物部62の膜厚は25nm以上200nm以下であり、膜厚のばらつきは20nm以上200nm以下である。
【0014】
図2に示す断面(基板面に垂直な断面)において、絶縁性酸化物膜70に接する酸化物部62の側面62aとp型窒化物半導体層50の上面50aとのなす角αは、合金部61の側面61bに接する酸化物部62の内面62bとp型窒化物半導体層50の上面50aとのなす角βよりも小さく、角βは鋭角である。つまり、α<β<90°を満たす。なお、酸化物部62の側面62aおよび内面62bは、厳密には平坦ではなく凹凸になっているため、角α,βは、凹凸を平面に近似した線L1,L2と上面50aとのなす角度として測定される。
【0015】
[p電極60の形成方法]
Auを含む合金部61とNiを含む酸化物部62とを有するp電極60は、例えば、p型窒化物半導体層50上に、先ずNiを堆積し、その上にAu合金を堆積する堆積工程と、堆積工程後に酸素雰囲気下で熱処理する工程と、を備える方法で形成することができる。この方法では、Niが酸化される反応をドライビングフォースとしてNiとAuが入れ替わり、p型窒化物半導体層50上にAuを含む合金部61が形成され、その上にNiを含む酸化物部62が形成される。
また、p型窒化物半導体層50上に、先ずAu合金を堆積し、その上にNiを含む酸化物を堆積し熱処理を行わない方法で形成することもできる。
【0016】
[実施形態の作用、効果]
実施形態の紫外線発光素子100は、p電極60がAuを含む合金部61とNiを含む酸化物部62とを有するため、Auを含む合金部61とNiを含む酸化物部62とを有するp電極60を備えないものと比較して、p電極60の電気特性、p電極60とp型窒化物半導体層50との密着性、p電極60と絶縁性酸化物膜70との密着性、および信頼性(光出力が長期間維持されること)が良好なものとなっている。
また、紫外線発光素子100は、p電極60がα<β<90°を満たすため、絶縁性酸化物膜70が良好に被覆された状態になっているとともに、発熱が防止される点および電流集中の抑制の点でも、特に好ましい状態となっている。
【0017】
具体的には、酸化物部62は、酸化物部62の側面62aがp型窒化物半導体層50に向けて広がるテーパー面である(α<90°)ため、絶縁性酸化物膜70の被覆性が良好になる。また、酸化物部62の側部の厚さがp型窒化物半導体層50に向けて厚くなっている(α<β)ため、導電性の高いAuを含む合金部61の発熱が抑制できるとともに、p電極60の端部(p型窒化物半導体層50に近い部分)での電流集中を抑制できる。そして、合金部61の発熱が抑制されることで、信頼性の高い紫外線発光素子が実現でき、p電極60の端部での電流集中が抑制されることで高出力な紫外線発光素子を実現できる。
【0018】
また、紫外線発光素子100は、合金部61の膜厚が30nm以上200nm以下であり、膜厚のばらつきが20nm以下であるため、p型窒化物半導体層50との良好なコンタクト特性を得ることができる。また、紫外線発光素子100は、Auを含む合金部61の代わりにAuを主成分とした電極を有する場合と比較して、熱処理中のAuの凝集によるボイドの発生を防ぐことができ、半導体との接触面積が維持できることから、良好なコンタクト特性を得ることができる。
さらに、紫外線発光素子100は、酸化物部62が、合金部61の上面61aおよび側面61bの全てを被覆しているため、合金部61と酸化物部62の密着性の点でも優れている。
よって、実施形態の紫外線発光素子100は、p電極60の電気特性と、素子としての信頼性の両方に優れたものとなっている。
【0019】
[各層についての詳細]
<基板>
基板10としては、その上にn型窒化物半導体層20を形成可能なものであれば特に制限されない。具体的にはサファイア、シリコン(Si)、炭化珪素(SiC)、酸化マグネシウム(MgO)、三酸化二ガリウム(Ga2O3)、酸化亜鉛(ZnO)、窒化ガリウム(GaN)、窒化インジウム(InN)、窒化アルミニウム(AlN)、又はこれらの混晶基板等が挙げられる。
【0020】
基板10上に形成するn型窒化物半導体層20との格子定数差が小さく、格子整合系で成長させることで貫通転位を少なくできる観点や、ホールガス発生のための格子歪みを大きくできる観点から、窒化ガリウム(GaN)、窒化アルミニウム(AlN)、窒化アルミニウムガリウム(AlGaN)等の窒化物半導体をバルクとする単結晶基板や、ある材料上に成長されたGaN、AlN、AlGaN等の窒化物半導体層(テンプレートとも称される)を、基板10として用いることが好ましい。
また、基板10には不純物が混入していても良い。基板10の作製方法としては、昇華法やHVPE法等の気層成長法や液相成長法等の一般的な基板成長法を適用することができる。
【0021】
<n型窒化物半導体層>
n型窒化物半導体層20は、Al
XGa
1-XN(0<X≦1)からなる層であって、
図1に示すように基板10上に直接形成されていてもよいし、基板10上にn型窒化物半導体層20以外の層が形成され、その上にn型窒化物半導体層20が形成されていても良い。例えば、基板10上にバッファ層が形成され、その上にn型窒化物半導体層20としてn型AlGaN層が形成され、その上に、発光層40が形成されていても良い。
【0022】
また、本発明の他の実施形態に係る紫外線発光素子においては、n型窒化物半導体層20が発光層40上に直接又は間接的に形成されていてもよい。つまり、基板10上にp型窒化物半導体層50と発光層40とがこの順に積層され、この発光層40の上に、n型窒化物半導体層20が直接又は間接的に形成されていてもよい。
【0023】
また、n型窒化物半導体層20はAlXGa1-XN(0<X≦1)からなる層であるが、この場合に、本発明の一実施形態に係る紫外線発光素子100と同様の効果が得られる範囲で、例えばインジウム(In)等のIII族元素や、リン(P)、ヒ素(As)、アンチモン(Sb)等のV族元素等を数%程度加える等、他の元素を少量加えてn型窒化物半導体層20の組成に軽微な変更を加える場合についても本発明の技術的範囲に含まれることは当然である。また、その他の層の組成についても同様である。
【0024】
n型窒化物半導体層20は、紫外線の透過性の観点から、AlXGa1-XN(0.4≦X≦1.0)であることが好ましい。
n型窒化物半導体層20は、n型ドーパントの他にリン(P)、砒素(As)、アンチモン(Sb)といった他のV族元素や、炭素(C)、水素(H)、フッ素(F)、酸素(O)、マグネシウム(Mg)、シリコン(Si)といった不純物が混入していても良い。ここで、不純物の定義としては、1.0×1020cm-3以下の濃度でAl、Ga、N以外の元素を含むことを意味する。つまり、1.0×1020cm-3以下の割合でアルミニウム(Al)、ガリウム(Ga)及び窒素(N)を除く元素を含むような場合にも、AlXGa1-XN(0<X≦1)からなる層と解釈される。
【0025】
<発光層>
発光層40は、
図1に示すようにn型窒化物半導体層20上に直接形成されていてもよいし、n型窒化物半導体層20上に発光層40以外の層が形成され、その上層に発光層40が形成されていても良く、特に限定はされない。具体的には、n型窒化物半導体層20上にアンドープAlGaN層が形成された上に発光層40が形成されていても良い。
また、本発明の他の実施形態に係る紫外線発光素子として、発光層40は、p型窒化物半導体層50上に形成されていてもよい。つまり、基板10上にp型窒化物半導体層50が形成され、その上に発光層40が積層され、この発光層40の上に、n型窒化物半導体層20が形成されていてもよい。
【0026】
発光層40の材料は窒化物半導体であれば特に制限はされないが、高い発光効率を実現する観点から窒化アルミニウム(AlN)、窒化ガリウム(GaN)、窒化インジウム(InN)の混晶であることが望ましい。発光層40には、窒素(N)の他にリン(P)、ヒ素(As)、アンチモン(Sb)といった他のV族元素や、炭素(C)、水素(H)、フッ素(F)、酸素(O)、マグネシウム(Mg)、シリコン(Si)といった不純物が混入していても良い。また、量子井戸構造でも単層構造でも良いが、高い発光効率を実現する観点から少なくとも1つの井戸構造を有していることが望ましい。
【0027】
<p型窒化物半導体層>
p型窒化物半導体層50は、p型導電型を示すものであれば単層であっても良いし、多層であっても良い。
図1に示すように発光層40上に直接形成されていてもよいし、発光層40上にp型窒化物半導体層50以外の層が形成され、その上にp型窒化物半導体層50が形成されていてもよい。例えば、発光層40上に構成元素の比率が連続的又は離散的に変化する傾斜組成層が形成され、その上にp型窒化物半導体層50が形成されていても良く特に限定はされない。また、発光層40と傾斜組成層との間に相対的にバンドギャップの大きいバリア層をさらに有していてもよい。
【0028】
また、本発明の他の実施形態に係る紫外線発光素子として、p型窒化物半導体層50は、基板10上に直接又は間接的に形成されていてもよい。つまり、基板10上に直接又は間接的にp型窒化物半導体層50が積層され、その上に発光層40とn型窒化物半導体層20とがこの順に形成されていてもよい。
p型窒化物半導体層50は上層に直接電極が接触していてもよく、また、多層となった最上面に電極が接していても良い。つまり、p型窒化物半導体層の上に他のp型層が形成されている場合には、2つの層を併せてp型窒化物半導体層50とみなすことができる。
【0029】
p型窒化物半導体層50は薄膜内部でホールを発生させる観点からp型ドーパントを含んでいてもよく、逆に、電極から直接界面の二次元ホールガスにホールを注入するためドーパントを含んでいなくても良い。P型ドーパントとしてはマグネシウムMgが一般的に用いられるが、ホールを発生させる不純物であればベリリウムBe、亜鉛Zn等も用いることができる。
【0030】
<p電極(第二窒化物半導体層上に形成された電極)>
紫外線発光素子100は、p型窒化物半導体層50へのホール注入効率を高める観点からp電極60を備えている。p電極は、p型窒化物半導体層50に導通するように、p型窒化物半導体層50上に形成されている。
【0031】
<絶縁性酸化物膜>
紫外線発光素子100は、半導体の信頼性の観点から、p型窒化物半導体層50の上面の一部、p電極60の側面、およびp電極の上面の一部を覆うように、絶縁性酸化物膜70が連続的に形成された状態である。絶縁性酸化物膜70は、p電極60の上面を直接または間接的に覆っても良いが、p電極60との密着性の観点からp電極60の上面を直接覆っていることが好ましい。また、絶縁性酸化物膜70は、Niを含む酸化物部62との密着性の観点から金属酸化膜であることが好ましい。中でも密着性の観点からシリコン酸化物であることがより好ましい。
また、紫外線発光素子100は、プローブ測定やワイヤーボンディングの容易性の観点から、p電極60は絶縁性膜上にコンタクトホールを形成し、その上部にPad電極80を形成した状態となっている。
【0032】
<各層の形成方法>
本実施形態の一実施形態に係る紫外線発光素子100の各層の成長法としては、例えばMOVPE法のようなエピタキシャル成長技術を利用して成膜することができるが、これに限定されるものではない。例えば、ハイドライド気相成長法(HVPE法)や、分子線エピタキシー法(MBE法)等を用いて成膜してもよい。
【0033】
[組成の確認方法や膜厚の測定方法等について]
Auを含む合金部の組成については、試料の断面加工をし、透過型電子顕微鏡(TEM)による観察、続いてエネルギー分散型X線分析(EDX)を行うことにより確認ができる。
Auを含む合金部の形成方法は特に制限されない。例えば、EB蒸着やスパッタなどの物理蒸着法により得ることができる。
【0034】
Niを含む酸化物部の組成については、試料の断面加工をし、透過型電子顕微鏡(TEM)による観察、続いてエネルギー分散型X線分析(EDX)を行うことにより確認ができる。
Niを含む酸化物部の形成方法は特に制限されない。例えば、物理蒸着法により形成したNi膜の酸素雰囲気下での熱処理や酸化物をターゲットに用いたスパッタ、スパッタ空間に酸素ガスなどの活性ガスを導入するリアクティブスパッタなどの方法を用いることにより得ることができる。
【0035】
Niを含む酸化物部の膜厚は25nm以上200nm以下であり、膜厚のばらつきは絶縁膜との密着性および第二窒化物半導体とのコンタクト特性の観点から、20nm以上200nm以下であることが好ましい。20nmでは接触面積が不十分なため密着性に劣り、また200nm以上の場合は熱処理前のNiと含む金属の膜厚が厚すぎることによりコンタクト特性が劣化する。
【0036】
膜厚ばらつきは、試料の断面加工をし、透過型電子顕微鏡(TEM)による観察画像から、p電極60に接している面からのNiを含む酸化物の最も厚い部分と最も薄い部分の差分を意味する。
膜厚ばらつきの制御方法は特に制限されないが、Niを含む金属とAuと含む合金を酸素雰囲気下で熱処理する際の熱処理の温度を調整することにより、20nm以上200nmに制御することができる。
【0037】
角αおよび角βは、電極蒸着時のサンプルへの金属の入射角度や電極のアニール条件を調整することにより実現可能である。一例としては、レジストでパターンを形成したサンプルに対してAuを含む合金部を入射角度の小さいEB蒸着法で形成し、その後Niを含む酸化物部を入射角の大きいスパッタ法で形成し、リストオフを行うことで、α>βとなるサンプルを作製することが出来る。
角αおよび角βは、試料の断面加工をし、透過型電子顕微鏡(TEM)による観察を行うことで得られる画像により算出することができる。
【0038】
[適用できる装置について]
本発明の一実施形態に係る紫外線発光素子100は、各種の装置に適用可能である。
本発明の一実施形態に係る紫外線発光素子100は、紫外線ランプが用いられている既存の全ての装置に適用可能であり、また置換可能である。特に、波長280nm以下の深紫外線を用いている装置に適用可能である。
本発明の一実施形態に係る紫外線発光素子100は、例えば、医療又はライフサイエンス分野、環境分野、産業又は工業分野、生活又は家電分野、農業分野、及びその他分野の装置に適用可能である。
【0039】
本発明の一実施形態に係る紫外線発光素子100は、薬品や化学物質の合成又は分解装置、液体、気体、及び固体(容器、食品、医療機器等)に対する殺菌装置、半導体等の洗浄装置、フィルム、ガラス及び金属等の表面改質装置、半導体、フラットパネルディスプレイ(FPD)、プリント基板(PCB)及びその他電子品製造用の露光装置、印刷又はコーティング装置、接着又はシール装置、フィルム、パターン及びモックアップ等の転写又は成形装置、紙幣、傷、血液及び化学物質等の測定又は検査装置に適用可能である。
【0040】
液体殺菌装置の例としては、冷蔵庫内の自動製氷装置や製氷皿、また貯氷容器及び製氷機用の給水タンク、冷凍庫、製氷機、加湿器、除湿器、ウォーターサーバの冷水タンク又は温水タンク、その流路配管、据置型浄水器、携帯型浄水器、給水器、給湯器、排水処理装置、ディスポーザ、便器の排水トラップ、洗濯機、透析用水殺菌モジュール、腹膜透析のコネクタ殺菌器、災害用貯水システム等が挙げられるがこの限りではない。
【0041】
気体殺菌装置の例としては、空気清浄器、エアコン、天井扇、床面用や寝具用の掃除機、布団乾燥機、靴乾燥機、洗濯機、衣類乾燥機、室内殺菌灯、保管庫の換気システム、靴箱、タンス等が挙げられるがこの限りではない。
固体殺菌装置(表面殺菌装置を含む)の例としては、真空パック器、ベルトコンベヤ、医科用、歯科用、床屋用及び美容院用のハンドツール殺菌装置、歯ブラシ、歯ブラシ入れ、箸箱、化粧ポーチ、排水溝のふた、便器の局部洗浄器、便器フタ等が挙げられるがこの限りではない。
【実施例】
【0042】
以下、実施例及び比較例を挙げて、本発明をより具体的に説明する。なお、本発明は、以下に示す実施例に限定されるものではない。
[素子の作製]
<実施例1>
このサンプルは、実施形態に記載された構造の紫外線発光素子100であって、以下の構成を有する。
基板10はAlN基板である。n型窒化物半導体層20は不純物としてSiを2.0×1020cm-3含むn-Al0.7Ga0.3N層であって、薄い部分(n電極30が形成されている部分)21と厚い部分(発光層40が形成されている部分)22を有する。また、基板10とn型窒化物半導体層20との間に、AlNバッファ層を有する。
【0043】
発光層40は、厚さ2.0nmのAl0.51Ga0.49N(井戸層)と厚さ8.0nmのSiドーピングAl0.78Ga0.22N(バリア層)とを、交互にそれぞれ五層有する多重量子井戸構造である。p型窒化物半導体層50は、不純物としてMgを2.0×1020cm-3含むp型GaN層である。
n電極30はTi/Al/Ni/Au層である。p電極(第一電極)60は、p型窒化物半導体層50に接触するAuTi合金部61と、AuTi合金部61の上面および側面を被覆するNiを含む酸化物部62を有する。絶縁性酸化物膜70は酸化シリコン膜であって、膜厚は300nmである。パッド電極80はTiとAuとの積層構造である。
【0044】
この紫外線発光素子100は、以下の方法で作製した。
先ず、AlN単結晶から得られたAlN基板上に、AlNバッファ層、不純物としてSiを2.0×1020cm-3含むn-Al0.7Ga0.3N層、上記AlGaNの多重量子井戸構造、及び不純物としてMgを2.0×1020cm-3含むp型GaN層を、この順に、有機金属気相成長法(MOCVD法)により、成膜した。これにより、AlN基板上に積層体が形成された。
【0045】
次に、AlN基板上の積層体に対して、面内の一部を所定深さで除去するドライエッチングを行い、n-Al0.7Ga0.3N層を一部露出させることで、n型窒化物半導体層20に薄い部分21を形成した。このドライエッチングは、積層体上にフォトリソグラフィー法でレジストパターンを形成した後、塩素系ガスを用いて行った。
次に、フォトリソグラフィー法で形成したレジストパターンを用いて、n型窒化物半導体層20の薄い部分21上の所定領域に、Tiを厚さ20nmで、Auを厚さ150nmで、Niを厚さ30nmで、Auを厚さ50nmで、この順に堆積した。次に、レジストパターンを除去した後、800℃で180秒間の熱処理を行った。これにより、n電極30が形成された。
【0046】
次に、フォトリソグラフィー法で形成したレジストパターンを用いて、p型窒化物半導体層50上の所定領域に、EB蒸着機により、Niを厚さ20nmで、TiAuを厚さ35nmで、この順に堆積した。次に、レジストパターンを除去した後、酸素雰囲気において600℃で180秒間の熱処理を行った。これにより、AuTi合金部61の上面および側面がNiを含む酸化物部62で被覆されているp電極60が形成された。
次に、この状態のAlN基板上の全体に、プラズマCVD法により酸化シリコン膜を300nm形成した。次に、フォトリソグラフィー法で形成したレジストパターンを用い、CF4によるエッチングで、この酸化シリコン膜の所定位置(n電極30の上部およびp電極60の上部)に、コンタクトホールを形成した。
【0047】
次に、形成された各コンタクトホールに、Tiを厚さ20nmで、Auを厚さ1000nmで、この順に堆積した。これにより、n電極30の上部およびp電極60の上部に、パッド電極80が形成された。
得られた紫外線発光素子100を、p電極60の部分で、基板10面に垂直に切断し、その切断面をTEMで観察して、p電極60の断面構造を確認したところ、
図2に示す状態になっていることが確認できた。また、切断面のTEM画像から、角αおよび角βの値を測定したところ、角αは40°であり、角βは55°であった。
【0048】
また、切断面のTEM画像から、p電極60のp型半導体層50側の層とPad電極80側の層について、膜厚と膜厚のばらつきを測定した。その結果、p型半導体層50側の層(合金部61)では、膜厚が25nm~45nmであり、膜厚のばらつきは20nm(45nm-25nm)であった。Pad電極80側の層(酸化物部62)では、膜厚が10nm~210nmであり、膜厚のばらつきは200nm(210nm-10nm)であった。
【0049】
さらに、この切断面について、TEM-EDX(エネルギー分散型X線分光法)による主要元素(Si、Al、Ga、N、Ti、O、Ni、Au)の面分析を行ったところ、p電極60のp型半導体層50側の層(合金部61)の組成はAuTiであり、Pad電極80側の層(酸化物部62)の組成はNiOであった。
【0050】
<比較例1>
実施例1では、p電極60の形成工程で、p型窒化物半導体層50上の所定領域に、Niを厚さ20nmで、TiAuを厚さ35nmで、この順に堆積したが、この例では、Niを厚さ20nmで、Auを厚さ35nmで、この順に堆積した。また、実施例1では、その後のレジストパターンを除去した後の熱処理を、酸素雰囲気において600℃で180秒間の条件で行ったが、この例では、酸素雰囲気において650℃で180秒間の条件で行った。これら以外の点は実施例1と同じ方法で、紫外線発光素子を得た。つまり、比較例1の紫外線発光素子は、p電極以外は実施例1と同じ構成を有する。
【0051】
得られた紫外線発光素子について、実施例1と同様にして得られた切断面の面分析を、実施例1と同じ方法で行ったところ、p電極のp型半導体層50側の層の組成はAuであり、Pad電極80側の層の組成はNiOであった。また、p型半導体層50側の層であるAu層にはボイドが存在していた。つまり、比較例1の紫外線発光素子のp電極は、
図2で合金層61の代わりに、ボイドが入ったAu層を有するものであることが確認できた。また、切断面のTEM画像から、角αおよび角βの値を測定したところ、角αは65°であり、角βは55°であった。
【0052】
また、切断面のTEM画像から、p電極のp型半導体層50側の層とPad電極80側の層について、膜厚と膜厚のばらつきを測定した。その結果、p型半導体層50側の層では、膜厚が0nm~75nmであり、膜厚のばらつきは75nm(75nm-0nm)(0nmがボイド領域)であった。Pad電極80側の層では、膜厚が5nm~205nmであり、膜厚のばらつきは200nm(205nm-5nm)であった。
【0053】
<比較例2>
比較例1では、Ni、Auの堆積およびレジストパターン除去後の熱処理を、酸素雰囲気において650℃で180秒間の条件で行ったが、この例では、酸素雰囲気において400℃で180秒間の条件で行った。これ以外の点は比較例1と同じ方法で、紫外線発光素子を得た。つまり、比較例2の紫外線発光素子は、p電極以外は実施例1と同じ構成を有する。
【0054】
得られた紫外線発光素子について、実施例1と同様にして得られた切断面の面分析を実施例1と同じ方法で行ったところ、p電極のp型半導体層50側の層の組成はAuであり、Pad電極80側の層の組成はNiOであった。また、p型半導体層50側の層であるAu層にはボイドは存在していなかった。つまり、比較例2の紫外線発光素子のp電極は、
図2で合金層61の代わりに、一様なAu層を有するものであることが確認できた。また、切断面のTEM画像から、角αおよび角βの値を測定したところ、角αは80°であり、角βは80°であった。
【0055】
また、切断面のTEM画像から、p電極のp型半導体層50側の層とPad電極80側の層について、膜厚と膜厚のばらつきを測定した。その結果、p型半導体層50側の層では、膜厚が30nm~40nmであり、膜厚のばらつきは10nm(40nm-30nm)であった。Pad電極80側の層では、膜厚が15nm~25nmであり、膜厚のばらつきは10nm(25nm-10nm)であった。
なお、比較例1の紫外線発光素子で、p電極のp型窒化物半導体層側の層がボイド入りのAu層となった理由は、酸素雰囲気下での熱処理温度が650℃と高すぎたためであり、400℃とした比較例2では、ボイド無しのAu層となった。
【0056】
<比較例3>
比較例1では、Ni、Auの堆積およびレジストパターン除去後の熱処理を、酸素雰囲気において650℃で180秒間の条件で行ったが、この例では、窒素雰囲気において600℃で180秒間の条件で行った。これ以外の点は比較例1と同じ方法で、紫外線発光素子を得た。
得られた紫外線発光素子について、実施例1と同様にして得られた切断面の面分析を実施例1と同じ方法で行ったところ、p電極は全体の組成がAuNi層であった。つまり、比較例3の紫外線発光素子のp電極は、
図2で酸化物部62を有さず、全体がAuNi層(Auを含む合金層)であることが確認できた。
また、切断面のTEM画像から、p電極について、膜厚と膜厚のばらつきを測定した結果、膜厚が50nm~60nmであり、膜厚のばらつきは10nm(60nm-50nm)であった。
【0057】
<比較例4>
実施例1では、p型窒化物半導体層50上の所定領域に、Niを厚さ20nmで、TiAuを厚さ35nmで、この順に堆積した後に、レジストパターンを除去して熱処理を行った。これに対して、この例では、Niを堆積せずにAuのみを厚さ35nmで堆積し、レジストパターン除去後に、フォトリソグラフィー法で形成したレジストパターンを用いて、スパッタ装置によりメッシュ状にNiOを200nm、Au層の上に堆積した。
そして、その後、熱処理を実施することなく、プラズマCVD法による300nm厚の酸化シリコン膜形成を行った。これら以外の点は実施例1と同じ方法で、紫外線発光素子を得た。つまり、比較例4の紫外線発光素子は、p電極以外は実施例1と同じ構成を有する。
【0058】
得られた紫外線発光素子について、実施例1と同様にして得られた切断面の面分析を実施例1と同じ方法で行ったところ、p電極のp型半導体層50側の層の組成はAuであり、Pad電極80側の層はメッシュ状のNiO層であった。また、p型半導体層50側の層であるAu層にはボイドは存在していなかった。つまり、比較例4の紫外線発光素子のp電極は、
図2で合金層61の代わりにAu層を有し、酸化物部62がメッシュ状になっているものであることが確認できた。また、切断面のTEM画像から、角αおよび角βの値を測定したところ、角αは40°であり、角βは80°であった。
【0059】
また、切断面のTEM画像から、p電極のp型半導体層50側の層とPad電極80側の層について、膜厚と膜厚のばらつきを測定した。その結果、p型半導体層50側の層では、膜厚が30nm~40nmであり、膜厚のばらつきは10nm(40nm-30nm)であった。Pad電極80側の層では、膜厚が0nm~200nmであり、膜厚のばらつきは200nm(200nm-0nm)であった。
【0060】
[評価]
実施例1、比較例1~4の各紫外線発光素子について、p電極の電気特性、p電極とp型窒化物半導体層50との密着性、p電極と絶縁性酸化物膜70との密着性、および信頼性を、以下の方法で測定した。
【0061】
<p電極の電気特性>
基板上に上記と同じp-GaN層を形成した後、このp-GaN層の上面にレジストパターンを形成し、その開口部に実施例1および比較例1~4のp電極をそれぞれ形成した。このようにして得られた実施例1および比較例1~4の各試験用p電極の接触抵抗率を測定して、オーミックコンタクトの性能を調べた。
接触抵抗率の測定は、CTLM(Circular Transmission Line Model)測定法で行った。具体的には、接触抵抗測定用のリングパターンのギャップを20μmとし、電圧20Vを印加した時の電流値を測定した。この電流値が10mA以下である場合に、p電極の電気特性が不良と判断した。
【0062】
<p電極とp型窒化物半導体層および絶縁性酸化物膜との密着性>
実施例1、比較例1~4の各紫外線発光素子がウエハ上に形成されている状態で、各ウエハを有機溶剤に入れて超音波洗浄を行った後に、超純水に入れて超音波洗浄を行った。その後の各ウエハを顕微鏡で観察して、p電極とp型窒化物半導体層との間、p電極と絶縁性酸化物膜との間に、それぞれ剥離が発生しているかどうかを調べた。
また、実施例1、比較例1~4の各紫外線発光素子(ウエハから切り出して、デバイス化したもの)を、55℃の環境下に置き、350mAの定電流で通電した後に、顕微鏡で観察して、p電極とp型窒化物半導体層との間、p電極と絶縁性酸化物膜との間に、それぞれ剥離が発生しているかどうかを調べた。
密着性の評価は、上記二つの試験の両方で剥離が発生しない場合に良好であると判断し、いずれか一方または両方の試験で剥離が発生した場合に不良であると判断した。
【0063】
<信頼性>
実施例1、比較例1~4の各紫外線発光素子(ウエハから切り出して、デバイス化したもの)について、25℃の環境下で500mAでの連続通電試験を行い、500時間経過後に光出力を測定した。この測定値が光出力の初期値の半分以下に低下した場合、信頼性が不良であると判断した。
これらの結果を各素子の構成とともに表1に示す。
【0064】
【0065】
表1の結果から以下のことが分かる。
実施例1の紫外線発光素子100は、
図2に示す構造のp電極60を有する、つまり、p電極が、Auを含む合金(TiAu合金)部61とNiを含む酸化物部62とを有し、α<βを満たし、各部の膜厚のばらつきも好ましい範囲を満たすため、電気特性が良好で、p型窒化物半導体層および絶縁性酸化物膜に対する密着性も良好で、素子の信頼性も良好なものとなった。
【0066】
比較例1の紫外線発光素子は、p電極のp型窒化物半導体層側の層がボイド入りの一様でないAu層であるため、p電極の電気特性が不良であった。また、p型窒化物半導体層に対する密着性が不良で、素子の信頼性も不良であった。
比較例2の紫外線発光素子は、p電極のp型窒化物半導体層側の層がボイド無しの一様なAu層であったが、酸素雰囲気下での熱処理温度が400℃と低かったため、p電極の電気特性が不良であった。また、Ni酸化物部の膜厚ばらつきが10nm(25nm未満)であるため、絶縁性酸化物膜に対する密着性が不良で、素子の信頼性も不良であった。
【0067】
比較例3の紫外線発光素子は、p電極の全体がAuNi層であったため、p電極の電気特性が不良であった。また、p電極がNi酸化物部を有さないため、絶縁性酸化物膜に対する密着性が不良で、素子の信頼性も不良であった。
比較例4の紫外線発光素子は、p電極のp型窒化物半導体層側の層がボイド無しの一様なAu層であったが、熱処理をしていないことでp電極の電気特性が不良であり、素子の信頼性も不良であった。なお、p電極がメッシュ状のNi酸化物部を有するため、p型窒化物半導体層および絶縁性酸化物膜に対する密着性は良好であった。
【符号の説明】
【0068】
10 基板
20 n型窒化物半導体層(第一窒化物半導体層)
30 n電極
40 発光層(窒化物半導体活性層)
50 p型窒化物半導体層(第二窒化物半導体層)
50a p型窒化物半導体層の上面
60 p電極(第二窒化物半導体層上の一部に形成された電極)
61 Auを含む合金部
61a Auを含む合金部の上面
61b Auを含む合金部の側面
62 Niを含む酸化物部
62a Niを含む酸化物部の側面
62b Niを含む酸化物部の内面
70 絶縁性酸化物膜
80 Pad電極
100 紫外線発光素子(窒化物半導体素子)