IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ クリー インコーポレイテッドの特許一覧

特許7473638伝導チャネルに近接した階段状フィールド・プレート及び関連する製造方法
<>
  • 特許-伝導チャネルに近接した階段状フィールド・プレート及び関連する製造方法 図1
  • 特許-伝導チャネルに近接した階段状フィールド・プレート及び関連する製造方法 図2
  • 特許-伝導チャネルに近接した階段状フィールド・プレート及び関連する製造方法 図3
  • 特許-伝導チャネルに近接した階段状フィールド・プレート及び関連する製造方法 図4
  • 特許-伝導チャネルに近接した階段状フィールド・プレート及び関連する製造方法 図5
  • 特許-伝導チャネルに近接した階段状フィールド・プレート及び関連する製造方法 図6
  • 特許-伝導チャネルに近接した階段状フィールド・プレート及び関連する製造方法 図7
  • 特許-伝導チャネルに近接した階段状フィールド・プレート及び関連する製造方法 図8
  • 特許-伝導チャネルに近接した階段状フィールド・プレート及び関連する製造方法 図9
  • 特許-伝導チャネルに近接した階段状フィールド・プレート及び関連する製造方法 図10
  • 特許-伝導チャネルに近接した階段状フィールド・プレート及び関連する製造方法 図11
  • 特許-伝導チャネルに近接した階段状フィールド・プレート及び関連する製造方法 図12
  • 特許-伝導チャネルに近接した階段状フィールド・プレート及び関連する製造方法 図13
  • 特許-伝導チャネルに近接した階段状フィールド・プレート及び関連する製造方法 図14
  • 特許-伝導チャネルに近接した階段状フィールド・プレート及び関連する製造方法 図15
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-15
(45)【発行日】2024-04-23
(54)【発明の名称】伝導チャネルに近接した階段状フィールド・プレート及び関連する製造方法
(51)【国際特許分類】
   H01L 21/338 20060101AFI20240416BHJP
   H01L 29/812 20060101ALI20240416BHJP
   H01L 29/41 20060101ALI20240416BHJP
   H01L 29/778 20060101ALI20240416BHJP
   H01L 21/28 20060101ALI20240416BHJP
   H01L 29/06 20060101ALI20240416BHJP
【FI】
H01L29/80 F
H01L29/44 Y
H01L29/80 H
H01L21/28 301B
H01L29/06 301F
【請求項の数】 12
(21)【出願番号】P 2022522243
(86)(22)【出願日】2020-10-07
(65)【公表番号】
(43)【公表日】2022-12-13
(86)【国際出願番号】 US2020054510
(87)【国際公開番号】W WO2021076367
(87)【国際公開日】2021-04-22
【審査請求日】2022-05-30
(31)【優先権主張番号】16/600,825
(32)【優先日】2019-10-14
(33)【優先権主張国・地域又は機関】US
【前置審査】
(73)【特許権者】
【識別番号】592054856
【氏名又は名称】ウルフスピード インコーポレイテッド
【氏名又は名称原語表記】WOLFSPEED,INC.
(74)【代理人】
【識別番号】110000855
【氏名又は名称】弁理士法人浅村特許事務所
(72)【発明者】
【氏名】ジョーンズ、エヴァン
(72)【発明者】
【氏名】アルコーン、テリー
(72)【発明者】
【氏名】グオ、ジア
(72)【発明者】
【氏名】ラデュルスク、ファビアン
(72)【発明者】
【氏名】シェパード、スコット
【審査官】杉山 芳弘
(56)【参考文献】
【文献】特開2015-170821(JP,A)
【文献】特開2019-087740(JP,A)
【文献】特開2016-134599(JP,A)
【文献】米国特許出願公開第2015/0357422(US,A1)
【文献】米国特許出願公開第2014/0361342(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 29/778
H01L 29/812
H01L 21/338
H01L 29/41
H01L 21/28
H01L 29/06
(57)【特許請求の範囲】
【請求項1】
半導体層構造体と、
前記半導体層構造体上のソース電極及びドレイン電極と、
前記ソース電極と前記ドレイン電極との間の前記半導体層構造体の表面上のゲートと、
前記ゲートに隣接する第1の部分、及び前記ソース電極又はドレイン電極に隣接する第2の部分を含むフィールド・プレートであって、前記第2の部分が前記第1の部分よりも前記半導体層構造体の前記表面から遠く、且つ前記ゲートの延在部分よりも前記半導体層構造体の前記表面に近く、前記ゲートの延在部分がスペーサ絶縁体層の表面に沿って前記フィールド・プレートの前記第1の部分に向かって横方向に延在し、前記フィールド・プレートの前記第1の部分及び前記第2の部分が前記スペーサ絶縁体層の前記表面の下にある、フィールド・プレートと、
を備え
前記フィールド・プレートの前記第1の部分と前記ゲートの前記延在部分が互いに向かって横方向に延在し、前記半導体層構造体の前記表面に垂直な方向において重なり合わない、トランジスタ。
【請求項2】
前記スペーサ絶縁体層は、前記フィールド・プレートの前記第1の部分、前記フィールド・プレートの前記第2の部分、及び前記ゲートの前記延在部分を前記半導体層構造体の前記表面から分離する第1、第2、及び第3の厚さをそれぞれ画定するように前記半導体層構造体の前記表面上に積層された複数のスペーサ層を含む、請求項1に記載のトランジスタ。
【請求項3】
前記複数のスペーサ層が前記ゲートの両側で同一平面の表面を画定し、前記ゲートの前記延在部分が前記同一平面の表面のうちの1つに沿って前記フィールド・プレートの前記第1の部分に向かって横方向に延在する、請求項2に記載のトランジスタ。
【請求項4】
前記複数のスペーサ層が、
表面に凹部を含む第1のスペーサ層と、
前記凹部内の第1の部分及び前記凹部の外側の前記第1のスペーサ層の前記表面上の第2の部分を含む第2のスペーサ層であって、前記第2のスペーサ層の前記第1及び第2の部分が、前記フィールド・プレートの前記第1及び第2の部分と前記半導体層構造体の前記表面との間にそれぞれある、第2のスペーサ層と、
前記第2のスペーサ層上に前記同一平面の表面を含み、前記フィールド・プレートが間に挟まれた第3のスペーサ層と、
を備える、請求項3に記載のトランジスタ。
【請求項5】
前記ゲートの前記延在部分が、前記ゲートの前記両側で前記同一平面の表面に直接沿って横方向に延在するサイドローブ部分を含む、請求項3又は4に記載のトランジスタ。
【請求項6】
前記ゲートをその両側で前記複数のスペーサ層のうちの1つ又は複数から分離する側壁スペーサであって、前記フィールド・プレートの前記第1の部分が、前記ゲートに向かって横方向に延在し、前記側壁スペーサのうちの1つによって前記ゲートから分離されている、側壁スペーサをさらに備える、請求項5に記載のトランジスタ。
【請求項7】
前記フィールド・プレートが第1のフィールド・プレートであり、前記トランジスタが、
前記スペーサ絶縁体層の前記表面上の第2のフィールド・プレートであって、前記スペーサ絶縁体層の一部を貫通して前記第1のフィールド・プレートに接触する、第2のフィールド・プレートをさらに備える、請求項2から4までのいずれかに記載のトランジスタ。
【請求項8】
前記半導体層構造体は、ヘテロ接合を間に画定するチャネル層及び障壁層を備え、
前記ソース電極及び前記ドレイン電極は、前記障壁層上にあり、
前記ゲートは、前記障壁層上にあり、更に、前記ゲートの両側から前記ソース電極及び前記ドレイン電極に向かって横方向にそれぞれ延在するサイドローブ部分を含み、
前記フィールド・プレートは、前記ゲートと前記ドレイン電極との間の前記障壁層上にあり、
前記スペーサ絶縁体層は、前記フィールド・プレートが間に挟まれた複数のスペーサ層を含み、前記スペーサ層が前記ゲートの前記両側で前記障壁層上に積層され、前記ゲートの前記サイドローブ部分を前記障壁層から分離する、スペーサ絶縁体層を備える、請求項1に記載のトランジスタ。
【請求項9】
前記スペーサ層が前記ゲートの前記両側に均一な厚さを有する、請求項に記載のトランジスタ。
【請求項10】
ヘテロ接合を間に画定するチャネル層及び障壁層を形成するステップと、
前記障壁層上にソース電極、ドレイン電極、及びゲートを形成するステップであって、前記ゲートが前記ゲートの両側から前記ソース電極及び前記ドレイン電極に向かって横方向にそれぞれ延在するサイドローブ部分を含む、ステップと、
前記障壁層上にスペーサ絶縁体層及びフィールド・プレートを形成するステップであって、前記スペーサ絶縁体層が前記フィールド・プレートが間に挟まれた複数のスペーサ層を含み、前記スペーサ層が、前記ゲートの前記両側で前記障壁層上に積層され、前記ゲートの前記サイドローブ部分を前記障壁層から分離し、前記ゲートのサイドローブ部分は、前記スペーサ絶縁体層の表面に沿って横方向に延在しており、前記フィールド・プレートは、前記ゲートに隣接する第1の部分と、前記ソース電極または前記ドレイン電極に隣接する第2の部分とからなり、前記第2の部分は、前記第1の部分よりも前記障壁層の表面から遠く、前記第1の部分および前記第2の部分は、前記スペーサ絶縁体層の前記表面の下にある、ステップと、
を含み、
前記複数のスペーサ層が同一平面の表面を画定し、前記ゲートの前記サイドローブ部分が前記表面のすぐ上で横方向に延在する、トランジスタを製造する方法。
【請求項11】
前記スペーサ絶縁体層及び前記フィールド・プレートを形成するステップが、
表面に凹部を含む第1のスペーサ層を形成するステップと、
前記凹部内の第1の部分及び前記凹部の外側の前記第1のスペーサ層の前記表面上の第2の部分を含む第2のスペーサ層を形成するステップと、
前記第2のスペーサ層の前記第1及び第2の部分上に前記フィールド・プレートの前記第1及び第2の部分をそれぞれ形成するステップと、
前記第2のスペーサ層並びに前記フィールド・プレートの前記第1及び第2の部分の上に第3のスペーサ層を形成するステップと、
を含む、請求項10に記載の方法。
【請求項12】
前記フィールド・プレートが第1のフィールド・プレートであり、
前記方法が、
前記第3のスペーサ層を貫通する開口部を形成して、前記第1のフィールド・プレートの前記第1の部分又は第2の部分のうちの少なくとも1つを露出させるステップと、
第2のフィールド・プレートを前記第3のスペーサ層上に形成し、前記第1のフィールド・プレートに接触するように前記開口部内に延在させる、ステップと、
をさらに含む、請求項11に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は、2019年10月14日に米国特許商標庁に出願された米国特許出願第16/600,825号からの優先権の利益を主張し、その開示は、参照によりその全体が本明細書に組み込まれる。
【0002】
本発明は、半導体デバイスに関し、より詳細には、フィールド・プレートを含むトランジスタ及び関連する製造方法に関する。
【背景技術】
【0003】
シリコン(Si)及びガリウム砒素(GaAs)などの材料は、低電力用の半導体デバイスに広く応用されており、Siの場合は、低周波数用途に広く応用されている。しかしながら、これらの材料は、例えば、バンドギャップが比較的小さく(室温でSiでは1.12eV及びGaAsでは1.42eV)、降伏電圧が比較的小さいため、高電力及び/又は高周波用途にはあまり適していない場合がある。
【0004】
高出力、高温及び/又は高周波の用途及びデバイスには、炭化ケイ素(SiC)(例えば、室温でアルファSiCのバンドギャップが約2.996eV)及びIII族窒化物(例えば、室温で窒化ガリウム(GaN)のバンドギャップが約3.36eV)などのワイド・バンドギャップ半導体材料が使用されることがある。これらの材料は、典型的には、GaAs及びSiと比較して、電界破壊強度が高く、電子飽和速度が高いことがある。
【0005】
高電力及び/又は高周波用途で特に興味深いデバイスは、高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)であり、これは、変調ドープ電界効果トランジスタ(MODFET:modulation doped field effect transistor)としても知られている。HEMTデバイスでは、2次元電子ガス(2DEG:two-dimensional electron gas)が、バンドギャップ・エネルギーの異なる2つの半導体材料のヘテロ接合に形成されることがある。バンドギャップが小さい方の材料は、バンドギャップが広い方の材料よりも電子親和力が高い場合がある。2DEGは、アンドープのバンドギャップが小さい方の材料における蓄積層であり、例えば1013キャリア/cmを超える比較的高いシート電子濃度を含むことができる。さらに、バンドギャップが広い方の半導体で生じた電子は、2DEGに移動することができ、イオン化不純物散乱が少ないため、比較的高い電子移動度が可能である。比較的高いキャリア濃度とキャリア移動度とのこの組合せは、HEMTに比較的大きな相互コンダクタンスを与えることができ、高周波用途の金属半導体電界効果トランジスタ(MESFET:metal-semiconductor field effect transistor)に勝る性能上の利点を提供することができる。
【0006】
窒化ガリウム/窒化アルミニウム・ガリウム(GaN/AlGaN)材料系で製造されたHEMTは、比較的高い破壊電界、比較的広いバンドギャップ、比較的大きな伝導帯オフセット、及び/又は比較的高い飽和電子ドリフト速度などの材料特性の組合せにより、大量の高周波(RF:radio frequency)電力を生成することができる。GaN/AlGaN系の様々なタイプのHEMTが実証されている。例えば、米国特許第5,192,987号及び第5,296,395号は、AlGaN/GaN HEMT構造及びその製造方法を記載している。さらに、Sheppardらの米国特許第6,316,793号は、半絶縁性炭化ケイ素基板と、基板上のAlNバッファ層と、バッファ層上の絶縁性GaN層と、GaN層上のAlGaN障壁層と、AlGaN活性構造上のパッシベーション層とを有するHEMTデバイスを記載している。さらに、Sheppardらの米国特許第7,045,404号は、デバイスのオーミック・コンタクトのアニール中に起きる可能性があるトランジスタのゲート領域における半導体への損傷を低減することができる保護層及び/又は低損傷リセス製造技術を含むHEMTデバイスを記載している。
【0007】
電子トラッピング及び結果として生じるDC特性とRF特性との違いは、これらのデバイスの性能における制限因子となり得る。このトラッピング問題を軽減するために、窒化ケイ素(SiN)パッシベーションが採用され、電力密度が10GHzで10W/mmを超える高性能デバイスが得られている。例えば、Wuらの米国特許第6,586,781号は、GaNベースのトランジスタにおけるトラッピング効果を低減するための方法及び構造を記載している。しかしながら、これらの構造には高電界が存在するため、電荷トラッピングは、依然として懸念事項である可能性がある。
【0008】
GaNベースのHEMTのマイクロ波周波数における性能を向上させるためにフィールド・プレートが用いられており、非フィールド・プレート・デバイスと比べて性能向上を示している。一部のフィールド・プレート手法は、フィールド・プレートをトランジスタのゲートに接続することを伴うことがあり、フィールド・プレートがチャネルのドレイン側の上にある。この構成により、トランジスタのゲート-ドレイン間側の電界を低減することができるため、降伏電圧を向上させ、高電界トラッピング効果を低減することができる。しかしながら、ゲート-ドレイン間フィールド・プレートを有するトランジスタは、特にゲートのソース側の電界が大きくなるクラスC(又はより高いクラス)動作において、比較的低い信頼性性能を示す可能性がある。
【先行技術文献】
【特許文献】
【0009】
【文献】米国特許第5,192,987号
【文献】米国特許第5,296,395号
【文献】米国特許第6,316,793号
【文献】米国特許第7,045,404号
【文献】米国特許第6,586,781号
【文献】米国特許第5,290,393号
【文献】米国特許第5,686,738号
【文献】米国特許第5,393,993号
【文献】米国特許第5,523,589号
【文献】米国特許第5,739,554号
【文献】米国特許第6,548,333号
【文献】米国特許出願公開第2002/0167023号
【文献】米国特許出願公開第2003/0020092号
【発明の概要】
【課題を解決するための手段】
【0010】
一部の実施例によると、トランジスタは、半導体層構造体と、半導体層構造体上のソース電極及びドレイン電極と、ソース電極とドレイン電極との間の半導体層構造体の表面上のゲートと、フィールド・プレートと、を含む。フィールド・プレートは、ゲートに隣接する第1の部分、及びソース電極又はドレイン電極に隣接する第2の部分を含む。フィールド・プレートの第2の部分は、フィールド・プレートの第1の部分よりも半導体層構造体の表面から遠く、且つ半導体層構造体の表面に隣接するゲートの延在部分よりも半導体層構造体の表面に近い。
【0011】
一部の実施例では、フィールド・プレートの第2の部分は、ドレイン電極に隣接していてもよい。
【0012】
一部の実施例では、トランジスタは、フィールド・プレートの第1の部分、フィールド・プレートの第2の部分、及びゲートの延在部分を半導体層構造体の表面から分離する第1、第2、及び第3の厚さをそれぞれ画定するように半導体層の表面上に積層された複数のスペーサ層を含むスペーサ絶縁体層をさらに含むことができる。
【0013】
一部の実施例では、複数のスペーサ層によって画定される第3の厚さは、ゲートの両側で実質的に均一であってもよい。一部の実施例では、複数のスペーサ層は、ゲートの両側で実質的に同一平面の表面を画定することができ、ゲートの延在部分は、フィールド・プレートの第1の部分に向かって実質的に同一平面の表面のうちの1つに沿って横方向に延在することができる。
【0014】
一部の実施例では、複数のスペーサ層は、表面に凹部を有する第1のスペーサ層と、凹部内の第1の部分及び凹部の外側の第1のスペーサ層の表面上の第2の部分を含む第2のスペーサ層と、第2のスペーサ層上に実質的に同一平面の表面を有し、フィールド・プレートが間に挟まれた第3のスペーサ層と、を含むことができる。第2のスペーサ層の第1及び第2の部分は、フィールド・プレートの第1及び第2の部分と半導体層構造体の表面との間にそれぞれあってもよい。
【0015】
一部の実施例では、フィールド・プレートの第1の部分、及び第2のスペーサ層の第2の部分のそれぞれの上面は、実質的に同一平面であってもよい。
【0016】
一部の実施例では、フィールド・プレートの第1及び第2の部分は、第3のスペーサ層の実質的に同一平面の表面の下に閉じ込められてもよい。
【0017】
一部の実施例では、ゲートの延在部分は、ゲートの両側で実質的に同一平面の表面に直接沿って横方向に延在するサイドローブ部分を含むことができる。一部の実施例では、ゲートの対向するサイドローブ部分は、実質的に対称であってもよい。
【0018】
一部の実施例では、側壁スペーサは、ゲートをその両側で複数のスペーサ層のうちの1つ又は複数から分離することができる。フィールド・プレートの第1の部分は、ゲートに向かって横方向に延在することができ、側壁スペーサのうちの1つによってゲートから分離することができる。
【0019】
一部の実施例では、フィールド・プレートは、第1のフィールド・プレートであってもよく、第2のフィールド・プレートは、スペーサ絶縁体層の表面上に設けられ、スペーサ絶縁体層の一部分を貫通して第1のフィールド・プレートと接触することができる。一部の実施例では、第2のフィールド・プレートは、第1のフィールド・プレートの第2の部分を越えてドレイン電極に向かって横方向に延在することができる。
【0020】
一部の実施例では、フィールド・プレートの第1の部分とゲートの延在部分は、互いに向かって横方向に延在することができ、半導体層構造体の表面に垂直な方向に重なり合わなくてもよい。
【0021】
一部の実施例では、半導体層構造体は、積層され、間に挟まれたヘテロ接合に2次元電子ガス(2DEG)チャネル層を画定するように構成されたバッファ層及び障壁層を含むことができる。
【0022】
一部の実施例によると、トランジスタは、半導体層構造体と、半導体層構造体上のソース電極及びドレイン電極と、ソース電極とドレイン電極との間の半導体層構造体の表面上のゲートと、ゲートとソース電極又はドレイン電極との間のフィールド・プレートと、を含む。フィールド・プレートは、ゲートの横方向に延在する部分よりも半導体層構造体の表面に近く、ゲートの横方向に延在する部分は、フィールド・プレートと重ならない。
【0023】
一部の実施例では、フィールド・プレートは、ゲートに隣接する第1の部分と、ソース電極又はドレイン電極に隣接する第2の部分とを含むことができる。第2の部分は、第1の部分よりも半導体層構造体の表面から遠くてもよい。
【0024】
一部の実施例では、スペーサ絶縁体層は、フィールド・プレートの第1の部分、フィールド・プレートの第2の部分、及びゲートの横方向に延在する部分を半導体層構造体の表面から分離する第1、第2、及び第3の厚さをそれぞれ画定するように半導体層の表面上に積層された複数のスペーサ層を含むことができる。
【0025】
一部の実施例では、複数のスペーサ層は、ゲートの両側で実質的に同一平面の表面を画定することができ、ゲートの横方向に延在する部分は、ゲートの両側で実質的に同一平面の表面に直接沿って横方向に延在するサイドローブ部分を含むことができる。
【0026】
一部の実施例では、複数のスペーサ層は、表面に凹部を有する第1のスペーサ層と、凹部内の第1の部分及び凹部の外側の第1のスペーサ層の表面上の第2の部分を含む第2のスペーサ層と、第2のスペーサ層上に実質的に同一平面の表面を有し、フィールド・プレートが間に挟まれた第3のスペーサ層と、を含むことができる。第2のスペーサ層の第1及び第2の部分は、フィールド・プレートの第1及び第2の部分と半導体層構造体の表面との間にそれぞれあってもよい。
【0027】
一部の実施例では、フィールド・プレートは、第1のフィールド・プレートであってもよく、第2のフィールド・プレートは、スペーサ絶縁体層の表面上に設けられ、スペーサ絶縁体層の一部分を貫通して第1のフィールド・プレートと接触することができる。一部の実施例では、第2のフィールド・プレートは、第1のフィールド・プレートの第2の部分を越えてドレイン電極に向かって横方向に延在することができる。
【0028】
一部の実施例によると、トランジスタは、ヘテロ接合を間に画定するチャネル層及び障壁層と、障壁層上のソース電極及びドレイン電極と、ゲートであって、ゲートの両側からソース電極及びドレイン電極に向かって横方向にそれぞれ延在するサイドローブ部分を含む、ゲートと、ゲートとドレイン電極との間の障壁層上のフィールド・プレートと、フィールド・プレートが間に挟まれた複数のスペーサ層を含むスペーサ絶縁体層と、を含む。スペーサ層は、ゲートの両側で障壁層上に積層され、ゲートのサイドローブ部分を障壁層から分離する。
【0029】
一部の実施例では、複数のスペーサ層は、ゲートの両側で実質的に同一平面の表面を画定し、ゲートのサイドローブ部分はこの表面のすぐ上で横方向に延在することができる。
【0030】
一部の実施例では、スペーサ層は、ゲートの両側で実質的に均一な厚さを有することができる。
【0031】
一部の実施例では、フィールド・プレートは、ゲートに隣接する第1の部分と、ドレイン電極に隣接する第2の部分とを含むことができ、第2の部分は、第1の部分よりも障壁層の表面から遠くてもよい。一部の実施例では、フィールド・プレートの第2の部分は、ゲートのサイドローブ部分よりも障壁層の表面に近くてもよい。
【0032】
一部の実施例では、複数のスペーサ層は、フィールド・プレートの第1の部分、フィールド・プレートの第2の部分、及びゲートのサイドローブ部分を障壁層の表面から分離する第1、第2、及び第3の厚さをそれぞれ画定するように積層されてもよい。
【0033】
一部の実施例では、フィールド・プレートの第1の部分とゲートのサイドローブ部分のうちの1つは、互いに向かって横方向に延在することができ、障壁層の表面に垂直な方向に重なり合わなくてもよい。
【0034】
一部の実施例では、側壁スペーサは、ゲートをその両側で複数のスペーサ層から分離することができる。フィールド・プレートの第1の部分は、ゲートに向かって横方向に延在することができ、側壁スペーサのうちの1つによってゲートから分離することができる。
【0035】
一部の実施例によると、トランジスタを製造する方法は、ヘテロ接合を間に画定するチャネル層及び障壁層を形成するステップと、障壁層上にソース電極、ドレイン電極、及びゲートを形成するステップであって、ゲートがゲートの両側からソース電極及びドレイン電極に向かって横方向にそれぞれ延在するサイドローブ部分を含む、ステップと、障壁層上にスペーサ絶縁体層及びフィールド・プレートを形成するステップと、を含む。スペーサ絶縁体層は、フィールド・プレートが間に挟まれた複数のスペーサ層を含む。スペーサ層は、ゲートの両側で障壁層上に積層され、ゲートのサイドローブ部分を障壁層から分離する。
【0036】
一部の実施例では、複数のスペーサ層は、ゲートの両側で実質的に同一平面の表面を画定するように形成され、ゲートのサイドローブ部分がこの表面のすぐ上で横方向に延在することができる。
【0037】
一部の実施例では、フィールド・プレートは、ゲートに隣接する第1の部分と、ドレイン電極に隣接する第2の部分とを含むように形成されてもよく、第2の部分は、第1の部分よりも障壁層の表面から遠くてもよい。
【0038】
一部の実施例では、スペーサ絶縁体層及びフィールド・プレートを形成するステップは、表面に凹部を含む第1のスペーサ層を形成するステップと、凹部内の第1の部分及び凹部の外側の第1のスペーサ層の表面上の第2の部分を含む第2のスペーサ層を形成するステップと、第2のスペーサ層の第1及び第2の部分上にフィールド・プレートの第1及び第2の部分をそれぞれ形成するステップと、第2のスペーサ層並びにフィールド・プレートの第1及び第2の部分上に第3のスペーサ層を形成するステップと、を含むことができる。
【0039】
一部の実施例では、フィールド・プレートは、第1のフィールド・プレートであってもよい。本方法は、第1のフィールド・プレートの第1の部分又は第2の部分のうちの少なくとも1つを露出させるように第3のスペーサ層を貫通する開口部を形成するステップと、第2のフィールド・プレートを第3のスペーサ層上に形成し、第1のフィールド・プレートに接触するように開口部内に延在させるステップと、をさらに含むことができる。
【0040】
一部の実施例による他のデバイス及び方法は、以下の図面及び詳細な説明を検討することで当業者に明らかになるであろう。上記実施例のいずれか及びすべての組合せに加えて、すべてのそのような追加の実施例は、本明細書内に含まれ、本発明の範囲内にあり、添付の特許請求の範囲によって保護されることが意図されている。
【図面の簡単な説明】
【0041】
図1】本発明の一部の実施例による埋め込みフィールド・プレートを含むトランジスタ・デバイスの単位セルの概略断面図である。
図2】本発明の一部の実施例によるトランジスタ・デバイスを製造するための方法における例示的な中間製造ステップを示す概略断面図である。
図3】本発明の一部の実施例によるトランジスタ・デバイスを製造するための方法における例示的な中間製造ステップを示す概略断面図である。
図4】本発明の一部の実施例によるトランジスタ・デバイスを製造するための方法における例示的な中間製造ステップを示す概略断面図である。
図5】本発明の一部の実施例によるトランジスタ・デバイスを製造するための方法における例示的な中間製造ステップを示す概略断面図である。
図6】本発明の一部の実施例によるトランジスタ・デバイスを製造するための方法における例示的な中間製造ステップを示す概略断面図である。
図7】本発明の一部の実施例によるトランジスタ・デバイスを製造するための方法における例示的な中間製造ステップを示す概略断面図である。
図8】本発明の一部の実施例によるトランジスタ・デバイスを製造するための方法における例示的な中間製造ステップを示す概略断面図である。
図9】本発明の一部の実施例によるトランジスタ・デバイスを製造するための方法における例示的な中間製造ステップを示す概略断面図である。
図10】本発明の一部の実施例によるトランジスタ・デバイスを製造するための方法における例示的な中間製造ステップを示す概略断面図である。
図11】本発明の一部の実施例によるトランジスタ・デバイスを製造するための方法における例示的な中間製造ステップを示す概略断面図である。
図12】本発明の一部の実施例によるトランジスタ・デバイスを製造するための方法における例示的な中間製造ステップを示す概略断面図である。
図13】本発明のさらなる実施例による埋め込みフィールド・プレートを含むトランジスタ・デバイスの単位セルの概略断面図である。
図14】本発明のさらに別の実施例による埋め込みフィールド・プレートを含むトランジスタ・デバイスの単位セルの概略断面図である。
図15】本発明のさらに別の実施例による埋め込みフィールド・プレートを含むトランジスタ・デバイスの単位セルの概略断面図である。
【発明を実施するための形態】
【0042】
フィールド・プレートは、デバイスの動作特性(例えば、降伏電圧、利得、最大動作周波数)を改善するためにトランジスタ・デバイスのチャネル領域における電界分布を変更するように構成することができる導電性構造体である。例えば、HEMT又は他の半導体ベースの電界効果トランジスタ(FET:field-effect transistor)デバイスでは、通常の動作中にゲート-ドレイン領域に大きな電界が生じることがある。フィールド・プレートは、所与のバイアス電圧に対するデバイス活性領域におけるピーク電界を低減するように構成することができる。このようなフィールド・プレートは、電界分布を管理するだけでなく、ドレイン-ソース間容量Cds及びゲート-ドレイン間容量Cgdの両方に影響を与えることができる。ゲートとドレインとの間(ゲート-ドレイン領域とも呼ばれる)に配置されたフィールド・プレートは、デバイス活性領域を変調するように構成することもでき、その結果、大きな高周波(RF)信号の下で適切なデバイス動作に影響を与える可能性がある表面トラッピング効果が減少する。より一般的には、フィールド・プレートは、デバイスを高電界で動作させたときに生じることがある有害な影響(低い降伏電圧、電荷トラッピング現象、低い信頼性)を軽減するように機能することができる。
【0043】
本発明の実施例は、静電容量、トラッピング効果、及び/又はピーク電界分布を低減することができるフィールド・プレート構造のための特定の構成及び製造方法を提供する。特に、本発明の実施例は、階段状又は傾斜状フィールド・プレート構造の製造を可能にし、それによって、伝導チャネルとフィールド・プレートとの間の間隔又は分離が低減される。一部の実施例では、フィールド・プレートは、ゲートとドレインとの間に設けられ、それによって、ゲート-ドレイン間容量Cgd及びドレイン電源電圧に近接するピーク電界を低減することができる。
【0044】
例えば、埋め込みフィールド・プレートは、第1の距離又は間隔によって半導体層構造体(伝導チャネルが誘起されるか又は他の方法で画定される)の表面から分離されたゲートに隣接する第1の部分と、第1の距離又は間隔よりも大きい第2の距離又は間隔によって半導体層の表面から分離されたドレイン電極に隣接する第2の部分と、を含むことができる。ゲートに隣接するスペーサ層内の凹部を使用して、埋め込みフィールド・プレートの第1及び第2の部分を、階段状幾何形状(第1及び第2の段差部分が半導体層表面から異なる距離又は間隔にある)及び/又は傾斜状幾何形状(傾斜状部分が段差部分の1つから延在するか又は段差部分を接続する)に画定することができる。一部の実施例では、ゲートとフィールド・プレートとの間の横方向の間隔を制御するために、追加の側壁スペーサが含まれてもよい。本明細書で使用される「横方向」という用語は、半導体層構造体の主面に対して実質的に平行な方向を指す。また、一部の実施例は、1つ又は複数のスペーサ層を貫通して、埋め込みフィールド・プレートに接触する第2の又は追加のフィールド・プレートを含むことができ、それによって、階段状又は傾斜状フィールド・プレート構造に第2の「段差」を画定する。埋め込みフィールド・プレートをゲート及び/又は伝導チャネルのより近くに設けることにより、Cgd及びトラッピング効果の低減を強化又は改善することができる。階段状又は傾斜状フィールド・プレート構造は、ドレイン電源電圧に近接するピーク電界を低減することもできる。
【0045】
図1は、本発明の一部の実施例による埋め込みフィールド・プレートを含むトランジスタ構造の単位セルの概略断面図である。特に、図1は、本明細書に記載されるような階段状又は傾斜状構造を有する埋め込みフィールド・プレートを含むHEMTの一例を示す。
【0046】
HEMTは、チャネル層と、チャネル層上の障壁層とを含む。ソース電極及びドレイン電極は、障壁層とのオーミック・コンタクトとして形成されてもよい。ソース電極とドレイン電極との間の障壁層の表面上にゲートが形成され、障壁層の上にはスペーサ絶縁体層が形成されている。構成に応じて、スペーサ絶縁体層は、ゲートの形成の前又は後に形成することができる。スペーサ絶縁体層は、誘電体層、アンドープの若しくは空乏化したAlGa1-xN(0≦x≦1)材料の層、又はそれらの組合せであってもよい。導電性フィールド・プレートは、スペーサ絶縁体層内に形成され、ゲートからソース電極又はドレイン電極に向かって距離Lfだけ延在する。フィールド・プレートは、ソース電極に電気的に接続されていてもよい。フィールド・プレートとソース電極との間の電気的接続は、場合によってはデバイスの活性領域の外側にあってもよい。フィールド・プレートは、デバイスのピーク電界を低減し、結果として、降伏電圧の向上、及び電荷トラッピングの低減をもたらすことができる。電界の低減により、漏れ電流の低減及び信頼性の向上などの他の利点ももたらすことができる。
【0047】
HEMTは、III族窒化物ベースの半導体層構造体を含むことができるが、他の材料系を使用することもできる。本明細書では主にHEMTの製造を参照して説明するが、本明細書に記載される実施例の要素及び概念は、金属半導体電界効果トランジスタ(MESFET)及び金属酸化物半導体ヘテロ構造電界効果トランジスタ(MOSHFET:Metal Oxide Semiconductor Heterostructure Field Effect Transistor)を含むがこれらに限定されない多くの異なるタイプのトランジスタ構造に適用することができることに留意されたい。
【0048】
ここで図1を参照すると、HEMT100は、基板10上にGaNベース又は他のIII族窒化物ベースの半導体層構造体24を含む。III族窒化物とは、窒素と、アルミニウム(Al)、ガリウム(Ga)、及び/又はインジウム(In)などの周期表のIII族の元素との間で形成されて、二元(例えば、GaN)、三元(例えば、AlGaN、AlInN)、及び四元(例えば、AlInGaN)化合物を形成する半導体化合物を指す場合がある。したがって、AlGa1-xN(0≦x≦1)などの式を用いて、これらの化合物を記述することができる。基板10は、炭化ケイ素、シリコン、サファイア、スピネル、酸化亜鉛、シリコン、ガリウム砒素、酸化亜鉛、又はIII族窒化物材料の成長を支持することができる任意の他の材料を含むことができる。炭化ケイ素は、結晶格子整合がサファイアよりもIII族により近く、その上により高品質のIII族窒化物膜を形成することができる可能性がある。炭化ケイ素は、熱伝導率も非常に高いため、炭化ケイ素上のIII族窒化物デバイスの総出力電力は、(サファイア上に形成された一部のデバイスの場合のように)基板の熱放散によって制限されない可能性がある。
【0049】
任意のバッファ層、核生成層及び/又は遷移層も基板10上に形成することができる。例えば、基板10と次の半導体層構造体24の層との間の格子不整合を低減するために、基板10上に核生成層15を形成することができる。核生成層15の形成及び組成は、基板10に使用される材料に依存し得る。例えば、AlGa1-zN(0≦z≦1)核生成層15は、MOCVD(有機金属化学気相堆積:Metalorganic Chemical Vapor Deposition)、HVPE(水素化物気相エピタキシ:Hydride Vapor Phase Epitaxy)又はMBE(分子線エピタキシ:Molecular Beam Epitaxy)などのエピタキシャル成長法によって基板10上に成長させることができる。核生成層15を様々な基板上に形成する方法は、Nakamuraの米国特許第5,290,393号及びMoustakasの米国特許第5,686,738号に記載されている。核生成層を炭化ケイ素基板上に形成する方法は、Edmondらの米国特許第5,393,993号、Edmondらの米国特許第5,523,589号、及びEdmondらの米国特許第5,739,554号に記載されている。
【0050】
HEMT100の半導体層構造体24は、チャネル層20及び障壁層22を含む。チャネル層20は、核生成層15上に形成されてもよい。障壁層22は、核生成層15及び基板10に対向するチャネル層20上に形成されてもよい。チャネル層20及び障壁層22の一方又は両方は、段階的であっても、又は連続的に傾斜していてもよい材料組成を含む、III族窒化物材料のドープされた又はドープされていない(すなわち、「意図せずにドープされた」)層を含む副層を含むことができる。一部の実施例では、チャネル層20は、AlGaIn(1-x-y)Nの1つ又は複数の層を含むことができ、ここで、0≦x≦1、0≦y≦1、及びx+y≦1である。例えば、チャネル層20は、GaN層であってもよい。一部の実施例では、障壁層22は、AlGa1-xN又はAlInyGa1-x-yNの1つ又は複数の層を含むことができ、ここで0≦x≦1、0≦y≦1、及びx+y≦1である。半導体層構造体24は、エピタキシャル成長法によって基板10上に形成されたこれらの層及び/又は他の層を含むエピタキシャル構造であってもよい。例えば、チャネル層20及び障壁層22は、核生成層15を成長させるために使用されるのと同じ又は類似の方法を使用して形成することができる。デバイス間の電気的絶縁は、HEMT100の活性領域の外側のメサエッチング又はイオン実装によって達成することができる。
【0051】
HEMTデバイス100において、チャネル層20及び障壁層22は、ヘテロ接合がチャネル層20と障壁層22との界面に画定されるように、異なるバンドギャップを有する材料から形成されてもよい。特に、チャネル層20及び障壁層22の両方がIII族窒化物層から形成される場合、チャネル層20は、GaN層であってもよく、障壁層22は、AlGaN層であってもよい。2DEG伝導チャネル40は、チャネル層20と障壁層22との間のヘテロ界面に誘起され得て、チャネル層20、2DEG伝導チャネル40、及び障壁層22は、全体に、HEMT100の活性領域を形成することができる。
【0052】
他の実施例では、チャネル層20と障壁層22は、格子定数が異なっていてもよい。例えば、障壁層22は、チャネル層20よりも小さい格子定数を有する比較的薄い層であってもよく、その結果、障壁層22は、2つの層の界面で「伸びる」。したがって、擬似格子整合HEMT(pHEMT:pseudomorphic HEMT)デバイスを提供することができる。例示的なHEMT構造は、Sheppardらの米国特許第6,316,793号、Wuらの米国特許第6,586,781号、Smithの米国特許第6,548,333号、Prashantらの米国特許出願公開第2002/0167023号、及びParikhらの米国特許出願公開第2003/0020092号に示されている。他の窒化物ベースのHEMT構造は、Kahnらの米国特許第5,192,987号、及びKahnらの米国特許第5,296,395号に示されている。
【0053】
ソース・ドレイン電極30は、半導体層構造体24上に形成され、障壁層22とのオーミック・コンタクトを画定する。ソース・ドレイン電極30間の障壁層22の表面にはゲート32が形成されている。ゲート32が適切なレベルにバイアスされると、チャネル層20及び障壁層22によって画定されるヘテロ界面の2DEG伝導チャネル40を通って、電流がソース・ドレイン電極30間に流れることができる。
【0054】
ゲート32の形成は、誘電体又は他のスペーサ絶縁体層25を堆積させることと、マスク及び/又は他の犠牲層を使用してスペーサ絶縁体層25を通してエッチングすることと、スペーサ絶縁体層25のエッチングされた部分にゲートを堆積させることと、を含むことができる。ソース・ドレイン電極30の形成は、上記で参照した特許及び刊行物に例として記載されているように、同じように行うことができる。一部の実施例では、ゲート32は、スペーサ絶縁体層25の部分上に横方向に延在する1つ又は複数の延在部分、例えば、T字形状を画定する対向するサイドローブ部分32a、32b(本明細書では「Tゲート」とも呼ばれる)を含むことができる。ゲート32及びサイドローブ部分32a、32bは、複数の異なる長さ(LG1及びLG2)を画定することができる。一部の実施例では、サイドローブ部分32a、32bは、ゲート32の両側でスペーサ絶縁体層25上に実質的に対称に延在することができる。
【0055】
図1に示すように、スペーサ絶縁体層25は、半導体層構造体24の表面24sに順次積層された複数のスペーサ層26、27、28を含む。スペーサ絶縁体層25はまた、ゲート32の一方の側においてスペーサ層26、27、28の間に埋め込みフィールド・プレート33を含む。埋め込みフィールド・プレート33は、金属又は他の導電性材料、例えば、銅、金、及び/又は複合金属を含む。一部の実施例では、埋め込みフィールド・プレート33は、ゲート32とドレイン電極30との間に配置され、それにより、ピーク電界を低減するか、さもなければ電界を再分配し、ゲート-ドレイン間容量Cgdを低減し、及び/又はHEMT100のドレイン側でのトラッピング効果を低減することができる。一部の実施例では、同様の階段状構造を有する埋め込みフィールド・プレート(図示せず)が、追加で又は代わりに、ゲート32とソース電極30との間に配置されてもよい。
【0056】
埋め込みフィールド・プレート33は、2つ以上の部分を含む階段状プロファイルを有し、本明細書では例として、ゲート32に隣接する第1の段差部分33a及びドレイン電極30に隣接する第2の段差部分33bを参照して示されている。フィールド・プレート33の段差部分33a、33bは、連続した層によって画定されてもよく、不連続な層の積層によって画定されてもよい。すなわち、フィールド・プレート33の段差部分33a、33bは、単層によって画定されてもよく、複数層によって画定されてもよい。一部の実施例では、段差部分33a、33bは、不連続性をそれらの間に含んでもよい。フィールド・プレート33の各段差部分33a、33bは、表面24s(したがって、下にある伝導チャネル40)から異なる距離又は間隔に配置されている。伝導チャネル40から近い距離又は間隔と、遠い距離又は間隔にある第1の段差部分33a及び第2の段差部分33bを含むフィールド・プレート33により、Cgd及びトラッピング効果の低減、並びにドレイン電極30に近接するピーク電界の低減が可能になる場合がある。
【0057】
特に、図1に示すように、スペーサ層26、27は、埋め込みフィールド・プレート33の第1及び第2の部分33a、33bと表面24sとの間に異なる厚さを画定するように順次積層されて、異なる間隔S1、S2を提供することができる。例えば、スペーサ層26は、その内部に凹部を含むことができ、その結果、スペーサ層27及び埋め込みフィールド・プレート33がスペーサ層26上及び凹部に順次形成されると、フィールド・プレート33の部分33aが部分33bよりも表面24sに近くなる。
【0058】
さらに、スペーサ層26、27、28は、サイドローブ部分32a、32bをゲート32の両側で表面24sから分離することができる。例えば、スペーサ層26、27、28は、ゲート32の両側に、実質的に均一な厚さ若しくは間隔S3及び/又は同一平面の表面を画定し、その表面上にゲート32のサイドローブ部分32a、32bが延在する。一部の実施例では、ゲート32のサイドローブ部分32aとフィールド・プレート33の段差部分33aは、重なり合い、第3のスペーサ層28の部分によって分離されていてもよい。一部の実施例では、ゲート32のサイドローブ部分32aとフィールド・プレート33の段差部分33aは、表面24sに垂直な方向に重なり合わなくてもよい。
【0059】
スペーサ層26、27、28は、埋め込みフィールド・プレート33の第2の段差部分33bを、第1の段差部分33aよりも半導体層構造体24(したがって伝導チャネル40)の表面24sから遠くに、且つゲート32のサイドローブ部分32a、32bよりも半導体層構造体24の表面24sに近く配置するように形成することができる。より一般的には、スペーサ絶縁体層25は、ゲートのサイドローブ部分32a、32bと表面24sとの間の距離又は間隔、フィールド・プレートの段差部分33a、33bと表面24sとの間の距離又は間隔、並びに/或いはゲートのサイドローブ部分32a、32bとフィールド・プレート段差部分33a、33bとの間の距離又は間隔を制御するように形成することができる、それぞれの厚さを有する層26、27、28による多層スタックであってもよい。
【0060】
HEMT100は、埋め込みフィールド・プレート33の第1及び/又は第2の段差部分33a、33bに接触するように上部スペーサ層29を貫通する追加の又は第2のフィールド・プレート34も含むことができる。第2のフィールド・プレート34も、階段状又は傾斜状構造を有することができ、第1の部分34aが第2の部分34bよりも半導体層構造体24の表面24sに近い。第2のフィールド・プレート34の第1の部分34aは、ドレイン電極30にもより近くてもよく、Cgd、トラッピング効果、及び/又はドレイン電極30に近接するピーク電界のさらなる制御を可能にすることができる。
【0061】
図1では、ゲート32及びソース・ドレイン電極30が障壁層22の表面24s上にある平面HEMT構成で示されているが、本発明の実施例による階段状又は傾斜状フィールド構造を有する埋め込みフィールド・プレート33は、リセス・ゲートHEMT(ソース・ドレイン電極30が表面24s上のゲート32に対して相対的に高くなっている)及びリセス・ソース/ドレインHEMT(ソース・ドレイン電極30が表面24sを超えてチャネル層20に向かって延在している)などの他のHEMT構成で使用することができることが理解されよう。
【0062】
図2図12は、本発明の一部の実施例によるトランジスタ・デバイスを製造するための方法における例示的な中間製造ステップを示す概略断面図である。図2図12の例は、トランジスタ・デバイスのゲート電極とドレイン電極との間に階段状又は傾斜状構造を有する埋め込みフィールド・プレートの製造を示すが、一部の実施例では、同様の製造ステップを追加で又は代わりに使用して、ゲート電極とソース電極との間にフィールド・プレート(図示せず)を製造するができることが理解されよう。
【0063】
図2に示すように、第1のスペーサ層26は、下にあるチャネル層20とのヘテロ接合を画定する障壁層22を含む半導体層構造体24の表面24s上に形成されている。上述したように、チャネル層20及び障壁層22は、エピタキシャル成長法によって形成されたエピタキシャル構造(例えば、III族窒化物材料を含む)であってもよい。基板10との格子不整合を低減するために、基板10(例えば、SiC基板)上に核生成層15を形成することができる。第1のスペーサ層26は、障壁層22上にブランケット形成された誘電体層又は他の絶縁体層であってもよい。例えば、第1のスペーサ層26は、高品質スパッタリング及び/又は気相堆積法によって形成された窒化シリコン層又は酸化シリコン層であってもよい。
【0064】
図3では、開孔又は凹部26rが第1のスペーサ層26に画定されている。例えば、凹部26rは、スペーサ層26の一部を露出させるマスクを用いて光学的に画定され、開口されてもよい。凹部26rの横方向の位置及び/又は幅は、埋め込みフィールド・プレート33の段差部分33a、33bを、後続のステップで形成されるゲート及びドレイン電極から所望の距離に設けるように選択することができる。凹部26rは、スペーサ層26を貫通して、半導体層構造体24の表面24sを露出させることができる
【0065】
図4では、第1のスペーサ層26上に第2のスペーサ層27が形成されている。第2のスペーサ層27は、第1のスペーサ層26の表面に沿って共形に延在し、凹部26rの底面及び側壁に沿って凹部26r内に延在して、凹部26rの内側の部分と外側の部分との間に段差を画定することができる。第2のスペーサ層27は、同様に誘電体又は他の絶縁体層(例えば、窒化シリコン又は酸化シリコン層)であってもよく、第1のスペーサ層26と同様の方法又は異なる方法によって形成されてもよい。
【0066】
図5は、第2のスペーサ層27上へのフィールド・プレート33の形成を示す。例えば、マスキング及び/又はパターニング・プロセスを使用して、第2のスペーサ層27の部分上に金属又は他の導電層を形成することができる。第1のスペーサ層26の凹部26rの内側及び外側の第2のスペーサ層27の部分によって画定される段差により、階段状構成の第1の部分33a及び第2の部分33bを含むフィールド・プレート33が得られる。傾斜状部分は、段差部分33aと33bとを接続することができる。凹部26r内の第2のスペーサ層27の厚さは、埋め込みフィールド・プレート33の第1の部分33aを表面24sから分離する第1の距離又は間隔S1を画定し、一方、凹部26rの外側のこの表面上の第1のスペーサ層26と第2のスペーサ27の組み合わされた厚さは、埋め込みフィールド・プレート33の第2の部分33bを表面24sから分離する第2の距離又は間隔S2を画定する。
【0067】
フィールド・プレート33の第1の部分33aは、デバイスの一方の側(例えば、ソース側)に向かって距離Lfsだけ第2のスペーサ層27上で横方向に延在していてもよい。フィールド・プレート33の第2の部分33bは、デバイスのもう一方の側(例えば、ドレイン側)に向かって距離Lfdだけ第2のスペーサ層27上で横方向に延在していてもよい。Lfs及びLfdは、同じ又は異なる距離とすることができる。一部の実施例では、表面24sから異なる間隔S1、S2にあるフィールド・プレート33の部分33a、33bは、連続していなくてもよい。例えば、第1の部分33aは、凹部26r内の第2のスペーサ層27の部分上に形成されていてもよく、第2の部分33bは、凹部の外側の第2のスペーサ層27の表面上に別個に形成されていてもよく、さもなければ第1の部分33aとの不連続性を含んでいてもよい。すなわち、フィールド・プレート33の第1及び第2の部分33a、33bは、単一の連続した層によって画定されてもよく、又は複数の積層された層によって画定されてもよい。
【0068】
図3において凹部26rを形成し、図4において凹部26r内に第2のスペーサ層27を形成し、図5において凹部26r内に埋め込みフィールド・プレート33の第1の部分33aを形成することによって、フィールド・プレート33の第1の部分33aは、フィールド・プレート33の第2の部分33bよりも表面24sに近くなる。フィールド・プレート33の部分33aと表面24sとの間の誘電体又は他のスペーサ絶縁体層25の厚さS1を低減することで、(例えば、表面24sから均一な間隔S2を有する平面フィールド・プレートと比較して)フィールド・プレート33を設けることから生じるゲートとドレイン電極との間の静電容量を低減することができる。
【0069】
図6では、第2のスペーサ層27上及びフィールド・プレート33上には、第3のスペーサ層28が形成されている。第3のスペーサ層28は、第2のスペーサ層27及びフィールド・プレート33の段差部分33a、33bの表面に沿って共形に延在して、埋め込みフィールド・プレート構成を画定することができる。第3のスペーサ層28は、同様に誘電体又は他の絶縁体層(例えば、窒化シリコン又は酸化シリコン層)であってもよく、第1及び/又は第2のスペーサ層26及び/又は27と同様の方法或いは異なる方法によって形成されてもよい。第1、第2、及び第3のスペーサ層26、27、28は、集合体として本明細書に記載されるようなスペーサ絶縁体層25を画定することができる。
【0070】
本明細書に記載されるスペーサ絶縁体層25のスペーサ層26、27、28は、窒化ケイ素、窒化アルミニウム、二酸化ケイ素、及び/又は他の適切な材料などの誘電体材料であってもよい。他の材料をスペーサ絶縁体層25の層26、27、28に利用することもできる。例えば、スペーサ層26、27、28は、酸化マグネシウム、酸化スカンジウム、酸化アルミニウム及び/又は酸窒化アルミニウムを含むこともできる。スペーサ層26、27、28は、同じ厚さであっても、異なる厚さであってもよい。一部の実施例では、第1のスペーサ層26は、第2のスペーサ層27よりも薄い厚さを有することができ、及び/又は第2のスペーサ層27は、第3のスペーサ層28よりも薄い厚さを有することができる。スペーサ絶縁体層25は、半導体層構造体24の表面24sに対して実質的に均一な厚さ又は間隔S3を有する部分Pと、不均一な厚さ又は間隔S4を有する部分とを含むことができる。
【0071】
上述したように、2つの段差部分33a、33bを含むフィールド・プレート33を参照して説明したが、本発明の実施例による階段状又は傾斜状フィールド・プレートは、追加の段差部分を含むことができる。例えば、やはり図6を参照すると、フィールド・プレートの第2の部分33bの少なくとも一部を露出させるように第3のスペーサ層28に追加の開孔又は凹部(図示せず)を形成することができ、追加の凹部によって露出されたフィールド・プレート33の第2の部分33b上及び追加の凹部の外側の第3のスペーサ層28の表面上にフィールド・プレート33の追加の段差部分(図示せず)を形成することができる。より一般的には、3つのスペーサ層26、27、28を含むスペーサ絶縁体層25と、2つの段差部分33a、33bを含むフィールド・プレート33との製造を参照して説明したが、4つ以上のスペーサ層を有するスペーサ絶縁体層25と、3つ以上の段差部分を有するフィールド・プレート33とを、本明細書に記載される実施例に従って製造することができることが理解されよう。
【0072】
図7は、スペーサ絶縁体層25の部分Pにおける開孔又は開口部25oの形成を示しており、この場所に、後続のステップにおいてゲートを形成することができる。例えば、開口部25oは、第3のスペーサ層28の一部を露出させるマスクを用いて光学的に画定され、開口されてもよい。図7に示すように、開口部25oは、スペーサ層28、27、26を貫通して、半導体層構造体24の表面24sの一部(すなわち、障壁層22の表面)を露出させる。開口部25oは、パターニングされたマスクと、障壁層22に対する低損傷エッチングとを利用して形成されてもよい。開口部25oは、開口部25o、ひいてはゲートがドレイン電極よりもソース電極に近くなり得るように、ソースとドレインとの間でオフセットされていてもよい。また、幅が均一であるように図示されているが、開口部25oは、スペーサ絶縁体層25の複数の層26、27、28に対するエッチングの等方性により、いくつかの部分で広くなっていてもよいことが理解されよう。
【0073】
図8に示すように、スペーサ絶縁体層25の開口部25o内の対向する側壁に側壁スペーサ25sが形成されている。例えば、側壁スペーサ25sは、特に、ゲート開口部25oが上述したように幅が不均一である実施例において、後続のステップで形成される所望の第1のゲート長LG1を画定するように形成することができる。一部の実施例では、側壁スペーサ25sは、スペーサ絶縁体シュリンク・プロセスを使用して形成することができる。側壁スペーサ25sは、同様に、誘電体又は他の絶縁体層(例えば、窒化シリコン又は酸化シリコン層)であってもよく、埋め込みフィールド・プレート33の第1の部分33aの横方向延在部分をゲート32との接触から分離することができる。
【0074】
図9は、スペーサ絶縁体層25の開口部25o内へのゲート32の形成を示す。ゲート32は、スペーサ絶縁体層25を貫通して、障壁層22の露出部分と接触する。ゲート32は、スペーサ絶縁体層25の対向する側壁の側壁スペーサ25s上に直接、間隙が側壁スペーサ間に形成されないように、メタライゼーション・プロセスを介して開口部25oに形成することができる。適切なゲート材料は、障壁層22の組成に依存することがある。しかしながら、特定の実施例では、Ni、Pt、NiSi、Cu、Pd、Cr、TaN、W及び/又はWSiNなどの、窒化物ベースの半導体材料に対してショットキー接触を形成することができる材料をゲート32に使用することができる。
【0075】
ゲート32は、開口部25oの外側のスペーサ絶縁体層25の表面部分上に横方向に延在して第2のゲート長LG2を画定する1つ又は複数の延在部分(対向するサイドローブ部分32a、32bとして示される)を含む。サイドローブ部分32a、32bは、ゲート32と一体であってもよい。サイドローブ部分32a、32bがゲート32の両側でスペーサ絶縁体層25上に延在する長さは、製造プロセスにおいて制御することができる。一部の実施例では、サイドローブ部分32aは、サイドローブ部分32bより長くてもよく(したがって、第2のゲート長LG2の大きい方の部分を画定してもよく)、逆もまた同様である。他の実施例では、サイドローブ部分32a及び32bは、ゲート32の両側で実質的に同じ長さだけ第3のスペーサ層28の表面に沿って横方向に延在してもよい。サイドローブ部分32a、32bと半導体層構造体24との間にスペーサ絶縁体層25の部分を挟むことに起因することがあるトランジスタ・デバイスのゲート-ドレイン間容量(Cgd)及び/又はゲート-ソース間容量(Cgs)は、以下に説明するようにさらに制御することができる。
【0076】
図9に示すように、ゲート32は、サイドローブ部分32a及び32bが、ゲート32の両側で実質的に均一な距離又は間隔S3だけ半導体層構造体24sの表面24s(したがって、障壁層22とチャネル層20との間のヘテロ接合で画定される伝導チャネル)から分離されるように形成されている。本明細書に記載される実施例では、階段状形状を有する埋め込みフィールド・プレート33は、ゲート32のサイドローブ部分32a及び32bが延在する第3のスペーサ層28の平坦性を高めるように構成することができ、その結果、スペーサ絶縁体層25は、ゲート32の両側に実質的に同一平面の表面を含み、フィールド・プレート33の第1の部分33a及び第2の部分33bがその表面の下に閉じ込められる。
【0077】
特に、図3で形成された第1のスペーサ層26の凹部26rのために、埋め込みフィールド・プレート33の第1の部分33aの上面は、第3のスペーサ層28が形成されている第2のスペーサ層27の上面と実質的に同一平面になり得る。そのため、図6において、第3のスペーサ層28がフィールド・プレート33及び第2のスペーサ層27上に形成されるとき、ゲート開口部25oが形成されるスペーサ絶縁体層25の部分Pの表面は実質的に平坦であり、その結果、ゲート32の両側に形成されるサイドローブ部分32a及び32bは、実質的に同一平面の表面上に形成され、間隔S3だけ半導体層構造体24の表面24sから均一に離間される。これに対して、フィールド・プレート33の第2の段差部分33b上に形成された第3のスペーサ層28のうち、凹部26rの外側にある部分は、不均一な厚さ(間隔S4によって示す)を有することがある。埋め込みフィールド・プレート33の階段状又は傾斜状構造は、第3のスペーサ層28の不均一な厚さS4とゲート32が形成される部分Pとの間の距離を増大させ、その結果、サイドローブ又はウィング32a及び32bが表面24sから均一な間隔S3だけ離間されるようになる。一部の実施例では、ゲート32は、サイドローブ又はウィング32a及び32bがゲート32の両側に実質的に対称に延在して形成されてもよい。
【0078】
図10では、第4のスペーサ層29がゲート32及び第3のスペーサ層28上に形成されている。第4のスペーサ層29は、サイドローブ32a、32b及びゲート32の上面に沿って、並びに第3のスペーサ層28の表面に沿って共形に延在することができる。第4のスペーサ層29は、同様に、誘電体又は他の絶縁体層(例えば、窒化シリコン又は酸化シリコン層)であってもよく、第1、第2、及び/又は第3のスペーサ層26、27、28と同様の又は異なる方法によって形成されてもよい。一部の実施例では、第4のスペーサ層29は、一旦ゲートメータライゼーションを堆積させると、このような高い温度は、実現可能ではない場合があるため、第1、第2、及び/又は第3のスペーサ層26、27、28よりも低い温度で形成されるパッシベーション層である場合がある。
【0079】
図11では、フィールド・プレート33の一部を露出させるために、第4のスペーサ層29に開孔又は開口部29oが形成されている。例えば、開口部29oは、フィールド・プレート33の上に重なる第4のスペーサ層29の一部分を露出させるマスクを使用して、光学的に画定され、開口されてもよい。図11に示すように、開口部29oは、スペーサ層29、28を貫通して、埋め込みフィールド・プレート33の第2の部分33bの表面を露出させる。開口部29oは、追加で又は代わりに、埋め込みフィールド・プレート33の第1の部分33aの表面を露出させてもよい。
【0080】
図12は、埋め込みフィールド・プレート33と接触するように、追加の又は第2のフィールド・プレート34を開口部29oに形成することを示す。第2のフィールド・プレート34は、スペーサ層29、28を貫通して、埋め込みフィールド・プレートの第1及び/又は第2の部分33a、33bに接触する導電性構造体である。第2のフィールド・プレート34も、階段状又は傾斜状構造を有することができ、第1の部分34aが第2の部分34bよりも半導体層構造体24の表面24sに近い。第2のフィールド・プレート34の第1の部分34aの表面と第2の部分34bの表面との間の段差は、埋め込みフィールド・プレート33の第1の部分33aの表面と第2の部分33bの表面との段差と同じであってもよく、又は異なっていてもよい。ソース又はドレイン(S/D)に向かう第2のフィールド・プレート34の第1の部分34aの横方向延在部分は、しきい値を超えて降伏電圧を実質的に低下させることなく、ピーク電界をさらに低減するか、さもなければ電界を再分布させるように制御することができる。図示されていないが、ソース電極及びドレイン電極は、図1のデバイス100に到達するように、障壁層22上に形成されてもよい(例えば、スペーサ絶縁体層25に開口部をエッチングして下にある障壁層22を露出させ、その上にオーミック・コンタクトを堆積させることによって)。
【0081】
図13図15は、本発明のさらなる実施例による、様々な階段状又は傾斜状構造を有する埋め込みフィールド・プレートを含むトランジスタ構造の単位セルの概略断面図である。具体的には、図13図15は、階段状又は傾斜状埋め込みフィールド・プレート構造33’、33’’、及び33’’’を含むHEMT100’、100’’、及び100’’’の例をそれぞれ示す。HEMT100’、100’’、及び100’’’の一部の要素又は層は、図1のHEMT100のものと同様であってもよく、その繰り返しの説明は省略する。
【0082】
例えば、図13は、図1に示すような単一の連続層ではなく、それぞれの層によって画定された第1及び第2の段差部分33a’及び33b’を有する埋め込みフィールド・プレート33’を示す。フィールド・プレート33’の段差部分33a’及び33b’は、半導体層構造体の表面24s(したがって、下にある伝導チャネル40)から異なる距離又は間隔S1及びS2にそれぞれ配置されている。フィールド・プレートの第1の部分33a’及び第2のスペーサ層27のそれぞれの上面は、実質的に同一平面であってもよい。一部の実施例では、段差部分33a’及び33b’は、それらの間に不連続性を含んでいてもよい。
【0083】
本明細書に記載される実施例では、埋め込みフィールド・プレート33の第1の部分33aは、ゲート32に向かって長さLfsだけ横方向に延在し、ゲート32のサイドローブ部分32aは、埋め込みフィールド・プレート33に向かってゲート長LG2の一部分だけ横方向に延在する。図1図13の実施例では、埋め込みフィールド・プレート33の第1の部分33aとゲート32のサイドローブ部分32aとの間に横方向の間隔又は分離が維持されており、その結果、横方向に延在するゲート32のサイドローブ部分32aは、フィールド・プレート33と重ならない。すなわち、フィールド・プレート33の第1の部分33aは、サイドローブ部分32aのエッジ又は境界の外側に閉じ込められ、サイドローブ部分32aと半導体層構造体24の表面24sとの間に延在せず、したがって、埋め込みフィールド・プレート33の第1の部分33aとゲート32のサイドローブ部分32aは、表面24sに垂直な方向に重なり合わない(本明細書では垂直オーバーラップとも呼ばれる)。しかしながら、本発明の実施例は、埋め込みフィールド・プレート33の第1の部分33aのいかなる特定の長さにも限定されず、一部の実施例では、横方向に延在するサイドローブ部分32a、32bと重なっていてもよい。
【0084】
図14は、埋め込みフィールド・プレート33’’の第1の部分33a’’がサイドローブ部分32aのエッジを越えてゲート32に向かって横方向に延在する埋め込みフィールド・プレート33’’を含むトランジスタ構造の単位セルの概略断面図である。埋め込みフィールド・プレート33’’の第1の部分33a’’は、ゲート32のサイドローブ部分32aと垂直方向に重なり、サイドローブ部分32aのエッジから側壁スペーサ25sまでの距離さらに延在することができる。本明細書に記載される他の実施例と同様に、ゲート32のサイドローブ部分32aと重なり合うフィールド・プレート33’’の第1の部分33a’’との間の電気的絶縁は、間に挟まれたスペーサ絶縁体層25の部分によって、特に第3のスペーサ層28によって提供される。また、側壁スペーサ25sのうちの1つは、埋め込みフィールド・プレート33’’の第1の部分33a’’の横方向延在部分とゲート32との間の電気的絶縁を提供する。
【0085】
図14の例では、第1の部分33a’’は、ゲート32とフィールド・プレート33’’との間で表面24sの部分の全体に沿って横方向に延在し、側壁スペーサ25sに接触している。しかしながら、埋め込みフィールド・プレート33’’の第1の部分33a’’とゲート32のサイドローブ部分32aとのオーバーラップの量及び第1の部分33a’’がゲート-ドレイン領域上に延在する長さLfsは、変えることができる。
【0086】
図15は、埋め込みフィールド・プレート33’’’を含むトランジスタ構造の単位セルの概略断面図であり、埋め込みフィールド・プレート33’’’の第1の部分33a’’’が、ゲート32とフィールド・プレート33’’’との間の表面24sの部分の全体に沿ってではないが、やはりゲート32に向かって、サイドローブ部分32aのエッジを越えて横方向に延在する。すなわち、埋め込みフィールド・プレート33’’’の第1の部分33a’’’は、ゲート32のサイドローブ部分32aと垂直方向に重なるが、側壁スペーサ25sとは接触しない。そのため、フィールド・プレート33の第1の部分33a’’’は、側壁スペーサ25sの厚さだけ又はそれ以上、ゲート32の側壁から横方向に分離され得る。図15では、第1の段差部分33a’’’及び第2の段差部分33b’’’は、単一の連続層ではなく、それぞれの層によって画定されている。第1の段差部分33a’’’と第2の段差部分33b’’’とは、垂直方向に重なっていてもよい。フィールド・プレート33’’’の第1の部分33a’’’と第2のスペーサ層27のそれぞれの上面は、実質的に同一平面であってもよい。フィールド・プレート33’’’の第1の部分33a’’’は、第3のスペーサ層28の実質的に同一平面の表面のうちの1つと表面24sとの間に延在する。ゲート32のサイドローブ部分32aと重なり合うフィールド・プレート33’’’の第1の部分33a’’’との間の電気的絶縁は、間に挟まれた第3のスペーサ層28の部分によって提供される。
【0087】
本発明の実施例によると、フィールド・プレートの段差部分33a、33b及びゲートサイドローブ部分32aを半導体層構造体24の表面24sから分離する厚さS1、S2及びS3を変化させてスペーサ絶縁体層25を形成することによって、ゲート32とソース電極又はドレイン電極30との間の静電容量を低減することができる(例えば、均一な厚さを有するスペーサ絶縁体層によって表面24sから分離された平面フィールド・プレートと比較して)。本明細書に記載される実施例に従って、フィールド・プレート部分33aとゲートサイドローブ部分32aとの間の垂直方向の重なりを回避及び/又は制御することによって、静電容量をさらに低減及び/又は調整することができる。
【0088】
一部の実施例では、埋め込みフィールド・プレートの階段状構造は、ドレインに近接するピーク電界の低減に寄与する可能性がある。特に、埋め込みフィールド・プレート33の第2の部分33bと半導体層構造体24の表面24sとの間に、より大きな厚さS2の(したがって、障壁層22とチャネル層20との間のヘテロ接合において画定される伝導チャネル40により近い)スペーサ絶縁層25を形成することによって、階段状構造33a、33bを有する埋め込みフィールド・プレート33を形成することによって、ドレインに隣接するピーク電界を低減することができ、これにより、電荷トラッピング効果も低減することができる。
【0089】
したがって、本発明の実施例は、一般に、埋め込みフィールド・プレートが異なる距離又は間隔によって障壁層から分離されるトランジスタ構造を対象とする。一部の実施例では、フィールド・プレートを1つ又は複数のより薄いスペーサ層によって半導体層構造体から分離することができ、一方、1つ又は複数のより厚いスペーサ層は、フィールド・プレートとゲートの横方向に延在する部分とを分離することができる。別の実施例では、スペーサ絶縁体層は、フィールド・プレートと半導体層構造体との間の厚さが比較的薄く、フィールド・プレートとゲートの横方向に延在する部分との間の厚さがより厚い、可変の厚さを有することができる。一部の実施例では、フィールド・プレートと半導体層構造体との間の距離又は間隔を低減するために、フィールド・プレートをスペーサ層内の凹部に設けることができる。
【0090】
本明細書では、特定のHEMT構造を参照して本発明の実施例を説明してきたが、本発明は、このような構造に限定されるものと解釈されるべきではなく、pHEMT(GaAs/AlGaAs pHEMTを含む)及び/又はGaN MESFETなどの多くの異なるトランジスタ構造におけるゲート電極の形成に適用することができる。
【0091】
また、本発明の教示から依然として利益を得ながら、トランジスタ・デバイスに追加の層を含めることもできる。このような追加の層は、例えば、Smithの米国特許第6,548,333号に記載されているように、GaNキャップ層を含むことができる。一部の実施例では、MIS-HEMTを作製し、及び/又は表面を不動態化するために、SiNなどの絶縁層、又は比較的高品質のAlNを堆積させることができる。追加の層はまた、組成的に傾斜した遷移層を含んでもよい。さらに、上述の障壁層22及び/又はチャネル層20は、複数の層を含むことができる。したがって、本発明の実施例は、これらの層を単一層に限定するものとして解釈されるべきではなく、例えば、GaN層、AlGaN層、及び/又はAlN層の組合せを有する障壁層を含んでもよい。
【0092】
本発明は、本発明の実施例が示される添付の図面を参照して説明されている。しかしながら、本発明は、本明細書に記載された実施例に限定されると解釈されるべきではない。むしろ、これらの実施例は、本開示が完璧且つ完全なものとなり、本発明の範囲を当業者に十分に伝えるように提供されている。図面において、層及び領域の厚さは、わかりやすくするために誇張されている。同様の数字は、全体を通して同様の要素を指す。
【0093】
層、領域又は基板などの要素が、別の要素の「上に(on)」又は「上に(onto)」延在すると言及される場合、それは、他の要素のすぐ上に(directly on)若しくは直接上に(directly onto)延在することができ、又は介在する要素が存在してもよいことが理解されよう。対照的に、要素が別の要素の「すぐ上に」ある、又は「直接上に」延在すると言及される場合、介在する要素は存在しない。ある要素が別の要素に「接続されている」又は「結合されている」と言及される場合、それは他の要素に直接接続又は結合されてもよく、又は介在する要素が存在してもよいことも理解されるであろう。対照的に、要素が別の要素に「直接接続される」又は「直接結合される」と言及される場合、介在する要素は存在しない。
【0094】
第1、第2などの用語は、様々な要素を説明するために本明細書で使用されることがあるが、これらの要素は、これらの用語によって限定されるべきではないことも理解されよう。これらの用語は、ある要素を別の要素と区別するため使用されるだけである。例えば、本発明の範囲から逸脱することなく、第1の要素を第2の要素と呼ぶことができ、同様に、第2の要素を第1の要素と呼ぶことができる。
【0095】
さらに、「下部」又は「底部」及び「上部」又は「頂部」などの相対的な用語は、本明細書では、図に示されるように、ある要素と別の要素との関係を説明するために使用されることがある。相対的な用語は、図に描かれている向きに加えて、デバイスの異なる向きを包含することが意図されていることが理解されよう。例えば、図の1つにおけるデバイスがひっくり返された場合、他の要素の「下」側にあるとして説明された要素は、他の要素の「上」側に配向される。したがって、例示的な用語「下」は、図の特定の向きに応じて、「下」及び「上」の両方の向きを包含することができる。同様に、図の1つにおけるデバイスがひっくり返された場合、他の要素の「下方」又は「真下」として説明された要素は、他の要素の「上方」に配向される。したがって、例示的な用語「下方」又は「真下」は、上方及び下方の向きの両方を包含することができる。
【0096】
本明細書において本発明の説明で使用される術語は、特定の実施例を説明することのみを目的とし、本発明を限定することは意図されていない。本発明の説明及び添付の特許請求の範囲において使用される場合、単数形「1つの(a)」、「1つの(an)」、及び「その(the)」は、文脈が明らかにそうでないことを示さない限り、複数形も含むことが意図されている。本明細書で使用される「及び/又は」という用語は、関連付けられた列挙された項目の1つ又は複数の任意の及びすべての可能な組合せを指し、包含することも理解されよう。用語「備える(comprises)」及び/又は「備えている(comprising)」は、本明細書で使用される場合、述べられた特徴、整数、ステップ、動作、要素、及び/又は構成要素の存在を明記するが、1つ又は複数の他の特徴、整数、ステップ、動作、要素、構成要素、及び/又はそれらのグループの存在又は追加を排除しないことがさらに理解されるであろう。
【0097】
本発明の実施例は、本発明の理想化された実施例(及び中間構造)の概略図である断面図を参照して本明細書で説明されている。そのため、例えば、製造技術及び/又は公差の結果として、図の形状とは異なることが予想される。したがって、本発明の実施例は、本明細書に示される領域の特定の形状に限定されると解釈されるべきではなく、例えば、製造に起因する形状の逸脱を含むべきである。例えば、長方形として示される注入領域は、典型的には、注入領域から非注入領域への二値的変化ではなく、丸みを帯びた若しくは湾曲した特徴及び/又は注入領域のエッジにおける注入濃度の勾配を有する。同様に、注入によって形成された埋め込み領域は、埋め込み領域と注入が行われる表面との間の領域に何らかの注入をもたらす可能性がある。したがって、図に示される領域は、本質的に概略的であり、それらの形状は、デバイスの領域の実際の形状を示すことは意図されておらず、本発明の範囲を限定することは意図されていない。
【0098】
別途定義されない限り、技術用語及び科学用語を含む、本発明の実施例を開示する際に使用されるすべての用語は、本発明が属する技術分野の当業者によって一般的に理解されるものと同じ意味を有し、本発明が記載される時点で知られている特定の定義に必ずしも限定されない。したがって、これらの用語は、そのような時間の後に作成される等価な用語を含むことができる。一般的に使用される辞書で定義されるものなどの用語は、本明細書及び関連技術の文脈におけるそれらの意味と一致する意味を有すると解釈されるべきであり、本明細書で明示的に定義されない限り、理想化された意味又は過度に形式的な意味で解釈されないことがさらに理解されよう。本明細書で言及されるすべての刊行物、特許出願、特許、及び他の参考文献は、その全体が参考により組み込まれる。
【0099】
図面及び明細書において、本発明の典型的な実施例が開示されており、特定の用語が使用されているが、それらは、限定を目的としたものではなく、一般的且つ説明的な意味でのみ使用されている。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15