(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-16
(45)【発行日】2024-04-24
(54)【発明の名称】マルチ電子ビーム描画装置及びマルチ電子ビーム描画方法
(51)【国際特許分類】
H01L 21/027 20060101AFI20240417BHJP
H01J 37/09 20060101ALI20240417BHJP
H01J 37/305 20060101ALI20240417BHJP
H01J 37/073 20060101ALI20240417BHJP
【FI】
H01L21/30 541J
H01L21/30 541W
H01L21/30 541B
H01J37/09 A
H01J37/305 B
H01J37/073
(21)【出願番号】P 2020139823
(22)【出願日】2020-08-21
【審査請求日】2023-07-05
(73)【特許権者】
【識別番号】504162958
【氏名又は名称】株式会社ニューフレアテクノロジー
(74)【代理人】
【識別番号】100119035
【氏名又は名称】池上 徹真
(74)【代理人】
【識別番号】100141036
【氏名又は名称】須藤 章
(74)【代理人】
【識別番号】100178984
【氏名又は名称】高下 雅弘
(72)【発明者】
【氏名】岩崎 光太
(72)【発明者】
【氏名】山田 拓
【審査官】佐藤 海
(56)【参考文献】
【文献】特開2015-204404(JP,A)
【文献】特開2020-056677(JP,A)
【文献】特表2005-533365(JP,A)
【文献】特開2011-181416(JP,A)
【文献】特表2003-511855(JP,A)
【文献】米国特許出願公開第2019/0019648(US,A1)
【文献】米国特許出願公開第2004/0140432(US,A1)
【文献】米国特許出願公開第2004/0090194(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/027
H01J 37/09
H01J 37/305
H01J 37/073
(57)【特許請求の範囲】
【請求項1】
励起光を発生する励起光源と、
前記励起光を複数の光に分割するマルチレンズアレイと、
表面から前記複数の光を入射し、裏面からマルチ光電子ビームを放出する光電面と、
前記マルチ光電子ビームの各ビームを偏向することにより各ビームのビームON/OFFを個別に切り替える個別ブランキング制御を行うブランキングアパーチャアレイ機構と、
ビームONに制御されたマルチ光電子ビームで試料を照射する電子光学系と、
前記マルチ光電子ビームのショット毎に、前記励起光の発生/停止の切り替えタイミングと各ビームのビームON/OFFの切り替えタイミングとを連動させる制御回路と、
を備えたことを特徴とするマルチ電子ビーム描画装置。
【請求項2】
前記制御回路は、前記マルチ光電子ビームのショット毎に、前記励起光を停止の状態から発生の状態に切り替えた時点以降に、ビームONに制御する予定の各ビームをビームOFFの状態からビームONの状態に切り替え、すべてのビームがビームOFFの状態になった時点以降に前記励起光を発生の状態から停止の状態に切り替えるように制御することを特徴とする請求項1記載のマルチ電子ビーム描画装置。
【請求項3】
前記制御回路は、前記マルチ光電子ビームのショット毎に、前記励起光を停止の状態から所定の回数の前記励起光のパルスを発生させ、ビームONに制御する予定の各ビームをビームOFFの状態からビームONの状態に切り替え、ビームONに制御された各ビームをそれぞれ必要なドーズ量に対応するパルス数のパルス発生後にビームONの状態からビームOFFの状態に切り替えるように制御することを特徴とする請求項1記載のマルチ電子ビーム描画装置。
【請求項4】
前記制御回路は、前記マルチ光電子ビームのショット毎に、前記励起光を停止の状態から所定の回数の前記励起光のパルスを発生させ、前期パルスの幅はドーズ量制御の諧調に対応するよう変調された諧調パルスを構成し、各ビームをそれぞれ必要なドーズ量が前記諧調パルスの合算として制御される請求項3記載のマルチ電子ビーム描画装置。
【請求項5】
前記制御回路は、前記マルチ光電子ビームのショット毎に、前記励起光を停止の状態から発生の状態に切り替えて、所定の期間、前記励起光を発生し、前記励起光が発生している状態でビームONに制御する予定の各ビームをビームOFFの状態からビームONの状態に切り替え、前記励起光を発生の状態から停止の状態に切り替えるタイミングに同期して、ビームONに制御された各ビームをビームONの状態からビームOFFの状態に切り替えるように制御することを特徴とする請求項1又は2記載のマルチ電子ビーム描画装置。
【請求項6】
前記制御回路は、前記マルチ光電子ビームのショット毎に、前記励起光を停止の状態から発生の状態に切り替えるタイミングに同期して、ビームONに制御する予定の各ビームをビームOFFの状態からビームONの状態に切り替え、前記励起光を発生の状態から停止の状態に切り替えるまでに、ビームONに制御された各ビームをビームONの状態からビームOFFの状態に切り替えるように制御することを特徴とする請求項1又は2記載のマルチ電子ビーム描画装置。
【請求項7】
励起光源から励起光を発生する工程と、
マルチレンズアレイを用いて前記励起光を複数の光に分割する工程と、
光電面の表面から前記複数の光を入射し、裏面からマルチ光電子ビームを放出する工程と、
前記マルチ光電子ビームのショット毎に、前記励起光の発生/停止の切り替えタイミングと各ビームのビームON/OFFの切り替えタイミングとを連動させながら、ブランキングアパーチャアレイ機構を用いて、前記マルチ光電子ビームの各ビームを偏向することにより各ビームのビームON/OFFを個別に切り替える個別ブランキング制御を行う工程と、
ビームONに制御されたマルチ光電子ビームを用いて、試料にパターンを描画する工程と、
を備えたことを特徴とするマルチ電子ビーム描画方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の一態様は、マルチ電子ビーム描画装置及びマルチ電子ビーム描画方法に関する。
【背景技術】
【0002】
半導体デバイスの微細化の進展を担うリソグラフィ技術は半導体製造プロセスのなかでも唯一パターンを生成する極めて重要なプロセスである。近年、LSIの高集積化に伴い、半導体デバイスに要求される回路線幅は年々微細化されてきている。ここで、電子線(電子ビーム)描画技術は本質的に優れた解像性を有しており、マスクブランクスへ電子線を使ってマスクパターンを描画することが行われている。
【0003】
例えば、マルチビームを使った描画装置がある。1本の電子ビームで描画する場合に比べて、マルチビームを用いることで一度に多くのビームを照射できるのでスループットを大幅に向上させることができる。かかるマルチビーム方式の描画装置では、例えば、電子銃から放出された電子ビームを複数の穴を持った成形アパーチャアレイ基板に通してマルチビームを形成し、各々、ブランキング制御され、制限アパーチャによって遮蔽されなかった各ビームが光学系で縮小され、マスク像が縮小されて、偏向器で偏向され試料上の所望の位置へと照射される。
【0004】
マルチビーム描画では、各ビームから照射されるドーズ量を照射時間によって制御している。そして、各ビームの照射時間はブランキング機構によって制御される。しかしながら、ブランキング機構によりビームOFFに制御した場合でも 制限アパーチャで完全な遮蔽ができず、漏れビームが発生してしまう場合がある。漏れビームが発生すると試料上のレジストを感光させてしまうため、描画精度に影響を与えてしまうといった問題があった。そのため、漏れビームを抑制或いは低減することが望まれる。
【0005】
ここで、光電面の表面にレーザービームの照射を受けて、裏面に配置されたゲート絶縁体がマスクとなって制限された複数の露出面から電子を放出することでマルチ電子ビームを形成する手法が開示されている(例えば、特許文献1参照)。かかる手法では、ゲート絶縁体上のゲート電極と光電面との間の電界によって、放出された電子を露出面に戻すことでビームOFFに制御する。かかる手法でも、露出面に戻しきれず漏れビームが生じ得る点で同様の問題が生じ得る。
【先行技術文献】
【特許文献】
【0006】
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明の一態様は、マルチビーム描画において、漏れビームを低減し、描画精度の向上を可能とする装置及び方法を提供する。
【課題を解決するための手段】
【0008】
本発明の一態様のマルチ電子ビーム描画装置は、
励起光を発生する励起光源と、
励起光を複数の光に分割するマルチレンズアレイと、
表面から複数の光を入射し、裏面からマルチ光電子ビームを放出する光電面と、
マルチ光電子ビームの各ビームを偏向することにより各ビームのビームON/OFFを個別に切り替える個別ブランキング制御を行うブランキングアパーチャアレイ機構と、
ビームONに制御されたマルチ光電子ビームで試料を照射する電子光学系と、
マルチ光電子ビームのショット毎に、励起光の発生/停止の切り替えタイミングと各ビームのビームON/OFFの切り替えタイミングとを連動させる制御回路と、
を備えたことを特徴とする。
【0009】
また、制御回路は、マルチ光電子ビームのショット毎に、励起光を停止の状態から発生の状態に切り替えた時点以降に、ビームONに制御する予定の各ビームをビームOFFの状態からビームONの状態に切り替え、すべてのビームがビームOFFの状態になった時点以降に励起光を発生の状態から停止の状態に切り替えるようにブランキングアパーチャアレイ機構を制御すると好適である。
【0010】
或いは、制御回路は、マルチ光電子ビームのショット毎に、励起光を停止の状態から所定の回数の励起光のパルスを発生させ、励起光のパルスの発生開始前、励起光のパルスの発生と同時、若しくは励起光のパルスの発生開始後であってパルス間のパルスOFFのタイミングでビームONに制御する予定の各ビームをビームOFFの状態からビームONの状態に切り替え、ビームONに制御された各ビームをそれぞれ必要なドーズ量に対応するパルス数のパルス発生後にビームONの状態からビームOFFの状態に切り替えるようにブランキングアパーチャアレイ機構を制御すると好適である。
【0011】
また、制御回路は、マルチ光電子ビームのショット毎に、励起光を停止の状態から発生の状態に切り替えて、所定の期間、励起光を発生し、励起光が発生している状態でビームONに制御する予定の各ビームをビームOFFの状態からビームONの状態に切り替え、励起光を発生の状態から停止の状態に切り替えるタイミングに同期して、ビームONに制御された各ビームをビームONの状態からビームOFFの状態に切り替えるようにブランキングアパーチャアレイ機構を制御すると好適である。
【0012】
或いは、制御回路は、マルチ光電子ビームのショット毎に、励起光を停止の状態から発生の状態に切り替えるタイミングに同期して、ビームONに制御する予定の各ビームをビームOFFの状態からビームONの状態に切り替え、励起光を発生の状態から停止の状態に切り替えるまでに、ビームONに制御された各ビームをビームONの状態からビームOFFの状態に切り替えるようにブランキングアパーチャアレイ機構を制御すると好適である。
【0013】
本発明の一態様のマルチ電子ビーム描画方法は、
励起光源から励起光を発生する工程と、
マルチレンズアレイを用いて励起光を複数の光に分割する工程と、
光電面の表面から複数の光を入射し、裏面からマルチ光電子ビームを放出する工程と、
マルチ光電子ビームのショット毎に、励起光の発生/停止の切り替えタイミングと各ビームのビームON/OFFの切り替えタイミングとを連動させながら、ブランキングアパーチャアレイ機構を用いて、マルチ光電子ビームの各ビームを偏向することにより各ビームのビームON/OFFを個別に切り替える個別ブランキング制御を行う工程と、
ビームONに制御されたマルチ光電子ビームを用いて、試料にパターンを描画する工程と、
を備えたことを特徴とする。
【発明の効果】
【0014】
本発明の一態様によれば、マルチビーム描画において、漏れビームを低減できる。
【図面の簡単な説明】
【0015】
【
図1】実施の形態1における描画装置の構成を示す概念図である。
【
図2】実施の形態1における成形アパーチャアレイ基板の構成を示す概念図である。
【
図3】実施の形態1におけるブランキングアパーチャアレイ機構の構成を示す断面図である。
【
図4】実施の形態1における描画動作の一例を説明するための概念図である。
【
図5】実施の形態1におけるマルチビームの照射領域と描画対象画素との一例を示す図である。
【
図6】実施の形態1におけるマルチビームの描画方法の一例を説明するための図である。
【
図7】実施の形態1における励起光の発生/停止の切り替えタイミングとあるビームのビームON/OFFの切り替えタイミングとの一例を示すタイムチャート図である。
【
図8】実施の形態1の変形例1における励起光の発生/停止の切り替えタイミングとあるビームのビームON/OFFの切り替えタイミングとの一例を示すタイムチャート図である。
【
図9】実施の形態1の変形例1における励起光の発生/停止の切り替えタイミングとあるビームのビームON/OFFの切り替えタイミングとの他の一例を示すタイムチャート図である。
【
図10】実施の形態1の変形例2における励起光の発生/停止の切り替えタイミングとあるビームのビームON/OFFの切り替えタイミングとの他の一例を示すタイムチャート図である。
【
図11】実施の形態1の変形例3における励起光の発生/停止の切り替えタイミングとあるビームのビームON/OFFの切り替えタイミングとの他の一例を示すタイムチャート図である。
【発明を実施するための形態】
【0016】
実施の形態1.
図1は、実施の形態1における描画装置の構成を示す概念図である。
図1において、描画装置100は、描画機構150と制御回路160を備えている。描画装置100は、マルチ荷電粒子ビーム描画装置の一例である。描画機構150では、図示しない電子鏡筒(マルチ電子ビームカラム)内に、励起光源201、ビームエクスパンダー202、光電子放出機構210、マルチアノード電極220、成形アパーチャアレイ基板203、ブランキングアパーチャアレイ機構204、電磁レンズ205、制限アパーチャ基板206、電磁レンズ207(対物レンズ)、及び対物偏向器208がこの順で配置される。図示しない電子鏡筒下に配置される図示しない描画室内には、XYステージ105が配置される。XYステージ105上には、描画時には描画対象基板となるレジストが塗布されたマスクブランクス等の試料101が配置される。試料101には、半導体装置を製造する際の露光用マスク、或いは、半導体装置が製造される半導体基板(シリコンウェハ)等が含まれる。また、光電子放出機構210よりも下流側の電子鏡筒内及び描画室内は図示しない真空ポンプにより真空引きされ、大気圧よりも低い圧力に制御される。
【0017】
光電子放出機構210では、ガラス基板214上にマルチレンズアレイ212が配置され、ガラス基板214の裏面側に遮光マスクとなるマルチ遮光膜216及び光電面218(光電子放出体の一例)が配置される。ビームエクスパンダー202は、凹レンズと凸レンズの組み合わせにより構成される。
【0018】
制御回路160は、パルス駆動回路112とブランキングアパーチャアレイ(BAA)駆動回路113と全体制御回路161を有している。パルス駆動回路112とブランキングアパーチャアレイ(BAA)駆動回路113と全体制御回路161は、図示しないバスで互いに接続される。
【0019】
ここで、
図1では、実施の形態1を説明する上で必要な構成を記載している。描画装置100にとって、通常、必要なその他の構成を備えていても構わない。
【0020】
次に、描画機構150の動作について説明する。描画装置100全体を制御する全体制御回路161による制御のもと、パルス駆動回路112は、励起光源201を駆動する。励起光源201は、所定のビーム径の励起光200を発生する。励起光200は、パルス波を含む。励起光源201は、励起光200として、紫外光を発生する。例えば、波長が190~400nm程度の紫外光または可視光、例えば波長266nmのレーザー光を用いると好適である。
【0021】
励起光源201から発生された励起光200は、ビームエクスパンダー202により拡大され、例えば、平行光となってマルチレンズアレイ212を照明する。マルチレンズアレイ212は、励起光200を複数の光に分割する。マルチレンズアレイ212は、マルチ電子ビーム20の数以上の数の個別レンズがアレイ配置されたレンズアレイにより構成される。例えば、512×512のレンズにより構成される。マルチレンズアレイ212は、分割された複数の光をそれぞれ集光し、各光の焦点位置を光電面218の表面の高さ位置に合わせる。マルチレンズアレイ212により集光することで、各光の実効輝度を高めることができる。
【0022】
マルチ遮光膜216には、分割され、集光された複数の光(マルチ光)の各光の照射スポットの領域が露出されるように複数の開口部が形成される。これにより、マルチレンズアレイ212により集光されずにガラス基板214を通過した光、或いは/及び散乱光を開口部以外の部分で遮光できる。マルチ遮光膜216として、例えば、クロム(Cr)膜を用いると好適である。
【0023】
マルチ遮光膜216を通過した各光は光電面218の表面に入射する。光電面218は、表面から複数の光を入射し、裏面からマルチ光電子ビーム20を放出する。x,y方向に、例えば、512×512本のアレイ配列された光電子ビームが放出される。具体的には、光電面218は、表面から複数の光を入射し、入射位置に対応する裏面の各位置からそれぞれ光電子を放出する。光電面218は、例えば、白金(Pt)、ルテニウム(Ru)等の白金系材料を主材料とする膜により構成されると好適である。さらに、炭素(C)系材料を主材料とする膜も好適である。また、NEA等の半導体であっても良く、アルカリ金属であっても良い。光電面218の材料の仕事関数より大きなエネルギーの光子で光電面218表面が照射されると、光電面218は、裏面から光電子を放射する。検査装置100で使用する十分な電流密度のマルチ光電子ビーム20を得るために、光電面218表面に、例えば、0.1~1000W/cm2程度(103~107W/m2程度)の光が入射されると好適である。
【0024】
光電面218から放出されたマルチ光電子ビーム20は、相対的に正の電位が印可され、マルチレンズアレイ212の照射スポットと同じピッチで配置された開口部を有するマルチアノード電極220により引き出されることで加速し、成形アパーチャアレイ基板203に向かって進む。
【0025】
図2は、実施の形態1における成形アパーチャアレイ基板の構成を示す概念図である。
図2において、成形アパーチャアレイ基板203には、x,y方向に、p列×q列(p,q≧2)の穴(開口部)22が所定の配列ピッチでマトリクス状に形成されている。
図2では、例えば、x,y方向に512×512列の穴22が形成される。複数の穴22は、光電面218から放出されたマルチ光電子ビーム20の軌道上に合わせて形成される。光電面218から放出される各光電子ビームは、均一な形状及びサイズで放出されるわけではない。例えば、発散する方向に広がってしまう。そこで、成形アパーチャアレイ基板203により各光電子ビームの形状及びサイズを成形する。
図2において、各穴22は、共に同じ形状の矩形で形成される。或いは、同じ直径の円形であっても構わない。成形アパーチャアレイ基板203は、描画に使用するマルチ光電子ビーム20を形成する。具体的には、これらの複数の穴22を放出されたマルチ光電子ビームの一部がそれぞれ通過することで、マルチ光電子ビーム20を所望の形状及びサイズに成形する。一方、光電面218から放出される各光電子ビームの発散が小さい場合には、成形アパーチャアレイ基板203を省略することも可能である。
【0026】
図3は、実施の形態1におけるブランキングアパーチャアレイ機構の構成を示す断面図である。ブランキングアパーチャアレイ機構204は、
図3に示すように、支持台33上にシリコン等からなる半導体基板31が配置される。基板31の中央部は、例えば裏面側から薄く削られ、薄い膜厚hのメンブレン領域330(第1の領域)に加工されている。メンブレン領域330を取り囲む周囲は、厚い膜厚Hの外周領域332(第2の領域)となる。メンブレン領域330の上面と外周領域332の上面とは、同じ高さ位置、或いは、実質的に高さ位置になるように形成される。基板31は、外周領域332の裏面で支持台33上に保持される。支持台33の中央部は開口しており、メンブレン領域330の位置は、支持台33の開口した領域に位置している。
【0027】
メンブレン領域330には、
図2に示した成形アパーチャアレイ基板203の各穴22に対応する位置にマルチ光電子ビーム20のそれぞれのビームの通過用の通過孔25(開口部)が開口される。言い換えれば、基板31のメンブレン領域330には、電子線を用いたマルチ光電子ビーム20のそれぞれ対応するビームが通過する複数の通過孔25がアレイ状に形成される。そして、基板31のメンブレン領域330上であって、複数の通過孔25のうち対応する通過孔25を挟んで対向する位置に2つの電極を有する複数の電極対がそれぞれ配置される。具体的には、メンブレン領域330上に、
図3に示すように、各通過孔25の近傍位置に該当する通過孔25を挟んでブランキング偏向用の制御電極24と対向電極26の組(ブランカー:ブランキング偏向器)がそれぞれ配置される。また、基板31内部であってメンブレン領域330上の各通過孔25の近傍には、各通過孔25用の制御電極24に偏向電圧を印加するロジック回路41が配置される。各ビーム用の対向電極26は、グランド接続される。
【0028】
また、各ロジック回路41は、制御信号用のnビット(例えば10ビット)のパラレル配線が接続される。各ロジック回路41は、制御信号用のnビットのパラレル配線の他、クロック信号線、読み込み(read)信号、ショット(shot)信号および電源用の配線等が接続される。マルチビームを構成するそれぞれのビーム毎に、制御電極24と対向電極26とロジック回路41とによる個別ブランキング制御機構が構成される。また、メンブレン領域330にアレイ状に形成された複数のロジック回路41は、例えば、同じ行或いは同じ列によってグループ化され、グループ内のロジック回路41群は、直列に接続される。そして、グループ毎に配置されたパッド43からの信号がグループ内のロジック回路41に伝達される。具体的には、各ロジック回路41内に、図示しないシフトレジスタが配置され、例えば、p×q本のマルチビームのうち例えば同じ行のビームのロジック回路41内のシフトレジスタが直列に接続される。そして、例えば、p×q本のマルチビームの同じ行のビームの制御信号がシリーズで送信され、例えば、p回のクロック信号によって各ビームの制御信号が対応するロジック回路41に格納される。
【0029】
ロジック回路41内には、図示しないアンプ(スイッチング回路の一例)が配置される。アンプには正の電位(Vdd:ブランキング電位:第1の電位)(例えば、5V)(第1の電位)とグランド電位(GND:第2の電位)に接続される。アンプの出力線(OUT)は制御電極24に接続される。一方、対向電極26は、グランド電位が印加される。そして、ブランキング電位とグランド電位とが切り替え可能に印加される複数の制御電極24が、基板31上であって、複数の通過孔25のそれぞれ対応する通過孔25を挟んで複数の対向電極26のそれぞれ対応する対向電極26と対向する位置に配置される。
【0030】
アンプの入力(IN)にL電位が印加される状態では、アンプの出力(OUT)は正電位(Vdd)となり、対向電極26のグランド電位との電位差による電界により対応ビームを偏向し、制限アパーチャ基板206で遮蔽することでビームOFFになるように制御する。一方、アンプの入力(IN)にH電位が印加される状態(アクティブ状態)では、アンプの出力(OUT)はグランド電位となり、対向電極26のグランド電位との電位差が無くなり対応ビームを偏向しないので制限アパーチャ基板206を通過することでビームONになるように制御する。
【0031】
ブランキングアパーチャアレイ機構204は、マルチ光電子ビーム20の各ビームを偏向することにより各ビームのビームON/OFFを個別に切り替える個別ブランキング制御を行う。個別ブランキング制御では、各通過孔を通過する電子ビーム20は、それぞれ独立に対となる2つの制御電極24と対向電極26に印加される電圧によって偏向され、かかる偏向によってブランキング制御される。具体的には、制御電極24と対向電極26の組は、それぞれ対応するスイッチング回路となるアンプによって切り替えられる電位によってマルチ光電子ビーム20の対応ビームをそれぞれ個別にブランキング偏向する。このように、複数のブランカーが、成形アパーチャアレイ基板203の複数の穴22(開口部)を通過したマルチ光電子ビーム20のうち、それぞれ対応するビームのブランキング偏向を行う。
【0032】
ブランキングアパーチャアレイ機構204を通過したマルチ光電子ビーム20は、電磁レンズ205によって、縮小され、クロスオーバー位置付近に配置される制限アパーチャ基板206に形成された中心の穴に向かって進む。ここで、マルチ光電子ビーム20のうち、ブランキングアパーチャアレイ機構204のブランカーによって偏向された電子ビームは、制限アパーチャ基板206の中心の穴から位置がはずれ、制限アパーチャ基板206によって遮蔽される(ビームはOFF)。一方、ブランキングアパーチャアレイ機構204のブランカーによって偏向されなかった電子ビームは、
図1に示すように制限アパーチャ基板206の中心の穴を通過する(ビームはON)。かかる個別ブランキング制御機構のON/OFFによって、ブランキング制御が行われ、各ビームのON/OFFが制御される。このように、制限アパーチャ基板206は、そして、ビーム毎に、ビームONになってからビームOFFになるまでに形成された、制限アパーチャ基板206を通過したビームにより、1回分のショットのビームが形成される。試料101は、電子光学系によって、ビームONに制御されたマルチ光電子ビーム20で照射される。具体的には、制限アパーチャ基板206を通過したマルチ光電子ビーム20は、電磁レンズ207(対物レンズ)により焦点が合わされ、所望の縮小率のパターン像となり、対物偏向器208によって、ビームONに制御されたマルチ光電子ビーム20全体が同方向に一括して偏向され、各ビームの試料101上のそれぞれの照射位置に照射される。一度に照射されるマルチ光電子ビーム20は、理想的には成形アパーチャアレイ基板203の複数の穴22の配列ピッチに上述した所望の縮小率を乗じたピッチで並ぶことになる。
【0033】
図4は、実施の形態1における描画動作の一例を説明するための概念図である。
図4に示すように、試料101の描画領域30は、例えば、y方向に向かって所定の幅で短冊状の複数のストライプ領域32に仮想分割される。まず、XYステージ105を移動させて、第1番目のストライプ領域32の左端、或いはさらに左側の位置に一回のマルチ光電子ビーム20のショットで照射可能な照射領域34が位置するように調整し、描画が開始される。第1番目のストライプ領域32を描画する際には、XYステージ105を例えば-x方向に移動させることにより、相対的にx方向へと描画を進めていく。XYステージ105は例えば等速で連続移動させる。第1番目のストライプ領域32の描画終了後、ステージ位置を-y方向に移動させて、第2番目のストライプ領域32の右端、或いはさらに右側の位置に照射領域34が相対的にy方向に位置するように調整し、今度は、XYステージ105を例えばx方向に移動させることにより、-x方向に向かって同様に描画を行う。第3番目のストライプ領域32では、x方向に向かって描画し、第4番目のストライプ領域32では、-x方向に向かって描画するといったように、交互に向きを変えながら描画することで描画時間を短縮できる。但し、かかる交互に向きを変えながら描画する場合に限らず、各ストライプ領域32を描画する際、同じ方向に向かって描画を進めるようにしても構わない。1回のショットでは、成形アパーチャアレイ基板203の各穴22を通過することによって形成されたマルチビームによって、最大で成形アパーチャアレイ基板203に形成された複数の穴22と同数の複数のショットパターンが一度に形成される。また、描画する場合には多重描画しても好適である。多重描画を行う場合には、位置をずらさずに同じストライプ領域32を多重描画する場合の他、位置をずらしながら各パスのストライプ領域32を設定して多重描画する場合がある。
【0034】
図5は、実施の形態1におけるマルチビームの照射領域と描画対象画素との一例を示す図である。
図5において、ストライプ領域32には、例えば、試料101面上におけるマルチ光電子ビーム20のビームサイズピッチで格子状に配列される複数の制御グリッド27(設計グリッド)が設定される。例えば、10nm程度の配列ピッチにすると好適である。かかる複数の制御グリッド27が、マルチ光電子ビーム20の設計上の照射位置となる。制御グリッド27の配列ピッチはビームサイズに限定されるものではなく、ビームサイズとは関係なく対物偏向器208の偏向位置として制御可能な任意の大きさで構成されるものでも構わない。そして、各制御グリッド27を中心とした、制御グリッド27の配列ピッチと同サイズでメッシュ状に仮想分割された複数の画素36が設定される。各画素36は、マルチ光電子ビーム20の1つのビームあたりの照射単位領域となる。
図5の例では、試料101の描画領域が、例えばy方向に、1回のマルチ光電子ビーム20の照射で照射可能な照射領域34(描画フィールド)のサイズと実質同じ幅サイズで複数のストライプ領域32に分割された場合を示している。照射領域34のx方向サイズは、マルチ光電子ビーム20のx方向(第1の方向)のビーム間ピッチにx方向のビーム数を乗じた値で定義できる。照射領域34のy方向サイズは、マルチ光電子ビーム20のy方向(第2の方向)のビーム間ピッチにy方向のビーム数を乗じた値で定義できる。なお、ストライプ領域32の幅は、これに限るものではない。照射領域34のn倍(nは1以上の整数)のサイズであると好適である。
図5の例では、例えば512×512列のマルチ光電子ビーム20の図示を8×8列のマルチ光電子ビームに省略して示している。そして、照射領域34内に、1回のマルチ光電子ビーム20のショットで照射可能な複数の画素28(ビームの描画位置)が示されている。言い換えれば、隣り合う画素28間のピッチが設計上のマルチビームの各ビーム間のピッチとなる。
図5の例では、ビーム間ピッチで囲まれる領域で1つのサブ照射領域29を構成する。
図5の例では、各サブ照射領域29は、4×4画素で構成される場合を示している。
【0035】
図6は、実施の形態1におけるマルチビームの描画方法の一例を説明するための図である。
図6では、各ビームで描画するサブ照射領域29の一部を示している。
図6の例では、例えば、XYステージ105が8ビームピッチ分の距離を移動する間に4つの画素を描画(露光)する場合を示している。各ショットにおいて、各画素は、0から最大照射時間Ttrまでの間で制御された所望の照射時間のビーム照射を受ける。t=0からt=4Ttrまでの時間でかかる4つの画素を描画(露光)する。かかる4つの画素を描画(露光)する間、照射領域34がXYステージ105の移動によって試料101との相対位置がずれないように、対物偏向器208によってマルチ光電子ビーム20全体を一括偏向することによって、照射領域34をXYステージ105の移動に追従させる。言い換えれば、トラッキング制御が行われる。
図6の例では、XYステージ105上の試料101が8ビームピッチ分の距離を連続移動する間に4つの画素を描画(露光)することで1回のトラッキングサイクルを実施する場合を示している。4つの画素へビームを照射した後、トラッキング制御用のビーム偏向をリセットすることによって、トラッキング位置をトラッキング制御が開始されたトラッキング開始位置に戻す。
図6の例では、時刻t=4Ttrになった時点で、注目サブ照射領域29のトランキングを解除して、x方向に8ビームピッチ分ずれた注目サブ照射領域29にビームを振り戻す。なお、
図6の例では、座標(1,3)のビーム(1)について説明したが、その他の座標のビームについてもそれぞれの対応するサブ照射領域29に対して同様に描画が行われる。
【0036】
なお、各サブ照射領域29の右から1番目の画素列の描画は終了しているので、トラッキングリセットした後に、次回のトラッキングサイクルにおいてまず偏向器209は、各サブ照射領域29の右から2番目の画素の最下段の制御グリッド27にそれぞれ対応するビームの描画位置を合わせる(シフトする)ように偏向する。かかる動作を繰り返すことで、各サブ照射領域29の全画素へのビーム照射が終了する。ストライプ領域32の描画中、かかる動作を繰り返すことで、
図4に示す照射領域34a~34oといった具合に順次照射領域34の位置が移動していき、当該ストライプ領域の描画を行っていく。
図6の例では、サブ照射領域29が4×4画素の領域で構成される場合を示したがこれに限るものではない。サブ照射領域29がn×n画素の領域で構成される場合、1回のトラッキング動作で、照射位置をシフトしながらn制御グリッド(n画素)が描画される。n回のトラッキング動作でそれぞれ異なるビームによってn画素ずつ描画されることにより、1つのn×n画素の領域内のすべての画素が描画される。
【0037】
ここで、マルチビーム描画では、各ビームから照射されるドーズ量を照射時間によって制御している。そして、各ビームの照射時間はブランキングアパーチャアレイ機構204によって制御される。しかしながら、ブランキングアパーチャアレイ機構204によりビームOFFに制御した場合でも制限アパーチャ206で完全な遮蔽ができず、漏れビームが発生してしまう場合がある。漏れビームが発生すると試料101上のレジストを感光させてしまうため、描画精度に影響を与えてしまうといった問題があった。そのため、漏れビームを抑制或いは低減することが望まれる。また、従来、電子ビーム源として使用していた例えば熱カソード型電子銃では、熱電子からなるビームの放出を描画処理中にON/OFFすることは困難である。そのため、ブランキングアパーチャアレイ機構204によりビームOFFに制御した場合でも電子銃から電子ビームが放出されている限り、漏れビームが発生し続けてしまう。そこで、実施の形態1では、電子銃の代わりに、ON/OFFの高速応答が可能な励起光源201と、励起光の入射によって光電子を放出する光電面218とを使用する。
【0038】
そして、制御回路160は、マルチ光電子ビーム20のショット毎に、励起光の発生/停止の切り替えタイミングと各ビームのビームON/OFFの切り替えタイミングとを連動させる。具体的には、
図1に示すように、励起光源201を駆動するパルス駆動回路112と、ブランキングアパーチャアレイ機構204を制御するBAA駆動回路113との間を連動させる。制御回路160を構成する、パルス駆動回路112とBAA駆動回路113と全体制御回路160とのうちの少なくとも1つの制御回路がパルス駆動回路112とBAA駆動回路113とを連動させるように制御する。例えば、全体制御回路161がパルス駆動回路112とBAA駆動回路113とを連動するように制御する。或いは、パルス駆動回路112が、自身とBAA駆動回路113とを連動するように制御してもよい。或いは、BAA駆動回路113が、自身とパルス駆動回路112とを連動するように制御してもよい。パルス駆動回路112とBAA駆動回路113と全体制御回路161のいずれかに同期用のクロック信号を発生する発振器を含む同期回路を搭載すればよい。具体的な制御内容を以下に説明する。
【0039】
図7は、実施の形態1における励起光の発生/停止の切り替えタイミングとあるビームのビームON/OFFの切り替えタイミングとの一例を示すタイムチャート図である。
図7では、励起光の発生/停止を示すON/OFFのタイミングチャートと、ブランキングアパーチャアレイ機構204のあるビームの個別ブランキング制御を行う際のON/OFF駆動のタイミングチャートと、個別ブランキング制御に伴うビームのON/OFFのタイミングチャートと、を示している。
図7の例では、マルチ光電子ビーム20のk番目のショットと、マルチ光電子ビーム20のk+1番目のショットと、を示している。
【0040】
図7において、制御回路160は、マルチ光電子ビーム20のショット毎に、励起光200を停止(OFF)の状態から発生(ON)の状態に切り替えた時点以降に、ビームONに制御する予定の各ビームをビームOFFの状態からビームONの状態に切り替えるように制御する。そして、制御回路160は、すべてのビームがビームOFFの状態になった時点以降に励起光200を発生の状態から停止の状態に切り替えるように制御する。マルチ光電子ビーム20のショットサイクルでは、上述したように、予め設定された最大照射時間Ttr以内の任意の照射時間がビーム毎に設定される。
【0041】
そこで、励起光源201は、ショットサイクル開始タイミングで励起光200の発生を開始する。一方、ブランキングアパーチャアレイ機構204内の各ビームの個別ブランキング制御機構は、ショットサイクル開始タイミング以降に、ビームONに制御する予定の各ビームをビームOFFの状態からビームONの状態に切り替える。各ビームの個別ブランキング制御機構は、個別に設定された照射時間が経過した後に、ビームONの状態からビームOFFの状態に切り替える。よって、各ビームは、個別ブランキング制御機構の動作に合わせて、ビームOFFの状態からビームONの状態に切り替わり、個別に設定された照射時間が経過した後に、ビームONの状態からビームOFFの状態に切り替わる。そして、励起光源201は、ショットサイクル開始タイミングから最大照射時間Ttr以上の所定の時間が経過した後に、励起光200の発生を停止する。かかる動作により、マルチ光電子ビーム20のうち、いずれかのビームに漏れビームが生じる場合でも、励起光200を停止している間については、 そもそも光電子の発生が生じないので、漏れビームを生じさせないようにできる。例えば、励起光200のON/OFFが1:1であれば、常時ONの場合に比べて漏れビームを50%以下にできる。
【0042】
図8は、実施の形態1の変形例1における励起光の発生/停止の切り替えタイミングとあるビームのビームON/OFFの切り替えタイミングとの一例を示すタイムチャート図である。
図8では、
図7と同様、励起光の発生/停止を示すON/OFFのタイミングチャートと、ブランキングアパーチャアレイ機構204のあるビームの個別ブランキング制御を行う際のON/OFF駆動のタイミングチャートと、個別ブランキング制御に伴うビームのON/OFFのタイミングチャートと、を示している。
図8の例では、マルチ光電子ビーム20のk番目のショットと、マルチ光電子ビーム20のk+1番目のショットと、を示している。
【0043】
図8において、制御回路160は、マルチ光電子ビーム20のショット毎に、励起光200を停止の状態から所定の回数の励起光200のパルスを発生させ、励起光200のパルスの発生開始前、励起光200のパルスの発生と同時、若しくは励起光200のパルスの発生開始後であってパルス間のパルスOFFのタイミングでビームONに制御する予定の各ビームをビームOFFの状態からビームONの状態に切り替えるように制御する。そして、制御回路160は、ビームONに制御された各ビームをそれぞれ必要なドーズ量に対応するパルス数のパルス発生後にビームONの状態からビームOFFの状態に切り替えるように制御する。励起光200のパルスは、例えば、所定のタイミング及び所定のピッチで発生させる。パルスの時間幅及びピッチは、個別ビームが照射時間を制御可能に設定される。最大照射時間Ttrが例えば1023階調で定義される場合、1パルスの発生時間は、例えば、1階調分の時間で定義される。かかる場合、 ブランキングアパーチャアレイ機構204内の各ビームの個別ブランキング制御機構は、ショットサイクル開始タイミングで、ビームONに制御する予定の各ビームをビームOFFの状態からビームONの状態に切り替える。一方、励起光源201は、ショットサイクル開始タイミング以降に、励起光200の発生を開始する。各ビームの個別ブランキング制御機構は、個別に設定された照射時間に相当するパルス数のパルス発生後にビームONの状態からビームOFFの状態に切り替える。励起光源201は、最大照射時間Ttr以上の照射時間に相当するパルス数のパルス発生後に停止する。
【0044】
但し、これに限るものではなく、励起光200のパルス幅及びピッチは可変に設定しても構わない。
【0045】
図9は、実施の形態1の変形例1における励起光の発生/停止の切り替えタイミングとあるビームのビームON/OFFの切り替えタイミングとの他の一例を示すタイムチャート図である。
図9の例おいて、最大照射時間Ttrが例えば8階調で定義される場合、例えば、1階調分の時間で1パルス、及び7階調分がそれぞれの時間幅で1倍、2倍、4倍のパルスを発生させる。尚、0諧調分は励起光が停止している適当なタイミングでも良いし、時間幅が0倍のパルスとして制御しても良い。かかる場合、ブランキングアパーチャアレイ機構204内の各ビームの個別ブランキング制御機構は、励起光200のパルスが発生している期間中に、励起光200のパルスの発生開始後であってパルス間のパルスOFFのタイミングでビームOFFの状態からビームONの状態に切り替えるように制御する。そして、各ビームの個別ブランキング制御機構は、それぞれ必要なドーズ量に対応するパルス数のパルスだけを取り込んだタイミングで、ビームONの状態からビームOFFの状態に切り替えるように制御する。
図9の例では、各ショットでパルスを組み合わせ、3および7階調分の照射時間のビームについて、ON/OFFの切り替えタイミングを示している。
【0046】
図10は、実施の形態1の変形例2における励起光の発生/停止の切り替えタイミングとあるビームのビームON/OFFの切り替えタイミングとの他の一例を示すタイムチャート図である。
図10の例では、
図7に示した制御内容のうち、ビームOFFへの切り替えタイミングを励起光200の停止タイミングに合わせる場合を示している。
【0047】
図10において、制御回路160は、マルチ光電子ビーム20のショット毎に、励起光200を停止の状態から発生の状態に切り替えて、所定の期間、励起光200を発生し、励起光200が発生している状態でビームONに制御する予定の各ビームをビームOFFの状態からビームONの状態に切り替えるように制御する。そして、制御回路160は、ビームONに制御された各ビームをビームONの状態からビームOFFの状態に切り替えるタイミングに同期して、励起光200を発生の状態から停止の状態に切り替えるように制御する。具体的には、ブランキングアパーチャアレイ機構204内の各ビームの個別ブランキング制御機構は、励起光200の停止タイミングから個別に設定された照射時間の開始タイミングを逆算して、得られた開始タイミングでビームONに制御する予定の各ビームをビームOFFの状態からビームONの状態に切り替える。一方、励起光源201は、各ビームの中で最初の開始タイミングと同時または、その前に設定されたショットサイクル開始タイミングで励起光200の発生を開始する。そして、励起光源201は、ショットサイクル開始タイミングから所定の時間が経過した後に、励起光200の発生を停止する。各ビームの個別ブランキング制御機構は、励起光200の停止タイミングに合わせて、ビームONの状態からビームOFFの状態に切り替える。よって、各ビームは、個別ブランキング制御機構の動作に合わせて、励起光200の停止タイミングでビームOFFになる。ブランキング偏向によりビームOFFにする場合、ビームの立ち下がりに時間がかかる場合がある。励起光源201では、レーザー発振器により励起光200のON/OFFの切り替え応答性が個別ブランキング制御機構よりも高い。そのため、励起光200の停止タイミングとビームOFFのタイミングとを同期させることで、かかるビームの立ち下がり期間中の漏れビームをカットできる。
【0048】
図11は、実施の形態1の変形例3における励起光の発生/停止の切り替えタイミングとあるビームのビームON/OFFの切り替えタイミングとの他の一例を示すタイムチャート図である。
図11の例では、
図7に示した制御内容のうち、ビームONへの切り替えタイミング(照射開始タイミング)を励起光200の発生タイミングに合わせる場合を示している。
【0049】
図11において、制御回路160は、マルチ光電子ビーム20のショット毎に、励起光200を停止の状態から発生の状態に切り替えるタイミングに同期して、ビームONに制御する予定の各ビームをビームOFFの状態からビームONの状態に切り替えるように制御する。そして、制御回路160は、励起光200を発生の状態から停止の状態に切り替えるまでに、ビームONに制御された各ビームをビームONの状態からビームOFFの状態に切り替えるように制御する。具体的には、ブランキングアパーチャアレイ機構204内の各ビームの個別ブランキング制御機構は、ショットサイクル開始タイミングでビームONに制御する予定の各ビームをビームOFFの状態からビームONの状態に切り替える。ブランキング偏向によりビームONにする場合、ビームの立ち上がりに時間がかかる場合がある。励起光源201では、レーザー発振器により励起光200のON/OFFの切り替え応答性が個別ブランキング制御機構よりも高い。そのため、励起光源201は、ショットサイクル開始タイミングからビームの立ち上がり時間経過時点のタイミングに合わせて励起光200の発生を開始する。よって、各ビームは、励起光200の発生開始タイミングでビームONの状態になる。そして、各ビームの個別ブランキング制御機構は、個別に設定された照射時間が経過した後に、ビームONの状態からビームOFFの状態に切り替える。励起光源201は、ショットサイクル開始タイミングから最大照射時間Ttr以上の所定の時間が経過した後に、励起光200の発生を停止する。励起光200の発生開始タイミングとビームONのタイミングとを同期させることで、かかるビームの立ち上がり期間中の漏れビームをカットできる。また、立ち上がり期間中のドーズをカットできるので、ドーズ量の精度を上げることができる。
【0050】
以上のように、実施の形態1では、マルチ光電子ビーム20のショット毎に、励起光200の発生/停止の切り替えタイミングと各ビームのビームON/OFFの切り替えタイミングとを連動させながら、ブランキングアパーチャアレイ機構204を用いて、マルチ光電子ビーム20の各ビームを偏向することにより各ビームのビームON/OFFを個別に切り替える個別ブランキング制御を行う。
【0051】
そして、描画機構150は、ビームONに制御されたマルチ光電子ビームを用いて、試料101にパターンを描画する。
【0052】
以上のように、実施の形態1によれば、マルチビーム描画において、漏れビームを低減できる。
【0053】
以上、具体例を参照しつつ実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。
【0054】
また、上述した例では、各ロジック回路41の制御用に10ビットの制御信号が入力される場合を示したが、ビット数は、適宜設定すればよい。例えば、2ビット、或いは3ビット~9ビットの制御信号を用いてもよい。なお、11ビット以上の制御信号を用いてもよい。
【0055】
また、装置構成や制御手法等、本発明の説明に直接必要しない部分等については記載を省略したが、必要とされる装置構成や制御手法を適宜選択して用いることができる。例えば、描画装置100を制御する制御部構成については、記載を省略したが、必要とされる制御部構成を適宜選択して用いることは言うまでもない。
【0056】
その他、本発明の要素を具備し、当業者が適宜設計変更しうる全てのマルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法は、本発明の範囲に包含される。
【符号の説明】
【0057】
20 マルチ光電子ビーム
22 穴
24 制御電極
25 通過孔
26 対向電極
27 制御グリッド
28 画素
29 サブ照射領域
30 描画領域
32 ストライプ領域
31 基板
33 支持台
34 照射領域
36 画素
41 制御回路
100 描画装置
101 試料
112 パルス駆動回路
113 BAA駆動回路
150 描画機構
160 制御回路
161 全体制御回路
200 励起光
201 励起光源
202 ビームエクスパンダー
220 マルチアノード電極
203 成形アパーチャアレイ基板
204 ブランキングアパーチャアレイ機構
205 電磁レンズ
206 制限アパーチャ基板
207 電磁レンズ
208 対物偏向器
210 光電子放出機構
212 マルチレンズアレイ
214 ガラス基板
216 マルチ遮光膜
218 光電面
330 メンブレン領域
332 外周領域