(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-19
(45)【発行日】2024-04-30
(54)【発明の名称】収束糸、水硬性組成物及び成形体
(51)【国際特許分類】
D06M 15/333 20060101AFI20240422BHJP
D06M 15/263 20060101ALI20240422BHJP
D01F 6/34 20060101ALI20240422BHJP
C04B 28/04 20060101ALI20240422BHJP
C04B 16/06 20060101ALI20240422BHJP
C08K 3/00 20180101ALI20240422BHJP
C08L 29/04 20060101ALI20240422BHJP
D06M 101/24 20060101ALN20240422BHJP
【FI】
D06M15/333
D06M15/263
D01F6/34 Z
C04B28/04
C04B16/06 B
C08K3/00
C08L29/04 Z
D06M101:24
(21)【出願番号】P 2020563021
(86)(22)【出願日】2019-12-06
(86)【国際出願番号】 JP2019047952
(87)【国際公開番号】W WO2020137466
(87)【国際公開日】2020-07-02
【審査請求日】2022-11-29
(31)【優先権主張番号】P 2018244838
(32)【優先日】2018-12-27
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000001085
【氏名又は名称】株式会社クラレ
(74)【代理人】
【識別番号】100106518
【氏名又は名称】松谷 道子
(74)【代理人】
【識別番号】100104592
【氏名又は名称】森住 憲一
(74)【代理人】
【識別番号】100172605
【氏名又は名称】岩木 郁子
(72)【発明者】
【氏名】今川 彰
(72)【発明者】
【氏名】堀越 敬史
(72)【発明者】
【氏名】末森 寿志
(72)【発明者】
【氏名】岩崎 嘉宏
【審査官】中西 聡
(56)【参考文献】
【文献】特開昭56-125269(JP,A)
【文献】特開平08-127971(JP,A)
【文献】特開2001-354454(JP,A)
【文献】特開2012-021255(JP,A)
【文献】特開平04-074736(JP,A)
【文献】特開平10-183473(JP,A)
【文献】特開平09-227172(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
D06M、D01F、C04B、C08K、C08L
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
複数本の繊維が収束剤によって一体化された収束糸であって、
前記収束剤が、不飽和カルボン酸又はその誘導体に由来する構造単位(X)を、全単量体単位の量を100モル%としたときに0.1~10モル%有し、
ビニルエステル系モノマーに由来する構造単位をさらに有する、けん化度が85モル%以上の、変性ポリビニルアルコールであ
り、
該変性ポリビニルアルコールは、構造単位(X)として、前記構造単位(X)の少なくとも一部が、隣接するビニルエステル系モノマーに由来する構造単位に含まれる水酸基と閉環した構造単位、及び/又は、式(X2):
【化1】
〔式(X2)中、Xは水素原子又はメチル基であり、Yは、水素原子、アルカリ金属原子、又は炭素数1~5のアルキル基である〕
で表される構造単位を含む、収束糸。
【請求項2】
前記変性ポリビニルアルコールが有する全単量体単位の量を100モル%としたとき、前記構造単位(X)の量は、2~10モル%である、請求項1に記載の収束糸。
【請求項3】
変性ポリビニルアルコールの粘度平均重合度は100~5,000である、請求項1
又は2に記載の収束糸。
【請求項4】
変性ポリビニルアルコールのけん化度は88~100モル%である、請求項1
~3のいずれかに記載の収束糸。
【請求項5】
不飽和カルボン酸又はその誘導体は、(メタ)アクリル酸、(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸の金属塩からなる群から選択される少なくとも1種である、請求項1~
4のいずれかに記載の収束糸。
【請求項6】
変性ポリビニルアルコールは、構造単位(X)として、式(X1):
【化1】
〔式(X1)中、Xは水素原子又はメチル基である〕
で表される構造単位、及び/又は、式(X2):
【化2】
〔式(X2)中、Xは水素原子又はメチル基であり、Yは、水素原子、アルカリ金属原子、又は炭素数1~5のアルキル基である〕
で表される構造単位を含む、請求項1~
5のいずれかに記載の収束糸。
【請求項7】
変性ポリビニルアルコールにおける、式(X1)で表される構造単位及び式(X2)で表される構造単位の合計モル量に対する、式(X1)で表される構造単位のモル量の割合(X1/(X1+X2))は、0.65~1.0である、請求項
6に記載の収束糸。
【請求項8】
前記繊維はポリビニルアルコール系繊維である、請求項1~
7のいずれかに記載の収束糸。
【請求項9】
前記繊維の平均繊維径は3~900μmである、請求項1~
8のいずれかに記載の収束糸。
【請求項10】
前記繊維のアスペクト比は50~2,500である、請求項1~
9のいずれかに記載の収束糸。
【請求項11】
繊維凝集度が10%以下である、請求項1~
10のいずれかに記載の収束糸。
【請求項12】
請求項1~
11のいずれかに記載の収束糸、セメント成分、骨材及び水を少なくとも含有する水硬性組成物。
【請求項13】
請求項
12に記載の水硬性組成物を硬化してなる成形体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、収束糸、水硬性組成物及び成形体に関する。
【背景技術】
【0002】
従来、コンクリート、セメントモルタルに代表される水硬性材料の硬化物である成形体の、曲げ強度、靭性等の機械的強度の向上、及び、ひび割れの抑制等を目的として、水硬性材料を含むマトリクス中に補強繊維を配合することが知られている。しかしながら、繊維をマトリクス中に均一分散させることは極めて困難であり、繊維と水硬性材料とを混練中に繊維同士が絡まり、塊状物(ファイバーボール)を形成する場合があり、塊状物が形成されると、繊維による補強効果が発揮されにくくなる。
【0003】
上記問題を解決する手段として、例えば特許文献1には、水溶性収束剤で固めた収束糸であって、コンクリート成形品中での解繊度が20%以上である収束糸が記載されている。また、特許文献2には、水溶性高分子樹脂で収束された、pH12における解繊度が50%以上である収束糸が開示されている。
【先行技術文献】
【特許文献】
【0004】
【文献】特公昭64-1424号公報
【文献】特開平10-183473号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1では、水溶性収束剤として、水溶性でフィルム形成能を有する水溶性高分子を使用している。しかし、フィルム形成能が高い水溶性高分子を使用して繊維を収束させる場合、解繊度を高めにくく、成形体の強度を十分に高めることができない。また、解繊度を高めるために、収束糸と水硬性材料と水との混練時間を長くすると、剪断力をかけることにより解繊度は向上するが、繊維がダメージを受けやすくなり、ファイバーボールが形成されやすくなる。これらの結果、得られる成形体の強度は低下する。
【0006】
特許文献2では、pH12というアルカリ条件下での解繊度に着目しているが、マトリクスのpHが12以上になるまでには一定以上の混練時間を要し、その結果、解繊された繊維がファイバーボールを形成しやすく、成形体の強度を十分に高めることができない。
【0007】
従って、本発明は、セメント等の水硬性材料と混練して使用する際に、繊維の解繊度が高く、かつ、解繊された繊維の凝集度が低い収束糸を提供することを課題とする。
【課題を解決するための手段】
【0008】
本発明者らは、前記課題を解決するため詳細に検討を重ね、本発明を完成するに至った。即ち、本発明は、以下の好適な態様を包含する。
〔1〕複数本の繊維が収束剤によって一体化された収束糸であって、
前記収束剤が、不飽和カルボン酸又はその誘導体に由来する構造単位(X)を全単量体単位の量を100モル%としたときに0.1~10モル%有し、けん化度が85モル%以上の、変性ポリビニルアルコールである、収束糸。
〔2〕変性ポリビニルアルコールの粘度平均重合度は100~5,000である、前記〔1〕に記載の収束糸。
〔3〕変性ポリビニルアルコールのけん化度は88~100モル%である、前記〔1〕又は〔2〕に記載の収束糸。
〔4〕不飽和カルボン酸又はその誘導体は、(メタ)アクリル酸、(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸の金属塩からなる群から選択される少なくとも1種である、前記〔1〕~〔3〕のいずれかに記載の収束糸。
〔5〕変性ポリビニルアルコールは、構造単位(X)として、式(X1):
【化1】
〔式(X1)中、Xは水素原子又はメチル基である〕
で表される構造単位、及び/又は、式(X2):
【化2】
〔式(X2)中、Xは水素原子又はメチル基であり、Yは、水素原子、アルカリ金属原子、又は炭素数1~5のアルキル基である〕
で表される構造単位を含む、前記〔1〕~〔4〕のいずれかに記載の収束糸。
〔6〕変性ポリビニルアルコールにおける、式(X1)で表される構造単位及び式(X2)で表される構造単位の合計モル量に対する、式(X1)で表される構造単位のモル量の割合(X1/(X1+X2))は、0.65~1.0である、前記〔5〕に記載の収束糸。
〔7〕前記繊維はポリビニルアルコール系繊維である、前記〔1〕~〔6〕のいずれかに記載の収束糸。
〔8〕前記繊維の平均繊維径は3~900μmである、前記〔1〕~〔7〕のいずれかに記載の収束糸。
〔9〕前記繊維のアスペクト比は50~2,500である、前記〔1〕~〔8〕のいずれかに記載の収束糸。
〔10〕繊維凝集度が10%以下である、前記〔1〕~〔9〕のいずれかに記載の収束糸。
〔11〕前記〔1〕~〔10〕のいずれかに記載の収束糸、セメント成分、骨材及び水を少なくとも含有する水硬性組成物。
〔12〕前記〔11〕に記載の水硬性組成物を硬化してなる成形体。
【発明の効果】
【0009】
本発明の収束糸は、セメント等の水硬性材料と混練して使用する際に、繊維の解繊度が高く、かつ、解繊された繊維の凝集度が低い。
【発明を実施するための形態】
【0010】
本発明の収束糸は、複数本の繊維が収束剤によって一体化された収束糸であり、前記収束剤は、不飽和カルボン酸又はその誘導体に由来する構造単位(X)を全単量体単位の量を100モル%としたときに0.1~10モル%有し、けん化度が85モル%以上の、変性ポリビニルアルコールである。上記特定の収束剤によって繊維を一体化させることにより、該収束糸をセメント等の水硬性材料を含む水硬性組成物中で混練する際に、該繊維を迅速に分離可能であり、繊維の解繊度を高め、かつ、解繊された繊維の凝集度を低下させることができる。
【0011】
<収束糸>
本発明の収束糸は、複数本の繊維と、上記特定の収束剤とを含み、該複数本の繊維が収束剤によって一体化されている。複数本の繊維が収束剤によって一体化されているとは、複数本の繊維が収束剤によって互いに接着され、束ねられた状態であることを表す。
【0012】
(収束剤)
本発明の収束糸に含まれる収束剤は変性ポリビニルアルコールであり、該変性ポリビニルアルコールは、不飽和カルボン酸又はその誘導体に由来する構造単位(X)を、該変性ポリビニルアルコールの全単量体単位の量を100モル%としたときに0.1~10モル%有し、けん化度が85モル%以上の、変性ポリビニルアルコールである。本発明において、変性ポリビニルアルコールとは、不飽和カルボン酸又はその誘導体に由来する構造単位(X)で変性されたポリビニルアルコールを表し、該変性ポリビニルアルコールは、ビニルエステル系モノマーに由来する構造単位と、不飽和カルボン酸又はその誘導体に由来する構造単位(X)とを少なくとも有する。変性ポリビニルアルコールは、本発明の効果を損なわない限り、上記の構造単位以外の他の構造単位を含んでいてもよい。
【0013】
不飽和カルボン酸又はその誘導体に由来する構造単位(X)の量は、該変性ポリビニルアルコールが有する全単量体単位の量を100モル%としたときに0.1~10モル%である。収束糸は、通常、水硬性材料と水とを少なくとも含む水硬性組成物中に分散させて使用され、該水硬性組成物を硬化させて、成形体が得られる。収束糸に含まれる繊維を、単繊維の状態で、該繊維を損傷することなく、水硬性組成物のマトリクス中にできるだけ均一に分散させることにより、繊維による水硬性材料の補強効果を高めることができると考えられる。水硬性組成物は、例えば収束糸と水硬性材料とを乾式状態で混合しておき、該混合物を撹拌しながら水を徐々に添加して製造される。そして、水を添加することにより収束剤が溶解すること、及び、撹拌による剪断力により、束ねられていた繊維がほぐれて解繊される。収束糸に含まれる繊維を、単繊維の状態で、該繊維を損傷することなく、水硬性組成物のマトリクス中に均一分散させて、成形体の機械的強度を高めやすい観点からは、収束剤が水に迅速に溶解し、繊維が迅速かつ十分に解繊されることが非常に重要であると考えられる。
【0014】
構造単位(X)の上記の量が0.1モル%未満である場合、収束剤の水への溶解性が低くなりすぎるために、水硬性材料及び水のマトリクス中に繊維が単繊維として分散しにくい。さらに、収束糸と水硬性材料及び水とを混練する際に、剪断力により繊維を解繊させる必要が生じるため、繊維自体が折れ曲がり、座屈部が生じやすい。繊維に座屈部が生じると、該座屈部を有する繊維が核となりファイバーボールが形成されやすくなる。これらの結果、得られる成形体の機械的強度を十分に高めることができない。
【0015】
構造単位(X)の上記の量が10モル%を超える場合、収束剤への水への溶解性が高くなりすぎるため、空気中の水分により収束剤が膨潤しやすくなることで、変性ポリビニルアルコールの収束剤としての性能(特に繊維の接着性)が不十分となる。そのため、水硬性組成物を製造する前に収束糸とセメント等の水硬性材料を乾式混合する際に、繊維が損傷しやすくなると考えられる。繊維が損傷すると、繊維には座屈部とも称される屈折部分が生じ、該座屈部を有する繊維を核としてファイバーボールが形成されやすくなる。その結果、成形体の十分な機械的強度が得られない。
【0016】
構造単位(X)の量は、繊維解繊度を高めやすく、繊維凝集度を低下させやすく、繊維による成形体の補強効果を高めやすい観点から、好ましくは0.5~10モル%、より好ましくは1~9.5モル%、特に好ましくは2~9モル%である。なお、変性ポリビニルアルコールに含まれる不飽和カルボン酸又はその誘導体に由来する構造単位(X)の量は、 変性ポリビニルアルコールの1H-NMRのピークから求めてもよいし、変性ポリビニルアルコールを製造する際のモノマーの仕込み比から求めてもよい。
【0017】
変性ポリビニルアルコールのけん化度は、85モル%以上である。けん化度が85モル%未満である場合、変性ポリビニルアルコールの水への溶解性が不十分であるために、繊維の迅速かつ十分な解繊性が得られない。また、繊維を解繊するために高い剪断力や、長時間の混練が必要となり、その結果、解繊度は向上できたとしても、繊維が損傷されたり、ファイバーボールが形成されやすくなる。これらの結果、得られる成形体の十分な補強効果が得られない。変性ポリビニルアルコールのけん化度は、繊維の迅速な解繊を達成しやすく、繊維の解繊度を高めやすく、繊維凝集度を低下させやすく、これらの結果、繊維による成形体の補強効果を高めやすい観点から、好ましくは88モル%以上、より好ましくは90モル%以上、さらに好ましくは95モル%以上、特に好ましくは98モル%以上である。けん化度の上限は100モル%以下であればよく、変性ポリビニルアルコールの結晶化度減少による水への溶解性向上の観点から、好ましくは99.9モル%以下、より好ましくは99.8モル%以下である。けん化度は、JIS K 6726(1994年)に記載の方法により測定することができる。
【0018】
変性ポリビニルアルコールの粘度平均重合度は、好ましくは100~5,000、より好ましくは100~4,000、さらに好ましくは300~3, 500である。粘度平均重合度が上記の下限以上である場合、収束剤としての繊維の収束性を高めやすい。また、粘度平均重合度が上記の上限以下である場合、変性ポリビニルアルコールの水への溶解性を向上でき、繊維の迅速かつ十分な解繊性を得やすい。粘度平均重合度は、JIS K 6726(1994年)に記載の方法により測定することができる。具体的には、けん化度が99.5モル%未満の場合には、けん化度99.5モル%以上になるまでけん化したPVAについて、水中、30℃で測定した極限粘度[η](リットル/g)を用いて、次の式により粘度平均重合度(P)を求めることができる。
P=([η]×104/8.29)(1/0.62)
【0019】
変性ポリビニルアルコールに含まれる構造単位(X)を与える不飽和カルボン酸としては、例えばアクリル酸、メタクリル酸、フタル酸、マレイン酸、イタコン酸などのエチレン性不飽和カルボン酸が挙げられる。これらの誘導体としては、上記のエチレン性不飽和カルボン酸のアルキルエステル、金属塩等が挙げられる。収束剤として使用する変性ポリビニルアルコールは、不飽和カルボン酸又はその誘導体に由来する構造単位(X)として、1種類の構造単位を有していてもよいし、2種類以上の構造単位を有していてもよいし、さらなる構造単位を有していてもよい。
【0020】
不飽和カルボン酸又はその誘導体は、収束糸を水硬性材料と混練して使用する際の繊維の解繊度を高めやすく、解繊された繊維の凝集度を低下させやすい観点から、好ましくは(メタ)アクリル酸、(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸の金属塩からなる群から選択される少なくとも1種である。なお、本明細書において使用する用語「(メタ)アクリル」は、「アクリル及び/又はメタクリル」を意味する。
【0021】
(メタ)アクリル酸アルキルエステルとしては、(メタ)アクリル酸と炭素数1~5の直鎖状又は分枝状のアルコールとのエステルが挙げられ、具体的には、(メタ)アクリル酸メチルエステル、(メタ)アクリル酸エチルエステル、(メタ)アクリル酸プロピルエステル、(メタ)アクリル酸ブチルエステル、(メタ)アクリル酸ペンチルエステル等が挙げられる。(メタ)アクリル酸の金属塩としては、(メタ)アクリル酸のアルカリ金属塩が挙げられる。アルカリ金属元素としては、リチウム、ナトリウム、カリウム等が挙げられる。
【0022】
本発明の収束糸において収束剤として使用する変性ポリビニルアルコールは、通常、単量体であるビニルエステル系モノマーに由来する複数の構造単位と、不飽和カルボン酸又はその誘導体に由来する複数の構造単位(X)とを少なくとも有し、不飽和カルボン酸又はその誘導体に由来する構造単位(X)の量は、全単量体単位の量を100モル%としたときに0.1~10モル%である。ここで、該変性ポリビニルアルコールが有する不飽和カルボン酸又はその誘導体に由来する構造単位(X)は、上記のモル比を考慮すると、その大部分が、ビニルエステル系モノマーに由来する構造単位に隣接して存在すると考えられる。その場合、構造単位(X)とビニルエステル系モノマーに由来する構造単位とは別々の構造単位(単量体単位)として存在していてもよいが、複数の構造単位(X)の少なくとも一部が、隣接するビニルエステル系モノマーに由来する構造単位に含まれる水酸基と、閉環した構造単位を形成して含まれていてもよい。
【0023】
なお、不飽和カルボン酸又はその誘導体に由来する構造単位(X)に含まれる例えばカルボキシル基等とビニルアルコールに由来する構造単位に含まれる水酸基とが閉環した構造単位も、構造単位(X)を含む構造単位であり、不飽和カルボン酸又はその誘導体に由来する構造単位である。ここで、本明細書において、変性ポリビニルアルコールの全単量体単位の量を算出する際には、閉環した構造単位を1つの構造単位とするのではなく、単量体に対応する構造単位である、閉環前の構造単位(X)とビニルアルコールに由来する構造単位とを別々の単量体単位として考える。
【0024】
本発明の好ましい一態様において、収束剤に含まれる変性ポリビニルアルコールは、不飽和カルボン酸又はその誘導体に由来する構造単位(X)、及び/又は、該構造単位(X)が隣接するビニルエステル系モノマーに由来する構造単位と閉環した構造単位を有する。ポリビニルアルコールが、不飽和カルボン酸又はその誘導体に由来する構造単位(X)で変性されている場合、変性ポリビニルアルコールは水に溶解していない状態では収束剤としての性能、特に繊維の収束性に優れている。そのため、収束糸を水硬性材料と乾式混合する際の繊維の損傷を防止しやすい。構造単位(X)で変性されたポリビニルアルコールは、カルボキシル基等によって水に対する高い溶解性を有するため、このような変性ポリビニルアルコールを収束剤として含む収束糸は、水と混合時には収束剤が迅速に溶解し、迅速かつ十分な繊維の解繊が得られるという特徴を有する。なお、解繊の迅速性に関し、求められる迅速性は収束糸の使用量や水硬性材料の用途等によって異なっていてよいが、本明細書の実施例では例えば数十秒程度の非常に短い時間で混練を行った際の解繊性を評価している。
【0025】
特に、変性ポリビニルアルコールが、不飽和カルボン酸又はその誘導体に由来する構造単位(X)、及び/又は、該構造単位(X)が隣接するビニルエステル系モノマーに由来する構造単位と閉環した構造単位を有する場合、閉環した状態では変性ポリビニルアルコールの水への溶解性が非常に低いために、収束剤としての性能に優れ、乾式混合時の繊維の損傷を抑制しやすい。このような閉環構造は、特にアルカリ性環境下で水に溶解させる際の開環性が非常に高く、開環後の構造単位(X)を有する変性ポリビニルアルコールは、水に対する高い溶解性を有する。そのため、このような変性ポリビニルアルコールを収束剤として含む収束糸は、水と混合時に収束剤が迅速に溶解し、迅速かつ十分な繊維の解繊を達成しやすいという特徴を有する。
【0026】
本発明の好ましい一態様において、変性ポリビニルアルコールは、収束糸の繊維解繊度を高めやすく、繊維凝集を抑制しやすい観点から、不飽和カルボン酸又はその誘導体に由来する構造単位(X)として、式(X1):
【化3】
〔式(X1)中、Xは水素原子又はメチル基である〕
で表される構造単位、及び/又は、式(X2):
【化4】
〔式(X2)中、Xは水素原子又はメチル基であり、Yは、水素原子、アルカリ金属原子、又は炭素数1~5のアルキル基である〕
で表される構造単位を含む。
【0027】
式(X2)で表される構造単位は、(メタ)アクリル酸、(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸の金属塩からなる群から選択される少なくとも1種に由来する構造単位であり、構造単位(X2)が、隣接するビニルエステル系モノマーに由来する構造単位と閉環すると、構造単位(X1)となる。変性ポリビニルアルコールが構造単位(X)として、式(X1)で表される構造単位、及び/又は、式(X2)で表される構造単位を含む場合、収束糸をセメント等の水硬性材料及び水と混練した場合に、繊維の迅速な解繊を達成しやすく、繊維の解繊度を向上させやすく、かつ、解繊された繊維の凝集を防止しやすい。
【0028】
変性ポリビニルアルコールは、式(X1)で表される1種類の構造単位を含んでいてもよいし、式(X1)で表される2種類以上の構造単位を含んでいてもよい。また、該変性ポリビニルアルコールは、式(X2)で表される1種類の構造単位を含んでいてもよいし、式(X2)で表される2種類以上の構造単位を含んでいてもよい。該変性ポリビニルアルコールは、式(X1)で表される1種類以上の構造単位、及び/又は式(X2)で表される1種類以上の構造単位の他に、さらなる他の構造単位を含有していてもよい。
【0029】
変性ポリビニルアルコールが式(X1)で表される構造単位及び/又は式(X2)で表される構造単位を含有する場合、式(X1)で表される構造単位及び式(X2)で表される構造単位の合計モル量に対する、式(X1)で表される構造単位のモル量の割合(X1/(X1+X2))は、好ましくは0.65以上1.0以下、より好ましくは0.70以上0.99以下、さらに好ましくは0.85以上0.99以下、特に好ましくは0.90以上0.99以下である。式(X1)で表される構造単位の含有割合が上記の下限以上であると、収束剤としての性能を高めやすく、例えば収束糸と水硬性材料とを乾式混合する際の繊維の損傷を抑制しやすい。なお、変性ポリビニルアルコールに含まれる構造単位(X1)及び構造単位(X2)の含有量(モル量)は、 変性ポリビニルアルコールの1H-NMRのピークから求めてもよいし、変性ポリビニルアルコールを製造する際のモノマーの仕込み比から求めてもよい。
【0030】
本発明の好ましい一態様において、変性ポリビニルアルコールは、式(X1)で表される構造単位を少なくとも含む。この態様において、式(X1)で表される構造単位の量は、変性ポリビニルアルコールの全単量体単位の量を100モル%としたときに、好ましくは0.1~10モル%、より好ましくは0.5~10モル%、より好ましくは1~9.5モル%、特に好ましくは2~9モル%である。式(X1)で表される構造単位の量が上記の範囲内である場合、収束剤としての性能(例えば繊維の接着性)を高めやすく、例えば収束糸と水硬性材料とを乾式混合する際の繊維の損傷を抑制しやすい。また、収束糸を水と混合する際の繊維の迅速かつ十分な解繊を達成しやすい。その結果、収束糸の繊維解繊度を高めやすく、繊維凝集を抑制しやすく、成形体の機械的強度を高めやすい。
【0031】
(変性ポリビニルアルコールの製造方法)
変性ポリビニルアルコールは、ビニルエステル系モノマーとカルボニル基を有するモノマー(不飽和カルボン酸又はその誘導体)とを公知の方法で共重合し、得られた共重合体を既知の方法でけん化した後に洗浄処理、加熱処理することにより得ることができる。さらには、前記けん化後に酸処理により中和し、洗浄処理、加熱処理することにより変性ポリビニルアルコールを効率良く得ることができる。
【0032】
変性ポリビニルアルコールの製造に用いられるビニルエステル系モノマーとしては、例えば酢酸ビニル、プロピオン酸ビニル、ギ酸ビニル等が挙げられるが、経済的な観点から酢酸ビニルを用いることが好ましい。また、変性ポリビニルアルコールの製造に用いられるカルボニル基を有するモノマーとしては、例えばアクリル酸、メタクリル酸及びこれらカルボン酸のアルキルエステルが挙げられる。前記アルキルエステルとしては、メチルエステル、エチルエステル等が好適に用いられる。また、これらのカルボン酸及びエステルを一部又は全部中和したカルボン酸塩も好適に用いられる。また、側鎖にラクトン環を含むビニルモノマーを用いてもよい。
【0033】
複数の構造単位(X)の少なくとも一部が、隣接するビニルエステル系モノマーに由来する構造単位に含まれる水酸基と閉環した構造単位を形成するようにするためには、加熱処理をすることが重要である。加熱処理する方法は特に限定されないが、例えば熱風乾燥機、回転式乾燥機等を用いることが好ましい。加熱温度としては、60~150℃であることが好ましく、80~150℃であることがより好ましい。加熱時間としては、1~10時間であることが好ましく、2~8時間であることがより好ましい。上記の加熱処理により、例えば構造単位(X1)及び構造単位(X2)の合計量に対する構造単位(X1)の割合を、上記の所定の範囲に調整することができる。
【0034】
(繊維)
本発明の収束糸に含まれる繊維としては、特に限定されないが、ポリビニルアルコール(以下、PVAと称することがある)系繊維、ポリオレフィン系繊維、ポリアミド系繊維(アラミド繊維を包含する)、アクリル系繊維、ポリベンゾオキサゾール系繊維、ポリエステル系繊維、レーヨン系繊維(ポリノジック繊維、溶剤紡糸セルロース繊維等)等の合成高分子繊維、また金属繊維やガラス繊維などが挙げられる。
【0035】
PVA系繊維は、ビニルアルコール系ポリマーを含む繊維であり、機械的性能、水硬性材料との接着性及び耐アルカリ性の点から、当該繊維中に該ビニルアルコール系ポリマーを30質量%以上含むことが好ましく、60質量%以上含むことがより好ましく、80質量%以上含むことがさらに好ましい。本発明の収束糸に含まれる繊維は、得られる成形体の強度を高めやすい観点から、好ましくはPVA系繊維である。繊維がPVA系繊維である場合、分子構造上の理由から親水性が高く、繊維の水酸基とセメントのCaが結合するため、繊維とセメントとの親和性を向上させ、化学的接着力を高めやすい。また、繊維周辺が水酸化カルシウムに富んだ構造となりやすいため、繊維とセメントとの摩擦抵抗を高めやすい。
【0036】
PVA系繊維を構成するビニルアルコール系ポリマーは、ビニルアルコールのホモポリマーであってもよいし、本発明の効果を損なわない範囲であれば、ビニルアルコールと、他のモノマーとの共重合体であってもよいし、変性されていてもよい。繊維の機械的強度、耐アルカリ性、耐熱水性等を高めやすい観点からは、ビニルアルコール系ポリマーを構成する全単量体単位の量を100モル%としたときに、任意に含まれる変性ポリビニルアルコール系モノマーに由来する構造単位の量、及び、任意に含まれるビニルアルコール以外のモノマーの量の合計は、好ましくは30モル%以下、より好ましくは10モル%以下である。
【0037】
PVA系繊維を構成するビニルアルコール系ポリマーの粘度平均重合度は、繊維の機械的強度、耐アルカリ性及び耐熱水性を向上させやすい観点から、好ましくは1,000以上、より好ましくは1,500以上である。ビニルアルコール系ポリマーの製造コストを削減しやすい観点からは、該粘度平均重合度は、好ましくは10,000以下、より好ましくは5,000以下、さらに好ましくは3,000以下である。粘度平均重合度の測定方法は、変性ポリビニルアルコールについて上記に述べたとおりである。
【0038】
PVA系繊維を構成するビニルアルコール系ポリマーのけん化度は、繊維の耐熱性、耐久性、寸法安定性の観点から、好ましくは99モル%以上、より好ましくは99.5モル%以上、さらに好ましくは99.8モル%以上である。なお、けん化度の上限は、100モル%以下である。けん化度の測定方法は、変性ポリビニルアルコールについて上記に述べたとおりである。
【0039】
本発明の収束糸に含まれる繊維は、1種類のポリマーから構成された繊維であってもよいし、2種類以上のポリマーから構成された複合繊維であってもよい。複合繊維の形状としては、例えば海島型、芯鞘型、サイドバイサイド型等が挙げられる。
【0040】
本発明の収束糸に含まれる繊維の繊維長は、好ましくは6mm以上、より好ましくは8mm以上、さらに好ましくは10mm以上であり、好ましくは60mm以下、より好ましくは50mm以下、さらに好ましくは40mm以下である。ポリビニルアルコール系繊維の繊維長が上記の上限以下であると、繊維同士の絡まり合いがさらに抑えられ、水硬性組成物の成形体中での繊維の分散性がさらに高くなる。また、水硬性組成物の成形体の伸縮に対する繊維の追従性に優れるため、水硬性材料の補強性能がさらに向上する。ポリビニルアルコール系繊維の繊維長が上記の下限以上であると、繊維の水硬性材料への付着性が高くなり、水硬性材料に対する補強性能にさらに優れる。
【0041】
本発明の収束糸に含まれる繊維のアスペクト比は、好ましくは50~2,500、より好ましくは60~2,000、さらに好ましくは60~1,000、さらにより好ましくは60~900、特に好ましくは70~800である。アスペクト比が上記の下限以上である場合、繊維を添加することによる補強効果を高めやすい。また、アスペクト比が上記の上限以下である場合、水硬性材料を含むマトリクス中に含まれる解繊された繊維同士の絡まりを抑制しやすく、水硬性材料に対する補強性能を高めやすい。なお、本明細書においてアスペクト比は、繊維長(L)と繊維径(D)との比(L/D)を意味し、JIS L1015「化学繊維ステープル試験方法(8.5.1)」に準じて繊維長を算出し、繊維径との比により算出することができる。
【0042】
本発明の収束糸に含まれる繊維の平均繊維径は、好ましくは3~900μm、より好ましくは4~800μm、さらに好ましくは5~700μmである。繊維の平均繊維径が上記の下限以上であると、水硬性組成物の成形体に対する補強性能を向上させやすく、得られる成形体の機械的強度を高めやすい。なお、繊維の平均繊維径は、複数本の繊維について光学顕微鏡により繊維径を測定し、その平均値を算出して得られ、例えば実施例に記載する方法で測定してよい。
【0043】
本発明の収束糸に含まれる繊維の引張強度は、好ましくは5cN/dtex以上、より好ましくは8cN/dtex以上、さらに好ましくは10cN/dtex以上、特に好ましくは11cN/dtex以上である。繊維の引張強度が上記の下限以上であると、水硬性組成物の成形体に対する補強性能を向上させやすく、得られる成形体の機械的強度を高めやすい。本発明の収束糸に含まれる繊維の引張強度の上限は、特に限定されないが、例えば30cN/dtex以下である。なお、繊維の引張強度は、JIS L1013に準拠して測定される。
【0044】
(その他の成分)
本発明の収束糸は、本発明の効果を損なわない限り、繊維及び収束剤以外に、その他の成分を含んでいてもよい。その他の成分としては、油剤等が挙げられる。油剤としては、炭化水素油、シリコーン油等が挙げられる。収束糸がその他の成分を含有する場合、該成分の量は、収束糸の全質量に対して、好ましくは0.5質量%以下、より好ましくは0.3質量%以下である。
【0045】
本発明の収束糸は、繊維及び収束剤としての変性ポリビニルアルコールを少なくとも含む。収束糸における繊維の含有量は、収束糸の全質量に対して、好ましくは85~99.5質量%、より好ましくは88~99質量%、特に好ましくは90~98質量%である。繊維の含有量が上記範囲内である場合、混合時に水硬性組成物中に分散しやすく、成形体の強度をより一層向上させやすい。
【0046】
収束糸における収束剤の含有量は、収束糸の全質量に対して、好ましくは0.01~15質量%、より好ましくは0.1~15質量%、さらにより好ましくは0.5~15質量%、とりわけ好ましくは1~12質量%、とりわけさらに好ましくは1~10質量%、特に好ましくは2~10質量%であってよい。また、収束糸における収束剤の含有量は、収束糸に含まれる繊維の質量に対して、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.5質量%以上、さらにより好ましくは1質量%以上、とりわけ好ましくは2質量%以上であり、また、好ましくは15質量%以下、より好ましくは12質量%以下、さらにより好ましくは10質量%以下である。また、収束剤の含有量は、収束糸に含まれる繊維の質量に対して、好ましくは0.01~15質量%、より好ましくは0.1~15質量%、さらにより好ましくは0.5~15質量%、とりわけ好ましくは1~12質量%、とりわけさらに好ましくは1~10質量%、特に好ましくは2~10質量%であってよい。収束剤の含有量が上記の下限以上である場合、水硬性材料と収束糸とを乾燥状態で混合する際の繊維の解繊を抑制しやすく、その結果、繊維の損傷を防止しやすい。また、上記の上限以下である場合、収束糸を水硬性材料及び水と混練する際の繊維の解繊度が向上しやすい。
【0047】
本発明の収束糸の繊維解繊度は、好ましくは80%以上、より好ましくは85%以上、さらに好ましくは90%以上である。繊維解繊度の上限は100%以下であればよい。なお、本明細書における繊維解繊度は、収束糸を水硬性材料及び水と30秒間混練後の解繊された繊維の割合である。例えば、骨材、セメント及び収束糸を、骨材:セメント:収束糸が50:50:1.5となる質量比で乾式混合し、次いで、該混合物中のセメントの質量に対して0.4倍量の水を加え30秒間混合して得たペースト状の混合物について、該混合物に含まれる繊維の量を100%としたときの、解繊された収束糸の量の割合を算出して、繊維解繊度を測定することができる。具体的には、実施例に記載する方法で測定してよい。水硬性材料及び水と30秒間混練後の繊維の解繊度が上記の下限以上である場合、繊維の損傷を抑制しやすく、ファイバーボールが形成されにくく、最終的に得られる成形体の機械的強度を向上させやすい。
【0048】
本発明の収束糸の繊維凝集度は、好ましくは10%以下、より好ましくは8%以下、さらに好ましくは5%以下である。繊維凝集度の下限は0%以上であればよい。なお、本明細書における繊維凝集度は、収束糸を水硬性材料及び水と3分間混練後のファイバーボールの量の割合である。例えば、骨材、セメント及び収束糸を、骨材:セメント:収束糸が50:50:1.5となる質量比で乾式混合し、次いで、該混合物中のセメントの質量に対して0.4倍量の水を加え3分間混合して得たペースト状の混合物について、該混合物に含まれる繊維の量を100%としたときに、ファイバーボールを形成した繊維の量の割合を算出して、繊維凝集度を測定することができる。具体的には、実施例に記載する方法で測定してよい。水硬性材料及び水と3分間混練後の繊維の凝集度が上記の上限以下である場合、最終的に得られる成形体の機械的強度を向上させやすい。
【0049】
<収束糸の製造方法>
【0050】
本発明の収束糸に含まれる繊維の製造方法は特に限定されず、一般的な溶融紡糸、溶液紡糸、乾式紡糸などを用いることができる。本発明の収束糸に含まれる繊維は、例えば、次の方法によって製造することができる。例えば繊維がPVA系繊維である場合、ビニルアルコール系ポリマーを濃度40~60質量%の含水チップ状とし、押出機にて加熱溶解し、脱泡する。そして、このビニルアルコール系ポリマー水溶液に架橋剤を添加する。架橋剤としては、硫酸アンモニウム、硫酸、リン酸アンモニウム、リン酸、塩酸、硝酸、酢酸及びシュウ酸等が挙げられるが、配管を腐食せず、悪臭がせず、また繊維を発泡させない観点より、硫酸アンモニウムが好ましい。架橋剤の添加量としては、ビニルアルコール系ポリマーの質量に対して0.5~10質量%が好ましい。紡糸原液の温度は90~140℃が好ましい。このような架橋剤を添加した紡糸原液を加圧してノズル孔から空気中に吐出して乾式紡糸する。ノズル孔は円形のものであっても、円形以外の異形、例えば偏平状、十字型、T字型、Y字型、L字型、三角型、四角型又は星型等であってもよい。なお、紡糸方法は、湿式、乾湿式又は乾式のいずれの方法であってもよい。
【0051】
次に、紡糸して得られた繊維の乾燥を行う。乾燥温度は、通常100℃以下であり、ある程度まで乾燥が行われた時点で100℃以上の温度条件で乾燥を完全に行うことが好ましい。
【0052】
乾燥後には繊維の延伸を行う。延伸は、通常200~250℃、好ましくは220~240℃の延伸温度下で行われる。延伸倍率は、通常5倍以上、好ましくは6倍以上である。延伸は、熱風式延伸炉内で約20秒~3分の時間をかけて行われる。このように延伸された繊維は、必要により定長又は収縮を図るために熱処理を行う。このようにして得られた繊維に、必要により捲縮を付与してもよく、また油剤を塗布してもよい。繊維がポリビニルアルコール系繊維である場合、延伸時に、紡糸原液中に添加されている架橋剤がポリビニルアルコールのOH基と反応して架橋結合が生じることとなる。
【0053】
次に、得られた繊維に収束剤としての変性ポリビニルアルコールを塗布する。塗布する収束剤の量は、繊維の質量に対して、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.5質量%以上、さらにより好ましくは1質量%以上、とりわけ好ましくは2質量%以上であり、また、好ましくは15質量%以下、より好ましくは12質量%以下、さらにより好ましくは10質量%以下である。また、収束剤の含有量は、収束糸に含まれる繊維の質量に対して、好ましくは0.01~15質量%、より好ましくは0.1~15質量%、さらにより好ましくは0.5~15質量%、とりわけ好ましくは1~12質量%、とりわけさらに好ましくは1~10質量%、特に好ましくは2~10質量%である。塗布方法は特に限定されないが、繊維に均一に収束剤を添加しやすい観点からは、該収束剤を含有する溶液(好ましくは水溶液)を塗布する方法が好ましい。この場合、溶液中の収束剤の濃度は、塗布装置、所望される収束剤の含有量、及び、溶液の粘度等に応じて適宜設定すればよい。また、繊維に収束剤を塗布する工程は紡糸工程以降であればいずれの工程で行ってもよい。塗布は、ローラータッチ、烏口等により行ってよい。収束剤を含有する溶液を用いて塗布を行う場合、塗布後に溶媒(例えば水)を乾燥させて除去することにより、本発明の収束糸が得られる。乾燥条件は特に限定されず、使用した溶媒が揮発するような温度及び時間を適宜設定すればよい。収束剤を含有する溶液に、油剤等の他の成分を含有させて、本発明の収束糸を製造してもよい。
【0054】
その後、得られた収束糸を、所望の繊維長に切断する。切断方式は特に限定されず、例えば、サイドカット方式、ウォータージェット方式、レーザーカット方式、ディスクブレードカット方式、超音波カット方式、はさみカット方式等が挙げられる。なかでも、繊維末端部の損傷を抑制しやすい観点からは、サイドカット方式、レーザーカット方式及びウォータージェット方式が好ましい。
【0055】
<水硬性組成物及び成形体>
本発明の収束糸を、セメント成分及び骨材、並びに水と混合することにより、水硬性組成物を得ることができる。当該水硬性組成物を硬化させることにより、モルタルコンクリート等の成形体を製造することができる。本発明の収束糸を用いて製造した成形体は、ファイバーボール数が低く、高い機械的強度を有するため、壁材及び屋根材等の各種建築材料として有用である。本発明は、本発明の収束糸、セメント成分、骨材及び水を少なくとも含有する水硬性組成物、並びに、該水硬性組成物を硬化してなる成形体も提供する。なお、本発明の収束糸においては、複数本の繊維が収束剤によって一体化されているが、該収束糸を含む本発明の水硬性組成物及び成形体中においては、本発明の収束糸は、複数本の繊維が分離された状態で含まれていてもよい。したがって、水硬性組成物及び成形体が本発明の収束糸を含むとは、複数本の繊維が収束剤によって一体化された状態の本発明の収束糸が、少なくとも一部において、複数本の繊維が収束剤によって一体化された状態のままで水硬性組成物及び成形体中に含まれていてもよいし、又は、複数本の繊維が収束剤によって一体化された状態の収束糸を用いて水硬性組成物を製造し、該水硬性組成物及び成形体中では、収束剤が溶解し、複数本の繊維が分離された状態で含まれていてもよい。
【0056】
水硬性組成物に含まれる水硬性材料としては、セメント成分が挙げられる。セメント成分は、例えば、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、及び中庸熱ポルトランドセメント等のポルトランドセメント、アルミナセメント、高炉セメント、シリカセメント、ならびにフライアッシュセメントが挙げられる。これらのセメントは、単独で又は二種以上組み合わせて使用してもよい。
【0057】
(骨材)
水硬性組成物に含まれる骨材としては、必要に応じてさまざまな骨材を使用することができる。そのような骨材として、例えば、細骨材、軽量骨材及び粗骨材等が挙げられる。これらの骨材は、単独で又は二種以上組み合わせて使用してもよい。
【0058】
細骨材は、粒径が5mm以下の細骨材であってもよく、例えば、粒径が5mm以下の砂類;珪石、フライアッシュ、高炉スラグ、火山灰系シラス、各種汚泥、及び岩石鉱物等の無機質材を粉末化又は顆粒状化した細骨材等が挙げられる。これらの細骨材は、単独で又は二種以上組み合わせて使用してもよい。砂類としては、例えば、川砂、山砂、海砂、砕砂、珪砂、鉱滓、ガラス砂、鉄砂、灰砂、炭酸カルシウム、及び人工砂等の砂類が挙げられる。これらの細骨材は、単独で又は二種以上組み合わせて使用してもよい。
【0059】
粗骨材は、粒径5mm以上の粒子が85質量%以上含まれる骨材である。粗骨材は、粒径5mm超の粒子からなるものであってもよい。粗骨材としては、例えば、各種砂利類、人工骨材(高炉スラグ等)及び再生骨材(建築廃材の再生骨材等)等が挙げられる。これらの粗骨材は、単独で又は二種以上組み合わせて使用してもよい。
【0060】
軽量骨材としては、例えば、火山砂利、膨張スラグ及び炭殻等の天然軽量骨材、ならびに発泡真珠岩、発泡パーライト、発泡黒よう石、バーミキュライト、シラスバルーン及びフライアッシュマイクロバルーン等の人工軽量骨材が挙げられる。これらの軽量骨材は、単独で又は二種以上組み合わせて使用してもよい。
【0061】
水硬性組成物は、上記骨材に加え、機能性骨材を含んでもよい。ここで、機能性骨材とは、有色の骨材、硬質の骨材、弾性を有する骨材、及び特定の形状を有する骨材等が挙げられ、具体的には、層状ケイ酸塩(例えば、マイカ、タルク、カオリン)、アルミナ、シリカ等が挙げられる。骨材に対する機能性骨材の割合は、それぞれの種類に応じて適宜設定することが可能であるが、例えば、骨材と機能性骨材との質量比(骨材/機能性骨材)は、99/1~70/30であってもよく、好ましくは98/2~75/25であってもよく、より好ましくは97/3~80/20であってもよい。これらの機能性骨材は、単独で又は二種以上組み合わせて使用してもよい。
【0062】
骨材の総量(S)とセメント成分(C)の質量比(骨材(S)/セメント成分(C))は、好ましくは1/10~5/1、より好ましくは1/8~4/1、さらに好ましくは1/6~3/1であってもよい。
【0063】
水硬性組成物に添加する本発明の収束糸の量は、本発明の収束糸に含まれる繊維の種類、繊維長及びアスペクト比等に応じて適宜設定することができるが、例えば平均繊維径が660μm以上の繊維を用いる場合、繊維の量が、最終的に得られる成形体の体積を基準として、好ましくは1~70kg/m3、より好ましくは2~40kg/m3、さらに好ましくは3~30kg/m3となるような量で添加してよい。例えば平均繊維径が660μm未満の繊維を用いる場合、繊維の量が、終的に得られる成形体の体積を基準として、好ましくは1~70kg/m3、より好ましくは2~40kg/m3、さらに好ましくは2~30kg/m3となるような量で添加してよい。収束糸の添加量が上記範囲内であると、繊維による補強効果がさらに高められ、また過剰な繊維含有量に基づく繊維同士の絡み合いを抑制しやすく、繊維による補強効果をさらに向上させやすい。
【0064】
水硬性組成物は、必要に応じて各種混和剤を含んでよい。混和剤としては、例えば、AE剤、流動化剤、減水剤、高性能減水剤、AE減水剤、高性能AE減水剤、増粘剤、保水剤、撥水剤、膨張剤、硬化促進剤、凝結遅延剤、ポリマーエマルジョン[アクリル系エマルジョン、エチレン-酢酸ビニル系エマルジョン、及びSBR(スチレンブタジエンゴム)系エマルジョン]等が挙げられる。混和剤は、単独で又は二種以上組み合わせて含まれていてもよい。なお、ポリマーエマルジョンは、最終的に得られる成形体の脆性を強化するだけでなく、成形体中の成分間の接着力を強化することが可能である。さらに、ポリマーエマルジョンを組み合わせることにより、成形体の透水防止性を向上できるだけでなく、過度の乾燥を抑制することができる。
【0065】
水硬性組成物は、必要に応じて水溶性高分子物質を含んでもよい。水溶性高分子物質としては、例えば、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース等のセルロースエーテル、ポリビニルアルコール、ポリアクリル酸、及びリグニンスルホン酸塩等が挙げられる。これらの水溶性高分子物質は、単独で又は二種以上組み合わせて使用されていてもよい。
【0066】
最終的に得られる成形体に含まれるファイバーボール数は、好ましくは0~5個、より好ましくは0~1個である。モルタルコンクリート中のファイバーボール数が上記範囲内であると、得られる成形体の機械的強度がより高くなり、曲げ強度及び圧縮強度等に優れる。なお、ファイバーボールとは、水硬性組成物中における繊維とセメント成分との混和不良によって生じるものであり、繊維同士が絡み合って形成され、ボール状の形状を有するものである。ファイバーボール数は、実施例に記載の方法によって測定することができる。
【0067】
成形体のスランプロスは、好ましくは6cm以下、より好ましくは4cm以下、さらに好ましくは2cm以下である。スランプロスが上記の上限以下であると、繊維とセメント成分との混和性が高いため、作業性が向上する。上記スランプロスの下限値は、特に限定されないが、通常1cm以上である。なお、スランプロスは、JIS A1101によるコンクリートのスランプ試験方法に準拠してスランプ試験を行うことによって測定できる。
【0068】
成形体は、本発明の収束糸、水、セメント成分、骨材、及び必要に応じて本発明の効果を損なわない範囲で各種混和剤等を含む水硬性組成物を硬化させることによって得ることができる。
【0069】
水硬性組成物は、公知又は慣用のミキサー等の混練手段によって混練される。また、構成される材料の混練順序についても、特に限定されることなく実施できるが、繊維への物理的衝撃をできるだけ小さく抑えるために、水硬性組成物の構成、水/セメント成分比(W/C)等に応じて、適宜調整される。
【0070】
水硬性組成物における水/セメント成分比(W/C)は、水硬性組成物の構成等に応じて適宜調整されるが、好ましくは20~50質量%、より好ましくは25~45質量%、さらに好ましくは30~40質量%である。
【0071】
水硬性組成物に本発明の収束糸を供給する方法は特に限定されない。例えば、繊維の投入量及び/又は投入速度を制御しながら供給する装置として、各種定量供給装置(例えば、振動フィーダー、スクリューフィーダー、又はベルトフィーダー等)を用いることができる。
【0072】
収束糸を添加して繊維を分散させる方法は、繊維が実質的に繊維凝集体として存在していない状態で分散することができる限り、特に限定されない。例えば、撹拌性能の高いミキサー、ニーダーを用いる場合、撹拌性能の高いミキサー、ニーダーとしては、例えば、双腕ニーダー、加圧ニーダー、アイリッヒミキサー、スーパーミキサー、プラネタリーミキサー、バンバリーミキサー、コンティニュアスミキサー又は連続混練機等を使用することができる。
【0073】
その後、繊維を含む水硬性組成物を型枠へ投入し、必要に応じて振動を加えてもよい。振動は、通常、型枠を振動させることにより加えられる。振動を加えることによって、水硬性組成物が型枠内部において、より均等に分布し易くなる。
【0074】
振動させる際の振動数は、好ましくは10~1000Hz、より好ましくは20~900Hz、さらに好ましくは30~800Hzである。振幅は、好ましくは0.1~20μm、より好ましくは0.5~18μm、さらに好ましくは1~15μmである。
【0075】
型枠へ投入された水硬性組成物を、上面成形型やロール等を用いてプレスにより押圧してもよい。押圧時の圧力は、混練された水硬性組成物の状態、型枠の形態等によって適宜設定可能であるが、好ましくは10~150MPa、より好ましくは20~140MPa、さらに好ましくは30~130MPaである。圧力が10MPa以上であると各材料の一体化が十分となり、圧力が150MPa以下であると骨材からの押圧による繊維の損傷が生じ難く、繊維強度の低下や型枠の耐久性の低下を避けることができる。
【0076】
押圧は、必要に応じて加熱を行いながら行ってもよい。加熱温度としては、好ましくは40~90℃、より好ましくは45~85℃、さらに好ましくは50~80℃である。
【0077】
所定の形状に成型した後は、100℃以下の雰囲気で養生を行うことによって水硬性組成物を硬化させることにより、成形体を得ることができる。
【0078】
本発明の収束糸を含む水硬性組成物の用途は特に限定されず、あらゆる用途の成形体を製造することができる。成形体の例としては、ブロック、床パネル、壁パネル、間仕切り、屋根材、瓦等が挙げられる。
【実施例】
【0079】
以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例により何ら限定されない。
【0080】
[測定方法又は評価方法]
<繊維の引張強度>
JIS L1013に準拠して測定した。
【0081】
<繊維の平均繊維径>
平均繊維径については、無作為に繊維を100本取り出し、それぞれの繊維の長さ方向の中央部における繊維径を光学顕微鏡により測定し、その平均値を平均繊維径とした。
【0082】
<繊維のアスペクト比>
アスペクト比とは、繊維長(L)と繊維径(D)との比(L/D)を意味している。本発明においては、JIS L1015「化学繊維ステープル試験方法(8.5.1)」に準じて平均繊維長を算出し、平均繊維径との比により、繊維のアスペクト比を算出した。
【0083】
<水硬性材料と混練後の繊維解繊度>
骨材、ポルトランドセメント及び収束糸を、骨材:ポルトランドセメント:収束糸が50:50:1.5となる質量比で、ターボミキサー(大平洋機工株式会社製)を用いて乾式混合した。次いで、該混合物中のセメントの質量に対して0.4倍量の水を加え、ターボミキサー(大平洋機工株式会社製)を用いて30秒間混合し、ペースト状の混合物を得た。得られた混合物を20g採取し、40メッシュの金網上に均一な厚さで塗布し、直ちに水洗しセメント分を除去した。金網上に残る繊維の中から、解繊した繊維、及び解繊していない収束糸をピンセットで別々に採取し、100℃で24時間かけて乾燥後、解繊した繊維の質量(Wag)、及び解繊していない収束糸の質量(Wbg)をそれぞれ測定した。繊維解繊度は、次の式により算出した。
繊維解繊度[%]=(Wa/(Wa+Wb))×100
【0084】
<水硬性材料と混練後の繊維凝集度>
骨材、ポルトランドセメント及び収束糸を、骨材:ポルトランドセメント:収束糸が50:50:1.5となる質量比で、ターボミキサー(大平洋機工株式会社製)を用いて乾式混合した。次いで、該混合物中のセメントの質量に対して0.4倍量の水を加え、ターボミキサー(大平洋機工株式会社製)を用いて3分間混合し、ペースト状の混合物を得た。得られた混合物を100g採取し、40メッシュの金網上に均一な厚さで塗布し、直ちに水洗しセメント分を除去した。金網上に残る繊維の中から、解繊した繊維、解繊していない収束糸、及び繊維の凝集により形成されたファイバーボールをピンセットで別々に採取し、100℃で24時間かけて乾燥後、解繊した繊維の質量(Wag)、解繊していない収束糸の質量(Wbg)、及び繊維の凝集により形成されたファイバーボールの質量(Wcg)をそれぞれ測定した。繊維凝集度は、次の式により算出した。
繊維凝集度[%]=(Wc/(Wa+Wb+Wc))×100
【0085】
<座屈部の数>
20℃の5質量%塩酸水溶液500mlに、成形体50gを浸漬させ、成形体中のセメントを溶解させた。次いで、成形体に含まれていた繊維を、ピンセットで20本取りだした。取り出した繊維を、青色染料を含む80℃の染料水溶液に、30分間浸漬させた。ここで、繊維に折れ曲がった部分(座屈部)がある場合、該座屈部は、上記の染色工程において青色に染色される。染色させた繊維を取り出し、繊維同士ができるだけ重ならないようにスライドガラス上に広げた後、カバーガラスを載せ、評価サンプルとした。この評価サンプルを、(株)キーエンス製ビデオマイクロスコープにて拡大観察し、各繊維に存在する染色部分の個数をカウントした。20本の繊維について個数をカウントし、得られた個数の平均値を、繊維1本あたりの座屈部の数(個/本)とした。
【0086】
<成形体の曲げ強度>
成形体から、幅5cm、長さ16cmの短冊状の試験片を切り出した。該試験片を、曲げ強度を測定時の含水率を一定に調整するために、40℃に調整した乾燥機中に72時間入れ、曲げ強度の測定試料を得た。曲げ強度の測定は、JIS A1408に準じ、(株)島津製作所製のオートグラフAG5000-Bにて、試験速度(載荷ヘッドスピード)2mm/分、中央載荷方式で、曲げスパン100mmの条件で行った。
【0087】
実施例及び比較例において、以下の材料を使用した。
(繊維)
・PVA繊維1:ポリビニルアルコール系繊維((株)クラレ製、ビニロン(登録商標))、引張強度14cN/dtex、平均繊維径14μm、
・PVA繊維2:ポリビニルアルコール系繊維((株)クラレ製、ビニロン(登録商標))、引張強度12cN/dtex、平均繊維径38μm、
・PP繊維:ポリプロピレン繊維、繊維強度5.4cN/dtex、平均繊維径17μm
なお上記繊維を、下記実施例及び比較例に記載するアスペクト比となるように切断して使用した。
【0088】
(収束剤)
・アクリル酸変性PVA1:粘度平均重合度1,500、けん化度99.5モル%、アクリル酸に由来する構造単位(X)の含有率5モル%、構造単位(X1)の含有率4.8モル%、構造単位(X2)の含有率0.2モル%、構造単位(X1)及び(X2)の合計量に対する(X1)の割合が0.96、構造単位(X1)及び(X2)における官能基X及びYがいずれも水素原子である変性ポリビニルアルコール
・アクリル酸変性PVA2:粘度平均重合度1,500、けん化度99.5モル%、アクリル酸に由来する構造単位(X)の含有率12モル%、構造単位(X1)の含有率11.5モル%、構造単位(X2)の含有率0.5モル%、構造単位(X1)及び(X2)の合計量に対する(X1)の割合が0.96、構造単位(X1)及び(X2)における官能基X及びYがいずれも水素原子である変性ポリビニルアルコール
・マレイン酸変性PVA:粘度平均重合度1,300、けん化度97モル%、マレイン酸に由来する構造単位(X)の含有率4モル%の変性ポリビニルアルコール
・イタコン酸変性PVA:粘度平均重合度620、けん化度77モル%、イタコン酸変性に由来する構造単位(X)の含有率1モル%の変性ポリビニルアルコール
・無変性PVA1:粘度平均重合度500、けん化度88モル%の無変性ポリビニルアルコール
・無変性PVA2:粘度平均重合度1,700、けん化度98モル%の無変性ポリビニルアルコール
【0089】
(セメント)
・普通ポルトランドセメント(太平洋セメント株式会社製)
(骨材)
・6号珪砂(トーヨーマテラン株式会社製)
【0090】
(実施例1)
粘度平均重合度1,700の完全けん化PVA((株)クラレ製)を、16.5質量%の濃度で水に溶解させ、該PVAの質量に対して、1.6質量%のホウ酸を添加し、紡糸原液を調製した。該紡糸原液を、水酸化ナトリウム11g/L、ボウ硝350g/Lからなる70℃の凝固浴中に湿式紡糸し、常法に従ってローラ延伸、中和、湿熱延伸、水洗、乾燥後、同じく繊維製造工程内の熱処理工程内で、235℃で総延伸倍率が19倍となるように乾熱延伸して巻き取った。その結果、平均繊維径14μm、引張強度14cN/dtexのPVA繊維1を得た。得られたPVA繊維1に対して、上記のアクリル酸変性PVAを80g/Lの量で含む水溶液を、PVA繊維1の質量に対して5.5質量%の量でローラータッチにより添加した後、乾燥させ、アクリル酸変性PVA1をPVA繊維1に付着させた。その後切断し、アスペクト比が429である収束糸1を得た。
【0091】
(実施例2)
PVA繊維1に代えてPVA繊維2を用い、PVA繊維2に対するアクリル酸変性PVA1の付着量を表1に示す通り変更したこと以外は、実施例1と同様にして収束糸2を得た。
【0092】
(実施例3)
ポリプロピレン(プライムポリマー社製「Y2000GV」)を、溶融紡糸装置の押出機に投入して溶融混練し、紡糸口金から吐出して、800m/分の速度で未延伸糸を製造した。その後、該未延伸糸を温度128℃の熱風炉に導入して4.6倍延伸し、平均繊維径17μm、繊維強度5.4cN/dtexのPP繊維を得た。得られたPP繊維に対して、実施例1と同様にして収束剤を付着させた。その後切断し、アスペクト比が353である収束糸3を得た。
【0093】
(実施例4)
アクリル酸変性PVA1に代えてマレイン酸変性PVAを収束剤として用いたこと以外は、実施例1と同様にして、収束糸4を得た。
【0094】
(実施例5)
PVA繊維1に対するアクリル酸変性PVA1の付着量を表1に示す通り変更したこと以外は、実施例1と同様にして収束糸5を得た。
【0095】
(比較例1)
アクリル酸変性PVA1に代えて無変性PVA1を収束剤として用いたこと以外は、実施例1と同様にして、収束糸6を得た。
【0096】
(比較例2)
PVA繊維1に代えてPVA繊維2を繊維として用い、アクリル酸変性PVA1に代えて無変性PVA1を収束剤として用いたこと以外は、実施例1と同様にして、収束糸7を得た。
【0097】
(比較例3)
PVA繊維1に代えてPVA繊維2を繊維として用い、アクリル酸変性PVA1に代えて無変性PVA1を収束剤として用い、PVA繊維2に対する無変性PVA1の付着量を表1に示す通り変更したこと以外は、実施例1と同様にして、収束糸8を得た。
【0098】
(比較例4)
アクリル酸変性PVA1に代えて無変性PVA2を収束剤として用いたこと以外は、実施例1と同様にして、収束糸9を得た。
【0099】
(比較例5)
アクリル酸変性PVA1に代えてイタコン酸変性PVAを収束剤として用いたこと以外は、実施例1と同様にして、収束糸10を得た。
【0100】
(比較例6)
アクリル酸変性PVA1に代えて、アクリル酸変性PVA1よりもアクリル酸に由来する構造単位(X)の含有率が高いアクリル酸変性PVA2を収束剤として用いたこと以外は、実施例1と同様にして、収束糸11を得た。
【0101】
(混練工程)
得られた収束糸1~11のそれぞれについて、次の方法に従い、混練物を調製した。
収束糸、6号硅砂及び普通ポルトランドセメントを、収束糸:6号硅砂:普通ポルトランドセメントの質量比が1.5:50:50となる量で、ターボミキサー(大平洋機工株式会社製)に投入し、500回/分の条件下、乾燥状態で6分間混合した。その後、水/普通ポルトランドセメントの質量比が0.4になるように水を加え、上記の往復回転式撹拌機を用いて400回/分の条件下で、2分間混練し、混練物1~11を得た。
【0102】
(成形工程)
得られた混練物1~11のそれぞれについて、次の方法に従い、成形体を得た。
上記混練工程によって得られた混練物を、幅50cm、長さが180cmの型枠に、厚み10mmを目標として充填した。型枠に充填された混練物に対し、振動プレス機を用いて、40MPaの圧力で振動数200Hz、振幅1μmの振動を与えながら、混練物をプレスした。次いで、一次養生のために、該混練物を、温度50℃、湿度98%の環境下に24時間保持した。その後、二次養生のために、一次養生後の成形体を湿布で包み、温度20℃、湿度60%の環境下で28日間養生し、成形体1~11を得た。
【0103】
上記の実施例及び比較例で得た収束糸1~11について、上記の測定方法に従い、水硬性材料と混練後の繊維解繊度及び繊維凝集度を測定した。また、上記の方法に従い得た成形体について、上記の測定方法に従い、座屈部の数及び成形体の曲げ強度を測定した。得られた結果を表1に示す。
【0104】
【0105】
表1から明らかなように、本発明の収束糸はセメント等の水硬性材料に混練した場合に繊維の解繊度が高く、かつ繊維の凝集が少ないものであった。また、本発明の収束糸は、成形体中において繊維の座屈部の数が少なく、水硬性組成物の硬化物の補強効果に優れるものであった。したがって、本発明の収束糸は、水硬性材料に添加する補強用の収束糸として適したものであることが確認された。特に、構造単位(X1)及び構造単位(X2)を特定量有する変性ポリビニルアルコールを用いた実施例1~3及び5は、構造単位(X1)により収束剤としての繊維の収束性が高いために、収束糸と水硬性材料とを乾式混合する際に繊維が解れにくく、乾式混合時に繊維の座屈部の発生が抑制され、その結果、水硬性組成物中で混合する際に、繊維の凝集を抑制しやすい。さらに、水を加えたアルカリ性溶液下では構造単位(X1)が開環してその一部が、より水溶性の高い構造単位(X2)に変わるため、繊維が迅速に解繊し、繊維の解繊度が高くなる。その結果成形体の曲げ強度が向上した。一方、比較例1、2及び4のように収束剤として無変性のポリビニルアルコールを用いると、水硬性組成物中で混練した場合の繊維の解繊度が低く、成形体の曲げ強度も不十分であった。特に、平均繊維径の大きい繊維を用いた比較例2では、平均繊維径の小さい繊維を用いた比較例1の場合と比較して、収束糸と水硬性材料とを乾式混合する際に繊維が解れやすくなるため、乾式混合時に繊維の座屈部が発生しやすく、その結果、繊維凝集度が高くなった。また、比較例3のように収束剤として無変性のポリビニルアルコールを少量用いた収束糸の場合、収束剤の量が少ないために、むき出しの状態の繊維が多く含まれている。このような繊維は、収束糸と水硬性材料とを乾式混合する際に損傷されやすく、座屈部を生じやすいと考えられる。その結果、続いて水硬性組成物中で混練する際に、溶解が必要な収束剤の量が少ないために繊維の解繊度はある程度高くなるものの、座屈部が多い繊維に起因してファイバーボールが形成されやすく、その結果、繊維凝集度が非常に高くなったと考えられる。これらの結果、比較例3の場合にも、成形体の曲げ強度が不十分であった。比較例5及び6のように収束剤として、けん化度の低いイタコン酸変性PVAや不飽和カルボン酸に由来する構造単位(X)の含有率が高いアクリル酸変性PVA2を用いると、収束剤の水への溶解性が高くなるために収束剤としての性能が低下していると考えられる。このような繊維は、収束糸と水硬性材料とを乾式混合する際に繊維が損傷されて、座屈部を生じやすい。続いて水硬性組成物中で混練する際に、座屈部が多い繊維に起因してファイバーボールが形成されやすく、その結果、比較例4と同様、繊維凝集度が非常に高くなったと考えられる。
【産業上の利用可能性】
【0106】
本発明に従った収束糸はセメント等の水硬性材料に混練した場合に繊維の解繊度が高く、かつ繊維の凝集が少ないため、水硬性材料の成形体の補強効果に優れており、水硬性組成物に添加する補強用の収束糸として好適に利用することができる。