(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-22
(45)【発行日】2024-05-01
(54)【発明の名称】振動応答センサ、ロボットハンド、及び検体の判定装置
(51)【国際特許分類】
G01N 3/40 20060101AFI20240423BHJP
B25J 19/02 20060101ALI20240423BHJP
G01N 3/32 20060101ALI20240423BHJP
G01H 11/06 20060101ALI20240423BHJP
【FI】
G01N3/40 C
B25J19/02
G01N3/32 Z
G01H11/06
(21)【出願番号】P 2020064917
(22)【出願日】2020-03-31
【審査請求日】2022-10-31
(73)【特許権者】
【識別番号】000006035
【氏名又は名称】三菱ケミカル株式会社
(74)【代理人】
【識別番号】110002860
【氏名又は名称】弁理士法人秀和特許事務所
(72)【発明者】
【氏名】浦野 年由
(72)【発明者】
【氏名】水上 潤二
(72)【発明者】
【氏名】小森 尭
【審査官】森口 正治
(56)【参考文献】
【文献】特開2002-031574(JP,A)
【文献】特開2016-082447(JP,A)
【文献】国際公開第2017/130591(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01H 11/06-11/08
B25J 19/02
G01N 3/00-3/62
(57)【特許請求の範囲】
【請求項1】
検体に接触させる接触面を有する
摩擦帯電センサであるセンサ本体と、
前記接触面を前記検体に接触させた接触状態において、前記検体または前記センサ本体に振動を供給する振動子と、
前記センサ本体が備える電極から、前記振動の供給に対する応答を示す応答信号を取り出す取り出し部と、
を含
み、
前記センサ本体は、それぞれ前記電極と誘電体層とを含む二つの帯電部材が間隙を設けて重ねられた構造を有する
振動応答センサ。
【請求項2】
前記誘電体層が樹脂フィルムによって形成されている、
請求項
1に記載の振動応答センサ。
【請求項3】
前記振動子は、前記センサ本体の、前記接触面と反対側の面に振動を供給する、
請求項1又
は2に記載の振動応答センサ。
【請求項4】
前記振動子は、進退運動によって前記検体又は前記センサ本体の所定の面に対する圧力の供給及び前記圧力の供給の解除を行う、
請求項1から
3のいずれか一項に記載の振動応答センサ。
【請求項5】
把持部と、
前記把持部に取り付けられた請求項1から
4のいずれか一項に記載の振動応答センサと、
を含むロボットハンド。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、振動応答センサ、ロボットハンド、及び検体の判定装置に関する。
【背景技術】
【0002】
従来、ロボットハンドによって壊れやすい物質、形状が一定ではない物質を安定的に把持するため、ロボットハンドの外装部分を変形可能とすることにより、様々な形状の物質を把持することが試みられている。このようなロボットハンドは、ソフトロボットと呼ばれている(例えば、特許文献1)。
【0003】
また、安定した把持のため、ロボットハンドの表面上に数千個の電気抵抗型圧力センサを密着固定し、AIを用いて把持対象物表面との接触圧力を解析する方法が知られている(例えば、非特許文献1)。また、ロボットハンドに用いられるセンサとして、電気抵抗型圧力センサのみならず、誘電エラストマーの変形張力、糸張力、空気圧又は液圧による駆動機構を組み込むことも提案されている。(例えば、非特許文献2参照)
【先行技術文献】
【特許文献】
【0004】
【非特許文献】
【0005】
【文献】Nature562, 698-702
【文献】ロボット学会誌37巻1号2019年
【発明の概要】
【発明が解決しようとする課題】
【0006】
カメラ等を使用して画像により把持対象物の形状等を認識させることが考えられる。この場合、カメラと把持対象物の間に邪魔になるものが無いことが要求される。また、画像から硬さや変形量を予測して把持させるには、かなりの学習が必要となる。かなりの学習を行っても、おおよその特性を予想することはできるかもしれないが、物質の実際の硬さや重さを予測することは難しく、物質を安定的に把持できない虞があった。
【0007】
多数のセンサをロボットハンド上に設ける方法では、実施の硬さや重さを測定可能となる。しかし、多数のセンサからの情報を解析する必要があり、解析を行うコンピュータに大規模且つ高度の演算能力が要求される問題があった。また、ロボットハンドに設けた多数のセンサからは配線が延びた状態となる。ロボットハンドは動くため、配線にはある程度の強度が要求される。強度を増すことで配線が太くなりか嵩張る問題もあった。
【0008】
また、ソフトロボットは、把持される物質の形状に応じてロボットハンドの外装部分が変形して、把持される物質に過大な力がかかることを回避可能である。しかし、外装部分の変形は把持される物質に適した力でその物質を把持しているわけではなく、把持の仕方によっては、物質が破壊されたり、滑り落ちたりする虞があった。
【0009】
従来技術では、簡素な構造で物体の硬さや端部の有無などを識別可能な振動応答センサ、ロボットハンド、検体の判定装置を提供することを目的とする。
【課題を解決するための手段】
【0010】
本願の発明者らは、鋭意検討の結果、把持部に振動応答センサを設け、振動応答センサ
からの信号に基づいて把持部の把持状態を制御することを見いだした。また、振動応答センサからの信号に基づく把持対象物の良品又は不良品の判定などを行うため、物質の硬さ又は大きさと、振動に対する把持物質とセンサとの共振状態においてセンサが出力するシグナルと、が相関を有することを見出し、本願の開示に到達した。
【0011】
また、本願の発明者らは、振動応答センサとしてフィルム状の摩擦発電あるいはエレクトレット型発電による帯電センサを用いることにより、従来のピエゾ素子を用いた圧力センサよりさらに詳細な情報を得ることができることを見出した。本発明の実施例は、把持対象物を適切に把持可能なロボットを含む。また、本発明の実施例は、シンプルで配線が少ない面接触型の振動応答センサによって、把持される物質の硬さや反発性等などの物性や大きさなどの形状情報を解析することを含む。本発明の実施例は以下の通りである。
【0012】
[1]検体に接触させる接触面を有するセンサ本体と、
前記接触面を前記検体に接触させた接触状態において、前記検体または前記センサ本体に振動を供給する振動子と、
前記センサ本体が備える電極から、前記振動の供給に対する応答を示す応答信号を取り出す取り出し部と、
を含む、振動応答センサ。
【0013】
[2] 前記センサ本体は、帯電センサである、[1]に記載の振動応答センサ。
【0014】
[3] 前記帯電センサ本体は、それぞれ前記電極と誘電体層とを含む二つの帯電部材が間隙を設けて重ねられた構造を有する、[2]に記載の振動応答センサ。
【0015】
[4] 前記誘電体層が樹脂フィルムによって形成されている、[3]に記載の振動応答センサ。
【0016】
[5] 前記振動子は、前記センサ本体の、前記接触面と反対側の面に振動を供給する、[1]から[4]のいずれか一項に記載の振動応答センサ。
【0017】
[6] 前記振動子は、進退運動によって前記検体又は前記センサ本体の所定の面に対する圧力の供給及び前記圧力の供給の解除を行う、[1]から[5]のいずれか一項に記載の振動応答センサ。
【0018】
[7] 把持部と、
前記把持部に取り付けられた[1]から[6]のいずれか一項に記載の振動応答センサと、を含むロボットハンド。
【0019】
[8] [1]から[6]のいずれか一項に記載の振動応答センサと、
前記振動子による前記検体に対する圧力の供給及び前記圧力の供給の解除に応じてレベルが増減する前記応答信号の波形の形状に基づいて、前記検体の物性又は前記センサ本体の前記検体に対する接触状態を判定する判定回路とを含む、検体の判定装置。
【0020】
[9] 前記判定回路は、前記応答信号のレベルの大きさに基づいて、前記検体の硬さを判定する、[8]に記載の検体の判定装置。
【0021】
[10] 前記判定回路は、前記圧力の供給の解除に伴う前記応答信号のレベルの減衰時間に基づいて、前記検体の弾性を判定する、[8]又は[9]に記載の検体の判定装置。
【0022】
[11] 前記判定回路は、前記圧力の供給開始時における前記応答信号のレベルの減衰
の有無に基づいて、前記センサ本体の接触面が前記検体の縁部に接しているかを判定する、
[8]から[10]のいずれか一項に記載の判定装置。
【発明の効果】
【0023】
本発明の実施例によれば、簡素な構成で検体の硬さなどを識別することができる。
【図面の簡単な説明】
【0024】
【
図1】
図1は、振動応答センサの構成例を示す図である。
【
図2】
図2Aは、振動応答センサの平面図であり、
図2Bは、振動応答センサの底面図である。
【
図3】
図3は、検体の特徴と、圧力を示す信号及び応答信号の特徴を示す図である。
【
図4】
図4は、振動応答センサを適用したロボットハンド(把持部)の一例を示す。
【
図5】
図5は、把持部に取り付けられた振動応答センサを示す。
【
図6】
図6は、圧力波形と、圧力供給によって得られる応答信号の例を示す図である。
【
図7】
図7は、実施形態に係る検体の判定装置の構成例を示すブロック図である。
【
図8】
図8は、判定用情報の一例を示すテーブルである。
【
図9】
図9は、硬さ及び検体種別の判定処理の例を示すフローチャートである。
【
図10】
図10は、検体の判定処理の例を示すフローチャートである。
【発明を実施するための形態】
【0025】
以下に本発明を詳細に説明する。以下に記載する説明は、本発明の実施例であり、本発明はその要旨を超えない限り、これらの内容に限定されない。
【0026】
本発明の側面(aspect)の一つは、振動応答センサである。振動応答センサは、検体に接触させる接触面を有するセンサ本体と、接触面を検体に接触させた接触状態において、検体またはセンサ本体に振動を供給する振動子と、センサ本体が備える電極から、振動の供給に対する応答を示す応答信号を取り出す取り出し部と、を含む。
【0027】
(検体)
「検体」は、センサの接触面を接触させる物体(固体)であり、その材質や形状に制限はない。検体としては、アルミニウム、亜鉛、銅、又は鋼等の金属板、紙、ゴム、プラスチックフィルム、又はガラスなどを用いた板、ブロック、植木鉢、シート、食器、机、容器、手袋、袋などの成形製品、ミカン、バナナ、ごはん、パン、こんにゃく、肉などの食品、昆虫、動物、魚などを例示でき、これらの例示のうちの少なくとも一つが検体として選択され得る。
【0028】
(センサ本体)
センサ本体の種類は特に限定されない。例えば、センサ本体として、シリコンゴムなどの樹脂薄膜電気抵抗圧力センサ、ピエゾ抵抗型センサ、光ファイバ式センサ、帯電センサ(帯電フィルムセンサ)などを適用し得る。ピエゾ抵抗型センサは、ピエゾ効果を利用したピエゾ抵抗型の圧力センサである。光ファイバ式センサは、コア径の異なる光ファイバを有し、曲げを光損失として検出する光ファイバ式触覚センサである。ピエゾ抵抗型センサは、センサ辞退の感度は低いがコスト面に優れる。光ファイバ式センサは、別途発光装置が必要となるもののピエゾ抵抗型センサより感度が高い点でセンサ本体への適用が好ましい。
【0029】
帯電センサは、電源が不要でセンシングしていないときの信号強度(レベル)がゼロベースである。このため、帯電センサから出力された信号をアンプで増幅した際のSN比(感度)が高い。従って、帯電センサの出力信号から振動に対する応答を高い精度で検出することができる。よって、帯電センサを振動応答センサに適用される「センサ」に適用するのが特に好ましい。
【0030】
本明細書において、帯電センサは、摩擦発電またはエレクトレットなどの帯電原理を利用したセンサである。帯電センサは、帯電発電の原理を利用することによって、自ら電圧を発生させる。このため、発光装置や電源等が不要である。このため、一定の光や電気信号の変動で応答を検出する光ファイバ式センサなどと比べて構造が簡易で、外乱の影響を受けにくくすることができる。
【0031】
帯電センサは、摩擦帯電構造、又はエレクトレット帯電構造を有する。摩擦帯電構造は、二つの(一対の)帯電部材が対向した構造、すなわち、それぞれ電極と誘電体層とを含む二つの帯電部材が間隙を設けて重ねられた(対向する)構造を有する。エレクトレット帯電構造は、電極と誘電体層からなる一組の帯電部材の正と負に帯電された気泡を複数有する誘電体層を電極で挟み込んだ構造を有する。摩擦帯電構造を有する帯電センサを摩擦帯電センサと称し、エレクトレット帯電構造を有する帯電センサをエレクトレット帯電センサと称する。
【0032】
摩擦帯電構造、又はエレクトレット帯電構造に対する振動刺激の付与を繰り返す際に、摩擦帯電構造及びエレクトレット帯電構造の夫々における誘電体層の構造が変形し、電極間の電荷容量が変化する。例えば、摩擦帯電センサでは、振動子による振動の供給によって帯電部材間に摩擦が生じ、電極間の電荷容量が変化する。電荷容量の変化に伴い両電極間に電位差が生じる。この電位差を測定することにより、帯電センサは振動応答を検出するセンサとして動作する。
【0033】
(誘電体層)
誘電体層の材料は、帯電性を有する材料であれば特に限定されない。例えば、ポリマー(樹脂)や非金属物質等が挙げられる。ポリマーとしては、シリコーン樹脂(ポリジメチルシロキサン(PDMS)等)、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)等)、ポリイミド、ポリ塩化ビニル、ポリスチレン、ポリオレフィン(ポリエチレン、ポリプロピレン等)、ポリエステル樹脂(ポリエチレンテレフタレート(PET)等)、ポリカーボネート樹脂、アクリル樹脂(ポリメチルメタクリレート(PMMA)等)、ポリアミド樹脂(ナイロン等)、セルロースが挙げられる。非金属物質としては、シリカやアルミナ等の酸化物等が挙げられる。誘電体層は、振動応答センサの小型化、薄型化のために、樹脂フィルム、又は非金属物質の薄膜によって形成されるのが好ましい。
【0034】
誘電体層の比誘電率(εDI)は、好ましくは5以上であり、より好ましくは8以上である。また、誘電体層の比誘電率の上限はないが、高い方が好ましい。比誘電率は、被測定材料(検体)の層の両面に電極を形成して平行平板キャパシタを作製し、キャパシタの電気容量Cを測定することで、以下の式1から計算することができる。
C=ε0・εr・A/d ・・・ (式1)
ここで、εrは比誘電率、ε0は真空の誘電率、Aはキャパシタの面積、dは被測定材料の層の膜厚である。キャパシタの電気容量Cは、LCRメータ、インピーダンスアナライザ等で測定することができる。
【0035】
誘電体層の、振動供給時に接触して摩擦を生じさせる部分は、最表層として、以下のような材料を用いるのが好ましい。すなわち、最表層の材料としては、ポリマー、非金属物質、金属物質を挙げることができる。ポリマーとしては、上記したものや、メラミン樹脂
を挙げることができる。また、非金属物質では、シリカやアルミナ等の酸化物等が挙げられる。また、金属物質としては、例えば、アルミニウム、鉄、ニッケル、銀、金、白金、銅、クローム、チタン、モリブデン、インジウム金属、これらの金属の合金もなどが挙げられる。
【0036】
(電極)
電極は、高い気導電性を有する材料であれば特に限定されず、好適に用いることができる。電極は、例えば、アルミ、鉄、ニッケル、銀、金、白金、銅、クローム、チタン、モリブデン、インジウム金属であり、それら金属の合金も用いることができる。電極は、高い電気導電性を有する材料であれば、金属でなくとも構わない。電極は、例えば、ドープされたシリコン(Si)等の半導体材料、酸化インジウムスズ(ITO)等の金属酸化物、PEDOT-PSS等の導電性高分子も用いることができる。電極は、軟らかく、変形可能でかつダメージを受けにくい材料であることが好ましく、実用に耐える範囲で薄くすることが好ましく、通常100μm以下、より好ましくは50μm以下、最も好ましくは25μm以下、また下限値としては10μm以上である。このような薄さにすることで、振動応答センサの感度を低下させることなく、かつ電極の破損による動作不良を防ぐことができる。
【0037】
(振動子)
振動子は、検体又はセンサ本体の適宜の位置に振動を与えるものであればよい。例えば、振動子は、センサ本体の接触面と反対側の面に振動を供給する構成を採用するのが好ましい。但し、振動の供給位置は、上記反対側の面に制限されない。振動子は、例えば、検体又はセンサ本体に対する圧力の供給、及び供給の解除を繰り返すことで、検体又はセンサ本体に振動刺激を供給するのが好ましい。
【0038】
さらには、振動子は、検体に接触し押加圧する面の形状と面積を固定する機能を有する。必要に応じて面の形状及び面積を変化させて、検体に振動を与えると、検体から、面の形状及び面積の変化に応じた振動応答がみられる。これより、検体の形状や大きさの情報を得ることができる。
【0039】
また、振動子は、例えば、ロボットハンドの、一定周期のパルスが通電されるソレノイドの鉄心である。また、糸などの紐状物をカムの回転軸に巻き付けておき、紐状物を引くことでカムが回転してカムフォロア(錘など)が振動子として所定の動作(上下動など)を行い、振動を与える構成でもよい。また、モータ(例えばサーボモータ)に、振動子に押圧圧力を伝えるカムを取り付け、モータを正逆回転させることで、把持部などに設けられた振動子を振動させてもよい。さらには、細いノズルなどを用いて高圧の空気又は水などの液体を吹き付け、非接触的に押圧力(振動)を与えるタイプの振動子も用いることができる。
【0040】
(取り出し部)
取り出し部は、センサ本体が備える電極から、振動に対する応答信号を取り出すものである。応答信号が電気信号である場合、導体を用いて構成される。例えば、取り出し部は、電極に電気的に接続されたリード線、端子、コネクタなどである。
【0041】
(ロボットハンド)
本発明の実施例の一つは、ロボットハンドである。ロボットハンドは、例えば、把持部(ハンド)と、把持部に支持部材を介して取り付けられた振動応答センサと、を含む。振動応答センサは、把持部の把持動作において、接触面が被把持物と接触するように、被把持物との接触部分(例えば、ハンド、指の腹部分)に設けられる。
【0042】
(検体の判定装置)
本発明の実施例の一つは、検体の判定装置である。判定装置は、振動応答センサと、振動子による検体に対する圧力の供給及び圧力の供給の解除に応じてレベルが増減する応答信号の波形の形状に基づいて、検体の物性又はセンサ本体の検体に対する接触状態を判定する判定回路とを含む。判定回路は、応答信号の信号レベルに大きさに基づいて、検体の硬さを判定する構成を採用するのが好ましい。また、判定回路は、圧力の供給の解除に伴う応答信号のレベルの減衰時間に基づいて、検体の弾性を判定する、構成を採用するのが好ましい。また、判定回路は、圧力の供給開始時における前記応答信号のレベルの減衰の有無に基づいて、センサの接触面が検体の縁部に接しているかを判定する、構成を採用するのが好ましい。
【0043】
以下、図面に基づいて、本発明の実施の形態を説明する。以下の実施形態の構成は例示であり、本発明は実施形態の構成には限定されない。
【0044】
<振動応答センサ>
図1は、振動応答センサ40の構成例を示す図であり、
図2Aは、振動応答センサ40の平面図であり、
図2Bは、振動応答センサ40の底面図である。
図1は、
図2Aに示すA-A線での切断面を模式的に示す。
【0045】
振動応答センサ40は、センサ本体41と、振動子42と、応答信号の取り出し部としてのリード線43A及び43Bと、を備える。センサ本体41は、帯電部材51Aと、帯電部材51Bと、スペーサ55とを有する。帯電部材51A及び51Bの夫々は、平面矩形のフィルム状を有し、矩形の枠状のスペーサ55を挟んで対向した状態で、スペーサ55に接着、圧着、又は融着されている。これによって、対向する帯電部材51Aと51Bの中央部分には、間隙44(接着されていない部分)が形成されている。
【0046】
帯電部材51Aは、上から順に、支持体(保護層)54A、電極53A及び誘電体層52Aの積層構造を有する。帯電部材51Bは、上から順に、誘電体層52B、電極53B、指支持体(保護層)54Bの積層構造を有している。このように、誘電体層52Aと誘電体層52Bとが対向している。誘電体層52Aと誘電体層52Bとは、振動供給時に接触して摩擦を発生させ、発電する。
【0047】
図1に示す例では、帯電部材51A及び51Bの夫々は、18mm×18mmの矩形状に形成されている。支持体54A及び誘電体層52Aの夫々は、厚さ16μmのポリエチレンテレフタレート(PET)製フィルムを用いて形成されている。電極53A、誘電体層52B、及び電極53Bの夫々は、厚さ100nmのアルミニウム膜であり、PETフィルムに対する蒸着によって形成されている。
【0048】
支持体54Bは、厚さ25μmのPET製フィルムを用いて形成されている。電極53A及び電極53Bは、厚さ100nmのアルミニウムの蒸着膜である。振動子は直径9mmの錘である。なお、誘電体層、電極、スペーサ、及び支持体の厚みや材料は適宜設定可能である。
【0049】
誘電体層、電極、及び支持体の夫々の好ましい膜厚は、それぞれ0.01μmから500μm、0.01μmから1000μm、1μmから1000μmの範囲であり、より好
ましくは、0.05μmから200μm、0.02μmから500μm、5μmから50
0μmの範囲である。
【0050】
センサ本体41の下面(支持体54Bの表面)は、検体60と接触させる接触面58として使用される。振動応答センサ40の使用時では、接触面58全体が検体60に密着す
るように、検体60に接触した状態にされる。但し、検体60のサイズによっては、接触面58の全体が検体60に密着しない場合もある。一方、接触面58の反対側の面である、センサ本体41の上面(支持体54Aの表面)は、振動子42によって押圧される押圧面59として使用される。
【0051】
振動子42は、センサ本体41に振動を供給する部材である。例えば、振動子42は、駆動機構によって、所定の面の一例である押圧面59に対して進退運動(往復運動)し、押圧面59の押圧(圧力の供給及び圧力の供給の解除)を一定周期(ωI)で繰り返す。これによって、振動子42はセンサ本体41に一定周期の振動を与える。振動子42は、上述したように、ソレノイドに対する通電及び通電の解除、回転するカムとカムフォロアとの衝突、高圧の流体の吹きつけなどによって振動を発生させる。
【0052】
図1及び
図2に示す例では、センサ本体41の上面(押圧面59)を振動供給位置としてしている。但し、振動を供給する位置は、押圧面59以外のセンサ本体41の面でもよく、検体60の適宜の位置であってもよい。
【0053】
センサ本体41の接触面58を検体60に密着させた状態で、振動子42が一定周期で振動を供給すると、間隙44を設けて重ねられた帯電部材51Aと帯電部材51Bとが擦れ合う。これによって、帯電部材51A及び帯電部材51Bの一方から他方へ電荷が移動し、電極53Aと電極53Bとの間に電位差が生じる。電極53Aには、リード線43Aが接続されており、電極53Bにはリード線43Bが接続されている。これらのリード線43A、43Bは応答信号の取り出し部である。リード線43A、43Bを用いて、振動の供給に伴う電位差の変動を示す信号(すなわち、振動に対する応答信号)を取り出し、電流電圧測定器(エレクトロメータ)、オシロスコープなどの測定器で応答信号波形を観測することができる。
【0054】
振動応答センサ40では、振動子42によって供給される振動の周期(ωI)が、検体60の固有周波数(ωH)に共振する。これによって、振動応答センサ40から取り出される応答信号中の、固有周波数(ωH)成分(ピーク及び位相)が増幅、変形する。このことは、検体60の硬さ及び弾性などの物性、センサ本体41と検体60との接触状態(検体60の形状や、端面が存在している場合にはその位置)を示す情報を、応答信号の波形から得ることができることを意味する。
【0055】
図3は、検体60の特徴と、圧力を示す信号及び応答信号の特徴を示す図である。
図3には、4つのグラフが示されている。最上段には、検体60が硬い物質である場合における応答信号(シグナル)波形が図示されている。上から2番目の段には、検体60が柔らかい物質である場合における応答信号(シグナル)の波形が図示されている。上から3番目の段には、検体60が低弾性の物質である場合における応答信号(シグナル)の波形が図示されている。最下段には、検体60の幅が、接触面58の幅より短い場合を示す。
【0056】
波形を示すグラフの縦軸は信号強度(レベル)を示し、横軸は時間を示す。各シグナルを得るのに用いた圧力供給方法は共通である。圧力は、ゼロ状態から一定速度で増加してピークに達し、ピークがしばらく経過すると、一定速度で減衰するように供給される。このため、圧力波形は、等脚台形状となる。なお、
図3では、圧力の増減を示す波形の上に応答信号の波形を示しているが、圧力供給がない状況では電位差0を示す。
【0057】
検体60のサイズが同じであるとの仮定において、検体60が硬い物質であれば、応答信号のピーク(増加量)は小さく、柔らかい物質であれば、応答信号のピークは大きくなる。検体60が硬い程、検体60の固有周波数(ωH)の、振動周波数(ωI)に対する共振幅が低いため、帯電部材51Aと帯電部材51Bとが擦れ合う部位の面積(摩擦面積
)の変化が小さくなると考えられるからである。逆に、検体60が柔らかい程、固有周波数(ωH)の、振動周波数(ωI)に対する共振幅が高くなり、摩擦面積の変化が大きくなると考えられるからである。
【0058】
検体60の弾性が低い場合、応答信号の減衰の速度が、圧力の減衰の速度に比べて小さくなり、応答信号中の、圧力の減衰に対応する部分に遅延が生じる。これは、応答信号中の固有周波数成分に位相のずれが生じているからである。
【0059】
また、検体60の幅が接触面58の幅より短く、接触面58が検体60の縁部と接触するような状況となることがある。例えば、検体が樹脂製チューブの場合などである。この場合、振動の供給時にセンサ本体41に歪みが生じるため、応答信号に反転部分が出る。例えば、圧力の増加時に、応答信号のレベルが負の方向に低下したり、圧力の減衰時に応答信号のレベルが正の方向に増加したりする。このような信号が得られることを利用して、位置情報として使用することもできる。
【0060】
以上より、圧力の供給に伴う応答信号のレベル(信号強度)の増加量を測定することで、検体60の硬さを調べることができる。複数種類の検体60について、検体60の種類と増加量との相関関係を予め求めておくことで、未知の検体が複数種類の検体のいずれであるかを判定することも可能となる。
【0061】
また、圧力の減衰に対する応答信号の減衰の遅延時間を測定することで、検体60の弾性を調べることができる。複数種類の検体60について、検体60の種類と遅延時間との相関関係を示す数値を予め求めておくことで、未知の検体が複数種類の検体のいずれであるかを判定することも可能となる。
【0062】
また、信号の反転の有無を調べることで、接触面58と検体60との接触状態、或いは検体60の形状を調べることができる。検体60の種類が制限される環境で振動応答センサ40が使用される場合には、信号に反転(圧力増加に対して応答信号低下、又はその逆)が認められる場合に、検体60の種類が特定の物質乃至物体であると判定できる。
【0063】
振動応答センサ40は、二つの帯電部材51A,51Bがスペーサ55を挟んで重ねられた(対向させた)簡易な構成であり、摩擦発電によって応答信号を出力するため、応答信号の検出に発光素子や電源を要しない。このような簡易な構成で、検体60の物性や形状を調べることができ、波形の特徴と物性や形状のとの相関を示す数値(特徴量)を、実験及びシミュレーションの少なくとも一方によって予め求めて記憶しておき、検体60の応答信号波形が示す特徴量と比較して、検体60の物性や形状を測定したり、検体60の種類を判定したりすることができる。
【0064】
<ロボットハンド>
図4は、振動応答センサを適用したロボットハンド(把持部)1の一例を示す。
図5は、把持部1に取り付けられた振動応答センサ40を示す。
図4において、把持部1は、複数の指部2と、指部2に接続されたアクチュエータ3と、アクチュエータ3と接続された腕部(アーム)4とを備える。
図4に示す例では、2つの指部2(2A及び2B)が例示されている。但し、指部2の本数は2以上であればよく、例えば、2~6本とされる。但し上限に制限はない。
【0065】
図4に示す例では、2つの指部2A及び2Bが反対方向から検体(把持対象物)60を
挟むことで、検体60を把持することができる。本実施形態では、指部2A及び2Bの夫々の内側は、弾力性を有する部材で形成されている。また、指部2の外装は軟質性を有する。但し、弾力性を有する部材や軟質性の採用は必須ではない。指部2は、複数の関節1
1を有しており、屈曲可能である。アクチュエータ3により指部2A及び2Bを駆動して、指部2A及び2Bが検体60を把持する。このとき、接触面58全体が密着するように、検体60が把持される。
【0066】
アクチュエータ3は、張力制御糸16を用いた駆動機構を有する。ばね17は、指部2A及び2Bの夫々を後方から押す方向(図中の矢印で示すB1方向)に付勢する張力が付与され、指部2A及び2Bの夫々の先端部の間の距離は大きくなる(指部2A及び2BがB方向に開く)。張力制御糸16が矢印で示すA1方向に引っ張られ、牽引力がばね17の付勢力に打ち勝ってばね17が縮むと、指部2A及び2Bの夫々の先端部が接近し(指部2A及び2Bが
図4の矢印A方向に閉じて)、検体60を把持する。把持部1及び腕部4は垂直方向及び水平方向(3軸座標系のXYZ方向)に移動可能であり、鉛直軸に対する傾きを変更することができる。
【0067】
振動応答センサ40は、
図1及び
図2に示した構造と同じ構造を有しており、上側の指部2Aの内側に、支持部材13、13を介して取り付けられている。振動応答センサ40のセンサ本体41は、振動の非供給時には、振動子42と離間した状態で、支持部材13、13によって支持されている。支持部材13、13の上端は、指部2Aに接続されており、下端はスペーサ55に取り付けられている。
【0068】
指部2A及び2Bが検体(把持対象物)60を把持する際、張力制御糸16が矢印A1方向へ引っ張り、指部2A及び2Bを閉じる。このとき、振動応答センサ40の接触面58が検体60に密着した状態になる。さらに、張力制御糸16が引っ張られると、振動子15が上下方向に往復運動を行い、押圧面59を一定周期で押圧し、次いで張力制御糸16を緩め振動子15の押圧を解除する(圧力の供給及び供給の解除を行う)ことを繰り返すことで振動子15に振動を与える。
【0069】
振動子15の上下方向の往復運動は、例えば、以下のような構成によって行われる。すなわち、振動子42がカムフォロア(従動節)となっており、振動子42の上方には、カムが配置されている。カムの回転軸に張力制御糸16が巻き付けられており、張力制御糸16が牽引されるとカムが回転する。カムは、一回転する度に振動子42の上端(一端)と当接し、この当接によって振動子42が下方に移動する。このとき、振動子42の下端(他端)が押圧面59を押圧する。振動子42は、カムとの接触が解除されると、バネの収縮によって上方に移動する。但し、振動子42を往復運動させる機構は、上記例に制限されない。
【0070】
なお、
図2に示す構成の代わりに、振動子42が指部2Bの上面から振動により出没する構成を採用し、検体60に対して下方から直接に振動を与える構成が採用されてもよい。
【0071】
振動子42による圧力刺激によって、振動応答センサ40と検体60とが共振し、帯電部材51Aと51Bとの摩擦による電位差が、振動に対する応答信号として、電極53A及び53Bから、リード線43A及び43Bによって取り出される(検出される)。
【0072】
図5に示す例では、電極53Aに接続されたリード線43A、及び電極53Bに接続されたリード線43Bは、支持部材13A、13Bに沿って配置され、指部2A内を通って指部2Aの上面から引き出さされている。リード線43A、43Bは、例えば、エレクトロメータに接続されて、エレクトロメータの表示部に表示された応答信号波形が観察される。
【0073】
把持部1に設ける振動応答センサ40の個数は1つに制限されない。複数の振動応答セ
ンサ40を設ける場合には、指部2が検体60に接触したときの振動応答変化をより詳細に検知することができる。振動応答センサ40は、指部2の、振動応答センサ40がなければ指部2が検体60と最初に接触する位置に支持部材13、13を介して取り付けられるのが好ましい。
【0074】
サイズの異なる複数種類の把持対象物の把持が想定される場合では、把持部1の、検体60を把持する部分は検体60毎に異なると考えられる。このため、複数の振動応答センサ40が指部2に設けられてもよい。指部2の振動応答センサ40を取り付ける部分は、指部2の開閉によって変形しないか、変形の度合いが小さいのが好ましい。
【0075】
検体60との接触面58を有する支持体54Bは、誘電体層52Bにダメージを与えないための保護層として作用する。支持体54Bは、振動応答センサ40の感度を高くするために、変形が容易で、かつ摩擦等の起こりにくい部材を用いることが好ましい。電極53A、53Bは、変形が容易で、かつ変形により破損することの少ない材料であることが好ましい。
【0076】
誘電体層52Aと誘電体層52Bとの一方は、電荷を溜め易い材料とし、他方は溜めにくい材料とする。また、誘電体層52Aと誘電体層52Bとは、同様の特性を有する材料を用いてもよい。スペーサ55や支持体54Aを指部2に接着してセンサ本体41を指部2に取り付ける場合、支持体54Aは、破損等が起こりにくく、かつ接着剤との親和性の高い材料を使用することが好ましい。電極53A,53Bは、変形が容易で、かつ変形により破損することの少ない材料であることが好ましい。
【0077】
帯電部材51Aと帯電部材51Bとは、摩擦発電を行う際に、それぞれ正負を帯びた帯電部材となる。この場合、電極53Aと電極53Bとのいずれが正負になるかはどちらでもよい。例えば、電極53Aが正に帯電し、電極53Bが負に帯電してもよい。逆に、電極53Aが負に帯電し、電極53Bが正に帯電してもよい。帯電部材51A及び51B、振動子42の寸法は上述した通りであり、接触面58の寸法は、18mm×18mmである。
【0078】
(振動応答センサの波形)
帯電センサをセンサ本体41に用いた振動応答センサを使用することの利点は、ピエゾ効果を利用したセンサに比べ、はるかに弱い力を検知できること、また、接触した物質の物性や形状変形のしやすさによって、得られる波形が異なることである。
【0079】
図6は、圧力波形と、圧力供給によって得られる応答信号の例を示す図である。
図6において、グラフ(A)は、振動応答センサ40によって供給される圧力強度を示す電圧の時間的変化を示す。圧力は、0から一定速度で増加し、所定時間ピーク値を保ち、増加と同様の速度で減衰して0になる。振動応答センサ40は、
図1及び2を用いて説明した構成を有している。
【0080】
グラフ(B)、(C)及び(D)は、複数種類の検体について、振動応答センサ40を接触させてグラフ(A)に示す圧力を供給した場合における応答信号の信号強度(レベル)を示す電圧の時間的変化を示す。グラフ(B)に係る検体は、柔らかいポリエチレンスポンジ(ゴム硬度アスカーC45 [(株)ミスミグループ、帯電防止ポリエチレンスポンジ(LBAPC10)]、膜圧10mm、縦30mm、横40mm)である。グラフ(C)に係る検体は、硬いシリコーンゴム(ゴム硬度A50、タイガースポリマー(株)社製“硬質シリコーンゴムシート”)である。グラフ(D)の検体は、反発性中空ポリエチレンチューブ((株)ハギテックVERSAFIT V2 7.0/3.50)である。グラフ(E)に係る検体は、空気で厚さ70mm、縦100mm、横150mmに膨らました非反発性の50μm厚のポリエチ
レン袋(アソー社製)である。
【0081】
グラフ(B)に示す応答信号波形では、グラフ(A)の振動動圧力波形に近似する応答信号の波形が得られた。これに対し、グラフ(C)では、グラフ(B)に比べて信号強度の弱い(レベルの低い)応答信号が観測された。
【0082】
刺激振動周波数(ω)領域において、柔らかいスポンジでは刺激振動(I(サーカムフ
レックス:フーリエ級数を表す)(ω))に対し、振動応答センサ40の応答(センサの応答関数H(サーカムフレックス:フーリエ級数を表す)(ω))と把持対象物応答(把持
対象物応答関数G(サーカムフレックス:フーリエ級数を表す)(ω))との積)の強度
が高い。このため、圧力波形に近似した応答信号(S(サーカムフレックス:フーリエ級
数を表す)(ω))(S(サーカムフレックス:フーリエ級数を表す)(ω)=I(サー
カムフレックス:フーリエ級数を表す)(ω)x センサの応答関数H(サーカムフレックス:フーリエ級数を表す)(ω)x 把持対象物応答関数G(サーカムフレックス:フーリエ級数を表す)(ω))が得られた。それに対して、硬質シリコーンゴムではH(サーカム
フレックス:フーリエ級数を表す)(ω)とG(サーカムフレックス:フーリエ級数を表す
)(ω)の強度が低く共振強度が低いために信号強度が低くなったと考えられる。このことから、振動センサ40の応答信号の信号強度と把持対象物の硬さとの相関が得られることが明らかになった。
【0083】
グラフ(D)は、全体として、グラフ(A)の圧力波形に近似した波形を示す。しかし、加圧開始直後に、信号レベルが一時的に負電圧方向へ低下し、その後正電圧方向へ増加する、負方向を向いた小さなピーク形状が生じている。また、加圧の停止開始直後に、一時的に正電圧に増加しそれから負電圧へ減少する、正方向の小さなピーク形状が発生している。
【0084】
加圧開始直後での負方向ピークは、以下の理由によって生じたと考えられる。すなわち、中空ポリエチレンチューブの径(7mm)が振動応答センサ40の接触面58のサイズよ
り小さい。このため、加圧によって振動応答センサ40が折れるように変形して高調波応答成分が生じ、これによって高周波成分の振動応答の遅延(ピークの位相シフト)が進み位相が180度を超えたために反転したものと考えられる。また、加圧停止時直後の正方向
の小ピークの発生も同様の理由と考えられる。このことから、応答信号中に発生する反転ピークと把持対象物の形状との相関が得られることが明らかになった。
【0085】
グラフ(E)では、グラフ(A)の圧力波形に近似した台形を示し、振動応答センサ40と検体60との良好な共振が認められる。しかし、圧力の供給(加圧)を止めた後の減衰の波形について、圧力波形との変化が見られた。すなわち、弾性(反発性)のないポリエチレン袋の場合は、減衰時間の遅延(圧力の減衰よりも遅い減衰)が見られた。この結果は、検体の弾性が低い程、応答波形の減衰に要する時間が長くなることを示し、遅延時間と検体の弾性との間に相関が得られることが明らかになった。
【0086】
以上これらを利用して、振動応答センサに接触する把持対象物の硬さや形状、或いは端部(エッジ)の有無を判断することができる。また、振動子42の駆動速度制御で振動子の押圧の加圧と徐圧の繰り返し刺激振動周波数を変えることにより、より詳細にデータが得られ、複数の波形を得ることができ、検体60の硬さをより詳細に判定することができる。また、把持部1は、従来技術のような多数のセンサを設けることによる多数の配線が不要であり、多数の配線を考慮しての強度向上も不要である。
【0087】
<判定装置>
図7は、実施形態に係る検体の判定装置の構成例を示すブロック図である。判定装置2
00は、バス210を介して相互に接続された、プロセッサ201、記憶装置202、通信インターフェース(通信IF)203、入力装置204、ディスプレイ205を含む。
【0088】
バス210は、モータ206に接続されており、モータ206は、把持部1を含むマニピュレータ207に接続されている。把持部1には振動応答センサ40が取り付けられており、振動応答センサ40は、リード線43A及び43Bを介してエレクトロメータ208に接続されている。
【0089】
判定装置200として、汎用又は専用のコンピュータを適用することができる。記憶装置202は、主記憶装置と、補助記憶装置とを含む。主記憶装置は、プログラムやデータの記憶領域、プロセッサ201の作業領域、通信データのバッファ領域として使用される。補助記憶装置は、プログラムやデータの記憶領域として使用される。主記憶装置は、RAM(Random Access Memory)又はRAMとROM(Read Only Memory)との組み合わせである。補助記憶装置は、ハードディスク、SSD(Solid State Drive)、EEPRO
Mなどである。
【0090】
通信IF203は、有線ネットワーク又は無線ネットワークを経由してサーバや他の装置等との情報の通信(入出力)を行うインターフェースである。通信IF203は、例えば、ネットワークインタフェースカード、無線通信モジュール(回路チップ)などである。入力装置204は、キー、ボタン、ポインティングデバイス、タッチパネルなどであり、判定装置にデータや情報を入力するために使用される。ディスプレイ205は、データや情報の表示に使用される。
【0091】
プロセッサ201は、例えばCPU(Central Processing Unit)であり、記憶装置2
02に記憶されたプログラムを実行することによって、ロボットハンド(把持部1)の動作を制御する制御装置として動作する。プロセッサ201は、通信IF203を介して受信される外部装置からの命令、把持部1の操作者等が入力装置204を用いて入力した命令、又はプログラムの実行によって生成される命令によって様々な処理を行う。
【0092】
例えば、プロセッサ201は、把持部1の位置、傾き、指部2の開閉などを制御するモータ206の制御量(回転量)を計算し、モータ206に制御量を示す制御信号を供給する。モータ206は、マニピュレータ207が備える複数の関節に対応する複数のステッピングモータを含み、プロセッサ201から与えられた制御量に従った量だけ、正方向又は逆方向に回転する。これによって、把持部1の位置、傾き、指部2の開閉などが行われる。
【0093】
モータ206の一つは、正転又は逆転によって、張力制御糸16の巻き取り又は繰り出しを、プロセッサ201から与えられる制御信号(制御量だけ正転又は回転を行う命令)に従って行う。張力制御糸16の繰り出しによって指部2A、2Bが開き、巻き取りによって指部2A、2Bが閉じる。
【0094】
把持部1には振動応答センサ40が取り付けられており、振動応答センサ40は、リード線43A及び43Bを介してエレクトロメータ208に接続されている。把持部1が検体60を把持し、接触面58が検体60に密着した状態で、モータ206の制御によって振動子を振動させると、振動応答センサ40に摩擦発電による電位差が生じる。この電位差によって生じる電流又は電流の時間的変化を示す応答信号がリード線43A、43Bを通じてエレクトロメータ208に入力される。
【0095】
エレクトロメータ208は、応答信号(圧力供給及び供給の解除の繰り返しに伴う応答信号(電流又は電圧)の時間的変化)の測定を行い、エレクトロメータ208が備えるデ
ィスプレイに、
図3や
図6を用いて示したような、応答信号を示す電流又は電圧波形を表示する。波形の観察によって、検体60の硬さ、弾性、形状などを目視判定することができる。
【0096】
(処理例1)
振動応答センサ40から出力される応答信号は、判定装置200が有する増幅器によって増幅され、AD変換器によってディジタル信号に変換された後、バス210を介してプロセッサ201に入力される。プロセッサ201に入力されるディジタル信号は、振動子42による振動、すなわち、圧力の供給及び供給の解除に伴う振動応答センサ40からの出力信号(電流または電圧の時間的変化(波形))を示す。電圧の波形は、電流の波形よりも大きく変化するため、電圧の波形を用いることが好ましい。
【0097】
プロセッサ201は、記憶装置202に予め記憶された各種の波形に関するデータと、振動応答センサ40から取得した波形とを比較して、把持部1によって把持された検体60の硬さを算出(決定)する。記憶装置202には、判定用情報として、検体60の硬さに応じた波形に関するデータが記憶されている。このため、プロセッサ201は、記憶装置202に記憶された波形に関するデータと、振動応答センサ40から取得した波形(「測定値」という)とを比較することで、把持部1によって把持された検体60の硬さを算出(判定)することができる。
【0098】
図8は、判定用情報の一例を示すテーブルである。テーブルは、硬さと、閾値と、検体種別とを示す情報を含む1以上のエントリ(レコード)からなる。硬さは、何らかの物理量でも或る対象物との比較における相対的な硬さを示す値でもよい。例えば、複数種類の検体間での硬さを示す相対値であってもよい。
図8に示すテーブルの例では、硬さの異なる検体A、B及びCに関する硬さと、判定用閾値との関連が、レコード毎に記録されている。硬度“1”が最も柔らかく、値が大きくなるほど硬さが増す。閾値は、TH1<TH2<TH3である。
【0099】
図9は、プロセッサ201の硬さ及び検体種別の判定処理の例を示すフローチャートである。ステップS01では、プロセッサ201は、或る検体60を把持しして振動を供給したときに振動応答センサ40から出力される応答信号の測定値を取得する。測定値は、例えば、圧力の供給による電圧レベルの上昇量(増加量)を示す値であるが、これ以外でもよい。
【0100】
ステップS02では、プロセッサ201は、測定値が所定の閾値範囲に属しているか否かを判定する。ステップS02における閾値範囲は、“0<測定値=<閾値TH1”である。測定値が閾値範囲に入ると判定される場合(S02のYES)、プロセッサ201は、検体60の硬さが“1” であり、且つ検体60が検体“A”であると判定する。ステップS02にて、測定値が閾値範囲に入らないと判定される場合(S02のNO)、処理がステップS03に進む。
【0101】
ステップS03では、プロセッサ201は、測定値が所定の閾値範囲に属しているか否かを判定する。ステップS03における閾値範囲は、“TH1<測定値=<閾値TH2”である。測定値が閾値範囲に入ると判定される場合(S03のYES)、プロセッサ201は、検体60の硬さが“2”であり、且つ検体60が検体“B”であると判定する。測定値が閾値範囲に入らないと判定される場合(S03のNO)、プロセッサ201は、検体60の硬さが“3”であり、且つ検体60が検体“C”であると判定する。
【0102】
また、プロセッサ201は、把持部1によって把持された検体60の硬さに応じて、把持部1の把持状態を制御する。プロセッサ201は、把持部1の検体60の把持状態にお
ける振動応答を制御することにより、把持部1の把持状態を制御する。例えば、プロセッサ201は、指部2の駆動量を制御することにより、把持部1が検体60を把持するときの検体60に加わる振動応答を制御してもよい。
【0103】
例えば、検体60の硬さに応じた波形と、検体60の硬さに応じた制御情報とを対応付けて、記憶装置202に記憶してもよい。制御情報は、把持部1の把持状態を制御する情報であり、例えば、指部2の駆動量に関する情報である。プロセッサ201は、振動応答センサ40から取得した波形に基づいて記憶装置202を参照し、記憶装置202から制御情報を取得して把持部1の把持状態を制御してもよい。具体的には、対象がやわらかいと判断した場合には、硬いと判断した場合に比べ、巻取り量を大きくすることにより確実に保持することもできる。またこの大きくする巻取り量は、対象物の柔らかさに加え、破損しやすさ等も考慮して、適宜巻取り量を増やせばよい。更に、プロセッサ201は、検体60又は振動応答センサ40から取得した波形に基づいて、把持部1の移動(位置)や傾きを制御してもよい。
【0104】
検体60の硬さに基づく把持部1の把持状態(張力制御糸16の巻き取り量)の制御は、例えば、以下のようにして行うことができる。
[1]シグナル強度と硬さの相関を用いた閾値の設定例と検体の硬さ分類方法
検体の硬さは応答信号(シグナル)の強度と相関を有する。例えば、検体が柔らかい場合にはシグナル強度は大きくなり(
図6のグラフ(B)参照)、検体が硬い場合にはシグナル強度は小さくなる(
図6のグラフ(C)参照)。
【0105】
上記を考慮し、例えば以下の設定を行えば、
図8に示した表及び
図9のアルゴリズムを用いて、プロセッサ201は、検体A,B,及びCの硬さ((柔らかい)A<B<C(硬い))の分類を行うことができる。
・グラフ(B)におけるシグナル強度をグラフ(B)のシグナル強度で割った値を第1の閾値(TH1)に設定する。
・グラフ(B)におけるのシグナル強度をグラフ(C)のシグナル強度で割った値を第2の閾値(TH2)に設定する。
・第2の閾値(TH)の2倍を第3の閾値(TH3)に設定する。
【0106】
[2]糸(ワイヤー)の巻き取り量の制御
振動応答センシングにより、検体の分類(検体がA,B及びCのいずれであるかの評価)を行ったあとは、検体を把持するために張力制御糸16(ワイヤー)の巻き取りを行う。その際、検体の評価がA(柔らかい検体)であれば、検体の破損を回避するため、張力制御糸16の巻き取り量の限界値(最大値)を基準値より小さくして、検体が弱い力で把持されるように巻き取り量を制御する。逆に、検体の評価がC(硬い検体)である場合には、巻き取り量の限界値を基準値より大きくし、検体が強い力で把持されるように巻き取り量を制御する。なお、検体がBである場合の巻き取り量の限界値を基準値に設定してもよく、検体がBである場合と無関係に基準値を決定してもよい。
【0107】
なお、張力制御糸16を用いる構成以外に、誘電エラストマーの変形張力、糸張力、空気圧又は液圧(例えば油圧)による駆動機構によって、指部2を駆動してもよい。誘電エラストマーの変形張力、糸張力、空気圧又は液圧による駆動機構は、ギア等の複雑な機構を使用することなく、把持部1が検体60を把持する振動応答を制御することができる。また、空誘電エラストマーの変形張力、糸張力、気圧又は液圧による駆動機構は、磁場を発生しないため、他の機器に影響を与えずに、把持部1を制御することができる。
【0108】
例えば、プロセッサ201は、振動応答センサ40から取得した波形に基づいて、把持部1によって把持された検体60の良品又は不良品を判定することができる。記憶装置2
02には、検体60の硬さに応じた波形に関するデータと、検体60の良品又は不良品を示すデータとが対応付けて記憶されている。この波形データは、刺激振動部の刺激振動面(振動子42の押圧面)の大きさ(∝ 1/(空間周波数(k)))と振動周波数(ω)を
それぞれx軸及びy軸にとり、そのx,yに対して振動応答センサ40の実時間波形をフーリエ変換して得られるピーク時の信号強度と、そのピークの位相とをプロットして、2次元的なデータとして記録することも可能である。
【0109】
プロセッサ201は、検体60の硬さと形状に応じた波形に関するデータと、振動応答センサ40から取得した波形とを比較して、把持部1によって把持された検体60が良品又は不良品であるかを判定してもよい。
【0110】
上述したように、応答信号の強度から検体の硬さが分かる。検体が例えばリンゴである場合、鮮度が良好であれば硬く(良品)、鮮度の低下(腐敗)が進むと柔らかくなる(不良品)。そこで、以下の構成を採用すれば、検体(リンゴ)の良不良を判定できる。
・振動応答センサを用いて、不良品についての硬さを調べた場合の応答信号の強度(強度大、シグナル強度B’とする)と、良品についての硬さを調べた場合の応答信号の強度(強度小、シグナル強度C’とする)とを測定する。
・シグナル強度C'をシグナル強度B'で割った値を検体の良否を判定する閾値(TH1)に設定し、プロセッサ201は
図9のS01及びS02の処理を検体に対して行う。
・S02の処理において、測定値(シグナル強度)が0より大きく閾値TH1より小さい場合には、検体は良品のクラスに分類される(良品と判定される)。そうでない場合には、検体は不良品のクラスに分類される(不良品と判定される)。
【0111】
これにより、例えば、検体60が果物である場合、プロセッサ201は果物の選別を行うことができる。また、例えば、品質の良くない果物をジュース用に分別し、品質の良い果物を生食用に分別することができる。更に、プロセッサ201は、AI(Artificial Intelligence)やディープラーニングと組み合わせて、振動応答センサ40から取得した
波形に基づいて、特定の果物のダメージの状態を判定してもよい。
【0112】
なお、複数の指部2のそれぞれを交換可能にしてもよいし、指部2及びアクチュエータ3を交換可能にしてもよい。誘電エラストマーの変形張力、糸張力、空気圧による駆動機構の場合、指部2及びアクチュエータ3を交換することが容易である。腕部4に把持部1を交換可能に取り付けてもよい。また、マニピュレータ207にカメラ等の撮像装置を設けることにより、撮像装置によって検体60を撮像し、プロセッサ201が検体60の種類を特定してもよい。
【0113】
以上説明したように、プロセッサ201は、振動応答センサ40に加わる振動応答に応じた信号に基づいて把持部1の把持状態を制御する。これにより、検体60を適切に把持することができる。例えば、プロセッサ201は、検体60の硬さに応じて、把持部1の把持状態を制御することにより、検体60を適切に把持することができる。
【0114】
(処理例2)
振動応答センサ40の応答信号、すなわち、圧力の供給及び供給の解除に伴う電流または電圧の時間的変化を示す情報(測定値)は、判定装置200に入力されて、記憶装置202に記憶される。記憶装置202には、把持部1の検体60として扱う複数種類の検体に関する、判定用情報が記憶されている。判定用情報は、予め記憶装置に記憶された判定用情報の読み出しによって取得しても、判定装置200に接続された外部記憶装置から読み出し、或いは適時の通信によって取得してもよい。
【0115】
判定用情報は、圧力の供給及びその解除に伴うレベルの変化量(レベル変動の大きさ)
に関して1以上の閾値を含んでもよい。この閾値と変化量の測定値とを比較して、閾値より大きい検体と、閾値より小さい検体とを異なる種類と判定できる。
【0116】
また、判定用情報は、応答信号の減衰時間(圧力供給が解除(停止)されてから応答信号の値が0になるまでの時間)に関して1以上の閾値を含んでもよい。このような閾値と、減衰時間の測定値との比較によって、検体の種類を判定することができる。
【0117】
また、応答信号(判定用数値)について、圧力の増加期間におけるレベルの上昇、圧力の減衰期間におけるレベルの低下の少なくとも一方が認められるか否かによって、検体の種類を判定することもできる。
【0118】
このように、判定装置200は、検体に関する応答信号の測定値と判定用情報とを用いて、検体の同定を行うことができる。また、比較対象物に対する、相対的な物性(硬度や弾性)を測定することができる。すなわち、異種物体間での比較、或いは形状の異なる同種間での比較によって、把持された検体の相対的な物性を測定することができる。また、比較対象がなくても、何らかの単位で、検体の硬さや弾性(復帰力)を示すこともできる。さらに、信号中の位相反転箇所の有無を判定することで、把持された検体の形状や接触状態を判定することもできる。
【0119】
図10は、プロセッサ201による、検体の判定処理の例を示すフローチャートである。
図10の処理は、種類(物性や形状)の異なる検体a~eの識別(同定)を行う処理である。ステップS101では、プロセッサ201は、検体に関する応答信号の測定値を取得する。測定値は、エレクトロメータ208からリアルタイムに供給されるものでも、記憶装置202から所定のタイミングで読み出されるものでもよい。
【0120】
ステップS102では、プロセッサ201は、波形の解析によって、1回の圧力供給及びその解除に対応する応答信号(電圧変化)に関して、圧力の増加期間、又は減衰期間に対応する応答信号の期間における位相の反転の有無を判定する。位相反転があると判定される場合には(S102のYES)、識別対象の検体は検体cであると判定する。これに対し、位相反転がないと判定される場合には(S102のNO)、処理がステップS103に進む。
【0121】
ステップS103では、プロセッサ201は、波形の解析によって、1回の圧力供給及びその解除に対応する応答信号(電圧変化)に関して、圧力の減衰期間に対応する応答信号の減衰時間が閾値より長い否かを判定する。減衰時間が閾値より長い(遅延時間がある)場合には、処理がステップS104に進み、そうでないと判定される場合には、処理がステップS105に進む。
【0122】
ステップS104では、プロセッサ201は、遅延時間の長さが閾値以上か否かを判定する。遅延時間の長さが閾値以上と判定される場合(S104のYES)、検体は検体eであると判定され、そうでない場合には(S104のNO)、検体は検体dであると判定する。
【0123】
ステップS105では、プロセッサ201は、波形の解析によって、1回の圧力供給及びその解除に対応する応答信号(電圧変化)に関して、応答信号のレベル(増加量)が閾値より大きいか否かを判定する。レベルが閾値より大きいと判定される場合には(S105のYES)、検体60は検体bであると判定する。これに対し、レベルが閾値以下の場合には(S105のNO)、検体は検体aと判定する。このようにして、振動応答センサ40を接触させた検体60が検体a~eのいずれであるかを判定することができる。
【0124】
なお、プロセッサ201は、「判定回路」の一例であり、プロセッサ201が行う判定回路としての処理は、複数のCPUや、複数のコアを有するCPU、DSP、GPUなどのCPU以外のプロセッサによって行われてもよい。また、判定回路としての処理は、ASIC、やFPGAなどの集積回路、プロセッサと集積回路の組み合わせ(SoC(System-on-a-Chip)など)によって行われてもよい。上述した実施形態にて説明した構成は、発明の目的を逸脱しない範囲で適宜組み合わせることができる。
【符号の説明】
【0125】
1・・・把持部
40・・・振動応答センサ
41・・・センサ本体
42・・・振動子
43・・・取り出し部
44・・・間隙
51A,51B・・・帯電部材(帯電体)
52A、52B・・・誘電体層
53A、53B・・・電極
58・・・接触面
59・・・押圧面
60・・・検体
200・・・判定回路
201・・・プロセッサ
202・・・記憶装置