IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アプライド マテリアルズ インコーポレイテッドの特許一覧

特許7483858再構成可能なFINFETベースの人工ニューロン及びシナプスデバイス
<>
  • 特許-再構成可能なFINFETベースの人工ニューロン及びシナプスデバイス 図1
  • 特許-再構成可能なFINFETベースの人工ニューロン及びシナプスデバイス 図2
  • 特許-再構成可能なFINFETベースの人工ニューロン及びシナプスデバイス 図3
  • 特許-再構成可能なFINFETベースの人工ニューロン及びシナプスデバイス 図4
  • 特許-再構成可能なFINFETベースの人工ニューロン及びシナプスデバイス 図5
  • 特許-再構成可能なFINFETベースの人工ニューロン及びシナプスデバイス 図6
  • 特許-再構成可能なFINFETベースの人工ニューロン及びシナプスデバイス 図7
  • 特許-再構成可能なFINFETベースの人工ニューロン及びシナプスデバイス 図8
  • 特許-再構成可能なFINFETベースの人工ニューロン及びシナプスデバイス 図9
  • 特許-再構成可能なFINFETベースの人工ニューロン及びシナプスデバイス 図10
  • 特許-再構成可能なFINFETベースの人工ニューロン及びシナプスデバイス 図11
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-07
(45)【発行日】2024-05-15
(54)【発明の名称】再構成可能なFINFETベースの人工ニューロン及びシナプスデバイス
(51)【国際特許分類】
   H10B 51/30 20230101AFI20240508BHJP
   G06G 7/60 20060101ALI20240508BHJP
   G06N 3/063 20230101ALI20240508BHJP
   H01L 21/8234 20060101ALI20240508BHJP
   H01L 27/088 20060101ALI20240508BHJP
   H10B 51/40 20230101ALI20240508BHJP
【FI】
H10B51/30
G06G7/60
G06N3/063
H01L27/088 B
H01L27/088 C
H01L27/088 H
H10B51/40
【請求項の数】 14
(21)【出願番号】P 2022506366
(86)(22)【出願日】2020-07-28
(65)【公表番号】
(43)【公表日】2022-10-03
(86)【国際出願番号】 US2020043796
(87)【国際公開番号】W WO2021025891
(87)【国際公開日】2021-02-11
【審査請求日】2022-03-29
(31)【優先権主張番号】16/530,714
(32)【優先日】2019-08-02
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】390040660
【氏名又は名称】アプライド マテリアルズ インコーポレイテッド
【氏名又は名称原語表記】APPLIED MATERIALS,INCORPORATED
【住所又は居所原語表記】3050 Bowers Avenue Santa Clara CA 95054 U.S.A.
(74)【代理人】
【識別番号】110002077
【氏名又は名称】園田・小林弁理士法人
(72)【発明者】
【氏名】ペシッチ, ミラン
【審査官】小山 満
(56)【参考文献】
【文献】国際公開第2019/066959(WO,A1)
【文献】特開2015-072610(JP,A)
【文献】米国特許出願公開第2014/0199849(US,A1)
【文献】米国特許出願公開第2013/0141963(US,A1)
【文献】特開2001-230326(JP,A)
【文献】特開2007-266209(JP,A)
【文献】米国特許出願公開第2015/0100532(US,A1)
【文献】米国特許出願公開第2001/0015450(US,A1)
【文献】米国特許出願公開第2007/0247906(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H10B 51/30
G06G 7/60
G06N 3/063
H01L 21/8234
H01L 27/088
H10B 51/40
(57)【特許請求の範囲】
【請求項1】
半導体デバイスであって、前記半導体デバイス上に人工ニューロン及びシナプスを共に実装し、前記半導体デバイスは、
前記半導体デバイス上に形成された複数のフィンと、
前記複数のフィンの周囲に形成され、複数の強誘電体フィン電界効果トランジスタ(強誘電体FinFET)を形成する複数のゲートと
を備え、
前記複数の強誘電体FinFETは、1又は複数の人工シナプスと1又は複数の人工ニューロンとを含み、
前記1又は複数の人工シナプスの各々は、前記複数のゲートのうちの、互いに接続された2つ又はそれ以上のゲートを含み、
前記1又は複数の人工ニューロンの各々は、前記複数のゲートのうちの単一のゲートのみを含む、半導体デバイス。
【請求項2】
前記複数のゲート間に1又は複数の接続部を更に備え、前記1又は複数の接続部は、1又は複数の人工シナプス及び1又は複数の人工ニューロンのネットワークを形成し、前記複数のゲート間の前記1又は複数の接続部は、ゲート堆積後に直接実装される、請求項1に記載の半導体デバイス。
【請求項3】
前記複数のゲート間に1又は複数の接続部を更に備え、前記1又は複数の接続部は、1又は複数の人工シナプス及び1又は複数の人工ニューロンのネットワークを形成し、前記複数のゲート間の前記1又は複数の接続部は、前記半導体デバイスの金属層に実装される、請求項1に記載の半導体デバイス。
【請求項4】
前記複数のフィンは、1つの第1のフィンを含み、
前記複数のゲートは、複数の第1のゲートを含み、
前記複数の第1のゲートは、前記1つの第1のフィンの上に形成されており、前記複数の人工シナプスのうちの単一の人工シナプスを形成する、請求項1に記載の半導体デバイス。
【請求項5】
前記複数のフィンは、複数の第1のフィンを含み、
前記複数のゲートは、互いに接続された複数の第1のゲートを含み、
前記互いに接続された複数の第1のゲートは、前記複数の第1のフィンの上に形成されており、前記複数の人工シナプスのうちの1つの少なくとも一部を形成する、請求項1に記載の半導体デバイス。
【請求項6】
前記半導体デバイスはシリコン基板を含み、前記シリコン基板に前記複数のフィンの各々が垂直リッジとして形成されている、請求項1に記載の半導体デバイス。
【請求項7】
前記複数のフィンの各々が人工ニューロン又は人工シナプスに使用可能となるように、前記半導体デバイス上に前記複数のフィンが均一なパターンで形成されており、前記複数のフィンの各々は、均一な幅を有するように形成されている、請求項1に記載の半導体デバイス。
【請求項8】
半導体デバイス上に人工ニューロン及びシナプスを共に実装する方法であって、
前記半導体デバイス上に複数のフィンを形成することと、
複数の強誘電体フィン電界効果トランジスタ(強誘電体FinFET)を形成するために、前記複数のフィンの周囲に複数のゲートを形成すること
を含み、
前記複数の強誘電体FinFETは、1又は複数の人工シナプスと1又は複数の人工ニューロンとを含み、
前記1又は複数の人工シナプスの各々は、前記複数のゲートのうちの、互いに接続された2つ又はそれ以上のゲートを含み、
前記1又は複数の人工ニューロンの各々は、前記複数のゲートのうちの単一のゲートのみを含む、方法。
【請求項9】
前記複数のゲート間に1又は複数の接続部を設けることを更に含み、前記1又は複数の接続部は、1又は複数の人工シナプス及び1又は複数の人工ニューロンのネットワークを形成し、前記1又は複数の接続部は、前記半導体デバイスを製造した後にシステムレベルで設けられる、請求項に記載の方法。
【請求項10】
前記複数のゲート間に1又は複数の接続部を設けることを更に含み、前記1又は複数の接続部は、1又は複数の人工シナプス及び1又は複数の人工ニューロンのネットワークを形成し、前記1又は複数の接続部は、前記半導体デバイスを製造した後にソフトウェアレベルで設けられる、請求項に記載の方法。
【請求項11】
前記1又は複数の人工ニューロンの各々は、導電性状態間の切り替えの前に複数の信号パルスを受信するように構成され、
前記1又は複数の人工シナプスの各々は、複数の信号パルスを受信するように構成され、各信号パルスは、それぞれのドメインの導電性状態間の切り替えを引き起こす、請求項に記載の方法。
【請求項12】
前記複数のフィン及び前記複数のゲートがニューロンとして複数のディスクリートフィールドに形成され、前記複数のディスクリートフィールドのうちの1つ同士が接続されてシナプスを形成する、請求項に記載の方法。
【請求項13】
前記複数のフィン及び前記複数のゲートは、同じ技術ノードで形成される、請求項に記載の方法。
【請求項14】
前記半導体デバイス上に1又は複数の相補型金属酸化膜シリコン(CMOS)回路を形成することを更に含む、請求項に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
[0001]本出願は、2019年8月2日に出願された米国非仮特許出願第16/530,714号の優先権の利益を主張し、その内容を全て、参照により本明細書に援用する。
【0002】
[0002]本出願は、概して、人工ニューロン及びシナプス構造を形成するのに使用可能な回路構造について説明するものである。より具体的には、本出願は、フィン電界効果トランジスタ(FinFET)のゲートを接続して、同じ技術ノードで人工ニューロン及びシナプス構造を構成する方法及び構造について説明するものである。
【背景技術】
【0003】
[0003]現代の電子ニューラルネットワークは、自然界に存在する神経系が使用する生物学的なニューラルネットワークに着想を得て、その近似を目指したデジタル及び/又はアナログ回路を含む。電子ニューラルネットワークは、自然の対応物と同様に、タスク固有のルールを使用して事前にプログラムされることなく、様々なタスクを学習して実行し、入力刺激を認識しようと試みる。この学習プロセスは、生体系におけるニューロンの挙動を動作上近似した人工ニューロンを表す接続されたノードの集合体を用いて達成することができる。ニューロン間の接続は、1又は複数の人工ニューロン間で信号を伝達するための生物学的シナプスの挙動を近似し得る。ニューロンとシナプスの接続は、複数の連続した層を共に連鎖させて、複雑なタスクを増分段階に分解することができる。したがって、生物学的なニューラルネットワークが経時的に学習し成長するのと同じ方法で、電子ニューラルネットワークに新たなタスクを実行するように教えることが可能である。
【発明の概要】
【0004】
[0004]幾つかの実施形態では、半導体デバイス上に人工ニューロン及びシナプスを共に実装する半導体デバイスは、半導体デバイス上に形成された複数のフィンと、複数のフィンの周囲に形成され、複数のフィン電界効果トランジスタ(FinFET)を形成する複数のゲートとを含み得る。複数のFinFETは、1又は複数の人工シナプスと1又は複数の人工ニューロンとを形成し得る。1又は複数の人工シナプスの各々は、複数のゲートのうちの2つ又はそれ以上を含み得る。1又は複数の人工ニューロンの各々は、複数のゲートのうちの1つを含む。
【0005】
[0005]幾つかの実施形態では、半導体デバイス上に人工ニューロン及びシナプスを共に実装する方法は、半導体デバイス上に複数のフィンを形成することを含み得る。本方法はまた、複数のフィン電界効果トランジスタ(FinFET)を形成するために、複数のフィンの周囲に複数のゲートを形成することも含み得る。複数のFinFETは、1又は複数の人工シナプスと1又は複数の人工ニューロンとを形成し得る。1又は複数の人工シナプスの各々は、複数のゲートのうちの2つ又はそれ以上を含んでいてよく、1又は複数の人工ニューロンの各々は、複数のゲートのうちの1つを含み得る。
【0006】
[0006]任意の実施形態では、以下の特徴のいずれか及び/又は全てが、任意の組み合わせで、制限なく組み込まれ得る。デバイスは、複数のゲート間に1又は複数の接続部も含んでいてよく、1又は複数の接続部は、1又は複数の人工シナプス及び1又は複数の人工ニューロンのネットワークを形成し得る。複数のゲート間の1又は複数の接続部は、ゲート堆積後に直接実装され得る。複数のゲート間の1又は複数の接続部は、半導体デバイスの金属層に実装され得る。複数のフィンは、第1のフィンを含んでいてよく、複数のゲートは、第1の複数のゲートを含んでいてよく、第1の複数のゲートは、第1のフィンの上に形成され、複数の人工シナプスのうちの単一の人工シナプスを形成し得る。複数のフィンは、第1の複数のフィンを含んでいてよく、複数のゲートは、第1のゲートを含んでいてよく、第1のゲートは、第1の複数のフィンの上に形成され、複数の人工シナプスのうちの1つの少なくとも一部を形成し得る。半導体デバイスは、シリコン基板を含んでいてよく、シリコン基板に複数のフィンの各々が垂直リッジとして形成され得る。複数のFinFETは、複数の強誘電体FinFETを含み得る。複数のフィンの各々が人工ニューロン又は人工シナプスに使用可能となるように、複数のフィンが半導体デバイス上に均一なパターンで形成され得る。複数のフィンの各々は、均一な幅を有するように形成され得る。1又は複数の接続部は、半導体デバイスを製造した後にシステムレベルで設けられ得る。1又は複数の接続部は、半導体デバイスを製造した後にソフトウェアレベルで設けられ得る。1又は複数の人工ニューロンの各々は、導電性状態間の切り替えの前に複数の信号パルスを受信するように構成され得る。1又は複数の人工シナプスの各々は、複数の信号パルスを受信するように構成され、各信号パルスは、それぞれのドメインの導電性状態間の切り替えを引き起こし得る。複数のフィンの各々は、約10nmの幅であり得る。複数のフィン及び複数のゲートは、ニューロンとして複数のディスクリートフィールドに形成されていてよく、複数のディスクリートフィールドのうちの1つ同士が接続されて、シナプスを形成し得る。複数のフィン及び複数のゲートは、同じ技術ノードで形成され得る。半導体デバイス上に1又は複数の相補型金属酸化膜シリコン(CMOS)回路が形成され得る。
【0007】
[0007]様々な実施形態の性質及び利点については、本明細書の残りの部分及び図面を参照することによって更に理解することができ、同様の構成要素を参照するために、幾つかの図面を通して同様の参照数字が使用されている。幾つかの例では、複数の類似の構成要素のうちの1つを示すために、サブラベルが参照数字と関連付けられている。詳述なしに参照数字に言及した場合、。
【図面の簡単な説明】
【0008】
図1】幾つかの実施形態に係る、ニューラルネットワークの一部を示す図である。
図2】幾つかの実施形態に係る、ニューラルネットワークを実装する回路網を示す図である。
図3】幾つかの実施形態に係る、トランジスタ面積に依存する強誘電体電界効果トランジスタFeFETの切り替えサイクルを示す図である。
図4】幾つかの実施形態に係る、人工ニューロン及びシナプスを実装するために使用され得る強誘電体フィン電界効果トランジスタ(FinFET)を示す図である。
図5】幾つかの実施形態に係る、複数のゲート構造を有する強誘電体FinFET構造を示す図である。
図6】幾つかの実施形態に係る、人工シナプスを実装するための複数のゲート構造を有する同じ強誘電体FinFET構造を示す図である。
図7】幾つかの実施形態に係る、複数のフィンを有する強誘電体FinFET構造を示す図である。
図8】幾つかの実施形態に係る、複数のフィン及び複数のゲートを有する強誘電体FinFET構造を示す図である。
図9】幾つかの実施形態に係る、同じ技術ノードで実装された複数のフィンと複数のゲートとを含むFinFET構造を示す図である。
図10】幾つかの実施形態に係る、ゲート堆積層の上のFinFET構造900におけるゲート間の接続がどのように行われ得るかを示す図である。
図11】幾つかの実施形態に係る、半導体デバイス上に人工ニューロン及びシナプスのネットワークを共に実装するための方法を示すフローチャートである。
【発明を実施するための形態】
【0009】
[0019]本書では、人工ニューロン及び人工シナプスを共に半導体デバイスに単一技術ノードで実装するための実施形態を説明する。強誘電体FinFETの列が、シリコン基板上に製造され得る。ゲートを共に接続してマルチドメインFinFETを形成し、受信した信号パルスに応答してFinFETチャネルの導電性を徐々に変化させることによってシナプスの挙動を近似することができる。複数の信号パルスを受信してから単一の導電性状態を切り替えることで、単一のゲートを使用して、ニューロンの挙動を近似することができる。同じ構造を人工ニューロンと人工シナプスの両方の基礎として使用できるため、ニューラルネットワークを単一の技術ノードで形成することができ、製造時にゲート堆積層又は金属堆積層で構成可能である。あるいは、ニューラルネットワークは、構成可能な接続を使用して、システムレベル層で製造後に構成及び/又は再構成することが可能である。
【0010】
[0020]図1は、幾つかの実施形態に係るニューラルネットワーク100の一部を示す図である。ニューラルネットワーク100は、複数の入力102を含む。入力は、神経繊維を表す軸索や、電気インパルスを伝導し神経系において伝送線として機能するニューロンの細長い突起等の、生体系における入力に対応し得る。例えば、複数の入力102は、周辺環境における受信光を符号化し、受信光を表す電気信号を送信するために使用されるそれぞれの光受容体に結び付けられた軸索を表し得る。電気信号は、受信した信号の大きさ又は強度を表すようにスケーリングされ得る。例えば、複数の入力102は、受信した光信号の強度に比例する電気信号を生成し得る。光受容体及び画像認識の使用は、単に例として提供されるものであり、限定するものでないことに留意されたい。他の種類の生物学的及び電気的神経ネットワークを使用して、任意の種類の入力を受信し、処理することが可能である。
【0011】
[0021]複数の入力102で入力信号を受信した後、複数の入力102の各々は、1又は複数のニューロン104にパルス106を送信し得る。ニューラルネットワーク100は、入力102とニューロン104との間のこれらの経路を、複数のシナプス110として図示している。生物学的神経系において、シナプスは、ニューロン又は神経細胞が電気信号又は化学信号を別のニューロンへ送ることを可能にする構造である。ニューラルネットワーク100において、生物学的シナプスは、入力102とニューロン104との間で、入力102によって受信された信号の大きさを表す重み付けされた信号を送るシナプス110を用いてモデル化され得る。また、シナプス110は、重み付けされ得る。例えば、複数の入力102のうちの1つは、異なるニューロン104に送られる際に、シナプスによって異なる重み付けがなされた入力信号を受信し得る。シナプス110の重み付けは、ニューラルネットワークが特定の入力パターンを認識し、特定の出力タスクを実行するように「学習」することを可能にするものである。ニューラルネットワークのシナプス110をモデル化する場合、これらは、複数の連続した入力パルスを受信して対応する出力を生成することができる半導体デバイスによって表すことができる。例えば、各入力パルスは、シナプス出力を論理0と論理1レベルとの間で徐々に増加させることができる。
【0012】
[0022]シナプス110は、入力102を1又は複数のニューロン104に接続し得る。これらの接続は、入力102とニューロン104との間の1対多のトポロジーで行われ得る。ニューラルネットワークのニューロン104は、接続するシナプスの間で他の細胞と通信する電気的に興奮する細胞である生物学的ニューロンをモデル化したものであり得る。十分な数の入力インパルスを受信した後、ニューロン104は「発火」又は興奮した状態に遷移し得る。この状態は、感覚応答(例えば、触覚、音、光等)及び/又は脳からの運動制御と関連づけられ得る。生物学的ニューロンの挙動を近似するために、ニューラルネットワーク100のニューロン102は、1又は複数のシナプス110から複数の入力パルスを受信し、閾値数の入力パルスを受信した後、ニューロン104の出力108に論理0と論理1状態間をトグルで切り替えさせることができる任意のデバイスを用いて実装され得る。
【0013】
[0023]図1は、様々なネットワーク構成要素を明確に説明するために、ニューラルネットワーク100を大幅に簡略化した図である。実際には、ニューラルネットワーク100は、入力102と出力108との間に1又は複数の隠れ層ニューロン及びシナプスも含み得る。これらの隠れ層又は中間層は、最終出力108を生成するタスクをサブステップに分解することを可能にし、その各々は、シナプス及びニューロンの対応する隠れ層によって表され得る。例えば、ニューラルネットワーク100は、2つの異なる種類の画像を区別し、第1の種類の画像を認識するときに出力108aを発火させ、第2の種類の画像を認識するときに出力108bを発火させるように構成され得る。ニューロン及びシナプスの第1の隠れ層は、画像内のエッジを認識し得る。ニューロン及びシナプスの第2の隠れ層は、画像内のエッジによって転送される形状を認識し得る。最後に、出力段階のニューロン104は、認識された形状を組み合わせて、第1と第2の画像の種類を区別し得る。したがって、ニューラルネットワーク100は、電気構成要素及び接続の点で、図1で容易に明らかになり得るよりもはるかに複雑であり得る。複雑な現代のニューラルネットワークに付随し得るサイズ、複雑さ、速度要件、及び/又は配線上の困難のために、単一の技術ノード上で多くのデバイスの効率的なレイアウト及び製造を未だ可能にし得る方法で生物学的ニューロン及びシナプスを表し得る回路要素に対する大きな必要性が存在する。
【0014】
[0024]図2は、幾つかの実施形態に係る、ニューラルネットワークを実装する回路網200を示す図である。回路網200によって表されるニューラルネットワークは、図1のニューラルネットワーク100と同様であり得る。図1の場合と同様に、図2は、ニューロン及びシナプスを表すのに使用可能な様々な回路構成要素を明確に説明するために、多くの接続及び/又は隠れ層が省略された単純なニューラルネットワークの大幅に簡略化された図である。回路網200は、図1の入力102に対応し得る複数の入力206を含む。入力は、シナプスを表すデバイスを通してニューロン204を表す複数のデバイスに接続され得る。シナプスを表すデバイスは、ニューロン204の入力を回路の入力206に接続するトランジスタ202を含み得る。簡略化のために、アクセストランジスタ等の多くの付加的な回路要素は、図2から省略されている。アクセストランジスタは、ゲートが入力に接続され、出力はFeFETのゲートに接続されて、障害を防止し得る。このアクセストランジスタは、メモリトランジスタ/素子と共に、シナプスの擬似クロスバーアレイの1つのシナプス素子を構成する。
【0015】
[0025]回路網のシナプスを表すのに、多くの異なるデバイスが使用され得る。この回路網200では、トランジスタ202は、Vライン上の複数の入力パルスを受信し、同じくFeFETトランジスタである(最終的にスケーリングされる)ニューロン204に比例した出力を提供できる半導体デバイスを用いて実装され得る。したがって、これらのトランジスタ202は、Vラインによって制御されるアナログシナプスをモデル化するために使用され得る。更に、ニューロン204も、最終的にスケーリングされたトランジスタデバイスによって表され得る。しかしながら、励起パルスの受信時にコンダクタンスのアナログ的な徐々の累積的変化を示すシナプスを表すトランジスタ202とは対照的に、ニューロン204を表すトランジスタは、シナプスから複数のパルスを受信し、閾値数のパルスが受信された後に発火するように構成され得る。入力と出力ニューロン204との間のトランジスタ接続のこの基本的なネットワークは、上述のようにニューロン及びシナプスの隠れ層を表すトランジスタの隠れ層を用いて増強され得る。したがって、回路網202を実装する場合、シナプスのアナログ挙動とニューロンのデジタル挙動の両方を1つのプロセスで実装できる半導体デバイスを使用することが有益である。
【0016】
[0026]様々な実施形態では、ニューラルネットワークの基本構成要素を実装するために、多くの異なる種類のトランジスタが使用され得る。しかしながら、本明細書に記載の幾つかの実施形態は、強誘電体電界効果トランジスタ(FeFET)として知られる特定の種類のトランジスタを使用し得る。FeFETは、電力が除去されてもその論理/記憶状態を維持することができる論理/記憶トランジスタである。FeFETは、従来の金属酸化膜シリケート(MOS)トランジスタと似ているが、論理ゲートの誘電体を強誘電体材料に置き換え、それが晒される電界を「記憶」又は「保存」する誘電体である点が異なる。FeFETでは、ゲート絶縁膜自体の中に持続的な双極子(いわゆる「ドメイン」)が形成され、それによってFeFETの閾値電圧が2値の論理状態を表し得る2つの安定した状態に分割され得る。この安定状態は持続的であるため、FeFETの動作により、従来の電荷ベースのフラッシュメモリセルで行われているように、状態情報を保存することができる。また、FeFETは消費電力量が比較的小さく、従来のCMOS技術と並んで本質的にスケーラブルである。また、FeFETセルをメモリデバイスとして使用した場合、読み出し/書き込み時間及び書き込み/消去時の振幅がそれぞれ、フラッシュNANDメモリ等のメモリよりも大幅に短縮され、また小さくなる。
【0017】
[0027]図3は、幾つかの実施形態に係る、FeFETの切り替えサイクルを示す図である。強誘電体材料は、印加電圧等の外部励起の印加により状態を変化させることができる材料である。強誘電体材料は、2つの安定状態間をトグルで切り替え可能な複数の物理ドメインを含み得る。強誘電体は、メモリデバイスとして使用するために、FeFETのゲートに統合され得る。図3は、ニューラルネットワークのニューロン及びシナプスのモデル化に特に有用なFeFETの特徴の1つを示す図である。図3の左側のFeFET状態302、304、306、308の各々は、FeFETが論理0と論理1状態との間を徐々に遷移する際の様々な状態を表している。このように徐々に遷移するため、図3のFeFETは、シナプスをモデル化するのに使用され得る。シナプスの挙動は、ゲート電極への入力パルスの繰り返しに応じて、論理状態間を徐々に遷移することを想起されたい。単一のイベントに応答してデバイスの導電性を切り替える代わりに、FeFETは、ニューラルネットワークの入力又は他のニューロン様デバイスからパルスを受信すると、経時的に導電性を徐々に切り替え得る。
【0018】
[0028]シナプスの挙動をモデル化するために、FeFETは、ゲート電極が複数のドメイン、又はゲート電極において論理状態間を独立して切り替えることができる物理領域として表されるように、同様のニューロンデバイスよりも比較的大きく設計することができる。これらのドメインの各々は、図3において、様々な状態302、304、306、308のFeFETのゲート電極上の垂直矢印を用いて表されている。これらの垂直矢印の方向は、ゲートの対応するドメインの切り替え挙動を表すために方向が変化している。FeFETのドメインの1つを変更することは、FeFETの強誘電体結晶格子材料の構造の変更に対応し得る。結晶格子自体の構成が変わるため、FeFETの状態は、入力パルスの間持続し、ドメインの切り替えが引き起こされる。更に、各ドメインは、安定状態間で切り替わる独自のヒステリシス図310で表され得る。したがって、単一のパルスがFeFETのゲートで受信されると、ドメインの1つは、論理0から論理1へ遷移する等、安定状態間で切り替わり得る。
【0019】
[0029]図3の上部にあるFeFET状態302から開始し、FeFETは論理0から始まり得る。この例では、FeFETは、3つの異なるドメインを含むように設計されていてよいが、実際には、デバイスは、3よりも少ないドメイン又は3よりも多いドメインを含み得る。上を指している3つの垂直矢印は、3つのドメインの各々が現在安定した論理0状態であることを示す。論理0状態で存在するために必要なものと比較して反対の極性の第1の入力パルスを受信した後、FeFETは、状態304に入り得る。状態304において、FeFETの第1のドメインは、論理0から論理1に切り替わっている。これはまた、ヒステリシス図310にも示される。受信した入力パルスは、単一のドメインを変更するのに十分であり、他のドメインは安定した論理0状態のままである。幾つかの遷移は、単一のドメインを切り替えるために複数のパルスを必要とする場合があることに留意されたい。次に、第2の入力パルスがFeFETによって受信され、FeFETの第2のドメインを論理1状態に遷移させ得る。これは、状態306の図において、FeFETのゲートの第2の矢印が下を指すように変化することによって表される。最後に、第3の入力パルスがFeFETによって受信され、最終ドメインを論理1状態に遷移させ得る。
【0020】
[0030]このように、複数のドメインを持つFeFET内のドメインが徐々に遷移することで、シナプスの挙動のモデル化に有用な、状態間のアナログ的な遷移を得ることができる。いずれかの入力パルスを受信する前の状態302は、FeFETの完全な論理0状態を表す。逆に、十分な数の入力パルス(例えば、少なくとも3つのパルス)を受信した後の状態308は、FeFETの完全な論理1状態を表す。各ドメインが独立して切り替わると、FeFETのチャネルの導電性は、非導電状態と完全導電状態との間で対応するように徐々に変化し得る。この導電性の変化により、対応するドメインを切り替えるために正/負の入力パルスが受信されると、シナプスの出力も徐々に増加/減少し得る。
【0021】
[0031]図3のグラフ312は、ドメインの数が変化するFeFETの切り替え挙動を表すものである。信号314は、経時的に徐々にパルスを受信するマルチドメインFeFETを表す。受信したパルスの数は横軸で表され、その結果としてのFeFETのチャネルの導電率は縦軸で表される。マルチドメインFeFETの場合、受信した各パルス又はパルスのセットにより、独立したドメインが切り替わるにつれ、チャネルの導電率の段階的な上昇がもたらされる。信号314によって表されるFeFETは、少なくとも6つのドメインを含み得る。曲線318は、FeFETのドメインの数を増加させることによって近似することができる理想的な応答を表している。例えば、FeFETのドメインの数が増加するにつれ、信号314の段が小さくなり、信号314の全体形状が曲線318の形状に近づき始め得る。グラフ312は、このように、受信した入力パルスに比例して反応するシナプスのアナログ出力をモデル化するために、マルチドメインFeFETをどのように使用することができるかを示したものである。
【0022】
[0032]図3のマルチドメインFeFETで示すシナプスの挙動とは対照的に、より単純で小型のFeFETデバイスを使用して、ニューラルネットワークにおけるニューロンの挙動を表すことも可能である。図3には明示的に示していないが、単一ドメインのみを有するFeFETは、単一の切り替えイベントを有するのみである。グラフ312の信号316は、単一ドメインFeFETが複数の受信パルスにどのように応答し得るかを示すものである。パルスを受信すると個々のドメインを切り替える代わりに、単一ドメインのみを有するニューロン様FeFETは、安定した論理状態間の単一の切り替えイベントを呈し得る。例えば、シナプスを表す大きいFeFETから十分な数のパルスを受信すると、ニューロンを表す小さいFeFETは「発火」し得る、又は安定状態間を遷移し得る。したがって、FeFETはシナプスの挙動を表すのに有用なだけでなく、デバイスのドメイン数を制限することによって、ニューロンの挙動を表すのにも使用できる。
【0023】
[0033]図4は、幾つかの実施形態に係る、人工ニューロン及びシナプスを実装するために使用され得る強誘電体フィン電界効果トランジスタ(FinFET)400を示す図である。FinFET400は、基板408上に構築されたMOSFETを含むマルチゲートデバイスである。トランジスタのソース及びドレインをドープされたウエルとして基板408に実装する代わりに、フィン401が基板408の上に製造され、トランジスタのチャネル、ソース406、及びドレイン404を形成する。トランジスタをオン/オフする際のチャネルの制御性を高めるために、フィン401によって形成されたチャネルの周囲にゲート402が巻き付けられ得る。FinFETデバイスは、主流のCMOS技術よりも大幅に高速な切り替え時間と高い電流密度を有する。
【0024】
[0034]本開示の残りの部分を通じ、様々なFinFETデバイスを、図4の左下の簡略図を用いて表すことができる。しかしながら、図4の右上の詳細図420は、FinFET400のチャネルの周囲に堆積され得る様々な層の一実施形態を示すものである。これらの実施形態において、上述のようにニューロン又はシナプスとして機能するために、FinFET400のゲートに強誘電体材料を追加することができる(又は既存の高誘電率材料と交換することができる)。例えば、チャネルは、ゲート酸化物412及び強誘電体材料414に囲まれたドープされていないシリコンフィン401を含み得る。その後、この強誘電体構造が、強誘電体材料414を分極化させるのに必要な電界を発生させるために、導電性ゲート材料408を用いて製造され得る。
【0025】
[0035]強誘電体FinFET400は、基板に堆積した膜層の堆積又は反応によってスペーサが形成される自己整合ダブルパターニング技法を使用し、標準の論理FinFETの製造と同様の方法を用いて製造され得る。その後、エッチングプロセスにより水平面の充填材がすべて除去され、側壁の材料のみが残り得る。パターン特徴を除去した後は、スペーサのみが残る。このスペーサ技法を利用することで、基板に列状の細いフィンが画定され得る。しかしながら、標準のFinFET製造プロセスとは異なり、強誘電体FinFET400は、強誘電体相を安定させるための、強誘電体高誘電率堆積ステップ及びポストキャッピングアニールも含み得る。幾つかの実施形態では、異なる比率のシリコン、アルミニウム、ランタン、ジルコニウム、及び/又はHfO-ZrOx組成物を混合した固溶体を使用し得る。幾つかの実施形態では、高誘電率内の強誘電体相を安定させるための追加のアニールプロセスを用い得る。人工シナプスを実装するために強誘電体FinFETを製造する場合、以下に説明するように、製造プロセスの「バックエンド(BEoL)」部分において複数のゲート間の接続が使用され得る。
【0026】
[0036]本明細書に記載の実施形態では、人工ニューロン及びシナプスの実装に、強誘電体FinFET400が特に適している可能性がある。平面デバイスと比較して、多数のデバイスを大規模に実装する際に著しい改善を得るために、フィン401で上述したドメインが強誘電体材料414に実装され得る。更に、ゲート402の形状により、より多くのドメインを生成することができ、これらのドメインのサイズも減少し得る。これにより、他のデバイスと比較して、強誘電体FinFETデバイスの可変性が改善され得る。また、シナプスをモデル化するためにデバイスに追加のゲートを追加することは比較的容易であり、これにより、デバイスを調整する能力が向上し、設計者が、同じシリコン構造上で単一のゲートによるニューロンの実装と、複数のゲートによるシナプスの実装とを選択できるようになり得る。
【0027】
[0037]図4に示す強誘電体FinFET400を使用して、人工ニューロンを実装することができる。単一のゲート402は、ゲート402によって多数のパルスが受信された後に切り替わる単一ドメインを含むように設計され得る。例えば、強誘電体FinFET400を使用して、図2の人工ニューロン204の1つを実装することができる。
【0028】
[0038]図5は、幾つかの実施形態に係る、複数のゲート構造を有する強誘電体FinFET構造500を示す図である。この強誘電体FinFET構造500は、図4に示すように、隆起したフィン501を含み得る。しかしながら、単一のフィン501は、フィン501に堆積した複数のゲート502、504、506、508を有し得る。人工ニューロンを実装するために、複数のゲート502、504、506、508から単一のゲート(例えば、ゲート502)が選択され、人工シナプスからの入力に接続され得る。そして、単一のゲートの両側のソース領域及びドレイン領域が、ニューロンの出力に接続され得る。
【0029】
[0039]図6は、幾つかの実施形態に係る、人工シナプスを実装するための複数のゲート構造を有する同じ強誘電体FinFET構造500を示す図である。強誘電体FinFET構造500上で単一のゲート502のみを使用する代わりに、複数のゲート502、504、506、508が、電気接続部510を使用して共に電気的に接続され得る。図6に示す電気接続部510は、ゲート502、504、506、508と同じ堆積層に形成され得る。後述するように、この電気接続部510は、ゲート502、504、506、508のための堆積層の上方の金属層に設けられ得る。また、この電気接続部510は、構成可能な接続部のネットワークを用いて、又はシステムレベルの構成可能なプロセスを通して設けられ得る。
【0030】
[0040]電気的接続部510を用いて、複数のゲート502、504、506、508を共に接続することにより、シナプスの挙動を模擬するために、上記のような複数のドメインを含む強誘電体FinFETを形成することが可能である。具体的には、複数のゲートは、各々が上流の人工ニューロンから受信した入力パルスに応答して独立して切り替わることができる複数のドメインを形成し得る。
【0031】
[0041]図5及び図6に示す強誘電体FinFETは、ニューロンとシナプスの両方を実装するために同じフィン構造を使用し得る。したがって、単一のフィン501は、複数のゲート502、504、506、508を有していてよく、それらのゲート502、504、506、508間の接続により、フィン501が人工ニューロン又は人工シナプスの一部であるかが定義され得る。
【0032】
[0042]図7は、幾つかの実施形態に係る、複数のフィンを有する強誘電体FinFET構造700を示す図である。複数のフィン701、702、703が、半導体デバイス又は基板705に形成され得る。複数のゲート710、712、714が、複数のゲート710、712、714の間になされ得る可変の接続に基づいて複数の潜在的なFinFETを形成するために、複数のフィン701、702、703の周囲に形成され得る。この例では、複数の他のゲート(例えば、ゲート712、714)に接続されていないフィン701上のゲート710を使用して、人工ニューロンを実装し得る。したがって、この例では、3つのフィン701、702、703と、3つのゲート710、712、714とが、3つの個別の人工ニューロンを形成し得る。
【0033】
[0043]図8は、幾つかの実施形態に係る、複数のフィン及び複数のゲートを有する強誘電体FinFET構造800を示す図である。この強誘電体FinFET構造800は、複数のゲート810、812、814の各々が共に電気的に接続されて人工シナプスを形成し得ることを除いて、図7の構造700と同様である。図6で形成された人工シナプスは、人工シナプスのための複数のドメインを形成するために、単一のフィン501に複数のゲート502、504、506、508を取り付けたものを用いたことを想起されたい。これに対し、図8で形成された人工シナプスは、複数のフィン801、802、803に各々結合された複数のゲート810、812、814を使用する。図6は、シナプスを実装するためにマルチゲートFinFETを使用し、図8は、シナプスを実装するためにマルチチャネルFinFETを使用する。ここでも、これらの接続は、金属層におけるBEoLプロセスを使用して、又は構成可能なシステムレベルプロセスを使用して、ゲート堆積によって直接なされ得る。図8のマルチチャネル構成は、効率的であり、図6のマルチゲート、単一フィン構成と比較して、ニューロンのスケーラブルな信号をもたらさないため、有利であり得る。
【0034】
[0044]図9は、幾つかの実施形態に係る、同じ技術ノードで実装された複数のフィン及び複数のゲートを含むFinFET構造900を示す図である。用語「技術ノード」は、「プロセスノード」、「プロセス技術」、又は単に「ノード」とも呼ばれることがある。この用語は、特定の設計ルール、回路世代、及びアーキテクチャを有する特定の半導体製造プロセスを指す場合がある。FinFET構造900は、列状に製造されるフィンを含み、各フィンに1又は複数のゲート構造が重なっていてよい。図9の例は、各フィンに4つのゲートを有するフィンを含む。しかしながら、これは、FinFET構造900の可能な配置の一例としてのみ図示したものである。他の構造は、各フィンに、単一のゲートから5ゲート、7ゲート、10ゲート、15ゲート、及び/又はその任意の範囲に及ぶ、様々な数のゲートを含み得る。例えば、同じ技術ノードで様々なゲート構成が利用可能であるように、あるフィンは単一のゲートのみで実装されていてよく、他のフィンは3ゲート、5ゲート等で実装されていてよい。
【0035】
[0045]強誘電体FinFET構造を用いる利点の1つは、人工シナプスと人工ニューロンを同じ最先端技術ノードで実装することで、ロジックのスケーリングに追従できることである。前述したように、人工シナプスのサイズが比較的大きいのに対し、人工ニューロンのサイズは比較的小さい。人工シナプスは、デバイスのゲート/チャネル領域のより大きい物理的サイズに対応する、複数の物理ドメインを必要とし得ることを想起されたい。FinFETデバイス以外の技術を使用する場合、人工ニューロンと人工シナプスのサイズが異なるため、異なる技術ノードで実装する必要があった。しかし、本明細書に記載のマルチゲートFinFET技術により、人工ニューロンと人工シナプスの両方を同じ技術ノードで実装することが可能である。幾つかの実施形態は、FDSOI又は標準のバルク高誘電率金属技術を含む技術も使用し得る。
【0036】
[0046]FinFET構造900は、まず、シリコン基板の上にSOI層を堆積させることによって製造され得る。次に、犠牲層(例えば、SiGe)の直線列を、SOIの上の、フィンの対が位置すべき場所の間の間隙に堆積させることができる。マスク層(SiのSiO)を犠牲層とSOIの上に堆積させ、マスク層をエッチングバックして犠牲層のエッジに沿ってスペーサを形成することができる。最後に、犠牲層を除去することができ、マスク層の下の部分だけが残るように、SOIをエッチングし得る。この部分は、シリコン基板の上に位置するフィンの対を形成し得る。次に、導電層及び強誘電体層を含む上述の様々な材料をフィンの上にパターンで堆積させて、複数の非接続及び/又は接続ゲートを形成することができる。
【0037】
[0047]図9に示すFinFET構造900は、ゲートをどのように共に接続するかによってニューロン及びシナプスのネットワークとして構成可能な、未処理の強誘電体FinFETトランジスタのバンクを表す。このFinFETのバンクの製造は、構造全体を同じ技術ノードを用いて構築することができるため、製造時のコスト効率が良い。また、この構造を他のCMOS回路と組み合わせて、それぞれの特定の用途の必要に応じて、規模を大きくも小さくもすることができる。
【0038】
[0048]複数のゲートを共に接続すれば人工シナプスを形成することができ、フィン上の単一のゲートを使用すれば人工ニューロンを形成することができる。シナプスは、マルチチャネル(複数のフィン上の複数のゲート)及び/又はマルチゲート(単一のフィン上の複数のゲート)であってよい。幾つかの実施形態は、直接のゲート堆積によって様々なゲートを共に接続し、ニューロン及びシナプスのネットワークを形成し得る。例えば、FinFET構造900のフィンにゲートのための導電性材料を堆積させる同じプロセスを使用して、様々なゲートを共に接続する導電性トレースを堆積させ、人工シナプスを形成することもできる。直接ゲート堆積を使用して、人工シナプスと人工ニューロンを共に接続してニューラルネットワークにすることもできる。
【0039】
[0049]図10は、幾つかの実施形態に係る、ゲート堆積層の上方のFinFET構造900において、ゲート間でどのような接続がなされ得るかを示す図である。幾つかの実施形態は、BEoLプロセスにおいて金属層等のゲート間の接続を追加して、シナプス及びニューラルネットワークを形成し得る。図10の例では、様々なゲート間の接続をルーティングするために、金属層1010が使用され得る。例えば、金属層1010の接続部1002を使用して、3つのゲート1012、1014、1016を単一のフィン1018上で共に接続し、シナプスを形成することができる。ゲート1012、1014、1016は、複数のビア1020、1022、1024を通して金属層1010に接続され得る。接続された3つのゲート1012、1014、1016によって形成されるシナプスは、上記のようなマルチゲート、単一のフィンの人工シナプスを表し得る。
【0040】
[0050]また、同じプロセスを用いて、複数のフィンを用いてマルチチャネルシナプスも形成することができる。例えば、金属層1010の接続部1006と一対のVIA1048、1050を用いて、別々のフィン1040、1042上の複数のゲート1044、1046を共に接続することができる。これにより、特定の実施形態では好ましい場合があるマルチチャネルシナプスが形成され得る。更に、単一のゲート1060を金属層1010の接続部1004に接続することによって、ニューロンが形成され得る。図10に明示していないが、金属層1010において、人工シナプスと人工ニューロンとの間で追加の接続がなされ得る。更に、金属層1010へのビアを通してFinFETのソース/ドレイン領域への接続がなされ、ニューラルネットワークが完成し得る。
【0041】
[0051]幾つかの実施形態では、金属層1010に示す接続は、代わりに、製造プロセスが完了した後にFinFET構造900を構成及び/又は再構成できるように、システムレベル層で行われ得る。例えば、図9及び図10のFinFET構造900上の各ゲートは、システムレベル層へのビア接続を有し得る。幾つかの実施形態では、システムレベル層は、フィールドプログラマブルゲートアレイ(FPGA)又は他の構成可能な論理デバイスに見られる構成可能なネットワーク等の、接続の構成可能なネットワークを含み得る。このオプションにより、システムレベル層の接続を制御することで、ニューラルネットワークを複数回構成及び再構成することができる。幾つかの実施形態は、各ゲートに結合されたビアを、マイクロコントローラ又はマイクロプロセッサ等のプログラマブルプロセッサ用の入力に接続することもできる。これらの実施形態により、ニューラルネットワークの接続を実行時に構成及び再構成することが可能になる。
【0042】
[0052]図11は、幾つかの実施形態に係る、半導体デバイス上に人工ニューロン及びシナプスのネットワークを共に実装するための方法を示すフローチャート1100である。本方法は、半導体デバイス上に複数のフィンを形成すること(1102)を含み得る。フィンは、上述したプロセスを用いて形成され得る。フィン(複数可)は、単一の技術ノードで、単一のシリコン基板上に形成され得る。幾つかの実施形態は、フィンが均一な幅及び/又は均一な間隔を有するように、フィンを形成し得る。半導体デバイスは、複数のフィンの各々が、上記に例示したように、シリコン基板上に垂直リッジとして形成されるシリコン基板を含み得る。フィンは、10nm幅等の任意の幅であってよい。
【0043】
[0053]本方法はまた、複数のFinFETデバイスを形成するために、複数のフィンの周囲に複数のゲートを形成すること(1104)も含み得る。FinFETデバイスは、強誘電体FinFETを形成するために、強誘電体材料の層を含み得る。図10に示すように、複数のゲートが単一のフィンに形成されるように、また、単一のゲートが単一のフィンに形成されるように、複数のゲートを形成することができる。
【0044】
[0054]また、本方法は、複数のゲートにおいてゲートを共に接続して、人工ニューロン及び/又は人工シナプスを形成すること(1106)も含み得る。例えば、人工シナプスは、単一のフィン上の複数のゲートを共に接続することによって形成され得る。また、人工シナプスは、複数のフィン上の複数のゲートを共に接続することによっても形成され得る。人工シナプスと人工ニューロンとの接続、及び人工シナプスを形成するための接続は、上述したゲート堆積層、金属層、又はシステムレベル層に形成され得る。また、これらの接続は、ニューラルネットワークを形成するニューロンとシナプスとの間の接続を含み得る。ニューラルネットワークが形成される場合、人工ニューロンは、上述したように、導電性状態間を切り替える前に複数の信号パルスを受信するように構成され得る。同様に、人工シナプスは、シナプス内の個々のドメインを導電性状態間で連続的に切り替えさせる複数の信号パルスを受信するように構成され得る。
【0045】
[0055]図11に示す特定のステップは、様々な実施形態に係る人工ニューロン及び人工シナプスを実装する特定の方法を提供するものであることを理解されたい。ステップの他のシーケンスも、代替の実施形態に従って実行され得る。例えば、代替の実施形態は、上記で概説したステップを異なる順序で実行し得る。更に、図11に示す個々のステップは、個々のステップに適切な様々なシーケンスで実行され得る複数のサブステップを含み得る。更に、特定の用途に応じて、追加のステップが追加又は削除され得る。当業者であれば、多くの変形例、修正例、及び代替例を認識するであろう。
【0046】
[0056]上記の記述では、説明の目的で、様々な実施形態を十分に理解できるように、多数の具体的な詳細が示されている。しかしながら、実施形態は、これらの幾つかの詳細なく実施され得ることが当業者には明らかとなろう。他の例では、周知の構造及びデバイスがブロック図の形態で示されている。
【0047】
[0057]前述の説明は、例示的な実施形態のみを提供するものであり、本開示の範囲、適用性、又は構成を限定することを意図していない。むしろ、例示的な実施形態の前述の説明は、当業者に、例示的な実施形態を実装するための可能な説明を提供するものである。添付の特許請求の範囲に明記されるような様々な実施形態の主旨及び範囲から逸脱することなく、要素の機能及び配置に様々な変更を加えることができることを理解されたい。
【0048】
[0058]前述の説明では、実施形態を十分に理解するために、具体的な詳細を示している。しかしながら、当業者であれば、実施形態はこれらの具体的な詳細なしに実施され得ることが理解されよう。例えば、回路、システム、ネットワーク、プロセス、及び他の構成要素は、不必要な詳細で実施形態を不明瞭にしないために、ブロック図の形態で構成要素として示されている場合がある。他の例では、周知の回路、プロセス、アルゴリズム、構造、及び技法が、実施形態を不明瞭にしないために、不必要な詳細なしに示されている場合がある。
【0049】
[0059]また、個々の実施形態は、フローチャート、フロー図、データフロー図、構造図、又はブロック図として図示したプロセスとして説明し得ることに留意されたい。フローチャートは、工程を連続的なプロセスとして描写している場合があるが、工程の多くは並行して又は同時に実行することができる。更に、工程の順序を入れ替えることも可能である。プロセスは、その工程が完了した時点で終了するが、図に含まれない追加のステップを有することもあり得る。プロセスは、方法、関数、手順、サブルーチン、サブプログラム等に対応し得る。プロセスが関数に対応する場合、その終了は、呼び出す関数又は主関数に関数が返ることに対応し得る。
【0050】
[0060]前述の明細書において、様々な実施形態の態様を特定の実施形態を参照しながら説明したが、当業者であれば、本発明がこれらに限定されないことを認識するであろう。上述した実施形態の様々な特徴及び態様は、個別に又は共同で使用可能である。更に、実施形態は、本明細書のより広い主旨及び範囲から逸脱することなく、本明細書に記載のものを超える任意の数の環境及び用途で利用することができる。従って、本明細書及び図面は、限定的ではなく例示的なものとみなされる。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11