(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-08
(45)【発行日】2024-05-16
(54)【発明の名称】ポリウレタンエラストマー及びその製造方法
(51)【国際特許分類】
C08G 18/65 20060101AFI20240509BHJP
C08G 18/44 20060101ALI20240509BHJP
C08G 18/48 20060101ALI20240509BHJP
C08G 18/76 20060101ALI20240509BHJP
【FI】
C08G18/65 005
C08G18/44
C08G18/48
C08G18/76
(21)【出願番号】P 2022100902
(22)【出願日】2022-06-23
(62)【分割の表示】P 2019020644の分割
【原出願日】2019-02-07
【審査請求日】2022-06-23
(73)【特許権者】
【識別番号】000006035
【氏名又は名称】三菱ケミカル株式会社
(74)【代理人】
【識別番号】100086911
【氏名又は名称】重野 剛
(74)【代理人】
【識別番号】100144967
【氏名又は名称】重野 隆之
(72)【発明者】
【氏名】山下 亮
(72)【発明者】
【氏名】小林 光治
(72)【発明者】
【氏名】井澤 雄輔
(72)【発明者】
【氏名】草野 一直
【審査官】常見 優
(56)【参考文献】
【文献】米国特許出願公開第2015/0284501(US,A1)
【文献】特開平08-048740(JP,A)
【文献】特開2016-121211(JP,A)
【文献】特開2020-125428(JP,A)
【文献】特開平04-325511(JP,A)
【文献】特開2018-048339(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08G18/00- 18/87
C08G71/00- 71/04
C08L 1/00-101/16
C08K 3/00- 13/08
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
複数のイソシアネート基を有する化合物に由来する構造単位、ポリオール及びポリアミンからなる群より選ばれた少なくとも1種の化合物に由来する構造単位、下記式(A)で表されるポリエーテルポリカーボネートジオールに由来する構造単位、並びに、ポリテトラメチレンエーテルグリコールに由来する構造単位を含むポリウレタンエラストマーであって、
前記ポリテトラメチレンエーテルグリコールに由来する構造単位に対する、前記ポリエーテルポリカーボネートジオールに由来する構造単位の割合が10重量%~90重量%であるポリウレタンエラストマー。
【化1】
(上記式(A)において、R
1は炭素数2~10の二価の炭化水素基を表し、nは2~30の整数であり、mは1~20の整数である。なお、式(A)中、複数のR
1は同一であってもよく、異なるものであってもよい。)
【請求項2】
前記式(A)におけるR
1がn-ブチレン基及び/又は2-メチルブチレン基である請求項1に記載のポリウレタンエラストマー。
【請求項3】
前記ポリテトラメチレンエーテルグリコールに由来する構造単位の数平均分子量が水酸基価基準で200~5000である請求項1又は2に記載のポリウレタンエラストマー。
【請求項4】
前記複数のイソシアネート基を有する化合物が芳香族系ジイソシアネート化合物である請求項1乃至3のいずれか1項に記載のポリウレタンエラストマー。
【請求項5】
前記芳香族系ジイソシアネート化合物が、4,4’-ジフェニルメタンジイソシアネート、トルエンジイソシアネート及びキシリレンジイソシアネートよりなる群から選ばれた少なくとも1種である請求項4に記載のポリウレタンエラストマー。
【請求項6】
前記ポリオール及びポリアミンからなる群より選ばれた少なくとも1種の化合物が、エチレングリコール、1,4-ブタンジオール及び1,6-ヘキサンジオールよりなる群から選ばれた少なくとも1種の化合物である請求項1乃至5のいずれか1項に記載のポリウレタンエラストマー。
【請求項7】
前記ポリウレタンエラストマーが熱可塑性エラストマーである請求項1乃至6のいずれか1項に記載のポリウレタンエラストマー。
【請求項8】
請求項1乃至7のいずれか1項に記載のポリウレタンエラストマーを製造する方法であって、前記複数のイソシアネート基を有する化合物、前記ポリオール及びポリアミンからなる群より選ばれた少なくとも1種の化合物、前記
ポリテトラメチレンエーテルグリコールの付加重合反応を無溶剤で行うポリウレタンエラストマーの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、透明性、柔軟性と機械強度及び耐久性に優れたポリウレタンエラストマーとこのポリウレタンエラストマーを製造する方法に関する。
【背景技術】
【0002】
ポリウレタンエラストマーには、加熱すると軟化し、その後冷却すると硬化する熱可塑性ポリウレタンエラストマー(TPU)と、加熱により硬化する熱硬化性ポリウレタンエラストマー(TSU)とがあるが、いずれも優れた弾性、機械的強度、低温特性、耐摩擦性、耐候性、耐油性を持ち、加工性にも優れ、様々な形状に容易に加工することができることから、ロール、キャスター等の工業部品、ソリッドタイヤ、ベルト等の自動車部品、紙送りロール、複写機用ロール等のOA機器部品の他、スポーツ、レジャー用品など広範囲に利用されている。
【0003】
特許文献1には、ポリイソシアネート化合物としてジフェニルメタンジイソシアネートを用い、ポリオールとしてポリカーボネートジオールを用い、ジオール、ポリエーテルポリオール、及びグリセリンのプロピレンオキサイド付加物という特定分子量の範囲の3成分を硬化剤として併用することにより、機械的強度(抗張力、伸び)、低圧縮歪み、低反発弾性、耐水性などを改善した2液熱硬化型ポリウレタンエラストマーが提案されている。
【0004】
特許文献2には、柔軟性、強度、耐水性を改善したポリウレタンエラストマーとして、ポリカーボネートポリオール、ポリエーテルポリオール及びポリイソシアネート化合物を反応させて得られる主剤と、1,4-ブタンジオール等の硬化剤とを用いたポリウレタンエラストマーが提案されている。
【0005】
特許文献3には、油潤滑耐性、引っ張り強さ、光学的特性を備えた熱可塑性ポリウレタンエラストマーとして、ポリイソシアネートとポリエーテルカーボナートジオールを反応させた熱可塑性ポリウレタンエラストマーが提案されている。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2013-163778号公報
【文献】特開2015-081278号公報
【文献】特開平4-214713号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
ポリウレタンエラストマーにあっては、その用途において、柔軟性及び耐久性の更なる向上が望まれているが、特許文献1,2等で提案される従来のポリウレタンエラストマーでは、柔軟性と機械強度および耐久性の両立が困難であり、さらには透明性に劣るものであった。
即ち、従来のポリウレタンエラストマーでは、柔軟性を付与するためにポリエーテルポリオールとポリカーボネートジオールの組み合わせが提案されているが、ウレタン化反応時のポリオールの相溶性の低さに起因する物質移動の影響から、無溶剤系では得られたポリウレタンエラストマー成形品の物性発現や透明性などの意匠性を得ることが不十分であった。例えば、特許文献1で提案される方法で合成されたポリウレタンエラストマーでは、ポリオール同士の相溶性が悪いため、あらかじめポリカーボネートジオールをイソシアネート化合物と反応させ、プレポリマーの状態にしてからポリテトラメチレングリコール等の硬化剤と混合する必要があり、しかも得られるポリウレタンエラストマーの耐久性と柔軟性および機械強度の物性バランスが不十分であった。
【0008】
特許文献3には、本発明で用いるポリエーテルポリカーボネートジオールとポリカーボネートジオール、またはポリアルキレンエーテルグリコールとを併用したポリウレタンエラストマーの開示はない。
【0009】
本発明は、透明性、柔軟性と機械強度、耐久性に優れたポリウレタンエラストマーを提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明者は、上記課題を解決すべく鋭意検討を重ねた結果、ポリオール原料として特定のポリエーテルポリカーボネートジオールとポリカーボネートジオール、またはポリアルキレンエーテルグリコールとを併用してポリウレタンエラストマーを製造することにより、上記課題を解決することができることを見出した。
【0011】
本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。
【0012】
[1] 複数のイソシアネート基を有する化合物に由来する構造単位、ポリオール及びポリアミンからなる群より選ばれた少なくとも1種の化合物に由来する構造単位、下記式(A)で表されるポリエーテルカーボネートジオールに由来する構造単位、並びに、少なくとも下記式(B)で表される繰り返し単位と下記式(C)で表される繰り返し単位を有するポリカーボネートジオール及び/又は下記式(D)で表される繰り返し単位と下記式(E)で表される繰り返し単位を有するポリアルキレンエーテルグリコールに由来する構造単位を含むポリウレタンエラストマー。
【0013】
【0014】
(上記式(A)において、R1は炭素数2~10の二価の炭化水素基を表し、nは2~30の整数であり、mは1~20の整数である。なお、式(A)中、複数のR1は同一であってもよく、異なるものであってもよい。)
【0015】
【化2】
(上記式(B)において、R
2は炭素数2~20の二価の炭化水素基を表し、pは3~50の整数であり、上記式(C)においてR
3はR
2とは異なるものであり、炭素数3~20の二価の炭化水素基を表し、又は、脂環式構造若しくは複素環式構造を含む炭素数3~20の二価の炭化水素基を表し、qは0~50の整数である。
上記式(D)において、R
4は炭素数2~20のアルキレン基、rは3~50の整数であり、上記式(E)においてR
5はR
4とは異なるものであり、炭素数3~20の二価の炭化水素基、又は、脂環式構造若しくは複素環式構造を含む炭素数3~20の二価の炭化水素基を表し、sは0~50の整数である。)
【0016】
[2] 前記ポリカーボネートジオールに由来する構造単位及びポリアルキレンエーテルグリコールに由来する構造単位の合計に対する、前記ポリエーテルポリカーボネートジオールに由来する構造単位の割合が10重量%~90重量%である[1]に記載のポリウレタンエラストマー。
【0017】
[3] 前記式(A)におけるR1がn-ブチレン基及び/又は2-メチルブチレン基である[1]又は[2]に記載のポリウレタンエラストマー。
【0018】
[4] 前記式(B)で表される繰り返し単位に対する前記式(C)で表される繰り返し単位のモル比率が0.03~10である[1]乃至[3]のいずれかに記載のポリウレタンエラストマー。
【0019】
[5] 前記式(B)におけるR2が炭素数3~6の二価の炭化水素基である[1]乃至[4]のいずれかに記載のポリウレタンエラストマー。
【0020】
[6] 前記式(C)におけるR3が炭素数4~12の二価の炭化水素基である[1]乃至[5]のいずれかに記載のポリウレタンエラストマー。
【0021】
[7] 前記式(C)に由来する構造単位が、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2-メチル-1,3-プロパンジオール及び2-メチル-1,4-ブタンジオールよりなる群から選ばれた少なくとも1種に由来する構造単位である[1]乃至[5]のいずれかに記載のポリウレタンエラストマー。
【0022】
[8] 前記式(C)に由来する構造単位が、イソソルビド、イソマンニド、イソイディッド、及び1,4-シクロヘキサンジメタノールよりなる群から選ばれた少なくとも1種に由来する構造単位である[1]乃至[5]のいずれかに記載のポリウレタンエラストマー。
【0023】
[9] 前記ポリアルキレンエーテルグリコールに由来する構造単位の数平均分子量が水酸基価基準で200~5000である[1]乃至[8]のいずれかに記載のポリウレタンエラストマー。
【0024】
[10] 前記ポリアルキレンエーテルグリコールが、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、3-メチルテトラヒドロフランとテトラヒドロフランの共重合ポリテトラメチレンエーテルグリコール、ネオペンチルグリコールとテトラヒドロフランの共重合ポリエーテルポリオール、エチレンオキサイドとテトラヒドロフランの共重合ポリエーテルポリオール、及び、プロピレンオキサイドとテトラヒドロフランの共重合ポリエーテルグリコールよりなる群から選ばれた少なくとも1種である[1]乃至[9]のいずれかに記載のポリウレタンエラストマー。
【0025】
[11] 前記複数のイソシアネート基を有する化合物が芳香族系ジイソシアネート化合物である[1]乃至[10]のいずれかに記載のポリウレタンエラストマー。
【0026】
[12] 前記芳香族系ジイソシアネート化合物が、4,4’-ジフェニルメタンジイソシアネート、トルエンジイソシアネート及びキシリレンジイソシアネートよりなる群から選ばれた少なくとも1種である[11]に記載のポリウレタンエラストマー。
【0027】
[13] 前記ポリオール及びポリアミンからなる群より選ばれた少なくとも1種の化合物が、エチレングリコール、1,4-ブタンジオール及び1,6-ヘキサンジオールよりなる群から選ばれた少なくとも1種の化合物である[1]乃至[12]のいずれかに記載のポリウレタンエラストマー。
【0028】
[14] 前記ポリウレタンエラストマーが熱可塑性エラストマーである[1]乃至[13]のいずれかに記載のポリウレタンエラストマー。
【0029】
[15] [1]乃至[14]のいずれかに記載のポリウレタンエラストマーを製造する方法であって、前記複数のイソシアネート基を有する化合物、前記ポリオール及びポリアミンからなる群より選ばれた少なくとも1種の化合物、前記ポリカーボネートジオール及び/又は前記ポリアルキレンエーテルグリコールの付加重合反応を無溶剤で行うポリウレタンエラストマーの製造方法。
【発明の効果】
【0030】
本発明によれば、透明性、柔軟性及び耐久性に優れたポリウレタンエラストマーが提供される。
なお、本発明において、「耐久性」とは耐薬品性、耐候性、その他様々の化学的、物理的影響に対する抵抗性能を意味する。
【発明を実施するための形態】
【0031】
以下、本発明の実施の形態について詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
【0032】
[ポリウレタンエラストマー]
本発明のポリウレタンエラストマーは、複数のイソシアネート基を有する化合物(以下、「ポリイソシアネート化合物」と称す場合がある。)、ポリオール及びポリアミンからなる群より選ばれた少なくとも1種の化合物(以下、「鎖延長剤」と称す場合がある。)、下記式(A)で表される構造を有するポリエーテルポリカーボネートジオール(以下、「ポリエーテルポリカーボネートジオール(A)」と称す場合がある。)、並びに少なくとも下記式(B)で表される繰り返し単位(以下、「繰り返し単位(B)」と称す場合がある。)と下記式(C)で表される繰り返し単位(以下、「繰り返し単位(C)」と称す場合がある。)を有するポリカーボネートジオール及び/又は下記式(D)(以下、「繰り返し単位(D)」と称す場合がある。)で表される繰り返し単位と下記式(E)で表される繰り返し単位(以下、「繰り返し単位(E)」と称す場合がある。)を有するポリアルキレンエーテルグリコールに由来する構造単位を含むことを特徴とするものであり、ポリイソシアネート化合物及び鎖延長剤と、ポリエーテルポリカーボネートジオール(A)と、繰り返し単位(B)と繰り返し単位(C)を有するポリカーボネートジオール及び/又は繰り返し単位(D)と繰り返し単位(E)を有するポリアルキレンエーテルグリコールとを原料に用いて製造される。
【0033】
【0034】
(上記式(A)において、R1は炭素数2~10の二価の炭化水素基を表し、nは2~30の整数であり、mは1~20の整数である。なお、式(A)中、複数のR1は同一であってもよく、異なるものであってもよい。)
【0035】
【0036】
(上記式(B)において、R2は炭素数2~20の二価の炭化水素基を表し、pは3~50の整数であり、上記式(C)においてR3はR2とは異なるものであり、炭素数3~20の二価の炭化水素基を表し、又は、脂環式構造若しくは複素環式構造を含む炭素数3~20の二価の炭化水素基を表し、qは0~50の整数である。
上記式(D)において、R4は炭素数2~20のアルキレン基、rは3~50の整数であり、上記式(E)においてR5はR4とは異なるものであり、炭素数3~20の二価の炭化水素基、又は、脂環式構造若しくは複素環式構造を含む炭素数3~20の二価の炭化水素基を表し、sは0~50の整数である。)
【0037】
<ポリイソシアネート化合物>
本発明のポリウレタンエラストマーの製造原料として使用されるポリイソシアネート化合物は、イソシアネート基を2以上有するものであればよく、脂肪族、脂環族又は芳香族の各種公知のポリイソシアネート化合物が挙げられる。
【0038】
例えば、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート及びダイマー酸のカルボキシル基をイソシアネート基に転化したダイマージイソシアネート等の脂肪族ジイソシアネート化合物;1,4-シクロヘキサンジイソシアネート、イソホロンジイソシアネート、1-メチル-2,4-シクロヘキサンジイソシアネート、1-メチル-2,6-シクロヘキサンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート及び1,3-ビス(イソシアネートメチル)シクロヘキサンなどの脂環族ジイソシアネート化合物;キシリレンジイソシアネート、4,4’-ジフェニルジイソシアネート、トルエンジイソシアネート(2,4-トルエンジイソシアネート、2,6-トルエンジイソシアネート)、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルジメチルメタンジイソシアネート、4,4’-ジベンジルジイソシアネート、ジアルキルジフェニルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、1,5-ナフチレンジイソシアネート、3,3’-ジメチル-4,4’-ビフェニレンジイソシアネート、ポリメチレンポリフェニルイソシアネート、フェニレンジイソシアネート及びm-テトラメチルキシリレンジイソシアネートなどの芳香族ジイソシアネート化合物等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
【0039】
これらの中でも、ポリオールとの反応性や得られるポリウレタンエラストマーの硬化性の高さから芳香族ポリイソシアネート化合物が好ましく、特に工業的に安価に多量に入手が可能な点で、4,4’-ジフェニルメタンジイソシアネート(以下、「MDI」と称する場合がある)、トルエンジイソシアネート(TDI)、キシリレンジイソシアネートが好ましい。
【0040】
<鎖延長剤>
本発明のポリウレタンエラストマーの製造原料として使用される鎖延長剤は、イソシアネート基と反応する活性水素を少なくとも2個有する低分子量化合物であり、ポリオール及びポリアミンから選ばれる。
【0041】
その具体例としては、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオール等の直鎖ジオール類;2-メチル-1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、2,4-ヘプタンジオール、1,4-ジメチロールヘキサン、2-エチル-1,3-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-メチル-1,8-オクタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、ダイマージオール等の分岐鎖を有するジオール類;ジエチレングリコール、プロピレングリコール等のエーテル基を有するジオール類;1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、1,4-ジヒドロキシエチルシクロヘキサン等の脂環構造を有するジオール類、キシリレングリコール、1,4-ジヒドロキシエチルベンゼン、4,4’-メチレンビス(ヒドロキシエチルベンゼン)等の芳香族基を有するジオール類;グリセリン、トリメチロールプロパン、ペンタエリスリトール等のポリオール類;N-メチルエタノールアミン、N-エチルエタノールアミン等のヒドロキシアミン類;エチレンジアミン、1,3-ジアミノプロパン、ヘキサメチレンジアミン、トリエチレンテトラミン、ジエチレントリアミン、イソホロンジアミン、4,4’-ジアミノジシクロヘキシルメタン、2-ヒドロキシエチルプロピレンジアミン、ジ-2-ヒドロキシエチルエチレンジアミン、ジ-2-ヒドロキシエチルプロピレンジアミン、2-ヒドロキシプロピルエチレンジアミン、ジ-2-ヒドロキシプロピルエチレンジアミン、4,4’-ジフェニルメタンジアミン、メチレンビス(o-クロロアニリン)、キシリレンジアミン、ジフェニルジアミン、トリレンジアミン、ヒドラジン、ピペラジン、N,N’-ジアミノピペラジン等のポリアミン類;等を挙げることができる。
【0042】
これらの鎖延長剤は1種を単独で用いてもよく、2種以上を併用してもよい。
【0043】
これらの中でも得られるポリウレタンエラストマーのソフトセグメントとハードセグメントの相分離性に優れることによる柔軟性と弾性回復性に優れる点、工業的に安価に多量
に入手が可能な点で、エチレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオールが好ましい。
【0044】
<ポリエーテルポリカーボネートジオール(A)>
本発明のポリウレタンエラストマーの製造原料として用いるポリエーテルポリカーボネートジオール(A)は、下記式(A)で表される。
なお、下記式(A)において、m=1の場合、「ポリエーテルポリカーボネートジオール」ではなく、「ポリエーテルカーボネートジオール」と称されるものとなるが、本発明では、式(A)で表されるポリエーテルカーボネートジオールも含めて「ポリエーテルポリカーボネートジオール(A)」と称す。
【0045】
【0046】
(上記式(A)において、R1は炭素数2~10の二価の炭化水素基を表し、nは2~30の整数であり、mは1~20の整数である。なお、式(A)中、複数のR1は同一であってもよく、異なるものであってもよい。)
【0047】
上記式(A)において、R1は好ましくは炭素数2~10、より好ましくは炭素数3~6の直鎖又は分岐アルキレン基であり、特に好ましくは炭素数4のブチレン基又は炭素数5の2-メチルブチレン基、とりわけ好ましくはn-ブチレン基である。即ち、式(A)中のR1-O-はポリテトラメチレンエーテルグリコールに由来するものであることが、工業的入手性、得られるポリウレタンエラストマーの物性が優れるなどの観点から好ましい。
【0048】
上記式(A)において、nが2未満では得られるポリウレタンエラストマーの柔軟性が劣る傾向があり、30を超えると得られるポリエーテルポリカーボネートジオールの粘度および結晶性が高くなり、取り扱い性が悪くなると共に、他のポリオールとの相溶性が悪くなることで得られるポリウレタンエラストマーの透明性が低くなる傾向がある。よって、nは2~30であり、好ましくは3~25、より好ましくは3~20である。
【0049】
また、上記式(A)において、mが1未満ではポリウレタンエラストマーの耐久性に劣る傾向があり、20を超えると粘度が上がり、ポリウレタン化の際のハンドリングを損なう可能性がある。よって、mは1~20であり、好ましくは2~10、より好ましくは2~6である。
【0050】
ポリエーテルポリカーボネートジオール(A)は、ポリオキシアルキレングリコールとカーボネート化合物とを、触媒の存在下に常法に従って重合反応させることにより製造することができる。
【0051】
ポリエーテルポリカーボネートジオール(A)の製造に使用するポリオキシアルキレングリコールは、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、3-メチルテトラヒドロフランとテトラヒドロフランの共重合ポリテトラメチレンエーテルグリコール、ネオペンチルグリコールとテトラヒドロフランの共重合ポリエーテルポリオール、エチレンオキサイドとテトラヒドロフランの共重合ポリエーテルポリオール、プロピレンオキサイドとテトラヒドロフランの共重合ポリエーテルグリコール等が、得られるポリウレタンエラストマーの機械強度の観点から好ましく、ポリテトラメチレンエーテルグリコール(PTMG)がより好ましい。
なお、上記のポリオキシアルキレングリコールは1種のみを用いてもよく、2種以上を併用してもよい。
【0052】
ポリエーテルポリカーボネートジオール(A)の製造に使用するポリオキシアルキレングリコールの水酸基価から求めた数平均分子量(Mn)は好ましくは150~2000、より好ましくは200~1500、さらに好ましくは250~1200である。分子量が300未満では得られるポリウレタンエラストマーの柔軟性が劣る傾向があり、2000を超えると得られるポリエーテルポリカーボネートジオール(A)の粘度および結晶性が高くなり、取り扱い性が悪くなると共に、他のポリオ-ルとの相溶性が悪くなることで得られるポリウレタンエラストマーの透明性が低くなる傾向がある。水酸基価から求めた数平均分子量(Mn)は、具体的には、後述の実施例の項に記載される方法で測定される。
【0053】
ポリエーテルポリカーボネートジオール(A)の製造に使用可能なカーボネート化合物としては、本発明の効果を損なわない限り限定されないが、ジアルキルカーボネート、ジアリールカーボネート、またはアルキレンカーボネートが挙げられる。これらは1種であっても複数種であってもよい。このうち反応性の観点からジアルキルカーボネートとアルキレンカーボネートが好ましい。
【0054】
カーボネート化合物の具体例としては、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジフェニルカーボネート、エチレンカーボネート等が挙げられ、ジメチルカーボネートとエチレンカーボネートが好ましい。
【0055】
ポリエーテルポリカーボネートジオール(A)を製造する際には、重合を促進するために必要に応じてエステル交換触媒を用いることができる。
エステル交換触媒としては、一般にエステル交換能があるとされている化合物であれば制限なく用いることができる。
【0056】
エステル交換触媒の例を挙げると、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等の長周期型周期表(以下、単に「周期表」と記載する。)第1族金属(水素を除く)の化合物;マグネシウム、カルシウム、ストロンチウム、バリウム等の周期表第2族金属の化合物;チタン、ジルコニウム等の周期表第4族金属の化合物;ハフニウム等の周期表第5族金属の化合物;コバルト等の周期表第9族金属の化合物;亜鉛等の周期表第12族金属の化合物;アルミニウム等の周期表第13族金属の化合物;ゲルマニウム、スズ、鉛等の周期表第14族金属の化合物;アンチモン、ビスマス等の周期表第15族金属の化合物;ランタン、セリウム、ユーロピウム、イッテルビウム等ランタナイド系金属の化合物等が挙げられる。これらのうち、エステル交換反応速度を高めるという観点から、周期表第1族金属(水素を除く)の化合物、周期表第2族金属の化合物、周期表第4族金属の化合物、周期表第5族金属の化合物、周期表第9族金属の化合物、周期表第12族金属の化合物、周期表第13族金属の化合物、周期表第14族金属の化合物が好ましく、周期表第1族金属(水素を除く)の化合物、周期表第2族金属の化合物がより好ましく、周期表第2族金属の化合物がさらに好ましい。周期表第1族金属(水素を除く)の化合物の中でも、リチウム、カリウム、ナトリウムの化合物が好ましく、リチウム、ナトリウムの化合物がより好ましく、ナトリウムの化合物がさらに好ましい。周期表第2族金属の化合物の中でも、マグネシウム、カルシウム、バリウムの化合物が好ましく、カルシウム、マグネシウムの化合物がより好ましく、マグネシウムの化合物がさらに好ましい。これらの金属化合物は主に、水酸化物や塩等として使用される。塩として使用される場合の塩の例としては、塩化物、臭化物、ヨウ化物等のハロゲン化物塩;酢酸塩、ギ酸塩、安息香酸塩等のカルボン酸塩;炭酸塩、硝酸塩等の無機酸塩;メタンスルホン酸やトルエンスルホン酸、トリフルオロメタンスルホン酸等のスルホン酸塩;リン酸塩やリン酸水素塩、リン酸二水素塩等のリン含有の塩;アセチルアセトナート塩;等が挙げられる。触媒金属は、さらにメトキシドやエトキシドの様なアルコキシドとして用いることもできる。
【0057】
これらのうち、好ましくは、周期表第2族金属から選ばれた少なくとも1種の金属の酢酸塩や硝酸塩、硫酸塩、炭酸塩、リン酸塩、水酸化物、ハロゲン化物、アセチルアセトナート塩、アルコキシドが用いられ、より好ましくは周期表第2族金属の酢酸塩や炭酸塩、水酸化物、アセチルアセトナート塩が用いられ、さらに好ましくはマグネシウム、カルシウムの酢酸塩や炭酸塩、水酸化物、アセチルアセトナート塩が用いられ、特に好ましくはマグネシウム、カルシウムの酢酸塩、アセチルアセトナート塩が用いられ、最も好ましくはマグネシウムアセチルアセトナートが用いられる。
【0058】
ポリエーテルポリカーボネートジオール(A)の製造において、カーボネート化合物の使用量は、特に限定されないが、通常ポリオキシアルキレングリコールの合計1モルに対するモル比率で、下限が好ましくは0.35、より好ましくは0.50、さらに好ましくは0.60であり、上限は好ましくは1.00、より好ましくは0.98、さらに好ましくは0.97である。カーボネート化合物の使用量が上記上限超過では得られるポリエーテルポリカーボネートジオール(A)の末端基が水酸基でないものの割合が増加したり、分子量が所定の範囲とならない場合があり、前記下限未満では所定の分子量まで重合が進行しない場合がある。
【0059】
ポリエーテルポリカーボネートジオール(A)を製造するにあたって、前述のエステル交換触媒を用いる場合、その使用量は、得られるポリカーボネートジオール中に残存しても性能に影響の生じない量であることが好ましい。
【0060】
エステル交換触媒の使用量は、原料ポリオキシアルキレングリコールの重量に対する金属の重量比として、上限が500重量ppmであることが好ましく、100重量ppmであることがより好ましく、50重量ppmであることがさらに好ましく、10重量ppmであることが特に好ましい。一方、下限は十分な重合活性が得られる量として、0.01重量ppmであることが好ましく、0.1重量ppmであることがより好ましく、1重量ppmであることがさらに好ましい。
【0061】
エステル交換反応の際の反応温度は、実用的な反応速度が得られる温度であれば任意に採用することができる。通常反応温度の下限は70℃であることが好ましく、100℃であることがより好ましく、130℃であることがさらに好ましい。反応温度の上限は、通常250℃であることが好ましく、230℃であることがより好ましく、200℃であることがさらに好ましい。反応温度を上記上限以下とすることにより、得られるポリエーテルポリカーボネートジオール(A)が着色したり、エーテル構造が生成するなどの品質上の問題が生じるのを防ぐことができる。
【0062】
さらには、ポリエーテルポリカーボネートジオール(A)を製造するエステル交換反応の全工程を通じて反応温度を180℃以下とすることが好ましく、170℃以下とすることがより好ましく、160℃以下とすることがさらに好ましい。全工程を通じて反応温度を180℃以下とすることにより、条件によって着色し易くなるのを防ぐことができる。
【0063】
エステル交換反応は常圧で行なうこともできるが、エステル交換反応は平衡反応であり、生成する軽沸成分を系外に留去することで反応を生成系に偏らせることができる。従って、通常、反応後半には、減圧条件を採用して軽沸成分を留去しながら反応することが好ましい。或いは、反応の途中から徐々に圧力を下げて生成する軽沸成分を留去しながら反応させていくことも可能である。特に反応の終期において減圧度を高めて反応を行うと、副生したモノアルコール、フェノール類および環状カーボネートなどを留去することができるので好ましい。
この際の反応終了時の反応圧力は、上限が10kPaであることが好ましく、5kPaであることがより好ましく、1kPaであることがさらに好ましい。
軽沸成分の留出を効果的に行うために、反応系へ、窒素、アルゴンおよびヘリウムなどの不活性ガスを流通しながら該反応を行うこともできる。
【0064】
エステル交換反応の際に低沸のカーボネート化合物を使用する場合は、反応初期はカーボネート化合物の沸点近辺で反応を行い、反応が進行するにつれて、徐々に温度を上げて、さらに反応を進行させる、という方法も採用可能である。このようにすることで、反応初期の未反応のカーボネート化合物の留去を防ぐことができる。
【0065】
さらにこれら原料の留去を防ぐ目的で、反応器に還流管をつけて、カーボネート化合物を還流させながら反応を行うことも可能であり、この場合、仕込んだ原料が失われず試剤の量比を正確に合わせることができる。
【0066】
重合反応は、バッチ式または連続式で行うことができるが、製品の安定性等から連続式で行うことが好ましい。使用する装置は、槽型、管型および塔型のいずれの形式であってもよく、各種の攪拌翼を具備した公知の重合槽等を使用することができる。装置昇温中の雰囲気は特に制限はないが、製品の品質の観点から、窒素ガス等の不活性ガス中、常圧または減圧下で行うのが好ましい。
【0067】
重合反応は、生成するポリエーテルポリカーボネートジオール(A)の分子量を測定しながら、目的の分子量となったところで終了する。重合に必要な反応時間は、使用するポリオキシアルキレングリコール、カーボネート化合物、および触媒の使用の有無および種類により大きく異なるので、一概に規定することはできないが、通常50時間以下であることが好ましく、30時間以下であることがより好ましく、20時間以下であることがさらに好ましい。
【0068】
重合反応の際に触媒を用いた場合、通常得られたポリエーテルポリカーボネートジオール(A)には触媒が残存し、残存する触媒により、ポリウレタン化反応の制御ができなくなる場合がある。この残存する触媒の影響を抑制するために、使用されたエステル交換触媒とほぼ等モルのリン系化合物等の触媒失活剤を添加し、エステル交換触媒を不活性化することが好ましい。さらには触媒失活剤添加後、後述のように加熱処理等により、エステル交換触媒を効率的に不活性化することができる。
【0069】
エステル交換触媒の不活性化に使用されるリン系化合物としては、例えば、リン酸、亜リン酸などの無機リン酸や、リン酸ジブチル、リン酸トリブチル、リン酸トリオクチル、リン酸トリフェニル、亜リン酸トリフェニルなどの有機リン酸エステル等が挙げられる。これらは1種を単独で用いてもよく、2種類以上を併用してもよい。
【0070】
前記リン系化合物の使用量は、特に限定はされないが、使用されたエステル交換触媒とほぼ等モルであればよく、具体的には、使用されたエステル交換触媒1モルに対して上限が好ましくは5モル、より好ましくは2モルであり、下限が好ましくは0.8モル、より好ましくは1.0モルである。これより少ない量のリン系化合物を使用した場合は、反応生成物中のエステル交換触媒の不活性化が十分でなく、得られたポリエーテルポリカーボネートジオール(A)をポリウレタンエラストマー製造用原料として使用する時、該ポリエーテルポリカーボネートジオール(A)のイソシアネート基に対する反応性を十分に低下させることができない場合がある。また、この範囲を超えるリン系化合物を使用すると得られたポリエーテルポリカーボネートジオール(A)が着色してしまう可能性がある。
【0071】
リン系化合物を添加することによるエステル交換触媒の不活性化は、室温でも行うことができるが、加熱処理するとより効率的である。この加熱処理の温度は、特に限定はされないが、上限が好ましくは180℃、より好ましくは150℃、さらに好ましくは120℃、特に好ましくは100℃であり、下限は、好ましくは50℃、より好ましくは60℃、さらに好ましくは70℃である。これより低い温度の場合は、エステル交換触媒の不活性化に時間がかかり効率的でなく、また不活性化の程度も不十分な場合がある。一方、180℃を超える温度では、得られたポリエーテルポリカーボネートジオール(A)が着色することがある。リン系化合物と反応させる時間は特に限定するものではないが、通常1時間~5時間である。
【0072】
なお、ポリエーテルポリカーボネートジオール(A)に残存する触媒量は、ポリウレタン化反応の制御の観点から金属換算量で100重量ppm以下、特に10重量ppm以下であることが好ましい。一方で、必要な触媒量として金属換算量で0.01重量ppm以上、特に0.1重量ppm以上、とりわけ5重量ppm以上であることが好ましい。
【0073】
ポリエーテルポリカーボネートジオール(A)中には、製造時の原料として使用したカーボネート化合物が残存することがある。ポリエーテルポリカーボネートジオール(A)中のカーボネート化合物の残存量は限定されるものではないが、少ないほうが好ましく、ポリカーボネートジオール(A)に対する重量比として上限が好ましくは5重量%、より好ましくは3重量%、さらに好ましくは1重量%である。ポリエーテルポリカーボネートジオール(A)のカーボネート化合物含有量が多すぎるとポリウレタン化の際の反応を阻害する場合がある。一方、その下限は特に制限はないが、好ましくは0.1重量%、より好ましくは0.01重量%、さらに好ましくは0重量%である。
【0074】
ポリエーテルポリカーボネートジオール(A)には、製造時に使用したポリオキシアルキレングリコールが残存する場合がある。ポリエーテルポリカーボネートジオール(A)中のポリオキシアルキレングリコールの残存量は、限定されるものではないが、少ないほうが好ましく、ポリエーテルポリカーボネートジオール(A)に対する重量比として1重量%以下が好ましく、より好ましくは0.1重量%以下であり、さらに好ましくは0.05重量%以下である。ポリエーテルポリカーボネートジオール(A)中のポリオキシアルキレングリコールの残存量が多いと、ポリウレタンエラストマーとした際のソフトセグメント部位の分子長が不足し、所望の物性が得られない場合がある。
【0075】
ポリエーテルポリカーボネートジオール(A)の水酸基価の下限は通常22.4mg-KOH/g、好ましくは28.1mg-KOH/g、より好ましくは37.4mg-KOH/gで、上限は通常187.0mg-KOH/g、好ましくは140.3mg-KOH/g、より好ましくは112.2mg-KOH/gである。水酸基価が上記下限未満では、粘度が高くなりすぎポリウレタン化の際のハンドリングが困難となる場合があり、上記上限超過では得られるポリウレタンエラストマーの柔軟性が不足する場合がある。
ポリエーテルポリカーボネートジオール(A)の水酸基価は、具体的には、後述の実施例の項に記載される方法で測定される。
【0076】
また、本発明で用いるポリエーテルポリカーボネートジオールの水酸基価から求めた数平均分子量(Mn)の下限は好ましくは600であり、より好ましくは800、さらに好ましくは1000である。一方、上限は好ましくは5,000であり、より好ましくは4,000、さらに好ましくは3,000である。ポリエーテルポリカーボネートジオールのMnが前記下限未満では、ポリウレタンエラストマーとした際に柔軟性が十分に得られない場合がある。一方前記上限超過では粘度が上がり、ポリウレタン化の際のハンドリングを損なう可能性がある。
【0077】
<ポリカーボネートジオール>
本発明のポリウレタンエラストマーの製造原料として用いるポリカーボネートジオール(以下、「本発明のポリカーボネートジオール」と称す場合がある。)は、下記式(B)で表される繰り返し単位(B)と下記式(C)で表される繰り返し単位(C)を有するものである。なお、式(C)において、qが0の場合、本発明のポリカーボネートジオール中に繰り返し単位(C)は存在しない。
【0078】
【0079】
(上記式(B)において、R2は炭素数2~20の二価の炭化水素基を表し、pは3~50の整数であり、上記式(C)においてR3はR2とは異なるものであり、炭素数3~20の二価の炭化水素基を表し、又は、脂環式構造若しくは複素環式構造を含む炭素数3~20の二価の炭化水素基を表し、qは0~50の整数である。)
【0080】
繰り返し単位(B)において、R2は好ましくは炭素数3~12、より好ましくは炭素数3~6、特に好ましくは炭素数4又は6の直鎖又は分岐のアルキレン基であり、繰り返し単位(B)は1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオールに由来するものであることが、工業的入手性、得られるポリウレタンエラストマーの物性が優れるなどの観点から好ましく、特にn-ブチレン基、n-ヘキシレン基が好ましい。
【0081】
繰り返し単位(B)において、pが3未満では他のポリオールとの相溶性が低下し、得られるポリウレタンエラストマーの柔軟性と耐久性が劣る傾向があり、50を超えると耐摩耗性が劣る傾向がある。よって、pは3~50であり、好ましくは3~40、より好ましくは5~30である。
【0082】
繰り返し単位(C)のR3は、炭素数3~20、好ましくは炭素数4~12の二価の炭化水素基であり、直鎖アルキレン基でもよく、このような直鎖アルキレン基は、直鎖脂肪族ジヒドロキシ化合物を用いることで、ポリカーボネートジオールに導入することができる。この直鎖脂肪族ジヒドロキシ化合物としては、具体的には、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール、1,13-トリデカンジオール、1,14-テトラデカンジオール、1,16-ヘキサデカンジオール、1,18-オクタデカンジオール、好ましくは1,4-ブタンジオール、1,5-ペンタジオール、1,6-ヘキサンジオール、1,10-デカンジオールの1種又は2種以上が挙げられる。
【0083】
繰り返し単位(C)のR3はまた、分岐鎖を含む炭素数3~20、好ましくは炭素数4~12のアルキレン基でもよく、このような分岐アルキレン基としては、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2-メチル-1,3-プロパンジオール及び2-メチル-1,4-ブタンジオールの1種又は2種以上に由来するものが挙げられる。
【0084】
さらには繰り返し単位(C)のR3は脂環式構造あるいは複素環式構造を含む脂肪族炭化水素基でもよく、具体的にはイソソルビド、イソマンニド、イソイディッド、1,4-シクロヘキサンジメタノールの1種又は2種以上に由来するものが挙げられる。
【0085】
繰り返し単位(C)において、qが0で、本発明のポリカーボネートジオールが繰り返し単位(C)を含まない場合、他のポリオールとの相溶性が低下し、得られるポリウレタンエラストマーの柔軟性と耐久性が劣る傾向があり、50を超えると耐摩耗性が劣る傾向がある。よって、mは1~50であることが好ましく、より好ましくは2~50、さらに好ましくは2~40、特に好ましくは2~30である。
【0086】
なお、本発明のポリカーボネートジオールには、繰り返し単位(B)の1種のみが含まれていてもよく、2種以上が含まれていてもよい。また、繰り返し単位(C)についても1種のみが含まれていてもよく、2種以上が含まれていてもよい。また、繰り返し単位(B)と繰り返し単位(C)が同じ構造を取っても良い。
【0087】
また、本発明のポリカーボネートジオールには、本発明の効果を損なわない範囲において、繰り返し単位(B)及び繰り返し単位(C)以外の繰り返し単位が、例えば全繰り返し単位中に5.0モル%以下含まれていてもよい。
【0088】
本発明のポリカーボネートジオールに含まれる繰り返し単位(B)に対する繰り返し単位(C)のモル比率(繰り返し単位(C)/繰り返し単位(B)、「モル比率(C)/(B)」と称す場合がある。)は0.03~10であることが好ましく、特に0.05~4であることが好ましく、とりわけ0.10~1.00であることが好ましい。上記範囲よりも繰り返し単位(B)が多く、繰り返し単位(C)が少ないと他のポリオールとの相溶性が低下する傾向があり、逆に繰り返し単位(B)が少なく、繰り返し単位(C)が多いと、得られるポリウレタンエラストマーの柔軟性、特に低温での柔軟性や、耐薬品性が低下する傾向がある。
なお、ポリカーボネートジオールのモル比率(C)/(B)は、後述の実施例の項に記載の方法で測定される。
【0089】
本発明のポリカーボネートジオールは、例えば、繰り返し単位(B)を導入するための炭素数2~20、好ましくは炭素数3~6の直鎖脂肪族ジヒドロキシ化合物、具体的には、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール、1,13-トリデカンジオール、1,14-テトラデカンジオール、1,16-ヘキサデカンジオール、1,18-オクタデカンジオール、好ましくは1,4-ブタンジオール、1,5-ペンタジオール、1,6-ヘキサンジオール等の1種又は2種以上と、繰り返し単位(C)を導入するための炭素数3~20、好ましくは炭素数4~12の分岐脂肪族ジヒドロキシ化合物、好ましくはネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2-メチル-1,3-プロパンジオール、2-メチル-1,4-ブタンジオール、或いは、イソソルビド、イソマンニド、イソイディッド、1,4-シクロヘキサンジメタノール等の脂環式構造又は複素環式構造を含む脂肪族ジヒドロキシ化合物等の1種又は2種以上とを、前述の好適なモル比率(C)/(B)となるように原料ジヒドロキシ化合物として用い、これらのジヒドロキシ化合物とポリカーボネート化合物とを、触媒の存在下に常法に従って重合反応させることにより製造することができる。
【0090】
本発明のポリカーボネートジオールの製造に使用可能なカーボネート化合物としては、本発明の効果を損なわない限り限定されないが、ジアルキルカーボネート、ジアリールカーボネート、またはアルキレンカーボネートが挙げられる。これらは1種であっても複数種であってもよい。このうち反応性の観点からジアリールカーボネートが好ましい。
【0091】
カーボネート化合物の具体例としては、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジフェニルカーボネート、エチレンカーボネート等が挙げられ、ジフェニルカーボネートが好ましい。
【0092】
本発明のポリカーボネートジオールは、前述のポリエーテルポリカーボネートジオール(A)の製造方法において、ポリオキシアルキレングリコールの代りに上述の繰り返し単位(B)を導入するためのジヒドロキシ化合物と繰り返し単位(C)を導入するためのジヒドロキシ化合物を用いること以外は同様にして製造することができる。
【0093】
本発明のポリカーボネートジオールに残存する触媒量は、ポリウレタン化反応の制御の観点から金属換算量で100重量ppm以下、特に10重量ppm以下であることが好ましい。一方で、必要な触媒量として金属換算量で0.01重量ppm以上、特に0.1重量ppm以上、とりわけ5重量ppm以上であることが好ましい。
【0094】
本発明のポリカーボネートジオールの製造において、反応生成物は、該生成物中のポリマー末端に水酸基を有さない不純物、フェノール類、原料ジヒドロキシ化合物、カーボネート化合物、副生する軽沸の環状カーボネートおよび添加した触媒などを除去する目的で精製することができる。
【0095】
その際の精製は、軽沸化合物については、蒸留で留去する方法が採用できる。蒸留の具体的な方法としては、減圧蒸留、水蒸気蒸留および薄膜蒸留など特にその形態に制限はなく、任意の方法を採用することが可能であるが、中でも薄膜蒸留が効果的である。
【0096】
薄膜蒸留条件としては特に制限はないが、薄膜蒸留時の温度は、上限が250℃であることが好ましく、200℃であることが好ましい。また、下限が120℃であることが好ましく、150℃であることがより好ましい。
薄膜蒸留時の温度の下限を上記の値とすることにより、軽沸成分の除去効果が十分となる。また、上限を250℃とすることにより、薄膜蒸留後に得られるポリカーボネートジオールが着色するのを防ぐことができる。
【0097】
薄膜蒸留時の圧力は、上限が500Paであることが好ましく、150Paであることがより好ましく、70Paであることがさらに好ましく、60Paであることが特に好ましい。薄膜蒸留時の圧力を上記上限値以下とすることにより、軽沸成分の除去効果が十分に得られる。
【0098】
また、薄膜蒸留直前のポリカーボネートジオールの保温の温度は、上限が250℃であることが好ましく、150℃であることがより好ましい。また、下限が80℃であることが好ましく、120℃であることがより好ましい。
薄膜蒸留直前のポリカーボネートジオールの保温の温度を上記下限以上とすることにより、薄膜蒸留直前のポリカーボネートジオールの流動性が低下するのを防ぐことができる。一方、上記上限以下とすることにより、薄膜蒸留後に得られるポリカーボネートジオールが着色するのを防ぐことができる。
【0099】
また、水溶性の不純物を除くために、水、アルカリ性水、酸性水およびキレート剤溶解溶液などで洗浄してもよい。その場合水に溶解させる化合物は任意に選択できる。
【0100】
原料として例えばジフェニルカーボネート等のジアリールカーボネートを使用した場合、ポリカーボネートジオール製造中にフェノール類が副生する。フェノール類は一官能性化合物なので、ポリウレタンエラストマーを製造する際の阻害因子となる可能性がある上、フェノール類によって形成されたウレタン結合は、その結合力が弱いために、その後の工程等で熱によって解離してしまい、イソシアネートやフェノール類が再生されて不具合を起こす可能性がある。また、フェノール類は刺激性物質でもあるため、ポリカーボネートジオール中のフェノール類の残存量は、より少ない方が好ましい。ポリカーボネートジオール中のフェノール類の残存量は、具体的にはポリカーボネートジオールに対する重量比として好ましくは1000ppm以下、より好ましくは500ppm以下、さらに好ましくは300ppm以下、中でも100ppm以下であることが好ましい。ポリカーボネートジオール中のフェノール類を低減するためには、前述するようにポリカーボネートジオールの重合反応の圧力を絶対圧力として1kPa以下の高真空としたり、ポリカーボネートジオールの重合反応後に薄膜蒸留等を行ったりすることが有効である。
【0101】
ポリカーボネートジオール中には、製造時の原料として使用したカーボネート化合物が残存することがある。ポリカーボネートジオール中のカーボネート化合物の残存量は限定されるものではないが、少ないほうが好ましく、ポリカーボネートジオールに対する重量比として上限が好ましくは5重量%、より好ましくは3重量%、さらに好ましくは1重量%である。ポリカーボネートジオールのカーボネート化合物含有量が多すぎるとポリウレタン化の際の反応を阻害する場合がある。一方、その下限は特に制限はないが、好ましくは0.1重量%、より好ましくは0.01重量%、さらに好ましくは0重量%である。
【0102】
ポリカーボネートジオールには、製造時に使用したジヒドロキシ化合物が残存する場合がある。ポリカーボネートジオール中のジヒドロキシ化合物の残存量は、限定されるものではないが、少ないほうが好ましく、ポリカーボネートジオールに対する重量比として1重量%以下が好ましく、より好ましくは0.1重量%以下であり、さらに好ましくは0.05重量%以下である。ポリカーボネートジオール中のジヒドロキシ化合物の残存量が多いと、ポリウレタンエラストマーとした際のソフトセグメント部位の分子長が不足し、所望の物性が得られない場合がある。
【0103】
ポリカーボネートジオール中には、製造の際に副生した環状のカーボネート(環状オリゴマー)を含有する場合がある。例えば繰り返し単位(B)又は(C)の原料ジヒドロキシ化合物として2,2-ジアルキル-1,3-プロパンジオールを用いた場合、5,5-ジアルキル-1,3-ジオキサン-2-オンもしくはさらにこれらが2分子ないしそれ以上で環状カーボネートとなったものなどが生成してポリカーボネートジオール中に含まれる場合がある。より具体的には、2,2-ジメチル-1,3-プロパンジオールを用いた場合、5,5-ジメチル-1,3-ジオキサン-2-オンもしくはさらにこれらが2分子ないしそれ以上で環状カーボネートとなったものなどが生成してポリカーボネートジオール中に含まれる場合がある。これらの化合物は、ポリウレタン化反応においては副反応をもたらす可能性があり、また濁りの原因となるため、ポリカーボネートジオールの重合反応の圧力を絶対圧力として1kPa以下の高真空にしたり、ポリカーボネートジオールの合成後に薄膜蒸留等を行ったりしてできる限り除去しておくことが好ましい。ポリカーボネートジオール中に含まれる5,5-ジアルキル-1,3-ジオキサン-3-オン等の環状カーボネートの含有量は、限定されないが、ポリカーボネートジオールに対する重量比として好ましくは3重量%以下、より好ましくは1重量%以下、さらに好ましくは0.5重量%以下である。
【0104】
本発明のポリカーボネートジオールの水酸基価は、下限は通常22.4mg-KOH/g、好ましくは28.1mg-KOH/g、より好ましくは37.4mg-KOH/gで、上限は通常448.8mg-KOH/g、好ましくは374.0mg-KOH/g、より好ましくは280.5mg-KOH/gである。水酸基価が上記下限未満では、粘度が高くなりすぎポリウレタン化の際のハンドリングが困難となる場合があり、上記上限超過では得られるポリウレタンエラストマーの柔軟性が不足する場合がある。
ポリカーボネートジオールの水酸基価は、具体的には、後述の実施例の項に記載される方法で測定される。
【0105】
また、本発明のポリカーボネートジオールの水酸基価から求めた数平均分子量(Mn)の下限は好ましくは250であり、より好ましくは300、さらに好ましくは400である。一方、上限は好ましくは5,000であり、より好ましくは4,000、さらに好ましくは3,000である。ポリカーボネートジオールのMnが前記下限未満では、ポリウレタンエラストマーとした際に柔軟性が十分に得られない場合がある。一方前記上限超過では粘度が上がり、ポリウレタン化の際のハンドリングを損なう可能性がある。
ポリカーボネートジオールの水酸基価から求めた数平均分子量(Mn)は、具体的には、後述の実施例の項に記載される方法で測定される。
【0106】
本発明のポリウレタンエラストマーの製造原料としてのポリカーボネートジオールは、1種のみを用いてもよく、繰り返し単位やそのモル比、物性等の異なるものを2種以上用いてもよい。
【0107】
<ポリアルキレンエーテルグリコール>
本発明のポリウレタンエラストマーの製造原料として用いるポリアルキレンエーテルグリコール(以下、「本発明のポリアルキレンエーテルグリコール」と称す場合がある。)は、下記式(D)で表される繰り返し単位(D)と下記式(E)で表される繰り返し単位(E)を有するものである。なお、式(E)において、sが0の場合、本発明のポリアルキレンエーテルグリコール中に繰り返し単位(E)は存在しない。
【0108】
【0109】
(上記式(D)において、R4は炭素数2~20のアルキレン基、rは3~50の整数であり、上記式(E)においてR5はR4とは異なるものであり、炭素数3~20の二価の炭化水素基、又は、脂環式構造若しくは複素環式構造を含む炭素数3~20の二価の炭化水素基を表し、sは0~50の整数である。)
【0110】
ポリアルキレンエーテルグリコールは、通常、上記繰り返し単位(D),(E)の通り、分子内の主骨格中に1つ以上のエーテル結合を有するポリヒドロキシ化合物である。
【0111】
工業的に入手しやすい観点から繰り返し単位(D)におけるR4としては特に炭素数2~4のアルキレン基が好ましく、rは3~100、特に3~50であることが好ましい。
また、他のポリオールとの相溶性の観点から、繰り返し単位(E)において、R5としては2-ブチレン基またはネオペンチレン基が好ましく、sは0~30、特に0~20が好ましい。
【0112】
本発明のポリアルキレンエーテルグリコールに含まれる繰り返し単位(D)に対する繰り返し単位(E)のモル比率(繰り返し単位(E)/繰り返し単位(D)、「モル比率(E)/(D)」と称す場合がある。)は0~50であることが好ましく、特に0~40であることが好ましく、とりわけ0~30であることが好ましい。上記範囲よりも繰り返し単位(E)が多いと、粘度が高くなりすぎてポリウレタン化の際のハンドリングが困難となる可能性がある。
なお、ポリアルキレンエーテルグリコールのモル比率(E)/(D)は、後述の実施例の項に記載のポリカーボネートジオールのモル比率(B)/(A)の測定方法と同様の方法で測定される。
【0113】
本発明のポリアルキレンエーテルグリコールの主骨格中の繰り返し単位としては、例えば、1,2-エチレングリコール単位、1,2-プロピレングリコール単位、1,3-プロパンジオール(トリメチレングリコール)単位、2-メチル-1,3-プロパンジオール単位、2,2-ジメチル-1,3-プロパンジオール単位、1,4-ブタンジオール(テトラメチレングリコール)単位、2-メチル-1,4-ブタンジオール単位、3-メチル-1,4-ブタンジオール単位、3-メチル-1,5-ペンタンジオール単位、ネオペンチルグリコール単位、1,6-ヘキサンジオール単位、1,7-ヘプタンジオール単位、1,8-オクタンジオール単位、1,9-ノナンジオール単位、1,10-デカンジオール単位及び1,4-シクロヘキサンジメタノール単位等の炭素数1~20の飽和炭化水素基が挙げられ、単独の繰り返し単位でポリアルキレンエーテルグリコールを形成していてもよいし、2種以上の繰り返し単位で共重合ポリアルキレンエーテルグリコールを形成していてもよい。
【0114】
本発明で用いるポリアルキレンエーテルグリコールとしては、前記繰り返し単位を主骨格中に有するポリアルキレンエーテルグリコールのうち、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、3-メチルテトラヒドロフランとテトラヒドロフランの共重合ポリテトラメチレンエーテルグリコール、ネオペンチルグリコールとテトラヒドロフランの共重合ポリエーテルポリオール、エチレンオキサイドとテトラヒドロフランの共重合ポリエーテルポリオール、プロピレンオキサイドとテトラヒドロフランの共重合ポリエーテルグリコール等が得られるポリウレタンエラストマーの機械強度の観点から好ましく、ポリテトラメチレンエーテルグリコール(PTMG)がより好ましい。
【0115】
本発明のポリアルキレンエーテルグリコールの分子量は、水酸基価基準で、下限は通常200以上、好ましくは300以上、より好ましくは400以上、更に好ましくは500以上であり、上限は通常5000以下、好ましくは4000以下、より好ましくは3500以下、更に好ましくは2500以下である。
【0116】
ポリアルキレンエーテルグリコールの分子量を上記上限以下とすることにより、粘度を抑え、ポリウレタン化の際のハンドリング性を損なうことがなく、一方、ポリアルキレンエーテルグリコールの分子量を上記下限以上とすることにより、ポリウレタンエラストマーとした際の柔軟性が十分に得られ、好ましい。
ポリアルキレンエーテルグリコールの水酸基価基準の分子量は、通常具体的には、後述の実施例の項に記載される方法で測定される。
【0117】
これらのポリアルキレンエーテルグリコールは、1種を単独で用いてもよく、2種以上を併用してもよい。
【0118】
<ポリエーテルポリカーボネートジオール(A)と本発明のポリカーボネートジオール及び/又は本発明のポリアルキレンエーテルグリコールとの使用割合>
本発明のポリウレタンエラストマーの製造に用いるポリエーテルポリカーボネートジオール(A)と本発明のポリカーボネートジオール(A)及び/又は本発明のポリアルキレンエーテルグリコールの割合は、ポリエーテリポリカーボネートジオール(A)と本発明のポリカーボネートジオール及び本発明のポリアルキレンエーテルグリコールとの合計に対する、ポリエーテルポリカーボネートジオール(A)の割合(以下、「PEPCD比率」と称す場合がある。)が10重量%~90重量%となるような割合であることが好ましい。なお、本発明のポリカーボネートジオールと本発明のポリアルキレンエーテルグリコールはいずれか一方を用いてもよく両方を用いてもよい。
【0119】
PEPCD比率が上記下限以上であると、ポリエーテルポリカーボネートジオール(A)と本発明のポリカーボネートジオール及び/又は本発明のポリアルキレンエーテルグリコールとの相溶性が向上することで透明性が高く、耐薬品性の効果を十分に得ることができ、上記上限以下であれば、柔軟性と機械強度に優れ、弾性回復性などの効果を十分に得ることができる。PEPCD比率は、特に20重量%~80重量%、とりわけ30重量%~70重量%であることが好ましい。
【0120】
[ポリウレタンエラストマーの製造方法]
本発明のポリウレタンエラストマーは、ポリエーテルポリカーボネートジオール(A)と、本発明のポリカーボネートジオール及び/又は本発明のポリアルキレンエーテルグリコール(以下、本発明のポリカーボネートジオールと本発明のポリアルキレンエーテルグリコールとを「本発明のジオール」と称す場合がある。)と、ポリイソシアネート化合物と前述の鎖延長剤とを用いること以外は、通常のポリウレタン化反応により製造することができる。
ここで、本発明のポリウレタンエラストマーの製造に当たり、溶剤を用いると、成形時に溶剤を除去する工程が必要となるため工業的に有利ではない。また溶剤は環境への負荷が大きいため、反応は無溶剤(溶剤の不存在下)で行うことが好ましい。
本発明では、本発明のポリカーボネートジオール及びポリテトラメチレングリコールなどの本発明のポリアルキレングリコールのいずれとも相溶性の高いポリエーテルポリカーボネートジオール(A)を用いることで、物質移動の影響が大きい無溶剤条件でも均一かつ物性バランスに優れたポリウレタンエラストマーを得ることができる。
【0121】
例えば、ポリエーテルポリカーボネートジオール(A)及び本発明のジオールとポリイソシアネート化合物及び鎖延長剤を常温から200℃の範囲で反応させることにより、本発明のポリウレタンエラストマーを製造することができる。
また、ポリエーテルポリカーボネートジオール(A)及び本発明のジオールと過剰のポリイソシアネート化合物とをまず反応させて末端にイソシアネート基を有するプレポリマーを製造し、さらに鎖延長剤を用いて重合度を挙げて、本発明のポリウレタンエラストマーを製造することができる。
【0122】
<鎖停止剤>
本発明のポリウレタンエラストマーを製造する際には、得られるポリウレタンの分子量を制御する目的で、必要に応じて1個の活性水素基を持つ鎖停止剤を使用することができる。
これらの鎖停止剤としては、一個の水酸基を有するメタノール、エタノール、プロパノール、ブタノール、ヘキサノール等の脂肪族モノオール類、一個のアミノ基を有するジエチルアミン、ジブチルアミン、n-ブチルアミン、モノエタノールアミン、ジエタノールアミン、モルフォホリン等の脂肪族モノアミン類が例示される。
これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
【0123】
<触媒>
本発明のポリウレタンエラストマーを製造する際のポリウレタン形成反応において、トリエチルアミン、N-エチルモルホリン、トリエチレンジアミンなどのアミン系触媒又は酢酸、リン酸、硫酸、塩酸、スルホン酸等の酸系触媒、トリメチルチンラウレート、ジブチルチンジラウレート、ジオクチルチンジラウレート、ジオクチルチンジネオデカネートなどのスズ系の化合物、さらにはチタン系化合物などの有機金属塩などに代表される公知のウレタン重合触媒を用いる事もできる。ウレタン重合触媒は、1種を単独で用いてもよく、2種以上を併用してもよい。
【0124】
<ポリエーテルポリカーボネートジオール(A)及び本発明のジオール以外のポリオール>
本発明のポリウレタンエラストマーを製造する際のポリウレタン形成反応においては、ポリエーテルポリカーボネートジオール(A)及び本発明のジオールと必要に応じてそれ以外のポリオールを併用してもよい。ここで、ポリエーテルポリカーボネートジオール(A)及び本発明のジオール以外のポリオールとは、通常のポリウレタン製造の際に用いるものであれば特に限定されず、例えばポリエステルポリオール、ポリカプロラクトンポリオール、本発明のポリカーボネートジオール以外のポリカーボネートポリオールが挙げられる。ここで、ポリエーテルポリカーボネートジオール(A)及び本発明のジオールとそれ以外のポリオールを合わせた重量に対する、ポリエーテルポリカーボネートジオール(A)及び本発明のジオールの重量割合は70%以上が好ましく、90%以上がさらに好ましい。ポリエーテルポリカーボネートジオール(A)及び本発明のジオールの重量割合が少ないと、本発明の特徴であるポリウレタンエラストマーの柔軟性や耐久性が失われる可能性がある。
【0125】
本発明において、ポリウレタンエラストマーの製造には、上述の本発明に用いるポリカーボネートジオールを変性して使用することもできる。ポリカーボネートジオールの変性方法としては、ポリカーボネートジオールにエチレンオキシド、プロピレンオキシド、ブチレンオキシド等のエポキシ化合物を付加させてエーテル基を導入する方法や、ポリカーボネートジオールをε-カプロラクトン等の環状ラクトンやアジピン酸、コハク酸、セバシン酸、テレフタル酸等のジカルボン酸化合物並びにそれらのエステル化合物と反応させてエステル基を導入する方法がある。エーテル変性ではエチレンオキシド、プロピレンオキシド等による変性でポリカーボネートジオールの粘度が低下し、取扱い性等の理由で好ましい。特に、本発明のポリカーボネートジオールではエチレンオキシドやプロピレンオキシド変性することによって、ポリカーボネートジオールの結晶性が低下し、低温での柔軟性が改善すると共に、エチレンオキシド変性の場合は、エチレンオキシド変性ポリカーボネートジオールを用いて製造されたポリウレタンエラストマーの吸水性や透湿性が向上することがある。しかし、エチレンオキシドやプロピレンオキシドの付加量が多くなると、変性ポリカーボネートジオールを用いて製造されたポリウレタンエラストマーの機械強度、耐熱性、耐薬品性等の諸物性が低下するので、ポリカーボネートジオールに対する付加量としては5重量%~50重量%が好適であり、好ましくは5重量%~40重量%、さらに好ましくは5重量%~30重量%である。また、エステル基を導入する方法では、ε-カプロラクトンによる変性でポリカーボネートジオールの粘度が低下し、取扱い性等の理由で好ましい。ポリカーボネートジオールに対するε-カプロラクトンの付加量としては5重量%~50重量%が好適であり、好ましくは5重量%~40重量%、さらに好ましくは5重量%~30重量%である。ε-カプロラクトンの付加量が50重量%を超えると、変性ポリカーボネートジオールを用いて製造されたポリウレタンエラストマーの耐加水分解性、耐薬品性等が低下する。
【0126】
<ポリウレタンエラストマー製造方法>
上述の反応試剤を用いて本発明のポリウレタンエラストマーを製造する方法としては、一般的に実験ないし工業的に用いられる製造方法が使用できる。
その例としては、ポリエーテルポリカーボネートジオール(A)及び本発明のジオール、必要に応じて用いられるそれ以外のポリオール、ポリイソシアネート化合物及び鎖延長剤を一括に混合して反応させる方法(以下、「一段法」と称する場合がある)や、まずポリエーテルポリカーボネートジオール(A)及び本発明のジオール、必要に応じて用いられるそれ以外のポリオール及びポリイソシアネート化合物を反応させて両末端がイソシアネート基のプレポリマーを調製した後に、そのプレポリマーと鎖延長剤を反応させる方法(以下、「二段法」と称する場合がある)等がある。
【0127】
二段法は、ポリエーテルポリカーボネートジオール(A)及び本発明のジオールとそれ以外のポリオールとを予め1当量以上のポリイソシアネート化合物と反応させることにより、ポリウレタンのソフトセグメントに相当する部分の両末端イソシアネート中間体を調製する工程を経るものである。このように、プレポリマーを一旦調製した後に鎖延長剤と反応させると、ソフトセグメント部分の分子量の調整が行いやすい場合があり、ソフトセグメントとハードセグメントの相分離を確実に行う必要がある場合には有用である。
【0128】
<一段法>
一段法とは、ワンショット法とも呼ばれ、ポリエーテルポリカーボネートジオール(A)及び本発明のジオール、それ以外のポリオール、ポリイソシアネート化合物及び鎖延長剤を一括に仕込むことで反応を行う方法である。
一段法におけるポリイソシアネート化合物の使用量は、特に限定はされないが、ポリエーテルポリカーボネートジオール(A)及び本発明のジオールとそれ以外のポリオールとの総水酸基数と、鎖延長剤の水酸基数とアミノ基数との総計を1当量とした場合、下限は、好ましくは0.7当量、より好ましくは0.8当量、さらに好ましくは0.9当量、特に好ましくは0.95当量であり、上限は、好ましくは3.0当量、より好ましくは2.0当量、さらに好ましくは1.5当量、特に好ましくは1.1当量である。
【0129】
ポリイソシアネート化合物の使用量が多すぎると、未反応のイソシアネート基が副反応を起こし、得られるポリウレタンエラストマーの粘度が高くなりすぎて取り扱いが困難となったり、柔軟性が損なわれたりする傾向があり、少なすぎると、ポリウレタンエラストマーの分子量が十分に大きくならず、十分な強度が得られなくなる傾向がある。
【0130】
また、鎖延長剤の使用量は、特に限定されないが、ポリエーテルポリカーボネートジオール(A)及び本発明のジオールとそれ以外のポリオールの総水酸基数をポリイソシアネート化合物のイソシアネート基数から引いた数を1当量とした場合、下限は、好ましくは0.7当量、より好ましくは0.8当量、さらに好ましくは0.9当量、特に好ましくは0.95当量であり、上限は好ましくは3.0当量、より好ましくは2.0当量、さらに好ましくは1.5当量、特に好ましくは1.1当量である。鎖延長剤の使用量が多すぎると、得られるポリウレタンエラストマーが溶媒に溶けにくく加工が困難になる傾向があり、少なすぎると、得られるポリウレタンエラストマーが軟らかすぎて十分な強度や硬度、弾性回復性能や弾性保持性能が得られない場合や、耐熱性が悪くなる場合がある。
【0131】
<二段法>
二段法は、プレポリマー法ともよばれ、主に以下の方法がある。
(a)予めポリエーテルポリカーボネートジオール(A)及び本発明のジオール、それ以外のポリオールと、過剰のポリイソシアネート化合物とを、ポリイソシアネート化合物/(ポリエーテルポリカーボネートジオール(A)及び本発明のジオールとそれ以外のポリオール)の反応当量比が1を超える量から10.0以下で反応させて、分子鎖末端がイソシアネート基であるプレポリマーを製造し、次いでこれに鎖延長剤を加えることによりポリウレタンエラストマーを製造する方法。
(b)予めポリイソシアネート化合物と、過剰のポリエーテルポリカーボネートジオール(A)及び本発明のジオール及びそれ以外のポリオールとを、ポリイソシアネート化合物/(ポリエーテルポリカーボネートジオール(A)及び本発明のジオールとそれ以外のポリオール)の反応当量比が0.1以上から1.0未満で反応させて分子鎖末端が水酸基であるプレポリマーを製造し、次いでこれに鎖延長剤として末端がイソシアネート基のポリイソシアネート化合物を反応させてポリウレタンエラストマーを製造する方法。
【0132】
二段法は無溶媒でも溶媒共存下でも実施することができる。
二段法によるポリウレタンエラストマー製造は以下に記載の(1)~(3)のいずれかの方法によって行うことができる。
(1) 溶媒を使用せず、まず直接ポリイソシアネート化合物とポリエーテルポリカーボネートジオール(A)及び本発明のジオールとそれ以外のポリオールとを反応させてプレポリマーを合成し、そのまま鎖延長反応に使用する。
(2) (1)の方法でプレポリマーを合成し、その後溶媒に溶解し、以降の鎖延長反応に使用する。
(3) 初めから溶媒を使用し、ポリイソシアネート化合物とポリエーテルポリカーボネートジオール(A)及び本発明のジオールとそれ以外のポリオールとを反応させ、その後鎖延長反応を行う。
【0133】
(1)の方法の場合には、鎖延長反応にあたり、鎖延長剤を溶媒に溶かしたり、溶媒に同時にプレポリマー及び鎖延長剤を溶解したりするなどの方法により、ポリウレタンエラストマーを溶媒と共存する形で得ることが重要である。
二段法(a)の方法におけるポリイソシアネート化合物の使用量は、特に限定はされないが、ポリエーテルポリカーボネートジオール(A)及び本発明のジオールとそれ以外のポリオールの総水酸基の数を1当量とした場合のイソシアネート基の数として、下限が好ましくは1.0当量を超える量、より好ましくは1.2当量、さらに好ましくは1.5当量であり、上限が好ましくは10.0当量、より好ましくは5.0当量、さらに好ましくは3.0当量の範囲である。
【0134】
このポリイソシアネート化合物使用量が多すぎると、過剰のイソシアネート基が副反応を起こして所望のポリウレタンエラストマーの物性まで到達しにくい傾向があり、少なすぎると、得られるポリウレタンエラストマーの分子量が十分に上がらず強度や熱安定性が低くなる場合がある。
鎖延長剤の使用量については特に限定されないが、プレポリマーに含まれるイソシアネート基の数1当量に対して、下限が、好ましくは0.1当量、より好ましくは0.5当量、さらに好ましくは0.8当量であり、上限が好ましくは5.0当量、より好ましくは3.0当量、さらに好ましくは2.0当量の範囲である。
【0135】
上記鎖延長化反応を行う際に、分子量を調整する目的で、一官能性の有機アミン類やアルコール類を共存させてもよい。
また、二段法(b)の方法における末端が水酸基であるプレポリマーを作成する際のポリイソシアネート化合物の使用量は、特に限定はされないが、ポリエーテルポリカーボネートジオール(A)及び本発明のジオールとそれ以外のポリオールの総水酸基の数を1当量とした場合のイソシアネート基の数として、下限が好ましくは0.1当量、より好ましくは0.5当量、さらに好ましくは0.7当量であり、上限が好ましくは0.99当量、より好ましくは0.98当量、さらに好ましくは0.97当量である。
【0136】
このポリイソシアネート化合物使用量が少なすぎると、続く鎖延長反応で所望の分子量を得るまでの工程が長くなり生産効率が落ちる傾向にあり、多すぎると、粘度が高くなりすぎて得られるポリウレタンエラストマーの柔軟性が低下したり、取扱いが悪く生産性が劣ったりする場合がある。
鎖延長剤の使用量については特に限定されないが、プレポリマーに使用したポリエーテルポリカーボネートジオール(A)及び本発明のジオールとそれ以外のポリオールの総水酸基の数を1当量とした場合、プレポリマーに使用したイソシアネート基の当量を加えた総当量として、下限が好ましくは0.7当量、より好ましくは0.8当量、さらに好ましくは0.9当量であり、上限が好ましくは1.0当量未満、より好ましくは0.99当量、さらに好ましくは0.98当量の範囲である。
【0137】
上記鎖延長化反応を行う際に、分子量を調整する目的で、一官能性の有機アミン類やアルコール類を共存させてもよい。
鎖延長反応は通常、0℃~250℃で反応させるが、この温度は溶剤の量、使用原料の反応性、反応設備等により異なり、特に制限はない。温度が低すぎると反応の進行が遅くなったり、原料や重合物の溶解性が低い為に製造時間が長くなることがあり、また高すぎると副反応や得られるポリウレタンの分解が起こることがある。鎖延長反応は、減圧下で脱泡しながら行ってもよい。
【0138】
また、鎖延長反応には必要に応じて、触媒や安定剤等を添加することもできる。
触媒としては例えばトリエチルアミン、トリブチルアミン、ジブチル錫ジラウレート、オクチル酸第一錫、酢酸、燐酸、硫酸、塩酸、スルホン酸等の化合物が挙げられ、1種を単独で用いてもよく、2種以上を併用してもよい。安定剤としては例えば2,6-ジブチル-4-メチルフェノール、ジステアリルチオジプロピオネート、N,N’-ジ-2-ナフチル-1,4-フェニレンジアミン、トリス(ジノニルフェニル)ホスファイト等の化合物が挙げられ、1種を単独で用いてもよく、2種以上を併用してもよい。尚、鎖延長剤が短鎖脂肪族アミン等の反応性の高いものの場合は、触媒を添加せずに実施してもよい。
また、亜リン酸トリス(2-エチルヘキシル)等の反応抑制剤を用いることもできる。
【0139】
<添加剤>
本発明のポリウレタンエラストマーには、熱安定剤、光安定剤、着色剤、充填剤、安定剤、紫外線吸収剤、酸化防止剤、粘着防止剤、難燃剤、老化防止剤、無機フィラー等の各種の添加剤を、本発明のポリウレタンエラストマーの特性を損なわない範囲で、添加、混合することができる。
【0140】
熱安定剤として使用可能な化合物としては、燐酸、亜燐酸の脂肪族、芳香族又はアルキル基置換芳香族エステルや次亜燐酸誘導体、フェニルホスホン酸、フェニルホスフィン酸、ジフェニルホスホン酸、ポリホスホネート、ジアルキルぺンタエリスリトールジホスファイト、ジアルキルビスフェノールAジホスファイト等のリン化合物;フェノール系誘導体、特にヒンダードフェノール化合物;チオエーテル系、ジチオ酸塩系、メルカプトベンズイミダゾール系、チオカルバニリド系、チオジプロピオン酸エステル系等のイオウを含む化合物;スズマレート、ジブチルスズモノオキシド等のスズ系化合物等を使用することができる。
【0141】
ヒンダードフェノール化合物の具体例としては、「Irganox1010」(商品名:BASFジャパン株式会社製)、「Irganox1520」(商品名:BASFジャパン株式会社製)、「Irganox245」(商品名:BASFジャパン株式会社製)等が挙げられる。
リン化合物としては、「PEP-36」、「PEP-24G」、「HP-10」(いずれも商品名:株式会社ADEKA社製)、「Irgafos 168」(商品名:BASFジャパン株式会社製)等が挙げられる。
【0142】
イオウを含む化合物の具体例としては、ジラウリルチオプロピオネート(DLTP)、ジステアリルチオプロピオネート(DSTP)などのチオエーテル化合物が挙げられる。
光安定剤の例としては、ベンゾトリアゾール系、ベンゾフェノン系化合物等が挙げられ、具体的には「TINUVIN622LD」、「TINUVIN765」(以上、チバ・スペシャリティー・ケミカルズ株式会社製)、「SANOL LS-2626」、「SANOL LS-765」(以上、三共株式会社製)等が使用可能である。
【0143】
紫外線吸収剤の例としては、「TINUVIN328」、「TINUVIN234」(以上、チバ・スペシャリティー・ケミカルズ株式会社製)等が挙げられる。
【0144】
着色剤としては、直接染料、酸性染料、塩基性染料、金属錯塩染料などの染料;カーボンブラック、酸化チタン、酸化亜鉛、酸化鉄、マイカなどの無機顔料;及びカップリングアゾ系、縮合アゾ系、アンスラキノン系、チオインジゴ系、ジオキサゾン系、フタロシアニン系等の有機顔料等が挙げられる。
【0145】
無機フィラーの例としては、ガラス短繊維、カーボンファイバー、アルミナ、タルク、グラファイト、メラミン、白土等が挙げられる。
【0146】
難燃剤の例としては、燐及びハロゲン含有有機化合物、臭素あるいは塩素含有有機化合物、ポリ燐酸アンモニウム、水酸化アルミニウム、酸化アンチモン等の添加及び反応型難燃剤が挙げられる。
【0147】
これらの添加剤は、単独で用いてもよく、2種以上を任意の組み合わせ及び比率で組み合わせて用いてもよい。
【0148】
これらの添加剤の添加量は、ポリウレタンエラストマーに対する重量比として、下限が、好ましくは0.01重量%、より好ましくは0.05重量%、さらに好ましくは0.1重量%、上限は、好ましくは10重量%、より好ましくは5重量%、さらに好ましくは1重量%である。添加剤の添加量が少な過ぎるとその添加効果を十分に得ることができず、多過ぎるとポリウレタンエラストマーで析出したり、濁りを発生したりする場合がある。
【0149】
<分子量>
本発明のポリウレタンエラストマーの分子量は、その用途に応じて適宜調整され、特に制限はないが、GPCにより測定されるポリスチレン換算の重量平均分子量(Mw)として5万~50万であることが好ましく、10万~30万であることがより好ましい。Mwが上記下限よりも小さいと十分な強度や硬度が得られない場合があり、上記上限よりも大きいと加工性などハンドリング性を損なう傾向がある。
【0150】
<用途>
本発明のポリウレタンエラストマーは、透明性、柔軟性、耐久性に優れ、良好な耐熱性、耐摩耗性を有し、加工性にも優れることから、各種用途に使用することができる。
【0151】
例えば、本発明のポリウレタンエラストマーは、注型ポリウレタンエラストマーに使用できる。その具体的用途として、圧延ロール、製紙ロール、事務機器、プレテンションロール等のロール類、フォークリフト、自動車車両ニュートラム、台車、運搬車等のソリッドタイヤ、キャスター等、工業製品として、コンベアベルトアイドラー、ガイドロール、プーリー、鋼管ライニング、鉱石用ラバースクリーン、ギア類、コネクションリング、ライナー、ポンプのインペラー、サイクロンコーン、サイクロンライナー等がある。また、OA機器のベルト、紙送りロール、複写用クリーニングブレード、スノープラウ、歯付ベルト、サーフローラー等にも使用できる。
【0152】
本発明のポリウレタンエラストマーは、また、熱可塑性エラストマーとしての用途にも適用される。即ち、本発明の熱可塑性ポリウレタンエラストマーを成形することによって伸縮性に優れた成形品を得ることができる。本発明の熱可塑性ポリウレタンエラストマーの成形方法は特に限定されるものではなく、熱可塑性重合体に対して一般に用いられている各種の成形方法を使用することができる。例えば、射出成形、押出成形、プレス成形、ブロー成形、カレンダー成形、流延成形、ロール加工などの任意の成形法を採用することができ、樹脂板、フィルム、シート、チューブ、ホース、ベルト、ロール、合成皮革、靴底、自動車部品、エスカレーターハンドレール、道路標識部材、繊維等の種々の形状の成形品を製造できる。
【0153】
本発明の熱可塑性ポリウレタンエラストマーの用途としては、より具体的には、例えば、食品、医療分野で用いる空圧機器、塗装装置、分析機器、理化学機器、定量ポンプ、水処理機器、産業用ロボット等におけるチューブやホース類、スパイラルチューブ、消防ホース等に使用できる。また、丸ベルト、Vべルト、平ベルト等のベルトとして、各種伝動機構、紡績機械、荷造り機器、印刷機械等に用いられる。また、履物のヒールトップや靴底、カップリング、パッキング、ポールジョイント、ブッシュ、歯車、ロール等の機器部品、スポーツ用品、レジャー用品、時計のベルト等に使用できる。さらに自動車部品としては、オイルストッパー、ギアボックス、スペーサー、シャーシー部品、内装品、タイヤチェーン代替品等が挙げられる。また、キーボードフィルム、自動車用フィルム等のフィルム、カールコード、ケーブルシース、ベロー、搬送ベルト、フレキシブルコンテナー、バインダー、合成皮革、ディピンイング製品、接着剤等に使用できる。
【0154】
本発明のポリウレタンエラストマーは、更に、発泡ポリウレタンエラストマー、又はポリウレタンフォームとすることができる。ポリウレタンエラストマーを発泡又はフォームとする方法としては、例えば、水などを用いた化学発泡やメカニカルフロスなどの機械発泡のいずれでもよく、その他スプレー発泡やスラブ、注入、モールド成型で得られる硬質フォームや、同じくスラブ、モールド成型で得られる軟質フォーム等が挙げられる。
具体的な発泡ポリウレタンエラストマー又はポリウレタンフォームの用途としては電子機器および建築の断熱材や防振材、自動車シート、自動車の天井クッション、マットレスなどの寝具、インソール、ミッドソールや靴底等が挙げられる。
【実施例】
【0155】
以下に、実施例、参考例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明は、その要旨を超えない限り、これらの実施例に限定されるものではない。
【0156】
〔評価方法〕
以下の実施例、参考例及び比較例で得られたポリカーボネートジオール及びポリウレタンエラストマーや用いたポリアルキレンエーテルグリコール等の評価方法は下記の通りである。
【0157】
[ポリエーテルポリカーボネートジオール、ポリカーボネートジオール、ポリオキシアルキレングリコールの評価方法]
<水酸基価・数平均分子量>
JIS K1557-1に準拠して、アセチル化試薬を用いた方法にてポリカーボネートジオール、ポリエーテルポリカーボネートジオール、ポリオキシアルキレングリコールの水酸基価を測定した。
また、水酸基価から、下記式(I)により数平均分子量(Mn)を求めた。
数平均分子量=2×56.1/(水酸基価×10-3) …(I)
【0158】
<繰り返し単位(B)と繰り返し単位(C)とのモル比率>
ポリカーボネートジオールをCDCl3に溶解し、400MHz 1H-NMR(日本電子株式会社製AL-400)を測定し、各成分のシグナル位置より、繰り返し単位(B)と繰り返し単位(C)のモル比率(C)/(B)を求めた。
【0159】
[ポリウレタンエラストマーの評価方法]
<分子量>
ポリウレタンエラストマーをジメチルアセトアミドに溶解し、濃度が0.14重量%になるようにジメチルアセトアミド溶液とした。GPC装置〔東ソー社製、製品名「HLC-8220」(カラム:TskgelGMH-XL・2本)〕を用いて、該ジメチルアセトアミド溶液を注入し、標準ポリスチレン換算で、ポリウレタンエラストマーの重量平均分子量(Mw)を測定した。
【0160】
<引張試験>
JIS K6301(2010)に準じ、実施例、参考例及び比較例で得られた厚さ1mmのシート状のポリウレタンエラストマーを幅10mm、長さ100mmの短冊状とした試験片を切り出し、引張試験機(オリエンテック社製、製品名「テンシロンUTM-III -100」)を用いて、チャック間距離50mm、引張速度500mm/分にて、温度23℃、相対湿度55%で引張試験を実施し、試験片が100%伸長した時点での応力:100%モジュラスを測定した。この100%モジュラスが5MPa以上のものは高い弾性率を有している。また、試験片が破断した際の伸度と強度も測定した。伸度が大きく、強度が高いものほど柔軟性と機械強度に優れている。
【0161】
<耐久性の評価:耐オレイン酸性>
実施例、参考例及び比較例で得られた厚さ2mmのシート状のポリウレタンエラストマーから3cm×3cmの試験片を切り出し、試験溶剤であるオレイン酸10mlを入れた容量50mlのガラス瓶に投入して、80℃で18時間静置した後の状態を目視観察し、以下の通り評価した。
○:シートの形状を維持している。
△:シートが一部膨潤している。
×:シートが膨潤により破損している。
【0162】
<透明性の評価>
実施例、参考例及び比較例で得られた厚さ2mmのシート状のポリウレタンエラストマーから3cm×3cmの試験片を切り出し、目視で観察して以下の通り透明性を判断した。
○:シート全体が透明
△:シートが部分的に白濁している。
×:シートが全体的に白濁している。
【0163】
〔ポリエーテルポリカーボネートジオールの製造と評価〕
[合成例1]
撹拌機、留出液トラップ、圧力調整装置、30mmφ規則充填物入り蒸留塔、分留器を備えた2Lガラス製セパラブルフラスコに三菱ケミカル社製ポリテトラメチレンエーテルグリコールPTMG#250(数平均分子量247):423g(1.7モル)、エチレンカーボネート(EC):176g(2.0モル)、マグネシウム(II)アセチルアセトナート:62mg(0.28ミリモル)を入れ、窒素ガス置換した。撹拌下、内温を150℃まで昇温して、内容物を加熱溶解した。その後、1時間常圧で反応した後、圧力を6kPaまで下げて、エチレングリコールとエチレンカーボネートを共沸組成で系外へ除去しながら12時間反応させた。次いで、圧力を12時間かけて1kPaまで下げながら、150℃~170℃で反応を行った。1H-NMRにて数平均分子量が約1000であることを確認し、ポリエーテルポリカーボネートジオール含有組成物を得た。
その後、ポリエーテルポリカーボネートジオール含有組成物に8.5%リン酸水溶液:0.4mL(0.4ミリモル)を加えて触媒を失活させた。その後、蒸留塔を取り外し、0.5kPa、170℃で残存モノマーを除去することで、ポリエーテルポリカーボネートジオール含有組成物を得た。
【0164】
得られたポリエーテルポリカーボネートジオール含有組成物を20g/分の流量で薄膜蒸留装置に送液し、薄膜蒸留(温度:210℃、圧力:53Pa)を行ってポリエーテルポリカーボネートジオールを得た。薄膜蒸留装置としては、直径50mm、高さ200mm、面積0.0314m2の内部コンデンサー、ジャケット付きの柴田科学株式会社製、分子蒸留装置MS-300特型を使用した。
この合成例1で製造されたポリエーテルポリカーボネートジオールを「PEPCD1」と称する。
このPEPCD1の性状及び物性の評価結果を表1に示す。
【0165】
【0166】
[ポリカーボネートジオール]
ポリカーボネートジオールとしては、水酸基価基準の数平均分子量(Mn)が1000の市販のポリカーボネートジオールである旭化成(株)製1,6-ヘキサンジオールホモタイプのポリカーボネートジオール「T6001」(以下、「T6001」と記載する。)を用いた。
【0167】
[ポリアルキレンエーテルグリコール]
ポリアルキレンエーテルグリコールとしては、水酸基価基準の数平均分子量(Mn)が1000の市販のポリアルキレンエーテルグリコールである三菱ケミカル(株)製ポリテトラメチレンエーテルグリコール「PTMG#1000」(以下、「#1000」と記載する。)を用いた。
【0168】
〔ポリウレタンエラストマーの製造と評価〕
[実施例1]
<ポリウレタンエラストマーの製造>
予め90℃に加熱した300mLのSUSタイプの攪拌機を具備した反応器に、90℃に加熱したPEPCD1:36.5gと、#1000:36.5gと、4,4’-ジフェニルメタンジイソシアネート(以下「MDI」と称する場合がある):40.4gと、ウレタン化反応への抑制剤として亜リン酸トリス(2-エチルヘキシル):0.9gを仕込んだ。次いで反応器に蓋をして減圧条件下(10torr以下)、2000rpmで撹拌混合しながら90分程度反応した。反応後、発熱が収まってから反応器へ1,4BD:6.98gを徐々に添加し、2分間撹拌した後に反応器の蓋を外した。ガラス板の上にフッ素樹脂シート(フッ素テープ ニトフロン900、厚さ0.1mm、日東電工株式会社製)を張り付け、さらにその上にシリコン製の型(寸法:10cm×10cm、厚さ2mm)を設置した。反応液をこのシリコン製の型へ注入し、下側にフッ素樹脂シートを張り付けたガラス板によりシリコン製の型上部を覆った。次いで型上部のガラス板の上に4.5kgの重りを載せ、乾燥器内に挿入した。該乾燥器内で窒素雰囲気下、加熱(110℃×1時間)することにより乾燥した。
【0169】
<溶融成形>
得られたポリウレタンエラストマー(寸法10cm×10cm、厚さ2mm)を一晩放置後にシリコン型から取り外した。
予め180℃に加熱しておいた加熱プレス機(東洋精機製作所製、製品名「ミニテストプレス」)のプレートの上にフッ素樹脂シート、溶融成形用の金型の順に設置した。溶融成形用の金型は前記物性評価等の用途に応じて4cm×4cm×厚さ2mmと10cm×5cm×厚さ1mmの2種類のいずれかを用いた。金型にポリウレタンエラストマーを入れ、さらにその上からフッ素樹脂シートで覆った。加熱プレス機のプレートを用いてポリウレタンラストマーを溶融した(圧力:1MPa×温度:180℃×時間:5分間)。溶融後に加熱プレス機の圧力設定を徐々に上げ、最大で10MPaで5分間加熱し成形した。その後、加熱プレス機の圧力を下げてポリウレタンエラストマー成形品を取り外し、予め冷却水を流して冷やしておいた冷却用プレス機(東洋精機製作所製、製品名「ミニテストプレス」)に設置して急冷(圧力10MPa×時間2分)することでシート状のポリウレタンエラストマー成形品を得た。ポリウレタンエラストマー成形品の物性の評価結果を表2に示す。
【0170】
[参考例2、比較例1~4]
用いる原料を表2に記載の量に変更する以外は実施例1と同様にしてシート状のポリウレタンエラストマー成形品を得、同様に評価を行った。ポリウレタンエラストマー成形品の物性の評価結果を表2に示す。
【0171】
【0172】
表2より次のことが分かる。
ポリエーテルポリカーボネートジオール(A)とPTMG及び/又はPCDとを併用した実施例1では透明性、柔軟性と機械強度、耐久性のすべてに優れる。
これに対して、ポリエーテルポリカーボネートジオール(A)のみを用い、PTMG及び/又はPCDを併用していない比較例1やPTMG又はPCDのみを用いた比較例2,3は、柔軟性と機械強度に劣り、比較例1,2では耐久性も十分ではない。
PTMGとPCDとを併用しても、ポリエーテルポリカーボネートジオール(A)を用いていない比較例4では、ポリオール混合時の相溶性が悪いため、柔軟性と機械強度、透明性に劣る。