(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-08
(45)【発行日】2024-05-16
(54)【発明の名称】ナノシリコン、ナノシリコンスラリー、ナノシリコンの製造方法、二次電池用活物質および二次電池
(51)【国際特許分類】
C01B 33/02 20060101AFI20240509BHJP
C01B 33/021 20060101ALI20240509BHJP
H01M 4/36 20060101ALI20240509BHJP
H01M 4/38 20060101ALI20240509BHJP
【FI】
C01B33/02 Z
C01B33/021
H01M4/36 A
H01M4/38 Z
(21)【出願番号】P 2023547255
(86)(22)【出願日】2023-02-09
(86)【国際出願番号】 JP2023004279
(87)【国際公開番号】W WO2023162692
(87)【国際公開日】2023-08-31
【審査請求日】2023-08-03
(31)【優先権主張番号】P 2022028327
(32)【優先日】2022-02-25
(33)【優先権主張国・地域又は機関】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000002886
【氏名又は名称】DIC株式会社
(74)【代理人】
【識別番号】100149445
【氏名又は名称】大野 孝幸
(74)【代理人】
【識別番号】100163290
【氏名又は名称】岩本 明洋
(74)【代理人】
【識別番号】100214673
【氏名又は名称】菅谷 英史
(74)【代理人】
【識別番号】100186646
【氏名又は名称】丹羽 雅裕
(72)【発明者】
【氏名】高橋 要
(72)【発明者】
【氏名】川瀬 賢一
(72)【発明者】
【氏名】武久 敢
(72)【発明者】
【氏名】片野 聡
【審査官】佐藤 慶明
(56)【参考文献】
【文献】特開2014-002890(JP,A)
【文献】特開2008-112710(JP,A)
【文献】特開2021-180124(JP,A)
【文献】国際公開第2021/193737(WO,A1)
【文献】国際公開第2016/121324(WO,A1)
【文献】国際公開第2023/017694(WO,A1)
【文献】国際公開第2023/017587(WO,A1)
【文献】特開2016-091762(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C01B 33/00 - 33/193
H01M 4/00 - 4/62
(57)【特許請求の範囲】
【請求項1】
比表面積が100から400m
2/g、珪素原子に対して酸素原子が5から45atom%、結晶子径が5から14nm、体積平均粒子径が10から200nmであるナノシリコン。
【請求項2】
請求項1に記載のナノシリコン、分散剤および溶媒を含むナノシリコンスラリー。
【請求項3】
露点温度が-60℃以下のガス雰囲気下、温度が60℃以下、アミン価が1から100mgKOH/gであるカチオン性界面活性剤を含む水分濃度が10000ppm以下の非水溶媒中で
、体積平均粒子径が1から20μm、珪素原子に対して酸素原子が10atom%以下であるシリコン粉末を湿式粉砕する、請求項1に記載のナノシリコンの製造方法。
【請求項4】
前記湿式粉砕において、シリコン粉末の純度が99質量%以上である請求項
3に記載のナノシリコンの製造方法。
【請求項5】
請求項3または4に記載のナノシリコンの製造方法で得られたナノシリコンと樹脂とを混合し、乾燥後、不活性ガス雰囲気下で焼成する二次電池用活物質の製造方法。
【請求項6】
請求項1に記載のナノシリコンを含有する二次電池用活物質。
【請求項7】
請求項
6に記載の二次電池用活物質を含む二次電池用負極。
【請求項8】
請求項
7に記載の二次電池用負極を含む二次電池。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ナノシリコン、ナノシリコンスラリーおよび前記ナノシリコンの製造方法に関する。また本発明は前記ナノシリコンを含む二次電池用活物質、前記二次電池用活物質を含む負極、および前記負極を含む二次電池に関する。
【背景技術】
【0002】
非水電解質二次電池は、携帯機器を始め、ハイブリッド自動車や電気自動車、家庭用蓄電池などに用いられており、電気容量、安全性、作動安定性など複数の特性をバランスよく有することが要求されている。
さらに近年、各種電子機器および通信機器の小型化およびハイブリッド自動車等の急速な普及に伴い、これら機器等の駆動電源として、より高容量であり、かつサイクル特性や放電レート特性等の各種電池特性が更に向上したリチウムイオン二次電池の開発が強く求められている。
【0003】
ケイ素はその理論電気容量が大きいことから、リチウムイオン二次電池用の高容量化を目的として、負極活物質としてケイ素を用いることが検討されている。しかしながらケイ素は繰り返し充放電をしたときの体積膨張と収縮の差が大きく、充放電を繰り返す間にケイ素粒子が破壊してしまう。その結果、ケイ素を負極活物質として用いた二次電池はサイクル特性が悪い結果となった。
【0004】
このようなケイ素粒子の破壊は150nm以下の粒径を有するケイ素粒子では抑制されることが非特許文献1に記載されている。
また特許文献1には粒径がナノオーダーのケイ素粒子を用いる二次電池用負極活物質が記載されている。
【先行技術文献】
【特許文献】
【0005】
【非特許文献】
【0006】
【文献】Xiao et al.,ACS Nano, 6, 1522-1531(2012)
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、前記非特許文献1または特許文献1に記載の粒径のケイ素粒子を用いた二次電池用活物質でも、充放電を繰り返すと粒子の破壊が発生しサイクル特性は十分ではなかった。また粒径の小さいケイ素粒子を用いた二次電池用活物質の場合、電気容量と初期のクーロン効率は不十分であった。
したがってサイクル特性、電気容量および初期のクーロン効率が改良された、ケイ素粒子を用いたリチウム二次電池用活物質の開発が求められている。
【0008】
本発明者らはケイ素粒子の粒径に着目するとともに、ケイ素粒子の表面酸化の程度に着目し、サイクル特性と電気容量および初期のクーロン効率に優れた二次電池用活物質を検討した。その結果、リチウム二次電池のサイクル性、電気容量および初期のクーロン効率に優れた二次電池用活物質を見出した。
即ち本発明は、リチウムイオン二次電池に用いられる二次電池用活物質および前記二次電池用活物質を負極活物質として含む二次電池に関し、サイクル性、初期のクーロン効率および容量維持率に優れた二次電池を与える二次電池用活物質に用いられるケイ素粒子を提供することを目的とする。
さらに本発明は前記二次電池用活物質に用いられるケイ素粒子の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明は、下記の態様を有する。
[1] 比表面積が100から400m2/gおよび、珪素原子に対して酸素原子が5から45atom%であるナノシリコン。
[2] 結晶子径が5から14nmである前記[1]に記載のナノシリコン。
[3] 体積平均粒子径が10から200nmである前記[1]または[2]に記載のナノシリコン。
【0010】
本発明はまた下記の態様を有する。
[4] 前記[1]から[3]に記載のナノシリコン、分散剤および溶媒を含むナノシリコンスラリー。
【0011】
さらに本発明は下記の態様を有する。
[5] 露点温度が-60℃以下のガス雰囲気下、温度が60℃以下、水分濃度が10000ppm以下の非水溶媒中でシリコン粉末を湿式粉砕するナノシリコンの製造方法。
[6] 前記湿式粉砕をカチオン性界面活性剤、アニオン性界面活性剤および両性界面活性剤からなる群から選ばれる少なくとも1種の界面活性剤を含む非水溶媒中で行う前記[5]に記載のナノシリコンの製造方法。
[7] 前記湿式粉砕において、体積平均粒子径が1から20μm、珪素原子に対して酸素原子が10atom%以下であるシリコン粉末を、非水溶媒中で湿式粉砕する前記[5]または[6]に記載のナノシリコンの製造方法。
[8] 前記湿式粉砕において、シリコン粉末の純度が99質量%以上である前記[5]から[7]のいずれかに記載のナノシリコンの製造方法。
【0012】
併せて本発明は下記の態様を有する。
[9] 前記[5]から[8]のいずれかに記載のナノシリコンの製造方法で得られたナノシリコンと樹脂とを混合し、乾燥後、不活性ガス雰囲気下で焼成する二次電池用活物質の製造方法。
[10] 前記[1]から[3]のいずれかに記載のナノシリコンを含有する二次電池用活物質。
[11] 前記[10]に記載の二次電池用活物質を含む二次電池用負極。
[12] 前記[11]に記載の二次電池用負極を含む二次電池。
【発明の効果】
【0013】
本発明によれば、リチウムイオン二次電池に用いられる二次電池用活物質および前記二次電池用活物質を負極活物質として含む二次電池に関し、サイクル性、初期のクーロン効率および容量維持率に優れた二次電池を与える二次電池用活物質が提供される。
さらに本発明は前記二次電池用活物質に用いられるケイ素粒子の製造方法が提供される。
【発明を実施するための形態】
【0014】
本発明のナノシリコン(以下、「本ナノシリコン」とも記す。)は比表面積が100から400m2/gおよび、珪素原子に対して酸素原子が5から45atom%である。ここで、「珪素原子に対して酸素原子が5から45atom%である」とは、本ナノシリコン中の酸素原子の数を珪素原子の数で除した値をatom%表示とした値が5から45である、という意味であり、以下も同じである。
前記のとおり、粒径の小さいケイ素粒子は繰り返しの充放電により体積変化が起こっても、ケイ素粒子の破壊は抑制されると考えられている。一方、粒径の小さいケイ素粒子は表面積が大きくなり、ケイ素粒子の表面酸化率が大きくなると考えられる。その結果、粒径の小さいケイ素粒子を含有する二次電池用活物質は繰り返しの充放電によるサイクル特性の低下は抑えられるものの、電気容量と初期のクーロン効率に劣る結果となったと考えられる。
【0015】
本ナノシリコンは体積平均粒径がナノオーダーの粒子であり、粒径が小さいためサイクル特性が改良される。また表面積は従来のケイ素粒子と同程度またはそれ以上であるが、酸素原子の含有率が低く抑えられているため電気容量および初期のクーロン効率の改良が図られたと考えられる。
【0016】
体積平均粒径がナノオーダーとは、体積平均粒径がナノメートル単位であり、体積平均粒径が通常、1から999nmである。シリコン粒子が1000nmを超えると、シリコンスラリーとした時の分散性が悪化し、攪拌の際の圧力が上昇し、生産性が低下する可能性がある。これらの観点から、本ナノシリコンの体積平均粒径は10から200nmが好ましく、より好ましくは10から100nm、さらに好ましくは20から70nmである。
なお体積平均粒径とはレーザー回折式粒度分析計などを用いて測定することができるD50の値である。D50は、レーザー粒度分析計などを用い動的光散乱法により測定することができる。本ナノシリコンの体積平均粒径は、粒子径分布において、小径側から体積累積分布曲線を描いた場合に、累積50%となるときの粒子径が前記平均粒径である。
【0017】
本ナノシリコンの比表面積は100から400m2/gである。
前記比表面積はBET法により求めた値であり、窒素ガス吸着測定により求めることができ、例えば比表面積測定装置を用いて測定することができる。
本ナノシリコンの比表面積は、電気容量と初期のクーロン効率の観点から、100から300m2/gがより好ましく、100から230m2/gがさらに好ましい。
【0018】
本ナノシリコン中の酸素原子の量は、前記のとおり珪素原子に対して5から45atm%である。本ナノシリコンの平均粒径が前記範囲のように小さくても、酸素原子の量が前記範囲にある本ナノシリコンを二次電池の負極活物質に用いることで、サイクル性、初期のクーロン効率および容量維持率に優れた二次電池が得られると考えられる。
本ナノシリコン中の酸素原子の量は、初期のクーロン効率および容量維持率の観点から、5から30atm%が好ましく、より好ましくは5から25atm%、さらに好ましくは5から15%である。酸素原子の量はナノシリコンを300~800℃の温度で焼成して添加剤を揮発させた後、SEM-EDS(JEOL製、JSM-7900F)による組成分析で酸素原子の量を取得した。
本ナノシリコンはケイ素原子および酸素原子以外に炭素原子、窒素原子を含んでもよい。窒素原子を含む場合は、窒化ケイ素生成による容量低下の観点から5質量%以下が好ましい。
【0019】
本ナノシリコンの形状は、本ナノシリコンが前記比表面積および酸素原子量を満たす範囲であれば、粒状、針状、フレーク状のいずれでもよいが、結晶質が好ましい。本ナノシリコンが結晶質の場合、X線回折においてSi(111)に帰属される回折ピークから得られる結晶子径(以下、「結晶子径」とも記す。)が5から14nmの範囲であれば、初期クーロン効率および容量維持率の観点から好ましい。結晶子径は12nm以下がより好ましく、さらに好ましくは10nm以下である。
【0020】
本ナノシリコンは、負極活物質とした時の充放電性能の観点から、長軸方向の長さが30から300nmが好ましく、厚みは1から60nmが好ましい。負極活物質とした時の充放電性能の観点から、長さに対する厚みの比である、いわゆるアスペクト比が0.5以下である針状またはフレーク状の形状が好ましい。
本ナノシリコンの形態は、動的光散乱法で平均粒径の測定が可能であるが、透過型電子顕微鏡(TEM)や電界放出型走査電子顕微鏡(FE-SEM)の解析手段を用いることで、前記アスペクト比のサンプルをより容易かつ精密に同定することができる。本発明の二次電池用材料を含有する負極活物質の場合は、サンプルを集束イオンビーム(FIB)で切断して断面をFE-SEM観察することができ、またはサンプルをスライス加工してTEM観察により本ナノシリコンの状態を同定することができる。
なお前記本ナノシリコンのアスペクト比は、TEM画像に映る視野内のサンプルの主要部分50粒子をベースにした計算結果である。
【0021】
前記本ナノシリコンを二次電池用活物質に用いる場合、本ナノシリコンをそのまま活物質として用いてもよく、マトリクス相が本ナノシリコンを含有する二次電池用活物質として用いてもよい。
二次電池用活物質の安定性の観点から、マトリクス相が本ナノシリコンを含有する活物質を二次電池用活物質として用いるのが好ましい。
【0022】
本ナノシリコンを含有する活物質を二次電池用活物質として用いる場合、前記マトリクス相はリチウムイオンを吸蔵放出が可能な物質である。吸蔵放出が可能な物質とは、電池の充電時にリチウムイオンをマトリクス相内に吸蔵し、放電時にリチウムイオンをマトリクス相内から放出することができる物質である。リチウム二次電池では前記吸蔵放出のサイクルが繰り返される。
リチウムイオンを吸蔵放出が可能な物質としては黒鉛、二酸化ケイ素、酸化チタン、およびケイ素、酸素、炭素を含む化合物が挙げられ、前記マトリクス相はこれら物質から構成されるのが好ましく、ケイ素、酸素、炭素を含む化合物から構成されるのが、初回効率及び容量維持率向上の観点からより好ましい。
ケイ素、酸素、炭素を含む化合物としてはシリコンオキシカーバイドが挙げられる。
【0023】
シリコンオキシカーバイドはケイ素、酸素、炭素を含む化合物から構成されており、なかでもケイ素-酸素-炭素骨格の三次元ネットワーク構造とフリー炭素を含む構造が好ましい。ここでフリー炭素とは、ケイ素-酸素-炭素の三次元骨格に含まれていない炭素である。フリー炭素は炭素相として存在する炭素、炭素相の炭素同士で結合している炭素、およびケイ素-酸素-炭素骨格と炭素相が結合している炭素を含む。
【0024】
シリコンオキシカーバイドは下記式(1)で表されるのが好ましい。
SiOxCy (1)
式(1)中、xはケイ素に対する酸素のモル比、yはケイ素に対する炭素のモル比を表す。
本ナノシリコンとマトリクス相を含む活物質を二次電池に用いた場合、充放電性能と容量維持率とのバランスが優位になるという観点から、1≦x<2が好ましく、1≦x≦1.9がより好ましく、1≦x≦1.8がさらに好ましい。
また、本ナノシリコンとマトリクス相を含む活物質を二次電池に用いた場合、充放電性能と初回クーロン効率のバランスとの観点から、1≦y≦20が好ましく、1.2≦y≦15がより好ましい。
【0025】
前記xおよびyはそれぞれの元素の質量含有量を測定した後、モル比(原子数比)に換算することにより求めることができる。この際、酸素と炭素は無機元素分析装置を使用することによって、その含有量を定量でき、ケイ素の含有量はICP発光分析装置(ICP-OES)を使用することによって定量できる。
なお、前記xおよびyの測定は前記記載方法によって実施することが好ましいが、活物質の局所的な分析を行い、それにより得られた含有比データの測定点数を多く取得して、活物質全体の含有比を類推することでも可能である。局所的な分析としては、例えばエネルギー分散型X線分光法(SEM-EDX)や電子線プローブマイクロアナライザ(EPMA)が挙げられる。
【0026】
マトリクス相がシリコンオキシカーバイドからなるシリコンオキシカーバイド相であり、ケイ素-酸素-炭素骨格の三次元ネットワーク構造とフリー炭素を含む構造の場合、シリコンオキシカーバイド相中のケイ素-酸素-炭素骨格は化学安定性が高く、フリー炭素との複合構造をとり、リチウムの吸蔵および放出に対して体積変化が小さい。本ナノシリコンがケイ素-酸素-炭素骨格とフリー炭素との複合構造体に密に包まれることで、リチウムの吸蔵および放出に対する本ナノシリコンの体積変化がより抑制される。その結果、本ナノシリコンとマトリクス相を含む活物質を負極活物質とした場合、負極中の本ナノシリコンが充放電性能発現の主要成分とする役割を果たしながら、シリコンオキシカーバイド相が充放電時に本ナノシリコンの体積変化に伴う粒子の破壊をさらに抑制し、リチウム二次電池のサイクル性がより改良される。
【0027】
またシリコンオキシカーバイド相を構成する化合物がケイ素-酸素-炭素骨格の三次元ネットワーク構造とフリー炭素を含む構造を有していると、ケイ素-酸素-炭素骨格は、リチウムイオンの接近によりケイ素-酸素-炭素骨格の内部の電子分布に変動が生じ、ケイ素-酸素-炭素骨格とリチウムイオンの間に静電的な結合や配位結合などが形成される。この静電的な結合や配位結合によりリチウムイオンがケイ素-酸素-炭素骨格中に貯蔵される。一方、配位結合エネルギーは比較的低いため、リチウムイオンの脱離反応が容易に行われる。つまりケイ素-酸素-炭素骨格が充放電の際にリチウムイオンの挿入と脱離反応を可逆的に起こすことができると考えられる。
【0028】
前記シリコンオキシカーバイドはケイ素、酸素、炭素以外に窒素を含んでもよい。後述する本ナノシリコンとマトリクス相を含む活物質の製造方法において、使用する原料、例えばフェノール樹脂またはポリシロキサン化合物、その他の分散剤等の窒素化合物、および焼成プロセスで用いる窒素ガス等に含まれる窒素原子を分子内に官能基として含む原子団として、窒素原子をシリコンオキシカーバイド相に導入することができる。シリコンオキシカーバイド相が窒素を含むことで、本ナノシリコンとマトリクス相を含む活物質を負極活物質とした時の充放電性能や容量維持率に優れる傾向にある。
シリコンオキシカーバイド相を構成する化合物がケイ素、酸素、炭素および窒素を含む化合物の場合、シリコンオキシカーバイド相は下記式(2)で表される化合物を含有するのが好ましい。
SiOaCbNc (2)
式(2)中、aおよびbは前記と同じ意味であり、cはケイ素に対する窒素のモル比を表す。
シリコンオキシカーバイド相が前記式(2)で表される化合物を含む場合、本ナノシリコンを含む活物質を二次電池に用いた際の充放電性能や容量維持率の観点から、1≦a≦2、1≦b≦20、0<c≦0.5が好ましく、1≦a≦1.9、1.2≦b≦15、0<c≦0.4がより好ましい。
【0029】
前記a、bおよびcは前記xおよびyと同様、元素の質量含有量を測定した後、モル比(原子数比)に換算することにより求めることができる。
前記xおよびyと同様、a、bおよびcの測定は上記記載方法によって実施することが好ましいが、本活物質の局所的な分析を行い、それにより得られた含有比データの測定点数を多く取得して、本活物質全体の含有比を類推することでも可能である。局所的な分析としては、例えばエネルギー分散型X線分光法(SEM-EDX)や電子線プローブマイクロアナライザ(EPMA)が挙げられる。
【0030】
本ナノシリコンとマトリクス相を含む活物質の平均粒径が小さすぎると、比表面積の大幅な上昇につれ、活物質を負極活物質とする二次電池とした時、充放電時に固相界面電解質分解物(以下、「SEI」とも記す。)の生成量が増えることで単位体積当たりの可逆充放電容量が低下することがある。平均粒径が大きすぎると、電極膜作製時に集電体から剥離するおそれがある。
したがってマトリクス相が本ナノシリコンを含有する活物質の場合、その体積平均粒径は2μm以上15μm以下が好ましい。マトリクス相が本ナノシリコンを含有する活物質の体積平均粒径は2.5μm以上がより好ましく、3.0μm以上が特に好ましい。また、活物質の体積平均粒径は12μm以下がより好ましく、10μm以下が特に好ましい。体積平均粒径は前記D50の値である。
【0031】
マトリクス相が本ナノシリコンを含有する活物質の比表面積は0.3m2/g以上10m2/g以下が好ましい。マトリクス相が本ナノシリコンを含有する活物質の比表面積は0.5m2/g以上がより好ましく、1.0m2/g以上が特に好ましい。また、活物質の比表面積は9.0m2/g以下がより好ましく、8.0m2/g以下が特に好ましい。比表面積が前記範囲であると、電極作製時における溶媒の吸収量を適切に保つことができ、結着性を維持するための結着剤の使用量も適切に保つことができる。なお前記比表面積は前記と同様にBET法により求めた値であり、窒素ガス吸着測定により求めることができ、例えば比表面積測定装置を用いて測定することができる。
【0032】
マトリクス相がシリコンオキシカーバイドを含む活物質の場合、シリコンオキシカーバイドはケイ素-酸素-炭素骨格構造とともに炭素元素のみで構成されるフリー炭素を有しているのが好ましい。シリコンオキシカーバイドがフリー炭素を有する場合、活物質のラマンスペクトルにおいて、グラファイト長周期炭素格子構造のGバンドに帰属される1590cm-1と、乱れや欠陥のあるグラファイト短周期炭素格子構造のDバンドに帰属される1330cm-1付近の散乱ピークが観測される。Dバンドの散乱ピーク強度、I(Gバンド)、に対するDバンドの散乱強度、I(Dバンド)、の強度比、I(Gバンド)/I(Dバンド)、は0.7以上2以下が好ましい。前記散乱ピーク強度比、I(Gバンド)/I(Dバンド)、は0.7以上1.8以下がより好ましい。前記散乱ピーク強度比、I(Gバンド)/I(Dバンド)、が前記の範囲であるということは、マトリクス中のフリー炭素において以下のことが言える。
【0033】
フリー炭素の一部の炭素原子は、ケイ素-酸素-炭素骨格中の一部のケイ素原子と結合している。このフリー炭素は、充放電特性に影響を与える重要な成分である。フリー炭素は主に、SiO2C2,SiO3C、およびSiO4で構成されるケイ素-酸素-炭素骨格中に形成しているものであり、ケイ素-酸素-炭素骨格の一部のケイ素原子と結合しているため、ケイ素-酸素-炭素骨格内部、および表面のケイ素原子とフリー炭素間の電子伝達がより容易となる。このためマトリクス相が本ナノシリコンを含有する活物質を負極活物質として二次電池に用いた時の充放電時のリチウムイオンの挿入および脱離反応が速やかに進行し、充放電特性が向上すると考えられる。また、リチウムイオンの挿入および脱離反応によって、活物質が膨張および収縮することがあるが、フリー炭素がその近傍に存在することで活物質全体の膨張および収縮が緩和され、容量維持率を大きく向上させる効果があると考えられる。
【0034】
フリー炭素は、シリコンオキシカーバイド相を製造する際にケイ素含有化合物および炭素源樹脂の不活性ガス雰囲気中の熱分解に伴い形成する。具体的にはケイ素含有化合物および炭素源樹脂の分子構造中にある炭化可能な部位が不活性化する雰囲気中で高温熱分解によって炭素成分となり、これらの一部の炭素がケイ素-酸素-炭素骨格の一部と結合する。炭化可能な成分は、炭化水素が好ましく、アルキル類、アルキレン類、アルケン類、アルキン類、芳香族類がより好ましく、その中でも芳香族類であることがさらに好ましい。
【0035】
また、フリー炭素が存在することにより、活物質の抵抗低減効果が期待され、二次電池の負極として活物質を使用した場合、活物質内部の反応が均一かつスムーズに起こり、充放電性能と容量維持率のバランスに優れた二次電池用活物質が得られると考えられる。フリー炭素の導入はケイ素含有化合物由来だけでも可能であるが、炭素源樹脂を併用することにより、フリー炭素の存在量とその効果の増大が期待される。炭素源樹脂の種類は、特に限定されないが、炭素の六員環を含む炭素化合物が好ましい。
【0036】
前記フリー炭素の存在状態は、ラマンスペクトル以外に熱重量示差熱分析装置(TG-DTA)でも同定することが可能である。ケイ素-酸素-炭素骨格中の炭素原子と異なり、フリー炭素は、大気中で熱分解されやすく、空気存在下で測定した熱重量減少量により炭素の存在量を求めることができる。つまり炭素量は、TG-DTAを用いることで定量できる。
また、熱重量減少挙動より、分解反応開始温度、分解反応終了温度、熱分解反応種の数、各熱分解反応種における最大重量減少量の温度などの熱分解温度挙動の変化も容易に把握できる。これら挙動の温度値を用いて炭素の状態を判断することができる。一方、ケイ素-酸素-炭素骨格中の炭素原子、すなわち前記SiO2C2、SiO3C、およびSiO4を構成するケイ素原子と結合している炭素原子は、非常に強い化学結合を有するために熱安定性が高く、熱分析装置測定の温度範囲内では大気中で熱分解されることがないと考えられる。また、活物質のシリコンオキシカーバイド相中の炭素は、非晶質炭素と類似する特性を有しているため、大気中において約550℃から900℃の温度範囲に熱分解される。その結果、急激な重量減少が発生する。TG-DTAの測定条件の最高温度は特に限定されないが、炭素の熱分解反応を完全に終了させるために、大気中、約25℃から約1000℃以上までの条件下でTG-DTA測定を行うのが好ましい。
【0037】
また前記活物質は被覆材により表面が被覆されていてもよい。被覆材としては、電子伝導性、リチウムイオン伝導性、電解液の分解抑制効果が期待出来る物質が好ましい。
前記被覆材としては、炭素、チタン、ニッケル等の電子伝導性物質が挙げられる。これらの中でも、負極活物質の化学安定性や熱安定性改善の観点から、炭素が好ましく、低結晶性炭素がより好ましい。
【0038】
被覆材が低結晶性炭素の場合、被覆層の平均厚みは10nm以上300nm以下が好ましい。また低結晶性炭素の含有量は活物質の全量を100質量%として、1から30質量%が好ましい。
被覆材が炭素の場合、炭素の被膜は気相沈積法により活物質表面に作成するのが好ましい。炭素の被膜の量は活物質の質量と炭素の被膜の質量の合計量を100質量%として、1質量%以上10質量%以下が活物質の化学安定性や熱安定性の改善の観点から好ましい。
なお活物質の質量とは、活物質が本ナノシリコンのみから構成される場合、本ナノシリコンの質量であり、活物質が本ナノシリコンとマトリクス相から構成される場合、両者の合計量である。例えばマトリクス相がシリコンオキシカーバイドからなる場合、本ナノシリコンとシリコンオキシカーバイドとの合計量である。シリコンオキシカーバイドが窒素を含む場合は、窒素も含む合計量である。活物質が後述する他の第三成分を含む場合、第三成分も含む合計量である。
【0039】
活物質は前記以外に他の必要な第三成分を含んでもよい。
第三成分としては、Li、K、Na、Ca、MgおよびAlからなる群から選ばれる少なくとも1種の金属のシリケート化合物(以下、「金属シリケート化合物」とも記す。)が挙げられる。
シリケート化合物は一般に1個または数個のケイ素原子を中心とし、電気陰性な配位子がこれを取り囲んだ構造を持つアニオンを含む化合物であるが、金属シリケート化合物はLi、K、Na、Ca、MgおよびAlからなる群から選ばれる少なくとも1種の金属と前記アニオンを含む化合物との塩である。
前記アニオンを含む化合物としてはオルトケイ酸イオン(SiO4
4-)、メタケイ酸イオン(SiO3
2-)、ピロケイ酸イオン (Si2O7
6-)、環状ケイ酸イオン(Si3O9
6-またはSi6O18
12-)等のケイ酸イオンが知られている。本シリケート化合物はメタケイ酸イオンとLi、K、Na、Ca、MgおよびAlからなる群から選ばれる少なくとも1種の金属との塩であるシリケート化合物が好ましい。前記金属の中ではLiまたはMgが好ましい。
【0040】
金属シリケート化合物はLi、K、Na、Ca、MgおよびAlからなる群から選ばれる少なくとも1種の金属を有しており、これら金属の2種以上を有していてもよい。2種以上の金属を有する場合、一つのケイ酸イオンが複数種の金属を有していてもよいし、異なる金属を有するシリケート化合物の混合物であってもよい。また金属シリケート化合物はLi、K、Na、Ca、MgおよびAlからなる群から選ばれる少なくとも1種の金属を有する限り、他の金属を有してもよい。
金属シリケート化合物はリチウムシリケート化合物またはマグネシウムシリケート化合物が好ましく、メタケイ酸リチウム(Li2SiO3)またはメタケイ酸マグネシウム(MgSiO3)がより好ましく、メタケイ酸マグネシウム(MgSiO3)が特に好ましい。
【0041】
本ナノシリコンの製造方法は、露点温度が-60℃以下のガス雰囲気下、温度が60℃以下、水分濃度が10000ppm以下の非水溶媒中でシリコン粉末を湿式粉砕する製造方法(以下、「本製造方法」とも記す。)が挙げられる。
露点温度とは気体を冷却していったときに結露が起こる温度であり、ガス中の湿度を表す指標となる。「露点温度が-60℃以下のガス雰囲気下」とは、-60℃まで冷却したとき初めて結露が起こるガス雰囲気のことであり、ガス中の水分量が低い状態を表わしている。露点温度が-60℃を超えると、湿式粉砕中に溶媒への水分多量混入により分散不良が生じ、シリコン粒子がゲル化して生産性が低下する。
【0042】
露点温度の算出は、例えば、JIS Z 8806「湿度-測定方法」の飽和水蒸気圧表などを用いて近似的に算出することができる。
ガス雰囲気は通常、不活性ガス雰囲気であり、取り扱いの観点から窒素雰囲気が好ましい。窒素の場合、露点温度が-60℃以下とは窒素中の水分量が10.67ppmである。
本製造方法は前記のガス雰囲気下で温度が60℃以下、水分濃度が10000ppm以下の非水溶媒中でシリコン粉末を湿式粉砕する。溶媒の蒸発およびシリコン粒子のゲル化を抑制する観点から、温度は40℃以下が好ましい。
【0043】
溶媒の揮発とシリコン酸化の抑制の観点から、非水溶媒の温度は40℃以下が好ましい。
非水溶媒としては、例えば、ケトン類のアセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン;アルコール類のエタノール、メタノール、ノルマルプロピルアルコール、イソプロピルアルコール;芳香族のベンゼン、トルエン、キシレンなどが挙げられる。
非水溶媒の水分濃度はシリコンの酸化による初回効率低下の観点から10000ppm以下が好ましく、より好ましくは5000ppm以下、更に好ましくは1000ppm以下、最も好ましいのは600ppm以下である。
非水溶媒の水分濃度は、例えば、使用前に脱水剤を非水溶媒に添加し、一定時間経過後に脱水剤を濾別する、または使用前に非水溶媒を蒸留する、雰囲気の露点を管理する等の方法で前記範囲内に制御することができる。
シリコン粒子の濃度は非水溶媒中、5から50質量%が好ましい。
【0044】
前記温度および水分濃度の非水溶媒中でシリコン粒子を湿式粉砕する。
用いるシリコン粒子は0価のケイ素から構成される。シリコン粒子の体積平均粒径が小さすぎると、分散性が悪くなり生産性が低下する可能性があることから、シリコン粒子の体積平均粒径は1μm以上が好ましく、3μm以上がより好ましい。シリコン粒子の体積平均粒径が大きすぎても、生産性が低下する可能性があることから、体積平均粒子径は20μm以下が好ましく、好ましくは10μm以下、更に好ましくは5μm以下である。体積平均粒子径は前記D50と同じであり、測定方法も前記と同じである。
得られる本ナノシリコンの酸素原子の量を小さくする観点から、用いるシリコン粒子の酸素原子は珪素原子の原子に対して、10atm%以下が好ましく、より好ましくは5atm%以下、さらに好ましくは2atm%以下である。
【0045】
用いるシリコン粒子の純度が99質量%未満の場合、本ナノシリコンを負極活物質とした時に金属が溶出しやすく電池として扱いにくい可能性がある。したがって用いるシリコン粒子の純度は99質量%以上が好ましく、より好ましくは99.9質量%、さらに好ましくは99.99質量%である。
【0046】
湿式粉砕に用いる粉砕機としては、ボールミル、ビーズミル、ジェットミルなどの粉砕機が例示できる。
前記粉砕機のビーズ粒径0.5mm以下、ビーズ充填率50から95vоl%、ローターの周速2から14m/sまたは粉砕時間を0.5から24hなどの粉砕の条件を制御し、分級等することでナノオーダーの平均粒径を有する前記本ナノシリコンが得られる。ビーズ粒径は0.2mm以下が好ましい。ビーズミルのローターの周速は4から12m/sが好ましく、6から12m/sがより好ましい。
【0047】
前記湿式粉砕において、シリコン粒子の粉砕を促進するために分散剤を添加してもよい。分散剤の種類は、水系や非水系の分散剤が挙げられ、非水系分散剤が好ましい。非水系分散剤の種類は、ポリエーテル系、アルコール系、ポリアルキレンポリアミン系、ポリカルボン酸部分アルキルエステル系などの高分子型、多価アルコールエステル系、アルキルポリアミン系などの低分子型、ポリリン酸塩系などの無機型が例示される。
前記分散剤を添加する場合は、シリコン粒子の質量に対して、5質量%から60質量%の範囲が好ましく、5質量%から30質量%がより好ましい。
【0048】
さらに、前記湿式粉砕において、用いるシリコン粒子の分散性を向上し、シリコン粒子の粉砕を促進するために、カチオン性界面活性剤、アニオン性界面活性剤および両性界面活性剤からなる群から選ばれる少なくとも1種の界面活性剤を添加してもよい。
カチオン性界面活性剤としては、脂肪族アミン塩、脂肪族四級アンモニウム塩、芳香族四級アンモニウム塩および複素環四級アンモニウム塩が挙げられる。カチオン性界面活性剤のアミン価は例えば1から100mgKOH/g、好ましくは5から80mgKOH/g、より好ましくは10から48mgKOH/g、特に好ましくは35から48mgKOH/gである。アミン価が上記範囲であると、粉砕によりナノ化した珪素粒子同士の再凝集が抑制されスラリーの増粘を抑制でき、結果として電池におけるサイクル特性、充放電容量、初期クーロン効率が優れる。カチオン性界面活性剤として具体的にはDISPERBYK9077(BYK Additives&Instruments製、DISPERBYKは登録商標)を使用できる。
【0049】
アニオン性界面活性剤としては、カルボン酸塩、スルホン酸塩、硫酸エステル塩およびリン酸エステル塩が挙げられる。アニオン性界面活性剤の酸価は例えば1から200mgKOH/g、好ましくは10から180mgKOH/g、より好ましくは50から150mgKOH/gである。酸価が上記範囲であると、珪素粒子の分散媒への濡れ性が向上されるためスラリーの増粘を抑制でき、結果として電池におけるサイクル特性、充放電容量、初期クーロン効率が優れる。アニオン性界面活性剤として具体的にはDISPERBYK111(BYK Additives&Instruments製)を使用できる。
【0050】
界面活性剤は、上記のアミン価および酸価を有する両性界面活性剤であってもよく、上記のアミン価と酸価を有するカチオン性とアニオン性の界面活性剤を併用してもよい。両性界面活性剤はアルカリ性領域ではアニオン界面活性剤の性質を、酸性領域ではカチオン界面活性剤の性質を示す界面活性剤であり、例えば、カルボン酸塩、アミノ酸およびベタインを含む化合物が挙げられる。両性界面活性剤として具体的にはANTI-TERRA(登録商標)-U100(BYK Additives&Instruments製)を使用できる。
前記界面活性剤を添加する場合、その添加量はシリコン粒子の質量に対して、5から60質量%が好ましく、より好ましくは5から40質量%、更に好ましくは5から20質量%である。
【0051】
マトリクス相が本ナノシリコンを含有する二次電池用活物質(以下、「本活物質」とも記す。)とする場合、本活物質は例えば、前記本ナノシリコンと樹脂とを混合し、乾燥後、不活性ガス雰囲気下で焼成して製造することができる。
前記のとおりマトリクス相はリチウムイオンを吸蔵放出が可能な物質から構成されるので、本ナノシリコンと混合する樹脂は焼成によりリチウムイオンを吸蔵放出が可能な物質となる樹脂であればよい。前記のとおりリチウムイオンを吸蔵放出が可能な物質としては黒鉛、二酸化ケイ素、酸化チタン、およびケイ素、酸素、炭素を含む化合物が挙げられるので、本ナノシリコンと混合する樹脂としては、ポリシロキサン系樹脂や炭素源樹脂が挙げられる。
【0052】
本ナノシリコンと樹脂を混合する場合、両者を均一に混合する観点から、本ナノシリコンを溶媒中に分散させたナノシリコンスラリーとして用いるのが好ましい。
ナノシリコンスラリーは分散性の観点から、前記本ナノシリコン、分散剤および溶媒を含むナノシリコンスラリー(以下、「本ナノシリコンスラリー」とも記す。)が好ましい。
本ナノシリコンスラリーが含有する分散剤は前記と同じであり、溶媒は水または前記の非水溶媒と同じ非水溶媒である。好ましい分散剤および非水溶媒も前記と同じである。また本ナノシリコンスラリーは界面活性剤を含有してもよい。界面活性剤は前記と同じカチオン界面活性剤、アニオン界面活性剤および両面界面活性剤間なる群から選ばれる少なくとも一種が挙げられる。
本ナノシリコンスラリーは本ナノシリコン、分散剤および非水溶媒を含むのが好ましい。
本ナノシリコンスラリーは、前記本製造方法において前記分散剤を用い、得られた本ナノシリコンを分離することなく前記非水溶媒中に本ナノシリコンが分散したスラリーがより好ましい。この場合、前記非水溶媒および、必要に応じて分散剤を含む場合は分散剤と本ナノシリコンの合計量を100質量%として、本ナノシリコンの量は5質量%から40質量%の範囲が好ましく、10質量%から30質量%がより好ましい。
【0053】
本活物質のマトリクス相が前記シリコンオキシカーバイドを含有する場合、樹脂としてポリシロキサン化合物と炭素源樹脂との混合物を用いるのが好ましい。ポリシロキサン化合物と炭素源樹脂との混合物と本ナノシリコンを混合する場合、本ナノシリコンスラリーを用いるのが好ましい。
本ナノシリコンスラリーと、ポリシロキサン化合物と炭素源樹脂との混合物とを混合し、脱溶媒して前駆体を得、得られた前駆体を焼成して焼成物を得、必要に応じて粉砕することで所望の平均粒径または比表面積を有する本活物質が得られる。
【0054】
前記ポリシロキサン化合物としては、ポリカルボシラン構造、ポリシラザン構造、ポリシラン構造およびポリシロキサン構造を少なくとも1つ含む樹脂が挙げられる。これらの構造のみを含む樹脂であっても良く、これら構造の少なくとも一つをセグメントとして有し、他の重合体セグメントと化学的に結合した複合型樹脂でも良い。複合化の形態はグラフト共重合、ブロック共重合、ランダム共重合、交互共重合などがある。例えば、ポリシロキサンセグメントが重合体セグメントの側鎖に化学的に結合したグラフト構造を有する複合樹脂、重合体セグメントの末端にポリシロキサンセグメントが化学的に結合したブロック構造を有する複合樹脂等が挙げられる。
【0055】
ポリシロキサンセグメントが、下記一般式(S-1)および/または下記一般式(S-2)で表される構造単位を有するポリシロキサン化合物が好ましい。なかでもポリシロキサン化合物が、シロキサン結合(Si-O-Si)主骨格の側鎖または末端に、カルボキシ基、エポキシ基、アミノ基、またはポリエーテル基を有することがより好ましい。
【0056】
【0057】
【化2】
なお、前記一般式(S-1)および(S-2)中、R
1は置換基を有してもよい芳香族炭化水素基またはアルキル基、エポキシ基、カルボキシ基などを表す。R
2およびR
3は、それぞれアルキル基、シクロアルキル基、アリール基またはアラルキル基、エポキシ基、カルボキシ基などを示す。
【0058】
アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、2-メチルブチル基、1,2-ジメチルプロピル基、1-エチルプロピル基、ヘキシル基、イソヘシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、2,2-ジメチルブチル基、1-エチルブチル基、1,1,2-トリメチルプロピル基、1,2,2-トリメチルプロピル基、1-エチル-2-メチルプロピル基、1-エチル-1-メチルプロピル基等が挙げられる。前記のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
【0059】
アリール基としては、例えば、フェニル基、ナフチル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-ビニルフェニル基、3-イソプロピルフェニル基等が挙げられる。
【0060】
アラルキル基としては、例えば、ベンジル基、ジフェニルメチル基、ナフチルメチル基等が挙げられる。
【0061】
ポリシロキサン化合物が有するポリシロキサンセグメント以外の重合体セグメントとしては、例えば、アクリル重合体、フルオロオレフィン重合体、ビニルエステル重合体、芳香族系ビニル重合体、ポリオレフィン重合体等のビニル重合体セグメントや、ポリウレタン重合体セグメント、ポリエステル重合体セグメント、ポリエーテル重合体セグメント等の重合体セグメント等が挙げられる。中でも、ビニル重合体セグメントが好ましい。
【0062】
ポリシロキサン化合物が、ポリシロキサンセグメントと重合体セグメントとが下記の構造式(S-3)で示される構造で結合した複合樹脂でもよく、三次元網目状のポリシロキサン構造を有してもよい。
【0063】
【化3】
なお式中、炭素原子は重合体セグメントを構成する炭素原子であり、2個のケイ素原子はポリシロキサンセグメントを構成するケイ素原子である。
【0064】
ポリシロキサン化合物が有するポリシロキサンセグメントは、ポリシロキサンセグメント中に重合性二重結合など加熱により反応が可能な官能基を有していてもよい。熱分解前にポリシロキサン化合物を加熱処理することにより、架橋反応が進行し、固体状とすることにより、熱分解処理を容易に行うことができる。
【0065】
重合性二重結合としては、例えば、ビニル基や(メタ)アクリロイル基等が挙げられる。重合性二重結合は、ポリシロキサンセグメント中に2つ以上存在することが好ましく3から200個存在することがより好ましく、3から50個存在することが更に好ましい。また、ポリシロキサン化合物として重合性二重結合が2個以上存在する複合樹脂を使用することによって、架橋反応が容易に進行させることができる。
【0066】
ポリシロキサンセグメントは、シラノール基および/または加水分解性シリル基を有してもよい。加水分解性シリル基中の加水分解性基としては、例えば、ハロゲン原子、アルコキシ基、置換アルコキシ基、アシロキシ基、フェノキシ基、メルカプト基、アミノ基、アミド基、アミノオキシ基、イミノオキシ基、アルケニルオキシ基等が挙げられ、これらの基が加水分解されることにより加水分解性シリル基はシラノール基となる。前記熱硬化反応と並行して、シラノール基中の水酸基や加水分解性シリル基中の前記加水分解性基の間で加水分解縮合反応が進行することで、固体状のポリシロキサン化合物を得ることができる。
【0067】
本発明でいうシラノール基とはケイ素原子に直接結合した水酸基を有するケイ素含有基である。本発明で言う加水分解性シリル基とはケイ素原子に直接結合した加水分解性基を有するケイ素含有基であり、具体的には、例えば、下記の一般式(S-4)で表される基が挙げられる。
【0068】
【化4】
なお式中、R
4はアルキル基、アリール基またはアラルキル基等の1価の有機基を、R
5はハロゲン原子、アルコキシ基、アシロキシ基、アリルオキシ基、メルカプト基、アミノ基、アミド基、アミノオキシ基、イミノオキシ基またはアルケニルオキシ基である。またbは0から2の整数である。
【0069】
アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、2-メチルブチル基、1,2-ジメチルプロピル基、1-エチルプロピル基、ヘキシル基、イソヘシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、2,2-ジメチルブチル基、1-エチルブチル基、1,1,2-トリメチルプロピル基、1,2,2-トリメチルプロピル基、1-エチル-2-メチルプロピル基、1-エチル-1-メチルプロピル基等が挙げられる。
【0070】
アリール基としては、例えば、フェニル基、ナフチル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-ビニルフェニル基、3-イソプロピルフェニル基等が挙げられる。
【0071】
アラルキル基としては、例えば、ベンジル基、ジフェニルメチル基、ナフチルメチル基等が挙げられる。
【0072】
ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
【0073】
アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、第二ブトキシ基、第三ブトキシ基等が挙げられる。
【0074】
アシロキシ基としては、例えば、ホルミルオキシ基、アセトキシ基、プロパノイルオキシ基、ブタノイルオキシ基、ピバロイルオキシ基、ペンタノイルオキシ基、フェニルアセトキシ基、アセトアセトキシ基、ベンゾイルオキシ基、ナフトイルオキシ基等が挙げられる。
【0075】
アリルオキシ基としては、例えば、フェニルオキシ基、ナフチルオキシ基等が挙げられる。
【0076】
アルケニルオキシ基としては、例えば、ビニルオキシ基、アリルオキシ基、1-プロペニルオキシ基、イソプロペニルオキシ基、2-ブテニルオキシ基、3-ブテニルオキシ基、2-ペテニルオキシ基、3-メチル-3-ブテニルオキシ基、2-ヘキセニルオキシ基等が挙げられる。
【0077】
前記一般式(S-1)および/または前記一般式(S-2)で示される構造単位を有するポリシロキサンセグメントとしては、例えば以下の構造を有するもの等が挙げられる。
【0078】
【0079】
【0080】
【0081】
重合体セグメントは、本発明の効果を阻害しない範囲で、必要に応じて各種官能基を有していても良い。かかる官能基としては、例えばカルボキシル基、ブロックされたカルボキシル基、カルボン酸無水基、3級アミノ基、水酸基、ブロックされた水酸基、シクロカーボネート基、エポキシ基、カルボニル基、1級アミド基、2級アミド、カーバメート基、下記の構造式(S-5)で表される官能基等を使用することができる。
【0082】
【0083】
また、前記重合体セグメントは、ビニル基、(メタ)アクリロイル基等の重合性二重結合を有していてもよい。
【0084】
前記ポリシロキサン化合物は、例えば、下記(1)から(3)に示す方法で製造することが好ましい。
【0085】
(1)前記重合体セグメントの原料として、シラノール基および/または加水分解性シリル基を含有する重合体セグメントを予め調製しておき、この重合体セグメントと、シラノール基および/または加水分解性シリル基、並びに重合性二重結合を併有するシラン化合物とを混合し、加水分解縮合反応を行う方法。
【0086】
(2)前記重合体セグメントの原料として、シラノール基および/または加水分解性シリル基を含有する重合体セグメントを予め調製する。また、シラノール基および/または加水分解性シリル基、並びに重合性二重結合を併有するシラン化合物を加水分解縮合反応してポリシロキサンも予め調製しておく。そして、重合体セグメントとポリシロキサンとを混合し、加水分解縮合反応を行う方法。
【0087】
(3)前記重合体セグメントと、シラノール基および/または加水分解性シリル基、並びに重合性二重結合を併有するシラン化合物と、ポリシロキサンとを混合し、加水分解縮合反応を行う方法。
上述方法によりポリシロキサン化合物が得られる。
ポリシロキサン化合物としては、例えば、セラネート(登録商標)シリーズ(有機・無機ハイブリッド型コーティング樹脂;DIC株式会社製)やコンポセランSQシリーズ(シルセスキオキサン型ハイブリッド;荒川化学工業株式会社製)が挙げられる。
【0088】
前記炭素源樹脂は、ポリシロキサン化合物との混和性が良く、また、不活性雰囲気中、高温焼成により炭化され、芳香族官能基を有する合成樹脂や天然化学原料が好ましい。
【0089】
合成樹脂としては、ポリビニルアルコール、ポリアクリル酸などの熱可塑性樹脂、フェノール樹脂、フラン樹脂などの熱硬化性樹脂が挙げられる。天然化学原料としては、重質油、特にはタールピッチ類としては、コールタール、タール軽油、タール中油、タール重油、ナフタリン油、アントラセン油、コールタールピッチ、ピッチ油、メソフェーズピッチ、酸素架橋石油ピッチ、ヘビーオイルなどが挙げられるが、安価入手や不純物排除の観点からフェノール樹脂の使用がより好ましい。
【0090】
特に、炭素源樹脂が芳香族炭化水素部位を含む樹脂であることが好ましく、芳香族炭化水素部位を含む樹脂がフェノール樹脂、エポキシ樹脂、または熱硬化性樹脂が好ましく、フェノール樹脂はレゾール型が好ましい。
フェノール樹脂としては、例えばスミライトレジンシリーズ(レゾール型フェノール樹脂,住友ベークライト株式会社製)が挙げられる。
【0091】
本ナノシリコンのスラリー、好ましくは前記本ナノシリコンスラリーを前記ポリシロキサン化合物と炭素源樹脂との混合物と混合し、脱溶媒して前駆体が得られる。
ポリシロキサン化合物と炭素源樹脂を含む混合物は、ポリシロキサン化合物と炭素源樹脂とが均一に混合した状態であることが好ましい。前記混合は分散および混合の機能を有する装置を用いて行われる。分散および混合の機能を有する装置としては、例えば、攪拌機、超音波ミキサー、プリミックス分散機などが挙げられる。有機溶媒を溜去することを目的とする脱溶剤と乾燥の作業では、乾燥機、減圧乾燥機、噴霧乾燥機などを用いることができる。
【0092】
前駆体は本ナノシリコンを3質量%から50質量%、ポリシロキサン化合物の固形分を15質量%から85質量%、炭素源樹脂の固形分を3質量%から70質量%含有するのが好ましく、本酸化ケイ素粒子の固形分含有量を8質量%から40質量%、ポリシロキサン化合物の固形分を20から70質量%、炭素源樹脂の固形分を3質量%から60質量%含有するのがより好ましい。
【0093】
前記で得られた前駆体を不活性ガス雰囲気中、焼成して熱分解可能な有機成分を完全分解させて焼成物が得られる。焼成温度は、例えば、最高到達温度が900℃から1200℃の範囲の温度で焼成することで、熱分解可能な有機成分を完全分解することができる。またポリシロキサン化合物および炭素源樹脂が高温処理のエネルギーによってケイ素-酸素-炭素骨格とフリー炭素を有するシリコンオキシカーバイド相に転化される。
【0094】
焼成は昇温速度、一定温度での保持時間等により規定される焼成のプログラムに沿って行われる。なお最高到達温度は、設定する最高温度であり、焼成物の構造や性能に強く影響を与えるものである。最高到達温度により、シリコンオキシカーバイド相のケイ素と炭素の化学結合状態を保有する本活物質の微細構造が精密に制御でき、より優れた充放電特性が得られる。
【0095】
焼成方法は、特に限定されないが、不活性ガス雰囲気中にて加熱機能を有する反応装置を用いればよく、連続法、回分法での処理が可能である。焼成用装置については、流動層反応炉、回転炉、竪型移動層反応炉、トンネル炉、バッチ炉、ロータリーキルン等をその目的に応じ適宜選択することができる。
【0096】
得られた焼成物を粉砕し、必要に応じて分級することで本活物質が得られる。粉砕は所望の粒径まで一段で行っても良いし、数段に分けて行っても良い。例えば10mm以上の塊または凝集粒子の焼成物を、10μm程度の活物質を作製する場合はジョークラッシャー、ロールクラッシャー等で粗粉砕を行い1mm程度の粒子にした後、グローミル、ボールミル等で100μm程度とし、ビーズミル、ジェットミル等で10μm程度まで粉砕する。粉砕で作製した粒子には粗大粒子が含まれる場合がありそれを取り除くため、また、微粉を取り除いて粒度分布を調整する場合は分級を行う。使用する分級機は風力分級機、湿式分級機等目的に応じて使い分けるが、粗大粒子を取り除く場合、篩を通す分級方式が確実に目的を達成できるために好ましい。なお、焼成前に前駆体混合物を噴霧乾燥等により目標粒子径付近の形状に制御し、その形状で焼成を行った場合は、粉砕工程を省くことも可能である。
【0097】
本活物質がLi、K、Na、Ca、MgおよびAlからなる群から選ばれる少なくとも1種の金属のシリケート化合物を有する場合、本酸化ケイ素粒子のスラリーをポリシロキサン化合物と炭素源樹脂との混合物と混合して得られた懸濁液に、Li、K、Na、Ca、MgおよびAlからなる群から選ばれる少なくとも1種の金属の塩を添加し、その後は前記と同じ操作で、前記シリケート化合物を有する本活物質が得られる。
Li、K、Na、Ca、MgおよびAlからなる群から選ばれる少なくとも1種の金属の塩としては、これら金属のフッ化物、塩化物、臭化物等のハロゲン化物、水酸化物、炭酸塩等が挙げられる。
【0098】
前記金属の塩は2種以上の金属の塩でもよく、一つの塩が複数種の金属を有していてもよいし、異なる金属を有する塩の混合物であってもよい。
前記金属の塩を懸濁液に添加する際の金属の塩の添加量は、酸化ケイ素粒子のモル数に対してモル比で0.01から0.4までが好ましい。
前記金属の塩が有機溶媒に可溶の場合、前記金属の塩を有機溶媒に溶かして懸濁液に加えて混合すればよい。前記金属の塩が有機溶媒に不溶の場合、金属の塩の粒子を有機溶媒に分散してから前記懸濁液に加え、混合すればよい。前記金属の塩は、分散効果向上の観点から平均粒径が100nm以下のナノ粒子が好ましい。前記有機溶媒は、アルコール類、ケトン類などを好適に用いることができるが、トルエン、キシレン、ナフタレン、メチルナフタレンなどの芳香族炭化水素系溶剤も用いることができる。
【0099】
前記懸濁液に前記金属の塩を均一に分散させることで金属の塩の分子と本ナノシリコンを十分に接触させることができる。本ナノシリコンの表面や周辺に酸化ケイ素が存在する場合、前記金属の塩の分子と本ナノシリコンが固相反応する条件で、金属の塩の分子と本ナノシリコンを十分に接触させることで本ナノシリコンの表面近傍に前記シリケート化合物を存在させることができる。本ナノシリコンの表面近傍における前記シリケート化合物の濃度を、シリコンオキシカーバイドの濃度より高濃度とするためには、前記金属の塩と本酸化ケイ素粒子の接触状態を向上させるのが重要である。
また、有機添加物を用いて前記金属の塩の分子を表面修飾することで、本ナノシリコン表面付近に付着させることができる。有機添加物の分子構造は、特に制限はないが、本ナノシリコンの表面上に存在している分散剤との物理的または化学的結合ができるような分子構造が好ましい。前記の物理的または化学的結合は、静電作用、水素結合、分子間ファンデルワールス力、イオン結合、共有結合などが挙げられる。高温焼成の時、前記金属の塩の分子が本ナノシリコン表面の酸化ケイ素と固相反応することにより、本ナノシリコンの表面を前記シリケート化合物で被覆することができる。
【0100】
本活物質は、サイクル性、初期のクーロン効率および容量維持率に優れており、本活物質を含む負極として用いた二次電池は良好な特性を発揮する。
具体的には、本活物質と有機結着剤と、必要に応じてその他の導電助剤などの成分を含んで構成されるスラリーを集電体銅箔上へ薄膜状に塗付して負極とすることができる。また、前記のスラリーに黒鉛など炭素材料を加えて負極を作製することもできる。
炭素材料としては、天然黒鉛、人工黒鉛、ハードカーボンまたはソフトカーボンのような非晶質炭素などが挙げられる。
【0101】
例えば、本活物質と、有機結着材であるバインダーとを、溶媒とともに撹拌機、ボールミル、スーパーサンドミル、加圧ニーダ等の分散装置により混練して、負極材スラリーを調製し、これを集電体に塗布して負極層を形成することで得ることができる。また、ペースト状の負極材スラリーをシート状、ペレット状等の形状に成形し、これを集電体と一体化することでも得ることができる。
【0102】
前記有機結着剤としては、例えば、スチレン-ブタジエンゴム共重合体(以下、「SBR」とも記す。);メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、およびヒドロキシエチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステル、および、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和カルボン酸からなる(メタ)アクリル共重合体等の不飽和カルボン酸共重合体;ポリ弗化ビニリデン、ポリエチレンオキサイド、ポリエピクロヒドリン、ポリホスファゼン、ポリアクリロニトリル、ポリイミド、ポリアミドイミド、カルボキシメチルセルロース(以下、「CMC」とも記す。)などの高分子化合物が挙げられる。
【0103】
これらの有機結着剤は、それぞれの物性によって、水に分散、あるいは溶解したもの、また、N-メチル-2-ピロリドン(NMP)などの有機溶剤に溶解したものがある。リチウムイオン二次電池負極の負極層中の有機結着剤の含有比率は、1質量%から30質量%であることが好ましく、2質量%から20質量%であることがより好ましく、3質量%から15質量%であることがさらに好ましい。
【0104】
有機結着剤の含有比率が1質量%以上であることで密着性がより良好で、充放電時の膨張および収縮によって負極構造の破壊がより抑制される。一方、30質量%以下であることで、電極抵抗の上昇がより抑えられる。
かかる範囲において、本活物質は、化学安定性が高く、水性バインダーも採用することができる点で、実用化面においても取り扱い容易である。
【0105】
また、前記負極材スラリーには、必要に応じて、導電助材を混合してもよい。導電助材としては、例えば、カーボンブラック、グラファイト、アセチレンブラック、あるいは導電性を示す酸化物や窒化物等が挙げられる。導電助剤の使用量は、本発明の負極活物質に対して1質量%から15質量%程度とすればよい。
【0106】
また前記集電体の材質および形状については、例えば、銅、ニッケル、チタン、ステンレス鋼等を、箔状、穴開け箔状、メッシュ状等にした帯状のものを用いればよい。また、多孔性材料、たとえばポーラスメタル(発泡メタル)やカーボンペーパーなども使用できる。
【0107】
前記負極材スラリーを集電体に塗布する方法としては、例えば、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法などが挙げられる。塗布後は、必要に応じて平板プレス、カレンダーロール等による圧延処理を行うことが好ましい。
【0108】
また、前記負極材スラリーをシート状またはペレット状等として、これと集電体との一体化は、例えば、ロール、プレス、もしくはこれらの組み合わせ等により行うことができる。
【0109】
前記集電体上に形成された負極層または集電体と一体化した負極層は、用いた有機結着剤に応じて熱処理することが好ましい。例えば、水系のスチレン-ブタジエンゴム共重合体(SBR)などを用いた場合には100から130℃で熱処理すればよく、ポリイミド、ポリアミドイミドを主骨格とした有機結着剤を用いた場合には150から450℃で熱処理することが好ましい。
【0110】
この熱処理により溶媒の除去、バインダーの硬化による高強度化が進み、粒子間および粒子と集電体間の密着性が向上できる。なお、これらの熱処理は、処理中の集電体の酸化を防ぐため、ヘリウム、アルゴン、窒素等の不活性雰囲気、真空雰囲気で行うことが好ましい。
【0111】
また、熱処理した後に、負極は加圧処理しておくことが好ましい。本活物質を用いた負極では、電極密度が1g/cm3から1.8g/cm3であることが好ましく、1.1g/cm3から1.7g/cm3であることがより好ましく、1.2g/cm3から1.6g/cm3であることがさらに好ましい。電極密度については、高いほど密着性および電極の体積容量密度が向上する傾向がある。一方、電極密度が高すぎると、電極中の空隙が減少することでケイ素など体積膨張の抑制効果が弱くなり、容量維持率が低下することがある。そのため電極密度の最適な範囲が選択される。
【0112】
本発明の二次電池は前記本活物質を負極に含む。本活物質を含む負極を有する二次電池としては、非水電解質二次電池と固体型電解質二次電池が好ましく、特に非水電解質二次電池の負極として用いた際に優れた性能を発揮するものである。
【0113】
前記本発明の二次電池は、例えば、湿式電解質二次電池に用いる場合、正極と、本発明の負極活物質を含む負極とを、セパレータを介して対向して配置し、電解液を注入することにより構成することができる。
【0114】
正極は、負極と同様にして、集電体表面上に正極層を形成することで得ることができる。この場合の集電体はアルミニウム、チタン、ステンレス鋼等の金属や合金を、箔状、穴開け箔状、メッシュ状等にした帯状のものを用いることができる。
【0115】
正極層に用いる正極材料としては、特に制限されない。非水電解質二次電池の中でも、リチウムイオン二次電池を作製する場合には、例えば、リチウムイオンをドーピングまたはインターカレーション可能な金属化合物、金属酸化物、金属硫化物、または導電性高分子材料を用いればよい。例えば、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMnO2)、およびこれらの複合酸化物(LiCoxNiyMnzO2、x+y+z=1)、リチウムマンガンスピネル(LiMn2O4)、リチウムバナジウム化合物、V2O5、V6O13、VO2、MnO2、TiO2、MoV2O8、TiS2、V2S5、VS2、MoS2、MoS3、Cr3O8、Cr2O5、オリビン型LiMPO4(ただし、MはCo、Ni、MnまたはFe)、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等の導電性ポリマー、多孔質炭素等などを単独或いは混合して使用することができる。
【0116】
セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルムまたはそれらを組み合わせたものを使用することができる。なお、作製する非水電解質二次電池の正極と負極が直接接触しない構造にした場合は、セパレータを使用する必要はない。
【0117】
電解液としては、例えば、LiClO4、LiPF6、LiAsF6、LiBF4、LiSO3CF3等のリチウム塩を、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート、シクロペンタノン、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン、3-メチル-1,3-オキサゾリジン-2-オン、γ-ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、酢酸メチル、酢酸エチル等の単体もしくは2成分以上の混合物の非水系溶剤に溶解した、いわゆる有機電解液を使用することができる。
【0118】
本発明の二次電池の構造は、特に限定されないが、通常、正極および負極と、必要に応じて設けられるセパレータとを、扁平渦巻状に巻回して巻回式極板群としたり、これらを平板状として積層して積層式極板群としたりし、これら極板群を外装体中に封入した構造とするのが一般的である。なお、本発明の実施例で用いるハーフセルは、負極に本活物質を主体とする構成とし、対極に金属リチウムを用いた簡易評価を行っているが、これはより活物質自体のサイクル特性を明確に比較するためである。
【0119】
本活物質を用いた二次電池は、特に限定されないが、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池、角型電池などとして使用される。上述した本発明の負極活物質は、リチウムイオンを挿入脱離することを充放電機構とする電気化学装置全般、例えば、ハイブリッドキャパシタ、固体リチウム二次電池などにも適用することが可能である。
【0120】
前記のとおり、本活物質を二次電池の負極活物質とした時、サイクル性、初期のクーロン効率および容量維持率に優れた二次電池を与える。
本活物質は前記方法により負極として用い、前記負極を有する二次電池とすることができる。
【0121】
以上、本ナノシリコン、本ナノシリコンを含む本ナノシリコンスラリー、本ナノシリコンの製造方法、本ナノシリコンを含む本活物質、本活物質を負極に含む二次電池に関して説明したが、本発明は前記の実施形態の構成に限定されない。
本ナノシリコン、本ナノシリコンスラリーおよび本活物質、本活物質を負極に含む二次電池は前記実施形態の構成において、他の任意の構成を追加してもよいし、同様の機能を発揮する任意の構成と置換されていてもよい。
また本ナノシリコンの製造方法および本活物質の製造方法は前記実施形態の構成において、他の任意の工程を追加してもよいし、同様の機能を発揮する任意の工程と置換されていてもよい。
【実施例】
【0122】
以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されない。
なお、本発明の実施例で用いるハーフセルは、負極に本活物質を主体とする構成とし、対極に金属リチウムを用いた簡易評価を行っているが、これはより活物質自体のサイクル特性を明確に比較するためである。
【0123】
合成例1:ポリシロキサン化合物の作製
(メチルトリメトキシシランの縮合物(a1)の合成)
攪拌機、温度計、滴下ロート、冷却管および窒素ガス導入口を備えた反応容器に、1、421質量部のメチルトリメトキシシラン(以下、「MTMS」と記す。)を仕込んで、60℃まで昇温した。次いで、前記反応容器中に0.17質量部のiso-プロピルアシッドホスフェート(SC有機化学株式会社製「Phoslex A-3」)と207質量部の脱イオン水との混合物を5分間で滴下した後、80℃の温度で4時間撹拌してMTMSの加水分解縮合反応をさせた。
前記の加水分解縮合反応によって得られた縮合物を、温度40から60℃および40から1.3kPaの減圧下で蒸留した。なお、「40から1.3kPaの減圧下」とは、メタノールの留去開始時の減圧条件が40kPaであり、最終的に1.3kPaとなるまで減圧することを意味する。以下の記載においても同様である。前記反応過程で生成したメタノールおよび水を除去することによって、数平均分子量が1、000から5、000のMTMSの縮合物(以下、「a1」とも記す。)を含有する液を1、000質量部得た。得られた液の有効成分は70質量%であった。
なお、前記有効成分とは、MTMS等のシランモノマーのメトキシ基が全て縮合反応した場合の理論収量(質量部)を、縮合反応後の実収量(質量部)で除した値、〔シランモノマーのメトキシ基が全て縮合反応した場合の理論収量(質量部)/縮合反応後の実収量(質量部)〕、により算出したものである。
【0124】
(硬化性樹脂組成物の製造)
撹拌機、温度計、滴下ロート、冷却管および窒素ガス導入口を備えた反応容器に、150質量部のブタノール(以下、「BuOH」とも記す。)、105質量部のフェニルトリメトキシシラン(以下、「PTMS」とも記す。)、277質量部のジメチルジメトキシシラン(以下、「DMDMS」とも記す。)を仕込んで80℃まで昇温した。
次いで、同温度で21質量部のメチルメタアクリレート(以下、「MMA」とも記す。)、4質量部のブチルメタアクリレート(以下、「BMA」とも記す。)、3質量部の酪酸(以下、「BA」とも記す。)、2質量部のメタクリロイルオキシプロピルトリメトキシシラン(以下、「MPTS」とも記す。)、3質量部のBuOHおよび0.6質量部のブチルペルオキシ-2-エチルヘキサノエート(以下、「TBPEH」とも記す。)を含有する混合物を、前記反応容器中へ6時間で滴下した。滴下終了後、更に同温度で20時間反応させて加水分解性シリル基を有する数平均分子量が10、000のビニル重合体(a2)の有機溶剤溶液を得た。
【0125】
次いで、0.04質量部のiso-プロピルアシッドホスフェート(SC有機化学株式会社製「Phoslex A-3」)と112質量部の脱イオン水との混合物を、5分間で滴下し、更に同温度で10時間撹拌して加水分解縮合反応させることで、ビニル重合体(a2)が有する加水分解性シリル基と、前記PTMSおよびDMDMS由来のポリシロキサンを有する加水分解性シリル基およびシラノール基とが結合した複合樹脂を含有する液を得た。
次いで、この液に472質量部の合成例1で得られたMTMSの縮合物(a1)、80質量部の脱イオン水を添加し、同温度で10時間撹拌して加水分解縮合反応させ、合成例1と同様の条件で蒸留することによって生成したメタノールおよび水を除去した。次いで、250質量部のBuOHを添加し、不揮発分が60.1質量%の硬化性樹脂組成物を1、000質量部得た。
【0126】
実施例1
シリコン純度が99.9質量%、体積平均粒子径が3.2μm、珪素に対して酸素が3.5atom%である市販品のシリコン粉末(高純度化学製)を70g、DISPERBYK9077(BYK Additives&Instruments製、DISPERBYKは登録商標)を28g、メチルエチルケトン(以下、「MEK」とも記す。)を280gとして攪拌槽内で混合し、よく攪拌させた。攪拌槽に蓋をして露点-70℃の窒素ガスを供給し、槽内を不活性ガス雰囲気下とした。水分初期濃度は0.058質量%とした。この混合液を、ビーズミル(株式会社広島メタル&マシナリー社製ウルトラアペックミルUAM-015)を用いて1.5時間の湿式粉砕を行い、分散媒に均一分散したナノシリコンを得た。ビーズミル内のビーズの径は0.2mmとし、湿式粉砕中の混合液温度は40℃以下とした。比表面積が105m2/g、結晶子径が13.5nm、珪素に対して酸素が12.5atom%、体積平均粒子径が180nmのナノシリコンを得た。
【0127】
前記のナノシリコンを含むスラリーと合成例1の硬化性樹脂組成物とフェノール樹脂(住友ベークライト製、スミライトレジンPR-53570)とを、焼成後の組成で計算してSiOC/C/Si=10/40/50となるように混合し、3つ口セパラブルフラスコに仕込んだ。1口の蓋をして、残り2口に窒素導入管、溶剤トラップ装置を接続した。フラスコ内に窒素を導入し、マグネチックスターラーで混合液を攪拌しながら、オイルバスにてフラスコを120℃まで加熱し、攪拌子が動かなくなるまで溶媒を留去した。その後、室温まで冷却し、焼成前駆体である樹脂乾燥物を得た。その後、焼成前駆体である樹脂乾燥物を窒素雰囲気中で温度1050℃、6時間焼成し、黒色固形物を得た。得られた黒色固形物を遊星型ボールミルで粉砕して、負極活物質粉末を得た。
【0128】
得られた負極活物質粉末について、Cu-Kα線による粉末X線回折(XRD)の測定結果によりSi(111)結晶面に帰属される2θ=28.4°の回折ピークは検出されなかった。エネルギー分散型X線分析(Energy dispersive X―ray spectroscopy、EDS)結果から窒素元素の含有量は0.2質量%であった。また、ラマン散乱分析測定結果、炭素のGバンドに帰属される1590cm-1付近のピークとDバンドに帰属される1330cm-1付近のピークを示し、強度比I(Gバンド)/I(Dバンド)は1.4であった。
【0129】
80質量%の前記の負極活物質粉末、導電助剤としてアセチレンブラックを10質量%、およびバインダーとしてCMCとSBRの混合物を10質量%含む混合スラリーを調整して銅箔上に製膜した。その後、110℃で減圧乾燥し、Li金属箔を対極してハーフセルを作製した。このハーフセルについて、二位電池充放電測定装置(北斗社製)を用い、カットオフ電圧範囲を0.005から1.5Vとして充放電特性の評価を行った。充放電特性の測定結果は、初回放電容量が1630mAh/g、初回効率が86%、5サイクル後の維持率は91%であった。
【0130】
フルセルの評価は、正極材料としてLiCoO2を正極活物質、集電体としてアルミ箔を用いた単層シートを用いて、正極膜を作製し、450mAh/gの放電容量設計値にて黒鉛粉体と活物質粉末を混合して負極膜を作製した。非水電解質には六フッ化リン酸リチウムをエチレンカーボネート(以下、「EC」とも記す。)とジエチルカーボネート(以下、「DEC」とも記す。)を体積比で1/1の混合液に1mol/Lの濃度で溶解した非水電解質溶液を用い、セパレータに厚さ30μmのポリエチレン製微多孔質フィルムを用いたラミ型リチウムイオン二次電池を作製した。ラミ型リチウムイオン二次電池を25℃、テストセルの電圧が4.2Vに達するまで1.2mA(正極基準で0.25c)の定電流で充電を行い、4.2Vに達した後は、セル電圧を4 .2V に保つように電流を減少させて充電を行い、放電容量を求めた。2.5Vから4.2V電圧範囲内の充放電を1サイクルとして、300サイクル後の容量維持率は90%であった。充放電後、ラミネートセルをグローブボックス・アルゴン雰囲気中にて解体して負極を取り出し、EC/DEC混合液で洗浄してから静置乾燥後、電極膜の厚みを測定した。充放電前後に負極膜の厚さの変化率を負極膨張率した。負極膨張率は19%であった。結果を表1に示した。
【0131】
実施例2から12
ビーズミルによる湿式粉砕時の混合液の添加剤の重量%と湿式粉砕の粉砕時間を表1記載の条件とすること以外は実施例1と同様にして、ビーズミルによる湿式粉砕を行い、作製したナノシリコンを用いて負極活物質を作製した。これを用いて実施例1と同様の方法でハーフセルを作製し、充放電特性を評価した。結果を表1に示した。
【0132】
実施例13
ビーズミルによる湿式粉砕時の混合液の水分初期濃度が0.49質量%とした以外は実施例1と同様にしてビーズミルによる湿式粉砕を行い、作製したナノシリコンを用いて負極活物質を作製した。これを用いて実施例1と同様の方法でハーフセルを作製し、充放電特性を評価した。結果を表1に示した。
【0133】
実施例14および18
ビーズミルによる湿式粉砕時の原料シリコン粉末の体積平均粒子径)、および原料シリコン粉末の珪素に対する酸素の量が異なる以外は実施例1と同様にしてビーズミルによる湿式粉砕を行い、作製したナノシリコンを用いて負極活物質を作製した。これを用いて実施例1と同様の方法でハーフセルを作製し、充放電特性を評価した。結果を表1に示した。
【0134】
実施例19
ビーズミルによる湿式粉砕時の原料シリコン粉末の、シリコン純度が99重量%、体積平均粒子径が4.6μm、珪素に対する酸素の量が1.5atom%以外は実施例1と同様にしてビーズミルによる湿式粉砕を行い、作製したナノシリコンを用いて負極活物質を作製した。これを用いて実施例1と同様の方法でハーフセルを作製し、充放電特性を評価した。結果を表1に示した。
【0135】
比較例1
添加剤を加えなかった以外は実施例1と同様にしてビーズミルによる湿式粉砕を実施した。増粘が激しく、粉砕途中でゲル化が生じ、ビーズミルの運転が停止した。ナノシリコン含有スラリーのゲル化により次工程への適正が悪く、継続不可能であった。
【0136】
比較例2
水分初期濃度2.51質量%、液温度を60℃以上で湿式粉砕した以外は実施例1と同様にしてビーズミルによる湿式粉砕を実施した。増粘が激しく、粉砕途中でゲル化が生じ、ビーズミルの運転が停止した。ナノシリコン含有スラリーのゲル化により次工程への適正が悪く、継続不可能であった。
【0137】
比較例3
攪拌槽に供給する窒素ガスの露点が-40℃以上であること以外は実施例1と同様にしてビーズミルによる湿式粉砕を実施した。増粘が激しく、粉砕途中でゲル化が生じ、ビーズミルの運転が停止した。ナノシリコン含有スラリーのゲル化により次工程への適正が悪く、継続不可能であった。
【0138】
比較例4
負極活物質の前駆体を空気で焼成した後に以外は実施例1と同様にして負極活物質を作製後、ハーフセルを作製した。充放電特性の測定結果は、初回放電容量は1090mAh/g、初回効率は61.2%であった。結果を表1に示した。
【0139】
比較例5
体積平均粒子径が0.5μm、珪素に対する酸素の量が16atom%のシリコン粉末を原料として使用した以外は実施例1と同様にして湿式粉砕、負極活物質の作製、およびハーフセルの作製を行った。ダマがほぐれず、セパレーター(スクリーン)が詰まり、ビーズミル内の圧力上昇が生じ、ビーズミルの運転が停止した。これ以上の粉砕継続が不可能であった。
【0140】
比較例6
体積平均粒子径が30μm、珪素に対する酸素の量が0.3atom%のシリコン粉末を原料として使用した以外は実施例1と同様にして湿式粉砕を実施した。粗大粒子を粉砕できずにビーズミルのセパレータが詰まり、スクリーンブロックが生じた。ビーズミル内の圧力上昇が生じ、ビーズミルの運転が停止した。これ以上の継続が不可能であった。
【0141】
[評価方法]
各評価方法は以下のとおりである。
体積平均粒子径:レーザー回折式粒度分布測定装置(マルバーン・パナリティカル社製、マスターサイザー3000)を用いて測定した。
比表面積:比表面積測定装置(BELJAPAN社製、BELSORP-mini)を用いて窒素吸着測定より、BET法で測定した。29Si-NMR:JEOL RESONANCE社製、JNM-ECA600を用いた。
【0142】
電池特性評価:二次電池充放電試験装置(北斗電工株式会社製)を用いて電池特性を測定し、室温25℃、カットオフ電圧範囲が0.005から1.5Vに、充放電レートが0.1C(1から3サイクル)と0.2C(4サイクル以後)にし、定電流・定電圧式充電/定電流式放電の設定条件下で充放電特性の評価試験を行った。各充放電時の切り替え時には、30分間、開回路で放置した。放電容量、充電容量、初回クーロン効率とサイクル性(本願では、25℃でフルセルを5サイクル充放電後の容量維持率を指す)、負極膨張率は以下のようにして求めた。活物質の充電容量と放電容量:ハーフセルの充放電測定で求めた。活物質の初回クーロン効率(%)=初回放電容量(mAh/g)/初回充電容量(mAh/g)容量維持率(%@5回目)=5回目の負極放電容量(mAh/g)/負極初回放電容量(mAh/g)、フルセル(ラミセル)の測定で求めた。
【0143】
【0144】
前記結果から明らかなように、本ナノシリコンを負極活物質として用いた場合、サイクル性、初期のクーロン効率および容量維持率はいずれも高く、またこれら二次電池の特性のバランスに優れる。また本活物質を負極活物質として含む二次電池はその電池特性に優れている。