(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-09
(45)【発行日】2024-05-17
(54)【発明の名称】III族窒化物半導体単結晶の製造方法および治具
(51)【国際特許分類】
C30B 29/38 20060101AFI20240510BHJP
H01L 21/208 20060101ALI20240510BHJP
C30B 19/06 20060101ALI20240510BHJP
【FI】
C30B29/38 D
H01L21/208 D
C30B19/06
(21)【出願番号】P 2020070511
(22)【出願日】2020-04-09
【審査請求日】2023-03-06
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成30年度、環境省、未来のあるべき社会・ライフスタイルを創造する技術イノベーション事業「高品質GaN基板を用いた超高効率GaNパワー・光デバイスの技術開発とその実証」に係る委託業務、産業技術力強化法第17条の適用を受ける特許出願
(73)【特許権者】
【識別番号】000241463
【氏名又は名称】豊田合成株式会社
(73)【特許権者】
【識別番号】504176911
【氏名又は名称】国立大学法人大阪大学
(74)【代理人】
【識別番号】110000648
【氏名又は名称】弁理士法人あいち国際特許事務所
(74)【代理人】
【識別番号】100087723
【氏名又は名称】藤谷 修
(74)【代理人】
【識別番号】100165962
【氏名又は名称】一色 昭則
(74)【代理人】
【識別番号】100206357
【氏名又は名称】角谷 智広
(72)【発明者】
【氏名】岩田 康生
(72)【発明者】
【氏名】守山 実希
(72)【発明者】
【氏名】森 勇介
(72)【発明者】
【氏名】今西 正幸
【審査官】今井 淳一
(56)【参考文献】
【文献】特開2019-151519(JP,A)
【文献】特開平03-112887(JP,A)
【文献】特開2013-045964(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C30B 29/38
C30B 19/06
H01L 21/208
(57)【特許請求の範囲】
【請求項1】
III 族窒化物半導体からなる凸部を離散的に配置した基板を準備する基板準備工程と、
前記基板の前記凸部の上に六角錐面を有する初期核を成長させる初期核成長工程と、
坩堝の内部で少なくともNaとGaとを溶融させて融液とするとともに窒素を前記融液に溶解させて前記融液の内部で前記初期核の前記六角錐面の隙間を埋めて平坦面を有する埋め込み層を形成する埋め込み層形成工程と、
前記融液の内部で前記平坦面からIII 族窒化物半導体単結晶を成長させる半導体単結晶成長工程と、
を有し、
前記埋め込み層形成工程では、
前記基板を前記融液に浸漬する浸漬工程と、
前記基板を前記融液から引き上げた状態で前記初期核の上に残留する融液から結晶成長させる結晶化工程と、を繰り返し、
前記結晶化工程における前記基板の板面と水平面とがなす角の角度は、
1°以上10°以下であって、前記浸漬工程における前記基板の板面と水平面とがなす角の角度よりも大き
く、
前記浸漬工程における前記基板の板面と水平面とがなす角の角度は、0°以上2°以下であることを含むIII 族窒化物半導体単結晶の製造方法。
【請求項2】
請求項1に記載のIII 族窒化物半導体単結晶の製造方法において、
前記結晶化工程における前記基板の板面と水平面とがなす角の角度は、
前記半導体単結晶成長工程における前記基板の板面と水平面とがなす角の角度よりも大きいこと
を含むIII 族窒化物半導体単結晶の製造方法。
【請求項3】
請求項1または請求項2に記載のIII 族窒化物半導体単結晶の製造方法において、
前記初期核成長工程では、
前記坩堝の内部で少なくともNaとGaとを溶融させて融液とするとともに窒素を前記融液に溶解させて前記融液の内部で前記初期核を成長させること
を含むIII 族窒化物半導体単結晶の製造方法。
【請求項4】
坩堝の内部でIII 族窒化物半導体単結晶を成長させるための基板を支持する治具であって、
それぞれ長さが固定された第1脚部と第2脚部と第3脚部と、
前記第1脚部
の一端と前記第2脚部
の一端と前記第3脚部
の一端とを
、それら一端が三角形を成すように互いに連結とするとともに貫通孔を有する連結部と、
前記貫通孔を貫通するとともにねじ山を有する回転軸と、
前記回転軸の前記ねじ山に嵌めあわされたナットと、
を有し、
前記第1脚部と前記第2脚部と前記第3脚部とはそれぞれ、前記基板を支持するための凹部を有し、
前記第1脚部は前記第2脚部および前記第3脚部よりも長く、
前記連結部は、前記ナットに固定されない状態で前記ナットに支持されて
おり、
前記回転軸の回転によって前記ナットは昇降し、それに合わせて前記連結部も昇降し、
前記回転軸の軸を水平面に対して垂直とし、前記第1脚部の他端と前記第2脚部の他端と前記第3脚部の他端とを水平面に接触させていない状態において、前記連結部は水平であり、前記凹部に前記基板が支持されている場合に前記基板が水平面に対して傾斜し、
前記回転軸の軸を水平面に対して垂直とし、前記第1脚部の他端と前記第2脚部の他端と前記第3脚部の他端とを水平面に接触させた状態において、前記連結部は傾斜しており、前記凹部に前記基板が支持されている場合に前記基板が水平面に対して平行となる、
ことを含む治具。
【請求項5】
前記ナットは第2貫通孔を有し、
前記連結部は第3貫通孔を有し、
前記第2貫通孔と前記第3貫通孔を貫通する回転防止軸をさらに有する、請求項4に記載の治具。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書の技術分野は、フラックス法を用いるIII 族窒化物半導体単結晶の製造方法および治具に関する。
【背景技術】
【0002】
半導体結晶を成長させる方法として、有機金属気相成長法(MOCVD)やハイドライド気相エピタキシー法(HVPE)などの気相成長法や、分子線エピタキシー法(MBE)、そして、液相エピタキシー法などがある。液相エピタキシー法には、Naフラックスを使用するフラックス法がある。
【0003】
フラックス法では、サファイア基板等に、窒化ガリウム層(GaN層)を形成して種結晶基板とし、融液中で種結晶基板に半導体単結晶を成長させることが一般的である。その場合、坩堝の内部に種結晶基板および原材料およびフラックスを入れた後、反応室の内部で温度や圧力を調整しつつ半導体単結晶を成長させる。
【0004】
特許文献1には、種結晶のポイントシードに融液を接触させることによりIII 族窒化物半導体結晶を成長させる技術が開示されている。これにより、III 族窒化物半導体結晶にかかる応力を緩和し、クラックの発生を防止する旨が記載されている(特許文献1の段落[0011])。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかし、特許文献1に記載の技術では、転位およびインクルージョンなどの欠陥密度と、膜厚および反りなどの形状とが基板面内で不均一になりやすいという問題点がある。また、結晶全面にわたって平坦で高品質な半導体単結晶を成長させることが困難である。
【0007】
本明細書の技術が解決しようとする課題は、基板全面にわたって結晶品質の均一なIII 族窒化物半導体単結晶を製造することのできるIII 族窒化物半導体単結晶の製造方法および治具を提供することである。
【課題を解決するための手段】
【0008】
第1の態様におけるIII 族窒化物半導体単結晶の製造方法は、III 族窒化物半導体からなる凸部を離散的に配置した基板を準備する基板準備工程と、基板の凸部の上に六角錐面を有する初期核を成長させる初期核成長工程と、坩堝の内部で少なくともNaとGaとを溶融させて融液とするとともに窒素を融液に溶解させて融液の内部で初期核の六角錐面の隙間を埋めて平坦面を有する埋め込み層を形成する埋め込み層形成工程と、融液の内部で平坦面からIII 族窒化物半導体単結晶を成長させる半導体単結晶成長工程と、を有する。埋め込み層形成工程では、基板を融液に浸漬する浸漬工程と、基板を融液から引き上げた状態で初期核の上に残留する融液から結晶成長させる結晶化工程と、を繰り返す。結晶化工程における基板の板面と水平面とがなす角の角度は、1°以上10°以下であって、浸漬工程における基板の板面と水平面とがなす角の角度よりも大きい。浸漬工程における基板の板面と水平面とがなす角の角度は、0°以上2°以下である。
【0009】
このIII 族窒化物半導体単結晶の製造方法は、六角錐面を有する初期核と埋め込み層とを形成する。凸部のIII 族窒化物半導体から延びる転位は、初期核および埋め込み層を成長させる際に上方への延伸を抑制される。そのため、埋め込み層の上に転位密度の低いIII 族窒化物半導体単結晶を成長させることができる。半導体単結晶成長工程において、融液中での基板の傾斜角度が小さいため、基板面内における成長条件の不均一性を低減できる。これにより、基板全面にわたって結晶品質の均一なIII 族窒化物半導体単結晶を製造することができる。
【発明の効果】
【0010】
本明細書では、基板全面にわたって結晶品質の均一なIII 族窒化物半導体単結晶を製造することのできるIII 族窒化物半導体単結晶の製造方法および治具が提供されている。
【図面の簡単な説明】
【0011】
【
図1】第1の実施形態の結晶CRの概略構成を示す図である。
【
図2】第1の実施形態の結晶CRを製造するための結晶成長装置である。
【
図3】第1の実施形態の治具の概略構成を示す図である。
【
図4】第1の実施形態の治具の動作を説明するための図(その1)である。
【
図5】第1の実施形態の治具の動作を説明するための図(その2)である。
【
図6】第1の実施形態の治具の動作を説明するための図(その3)である。
【
図7】第1の実施形態の治具の動作を説明するための図(その4)である。
【
図8】第1の実施形態のサファイア基板の側面図である。
【
図9】第1の実施形態のサファイア基板の平面図である。
【
図10】第1の実施形態における初期核を成長させたサファイア基板を示す図である。
【
図11】第1の実施形態における埋め込み層形成工程を示す図である。
【
図12】第1の実施形態における埋め込み層形成後のサファイア基板を示す図である。
【発明を実施するための形態】
【0012】
以下、具体的な実施形態について、III 族窒化物半導体単結晶の製造方法および治具を例に挙げて図を参照しつつ説明する。しかし、本明細書の技術はこれらの実施形態に限定されるものではない。
【0013】
(第1の実施形態)
1.半導体単結晶
図1は、第1の実施形態の結晶CRの概略構成を示す図である。
図1に示すように、結晶CRは、サファイア基板S1と、第1層11と、埋め込み層12と、単結晶CR1と、を有する。サファイア基板S1は、凸部S1aと底部S1bとを有する。凸部S1aは、ポイントシードである。サファイア基板S1と凸部S1aとの間にはバッファ層が形成されている。バッファ層は、例えば、GaNバッファ層である。凸部S1aは、離散的に配置されたGaNである。凸部S1aの形状は、例えば、円柱形状、六角錘形状、六角柱形状である。底部S1bは、平坦なサファイア基板S1の表面である。
【0014】
第1層11は、凸部S1aの上に形成されたIII 族窒化物半導体の初期核が合体した層である。各々の初期核は、凸部S1aの上に主にc面以外の結晶面を成長させた層である。各々の初期核は、六角錘と、六角柱と六角錘とを重ねた形状と、六角錘台と、六角柱と六角錘台とを重ねた形状と、のいずれかを含む形状を有する。上記に列挙した形状は、六角錘面を有する。六角錘面は、六角錘の斜面と六角錘台の斜面とを含むこととする。
【0015】
埋め込み層12は、第1層11の上に形成されたIII 族窒化物半導体層である。埋め込み層12は、第1層11の六角錐面の隙間を埋める層である。埋め込み層12は、多層膜構造を有し、第1層11の凹部を埋めている。埋め込み層12の上面12aは、c面であり、平坦面である。
【0016】
単結晶CR1は、III 族窒化物半導体から成る単結晶である。単結晶CR1は、結晶CRをサファイア基板S1から剥離した後、初期核および埋め込み層12を除去することにより得られる。
【0017】
2.結晶成長装置
図2は、第1の実施形態の結晶CRを製造するための結晶成長装置1000である。結晶成長装置1000は、Naフラックス法を用いて成長基板上にIII 族窒化物半導体の単結晶を成長させるためのものである。
【0018】
図2に示すように、結晶成長装置1000は、圧力容器1100と、圧力容器蓋1110と、中間室1200と、反応室1300と、反応室蓋1310と、下部回転軸1320と、ターンテーブル1330と、上部回転軸1340と、側部ヒーター1410と、下部ヒーター1420と、ガス供給口1510と、ガス排気口1520と、真空引き排気口1530と、測定用通気口1540と、を有する。
【0019】
圧力容器1100は、結晶成長装置1000の筐体である。圧力容器蓋1110は、圧力容器1100の鉛直下方の位置に配置されている。圧力容器1100は、中間室1200および反応室1300を収容している。中間室1200は、圧力容器1100の内部の室である。反応室1300は、容器CB1および坩堝CB2を収容し、その内部で半導体単結晶を成長させるための室である。反応室蓋1310は、反応室1300の蓋である。
【0020】
下部回転軸1320は、正回転および負回転をすることができるようになっている。下部回転軸1320は、モーター(図示せず)から回転駆動を受けることができる。ターンテーブル1330は、下部回転軸1320に連れまわって回転することができる。側部ヒーター1410および下部ヒーター1420は、反応室1300を加熱するためのものである。
【0021】
上部回転軸1340は、正回転および負回転をすることができるようになっている。上部回転軸1340は、モーター(図示せず)から回転駆動を受けることができる。上部回転軸1340は、後述する治具100を動かすためのものである。
【0022】
ガス供給口1510は、圧力容器1100の内部に窒素ガスを含むガスを供給するための供給口である。ガス排気口1520は、圧力容器1100の内部からガスを排気するためのものである。真空引き排気口1530は、圧力容器1100を真空引きするためのものである。測定用通気口1540は、圧力容器1100の内部のガスを測定のために抽出するためのものである。測定用通気口1540のガスの流れの下流の位置には、O2 センサーや露点計が配置されている。
【0023】
結晶成長装置1000は、坩堝CB2の内部の温度および圧力を調整するとともに坩堝CB2を回転させることができる。そのため、坩堝CB2の内部では、所望の条件で種結晶から半導体単結晶を成長させることができる。
【0024】
3.治具
3-1.治具の構造
図3は、第1の実施形態の治具100の概略構成を示す図である。治具100は、フラックス法で半導体単結晶を成長させるための坩堝CB2の内部に配置される。治具100は、坩堝CB2の内部でIII 族窒化物半導体単結晶を成長させるためのサファイア基板S1を支持することができる。治具100は、第1脚部110と、第2脚部120と、第3脚部130と、連結部140と、回転軸150と、ナット160と、板部材170と、軸180と、を有する。治具100の各部材の材質は、アルミナである。
【0025】
第1脚部110および第2脚部120および第3脚部130は、サファイア基板S1を支持するためのものである。第1脚部110および第2脚部120および第3脚部130は、それぞれ、第1凹部111と第2凹部121と第3凹部131とを有する。第1凹部111と第2凹部121と第3凹部131とは、サファイア基板S1を支持するためのものである。
【0026】
第1脚部110は、第2脚部120および第3脚部130よりも長い。第1脚部110の下端から第1凹部111までの長さと、第2脚部120の下端から第2凹部121までの長さと、第3脚部130の下端から第3凹部131までの長さとは、等しい。そのため、第1脚部110および第2脚部120および第3脚部130が坩堝CB2の底部に接触している状態では、サファイア基板S1の板面はほぼ水平である。連結部140から第1凹部111までの長さは、連結部140から第2凹部121および連結部140から第3凹部131までの長さより長い。そのため、板状の連結部140が水平の場合には、サファイア基板S1は水平面に対して傾斜している(
図4参照)。
【0027】
連結部140は、第1脚部110と第2脚部120と第3脚部130とを互いに連結する。このため、第1脚部110と第2脚部120と第3脚部130とは、互いに固定されている。連結部140は、貫通孔を有する。連結部140は、ナット160に固定されない状態でナット160に支持されている。そのため、連結部140は、回転軸150に対して傾いた姿勢をとることができる。
【0028】
回転軸150は、坩堝CB2の内部に挿入されている。回転軸150は、上部回転軸1340と連結可能である。回転軸150は、連結部140の貫通孔を貫通する。回転軸150は、矢印J1のように軸のまわりに回転可能である。回転軸150の先端側の外表面にはねじ山151が形成されている。このため、回転軸150にはナット160を固定することができる。
【0029】
ナット160は、第1貫通孔160aと第2貫通孔160bとを有する。ナット160の第1貫通孔160aには、内表面にねじ山が形成されている。ナット160の第2貫通孔160bにはねじ山が形成されていない。ナット160の第2貫通孔160bには軸180が挿入されている。ナット160の第1貫通孔160aは、回転軸150のねじ山151に嵌めあわされている。回転軸150が回転すると、ナット160は回転軸150の軸方向に往復運動することができる。その際に、ナット160は第2貫通孔160bに挿入されている軸180にガイドされる。
【0030】
板部材170は、坩堝CB2に対して固定されている部材である。板部材170は、貫通孔を有する。回転軸150は、貫通孔に挿入されている。回転軸150が回転しても、板部材170は回転しない。軸180は、回転軸150の回転によって連結部140およびナット160が回転することを防止する。
【0031】
3-2.治具の動作
ここで、坩堝CB2の内部における治具100の動作について説明する。回転軸150の回転によりナット160は上昇または下降する。ナット160の上昇または下降は、回転軸150の回転方向により制御することができる。
【0032】
図4に示すように、治具100およびサファイア基板S1は、融液ML1の上方であって融液ML1の外部にある。融液ML1は、GaおよびNaを主成分とする。このように、融液ML1の外部に位置しているときのサファイア基板S1は、水平面と平行ではない。このときサファイア基板S1の板面と水平面とがなす角の角度θ1は、例えば、1°以上10°以下である。好ましくは、2°以上9°以下である。より好ましくは、3°以上8°以下である。この段階で、融液ML1の昇温および坩堝CB2の窒素による昇圧を行う。そして、半導体を成長させるために十分な窒素を融液ML1に溶解させる。
【0033】
図5に示すように、ナット160を下降させて治具100を融液ML1に徐々に沈める。治具100の第1脚部110が坩堝CB2の底部に接触する。このとき、第2脚部120および第3脚部130は坩堝CB2の底部に接触していない。第1脚部110の長さは、第2脚部120の長さおよび第3脚部130の長さよりも長いためである。
【0034】
ナット160が下降するにつれて、第1脚部110が坩堝CB2の底部に接触しつつ、第2脚部120および第3脚部130が下降する。連結部140は、回転軸150に固定されておらず、ナット160にひっかかっているだけの状態である。ナット160は、連結部140の落下を防止する。連結部140は、回転軸150およびナット160に固定されていないため、連結部140は、水平な位置から姿勢を変えることができる。第1脚部110が下降せずに第2脚部120および第3脚部130が下降するため、このときサファイア基板S1の板面と水平面とがなす角の角度θ2は0°に近づく。
【0035】
図6に示すように、治具100の第2脚部120および第3脚部130は坩堝CB2の底部に接触する。これにより、第1脚部110および第2脚部120および第3脚部130が坩堝CB2に接触する。この段階で、サファイア基板S1の板面はほぼ水平である。このときサファイア基板S1の板面と水平面とがなす角の角度は、例えば、0°以上2°以下である。好ましくは、0°以上1.5°以下である。より好ましくは、0°以上1°以下である。このときの角度は、サファイア基板S1の径の大きさにも依存する。
【0036】
次に、ナット160を上昇させる。この際には、まず、第2脚部120および第3脚部130が坩堝CB2の底部から離れ、第1脚部110はすぐには坩堝CB2から離れない。このため、サファイア基板S1の板面は水平面に対して傾斜する。
【0037】
そして、ナット160が十分に上昇すると、第1脚部110も坩堝CB2から離れる。ナット160の上昇を続ける。
【0038】
図7に示すように、サファイア基板S1が融液ML1の外部に出る。このとき、サファイア基板S1のうち第1脚部110の反対側の位置から融液ML1の外部に出る。このように、サファイア基板S1が融液ML1から外部に出る際には、サファイア基板S1は水平面に対して傾斜している。サファイア基板S1を融液ML1から引き上げる際に、融液ML1の液面はサファイア基板S1の表面を徐々に移動する。このため、サファイア基板S1の初期核の表面の凹凸に微少量の融液を均一に残留させることができる。
【0039】
4.半導体単結晶の製造方法
この製造方法は、III 族窒化物半導体からなる凸部を離散的に配置した基板を準備する基板準備工程と、基板の凸部の上に六角錐形状を有する初期核を成長させる初期核成長工程と、坩堝の内部で少なくともNaとGaとを溶融させて融液とするとともに窒素を融液に溶解させて融液の内部で初期核の六角錐面の隙間を埋めて平坦面を有する埋め込み層を形成する埋め込み層形成工程と、融液の内部で平坦面からIII 族窒化物半導体単結晶を成長させる半導体単結晶成長工程と、III 族窒化物半導体単結晶を基板から分離する分離工程と、を有する。
【0040】
4-1.基板準備工程
図8および
図9に示すサファイア基板S1を準備する。
図8は、第1の実施形態のサファイア基板S1の側面図である。
図9は、第1の実施形態のサファイア基板S1の平面図である。前述のように、サファイア基板S1は、凸部S1aと底部S1bとを有する。このように、GaNからなる凸部S1aがサファイア基板S1の表面上にポイント状に配置されている。凸部S1aはハニカム状に配置されている。凸部S1aの径は、例えば、100μm以上300μm以下である。ここで、凸部S1aの径とは、例えば、円柱形上の場合には円の直径であり、六角錘形状の場合には底面の六角形の対角の長さである。凸部S1aのピッチI1は、例えば、100μm以上800μm以下である。
【0041】
4-2.初期核成長工程
液相エピタキシー法の一種であるフラックス法を用いて、サファイア基板S1の上に半導体単結晶を成長させる。ここで用いる原材料の一例を表1に示す。また、炭素比を、0.1mol%以上2.0mol%以下の範囲内で変えてもよい。なお、表1の値は、あくまで例示であり、これ以外の値であってもよい。また、これ以外にドーピング元素を添加してもよい。
【0042】
GaとNaとを坩堝CB2の内部に入れる。バッファ層を形成済みのサファイア基板S1を治具100にセットするとともに坩堝CB2の内部に配置する。坩堝CB2の内部の温度を上昇させるとともに坩堝CB2の窒素の圧力を上昇させてGaとNaとを溶融させる。これにより窒素を溶解させた融液ML1が生成される。そして、坩堝CB2の温度および窒素の圧力が所望の値になったところで、サファイア基板S1を治具100により下降させて融液ML1の内部に入れる。
【0043】
表1は、原材料を示している。
【0044】
[表1]
原材料 原材料の量
Ga/Na比 10~40mol%
C 0.1mol%~2.0mol%(Naに対して)
【0045】
表2は、育成条件を示している。
【0046】
[表2]
温度 700℃~900℃程度
窒素の圧力 2MPa~10MPa
【0047】
まず、サファイア基板S1の凸部S1aの上から第1層11を3次元成長させる。このように、坩堝CB2の内部で少なくともNaとGaとを溶融させるとともに窒素を溶解させた融液ML1とする。そして融液ML1の内部で初期核を成長させる。初期核成長工程の時間は、例えば、10時間以上40時間以下である。
【0048】
図10は、初期核を成長させたサファイア基板S1を示す図である。サファイア基板S1の上には六角錐面を有する第1層11が形成されている。
【0049】
4-3.埋め込み層形成工程
次に、第1層11の上に埋め込み層12を形成する。その際に、
図11に示すように、サファイア基板S1を融液ML1の内部に入れた第1状態と、サファイア基板S1を融液ML1の外部に出した第2状態と、を繰り返す。
【0050】
第1状態は、サファイア基板S1を融液ML1に浸漬する浸漬工程である。第2状態は、サファイア基板S1を融液ML1から引き上げた状態で初期核の上に残留する融液から結晶成長させる結晶化工程である。
図11に示すように、結晶化工程におけるサファイア基板S1の板面と水平面とがなす角の角度は、浸漬工程におけるサファイア基板S1の板面と水平面とがなす角の角度よりも大きい。
【0051】
サファイア基板S1を融液ML1の内部に入れてから引き上げる。この引き上げの際に、サファイア基板S1が水平面、すなわち融液ML1の液面に対して傾斜している。このため、3次元成長させた第1層11の表面に微量の融液が基板面内に均一に残留することとなる。そして、融液ML1の外部の第2状態でサファイア基板S1上の融液ML1から結晶成長させる。このように、埋め込み層12は、融液ML1の外部で結晶化される。なお、融液ML1の液面に対してサファイア基板S1の板面を傾斜させない場合には、液だまりができて融液ML1が基板面内に不均一になる。
【0052】
このような融液ML1に浸漬する浸漬工程と、融液ML1の外部で結晶化させる結晶化工程とを、例えば30回以上200回以下の範囲で繰り返すことにより、
図12に示すような埋め込み層12が形成される。ここで、埋め込み層12の上面12aはc面である。埋め込み層形成工程の時間は、例えば、20時間以上100時間以下である。融液ML1中では、サファイア基板S1はほぼ水平である。このため、気液界面と成長面との間の距離が、基板面内でほぼ一定である。このため、半導体の均一な成長をさせることができる。
【0053】
4-4.半導体単結晶成長工程
次に、サファイア基板S1を融液ML1の内部に配置する。治具100の第1脚部110と第2脚部120と第3脚部130とは坩堝CB2の底部に接触している。そのため、サファイア基板S1の板面は、ほぼ水平である。結晶化工程におけるサファイア基板S1の板面と水平面とがなす角の角度は、半導体単結晶成長工程におけるサファイア基板S1の板面と水平面とがなす角の角度よりも大きい。この状態で、埋め込み層12の上面12aから半導体単結晶を成長させる。これにより、
図1に示すような結晶CRが製造される。半導体単結晶成長工程の時間は、例えば、30時間以上100時間以下である。単結晶CR1の膜厚によって、自由に成長時間を変えてもよい。
【0054】
4-5.分離工程
その後、結晶CRを常温まで冷却する。この際に単結晶CR1がサファイア基板S1から自然に剥離する。単結晶CR1の結晶性が均一であるため、結晶CRに割れが発生するおそれはほとんどない。その後、第1層11および埋め込み層12を研磨等により除去するとよい。
【0055】
5.治具のもたらす効果
5-1.融液中
第1の実施形態では、治具100は、融液ML1の内部でサファイア基板S1をほぼ水平に保持する。融液ML1に溶解する窒素の濃度は、融液ML1の表面で高く融液ML1の底に向かうにつれて減少する。サファイア基板S1は、融液ML1の内部でほぼ水平に保たれているときには、サファイア基板S1の板面にわたって、窒素の濃度がほぼ一定であると考えられる。サファイア基板S1の板面にわたって均一な半導体単結晶を成長させることができる。したがって、特に大口径基板の上に半導体単結晶を成長させる場合に有効である。このサファイア基板S1をほぼ水平に保持することは、初期核成長工程および単結晶成長工程のいずれにおいても有効である。
【0056】
5-2.引き上げ
また、治具100は、融液ML1からサファイア基板S1を引き上げる際に、サファイア基板S1を水平面に対してわずかに傾斜させる。そのため、サファイア基板S1を融液ML1から引き上げる際に、サファイア基板S1の六角錐形状の初期核の隙間に過剰な量の融液が残留するおそれはほとんどない。
【0057】
5-3.埋め込み層
融液ML1の上方で埋め込み層12を成長させる際に、サファイア基板S1の初期核の上に微少量の融液が残留している状態で、その融液から結晶成長させることができる。そのため、初期核の上の微少量の融液から結晶成長させる際に、結晶性に優れた埋め込み層12を成長させることができる。また、埋め込み層12の表面は非常に平坦である。
【0058】
6.転位
サファイア基板S1の凸部S1aのGaNの転位は、第1層11におけるc面以外の結晶成長面での成長時に曲げられる。そして、その後の埋め込み層形成工程および単結晶成長工程において転位は互いに合流して減少する。このため、埋め込み層12の表面においては、転位の数は非常に少ない。単結晶CR1の上部では、転位はさらに減少している。転位密度は、例えば、104 cm-2以上105 cm-2以下の程度である。
【0059】
7.変形例
7-1.サファイア基板
サファイア基板S1は、例えば、円柱形状の凸部S1aをハニカム状に配置したものである。凸部S1aは、その他の形状であってもよい。凸部S1aの形状として例えば、多角柱形状、円錐台形状、が挙げられる。凸部S1aと隣接する凸部S1aとは、a軸方向で会合するように、凸部S1aを配置することが好ましい。
【0060】
7-2.初期核成長工程
初期核成長工程については、フラックス法の代わりに、MOCVD法等の気相成長法により成長させてよい場合がある。
【0061】
7-3.待機工程
初期核成長工程は待機工程を有してもよい。待機工程は、融液ML1の温度および窒素の圧力が所定の値に達した後に、サファイア基板S1を融液ML1に浸漬する前に実施される。この際の待機時間は、例えば、1時間以上30時間以下である。
【0062】
7-4.治具の材質
治具100の各部材の材質は、アルミナ以外のセラミックスであってもよい。治具100の各部材の材質は、Naフラックス法への影響が小さいことが好ましい。また、他の材質の上にアルミナをコーティングしてもよい。
【0063】
7-5.複数枚の基板
第1の実施形態では、治具100は1枚のサファイア基板S1を保持する。しかし、治具は2枚以上のサファイア基板S1を保持してもよい。脚部が複数の凹部を有すればよい。
【0064】
7-6.基板の材質
サファイア基板S1の代わりに、GaNを成長可能であり、Naに耐性のある基板を用いてもよい。
【0065】
7-7.回転軸
治具100の回転軸150は、軸方向に往復運動することが可能であってもよい。
【0066】
7-8.組み合わせ
上記の変形例を自由に組み合わせてもよい。
【0067】
(付記)
第1の態様におけるIII 族窒化物半導体単結晶の製造方法は、III 族窒化物半導体からなる凸部を離散的に配置した基板を準備する基板準備工程と、基板の凸部の上に六角錐面を有する初期核を成長させる初期核成長工程と、坩堝の内部で少なくともNaとGaとを溶融させて融液とするとともに窒素を融液に溶解させて融液の内部で初期核の六角錐面の隙間を埋めて平坦面を有する埋め込み層を形成する埋め込み層形成工程と、融液の内部で平坦面からIII 族窒化物半導体単結晶を成長させる半導体単結晶成長工程と、を有する。埋め込み層形成工程では、基板を融液に浸漬する浸漬工程と、基板を融液から引き上げた状態で初期核の上に残留する融液から結晶成長させる結晶化工程と、を繰り返す。結晶化工程における基板の板面と水平面とがなす角の角度は、浸漬工程における基板の板面と水平面とがなす角の角度よりも大きい。
【0068】
第2の態様におけるIII 族窒化物半導体単結晶の製造方法においては、結晶化工程における基板の板面と水平面とがなす角の角度は、半導体単結晶成長工程における基板の板面と水平面とがなす角の角度よりも大きい。
【0069】
第3の態様におけるIII 族窒化物半導体単結晶の製造方法においては、初期核成長工程では、坩堝の内部で少なくともNaとGaとを溶融させて融液とするとともに窒素を融液に溶解させて融液の内部で初期核を成長させる。
【0070】
第4の態様における治具は、坩堝の内部でIII 族窒化物半導体単結晶を成長させるための基板を支持する治具である。治具は、第1脚部と第2脚部と第3脚部と、第1脚部と第2脚部と第3脚部とを互いに連結するとともに貫通孔を有する連結部と、貫通孔を貫通するとともにねじ山を有する回転軸と、回転軸のねじ山に嵌めあわされたナットと、を有する。第1脚部と第2脚部と第3脚部とはそれぞれ、基板を支持するための凹部を有する。第1脚部は第2脚部および第3脚部よりも長い。連結部は、ナットに固定されない状態でナットに支持されている。
【符号の説明】
【0071】
CR…結晶
CR1…単結晶
S1…サファイア基板
S1a…凸部
S1b…底部
11…第1層
12…埋め込み層
CB2…坩堝
100…治具
110…第1脚部
120…第2脚部
130…第3脚部
140…連結部