IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 信越化学工業株式会社の特許一覧

特許7491173スルホニウム塩、化学増幅レジスト組成物及びパターン形成方法
<>
  • 特許-スルホニウム塩、化学増幅レジスト組成物及びパターン形成方法 図1
  • 特許-スルホニウム塩、化学増幅レジスト組成物及びパターン形成方法 図2
  • 特許-スルホニウム塩、化学増幅レジスト組成物及びパターン形成方法 図3
  • 特許-スルホニウム塩、化学増幅レジスト組成物及びパターン形成方法 図4
  • 特許-スルホニウム塩、化学増幅レジスト組成物及びパターン形成方法 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-20
(45)【発行日】2024-05-28
(54)【発明の名称】スルホニウム塩、化学増幅レジスト組成物及びパターン形成方法
(51)【国際特許分類】
   C07C 381/12 20060101AFI20240521BHJP
   C07C 309/12 20060101ALI20240521BHJP
   C07C 309/17 20060101ALI20240521BHJP
   G03F 7/038 20060101ALI20240521BHJP
   G03F 7/039 20060101ALI20240521BHJP
   G03F 7/004 20060101ALI20240521BHJP
   G03F 7/20 20060101ALI20240521BHJP
【FI】
C07C381/12 CSP
C07C309/12
C07C309/17
G03F7/038 601
G03F7/039 601
G03F7/004 503A
G03F7/004 501
G03F7/004 504
G03F7/20 501
G03F7/20 521
【請求項の数】 16
(21)【出願番号】P 2020166632
(22)【出願日】2020-10-01
(65)【公開番号】P2022059112
(43)【公開日】2022-04-13
【審査請求日】2022-10-24
【前置審査】
(73)【特許権者】
【識別番号】000002060
【氏名又は名称】信越化学工業株式会社
(74)【代理人】
【識別番号】110002240
【氏名又は名称】弁理士法人英明国際特許事務所
(72)【発明者】
【氏名】福島 将大
(72)【発明者】
【氏名】片山 和弘
【審査官】吉森 晃
(56)【参考文献】
【文献】国際公開第2008/007539(WO,A1)
【文献】特開2014-153432(JP,A)
【文献】特開2020-126143(JP,A)
【文献】中国特許出願公開第110283274(CN,A)
【文献】中国特許出願公開第111187130(CN,A)
【文献】米国特許第06215021(US,B1)
【文献】特開2021-091666(JP,A)
【文献】Emmanuel Magnier et al.,Straightforward One-Pot Synthesis of Trifluoromethyl Sulfonium Salts,Angewandte Chemie, International Edition,2006年,45(8),p.1279-1282
(58)【調査した分野】(Int.Cl.,DB名)
C07C 381/12
C07C 309/12
C07C 309/17
G03F 7/038
G03F 7/039
G03F 7/004
G03F 7/20
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
下記式(1C)で表される化学増幅レジスト組成物用スルホニウム塩。
【化1】
(式中、pは、1~5の整数である。qは、1~3の整数である。r1は、0~2の整数である。s1は、0~(2r1+4)の整数である。r2は、0~2の整数である。s2は、0~(2r2+4)の整数である。
3は、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビル基である。
4は、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビル基である。
-は、下記式(2A)~(2D)のいずれかで表される非求核性アニオンである(ただし、下記式(1’)で表されるアニオンを除く。)。)
【化2】
(式中、Q 1 及びQ 2 は、それぞれ独立に、フッ素原子又は炭素数1~6のフッ素化アルキル基である。
3 及びQ 4 は、それぞれ独立に、水素原子、フッ素原子又は炭素数1~6のフッ素化アルキル基である。
kは、0~4の整数である。
1 ~L 4 は、それぞれ独立に、単結合、エーテル結合、エステル結合、スルホン酸エステル結合、カーボネート結合又はカーバメート結合である。
5 は、ヘテロ原子を含んでいてもよい炭素数1~30のヒドロカルビル基である。
1 は、ヘテロ原子を含んでいてもよい炭素数1~30のヒドロカルビレン基である。
A は、それぞれ独立に、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
1 は、単結合、フェニレン基、ナフチレン基又は(主鎖)-C(=O)-O-X 11 -である。X 11 は、ヒドロキシ基、エーテル結合、エステル結合若しくはラクトン環を含んでいてもよい炭素数1~10の脂肪族ヒドロカルビレン基、又はフェニレン基若しくはナフチレン基である。
2 は、単結合又は-X 21 -C(=O)-O-である。X 21 は、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビレン基である。
3 は、単結合、メチレン基、エチレン基、フェニレン基、フッ素化フェニレン基、トリフルオロメチル基で置換されたフェニレン基、-O-X 31 -、-C(=O)-O-X 31 -又は-C(=O)-NH-X 31 -である。X 31 は、炭素数1~6の脂肪族ヒドロカルビレン基、フェニレン基、フッ素化フェニレン基又はトリフルオロメチル基で置換されたフェニレン基であり、カルボニル基、エステル結合、エーテル結合又はヒドロキシ基を含んでいてもよい。)
【化3】
(式中、R1’及びR2’は、それぞれ独立に、水素原子、ヒドロキシ基又は炭素数1~12のヒドロカルビル基であり、該ヒドロカルビル基中の水素原子が、ヘテロ原子を含む基で置換されていてもよく、該ヒドロカルビル基中の-CH2-が、-O-又は-C(=O)-で置換されていてもよい。また、R1’及びR2’が、互いに結合してこれらが結合する炭素原子と共に環を形成してもよい。
f1’及びRf2’は、それぞれ独立に、水素原子、フッ素原子又はトリフルオロメチル基であるが、少なくとも一方は、フッ素原子又はトリフルオロメチル基である。
1’は、単結合又は炭素数1~15のヒドロカルビレン基であり、該ヒドロカルビレン基中の水素原子が、ヘテロ原子を含む基で置換されていてもよく、該ヒドロカルビレン基中の-CH2-が、-O-又は-C(=O)-で置換されていてもよい。
2’は、単結合、エーテル結合又はエステル結合である。
Arは、炭素数3~15の(n+1)価の芳香族基であり、該芳香族基の水素原子の一部又は全部が置換基で置換されていてもよい。
nは、1≦n≦5を満たす整数である。)
【請求項2】
-が、下記式(2A-1)~(2C-1)のいずれかで表されるアニオンである請求項記載のスルホニウム塩。
【化4】
(式中、Q3、Q4、R5、L1~L4、A1、RA、X1、X2及びkは、前記と同じ。)
【請求項3】
-が、下記式(2A-2)~(2C-2)のいずれかで表されるアニオンである請求項記載のスルホニウム塩。
【化8】
(式中、Q3、R5、L1~L4、A1、RA、X1及びX2は、前記と同じ。)
【請求項4】
請求項1~のいずれか1項記載のスルホニウム塩からなる化学増幅レジスト組成物用光酸発生剤。
【請求項5】
下記式(a1)又は(a2)で表される繰り返し単位を有するベースポリマー、及び請求項記載の光酸発生剤を含む化学増幅レジスト組成物。
【化9】
(式中、RAは、それぞれ独立に、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
1は、単結合、フェニレン基、ナフチレン基又は(主鎖)-C(=O)-O-Y11-であり、Y11は、ヒドロキシ基、エーテル結合、エステル結合若しくはラクトン環を含んでいてもよい炭素数1~10のアルカンジイル基、又はフェニレン基若しくはナフチレン基である。
2は、単結合又は(主鎖)-C(=O)-O-である。
AL1及びAL2は、それぞれ独立に、下記式(L1)~(L4)から選ばれる基、炭素数4~20の第3級ヒドロカルビル基、各アルキル基がそれぞれ炭素数1~6のアルキル基であるトリアルキルシリル基、及びカルボニル基、エーテル結合若しくはエステル結合を含む炭素数4~20の飽和ヒドロカルビル基から選ばれる酸不安定基である。
11は、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビル基である。
aは、0~4の整数である。
【化10】
(式中、破線は、結合手である。
L01及びRL02は、水素原子又は炭素数1~18の飽和ヒドロカルビル基である。RL03は、炭素数1~18のヒドロカルビル基であり、ヘテロ原子を含む基を含んでいてもよい。RL01、RL02及びRL03のいずれか2つは、互いに結合してこれらが結合する炭素原子又は炭素原子と酸素原子と共に環を形成してもよい。
L04は、炭素数4~20、好ましくは炭素数4~15の第3級ヒドロカルビル基、各アルキル基がそれぞれ炭素数1~6のアルキル基であるトリアルキルシリル基、カルボニル基、エーテル結合又はエステル結合を含む炭素数4~20の飽和ヒドロカルビル基、又は式(L1)で表される基である。
xは、0~6の整数である。
L05は、置換されていてもよい炭素数1~8の飽和ヒドロカルビル基又は置換されていてもよい炭素数6~20のアリール基である。
yは0又は1であり、zは0~3の整数であり、2y+z=2又は3である。
L06は、置換されていてもよい炭素数1~8の飽和ヒドロカルビル基又は置換されていてもよい炭素数6~20のアリール基である。
L07~RL16は、それぞれ独立に、水素原子、又は置換されていてもよい炭素数1~15のヒドロカルビル基である。RL07~RL16は、これらから選ばれる2個が互いに結合してこれらが結合する炭素原子と共に環を形成していてもよく、その場合には、環の形成に関与する基は炭素数1~15のヒドロカルビレン基である。また、RL07~RL16は、隣接する炭素原子に結合するもの同士で何も介さずに結合し、二重結合を形成してもよい。))
【請求項6】
下記式(a1)又は(a2)で表される繰り返し単位及び下記式(a3’)又は(a4’)で表される繰り返し単位を含むベースポリマーを含む化学増幅レジスト組成物。
【化11】
(式中、RAは、それぞれ独立に、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
1は、単結合、フェニレン基、ナフチレン基又は(主鎖)-C(=O)-O-Y11-であり、Y11は、ヒドロキシ基、エーテル結合、エステル結合若しくはラクトン環を含んでいてもよい炭素数1~10のアルカンジイル基、又はフェニレン基若しくはナフチレン基である。
2は、単結合又は(主鎖)-C(=O)-O-である。
AL1及びAL2は、それぞれ独立に、下記式(L1)~(L4)から選ばれる基、炭素数4~20の第3級ヒドロカルビル基、各アルキル基がそれぞれ炭素数1~6のアルキル基であるトリアルキルシリル基、及びカルボニル基、エーテル結合若しくはエステル結合を含む炭素数4~20の飽和ヒドロカルビル基から選ばれる酸不安定基である。
11は、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビル基である。
aは、0~4の整数である。
【化12】
(式中、破線は、結合手である。
L01及びRL02は、水素原子又は炭素数1~18の飽和ヒドロカルビル基である。RL03は、炭素数1~18のヒドロカルビル基であり、ヘテロ原子を含む基を含んでいてもよい。RL01、RL02及びRL03のいずれか2つは、互いに結合してこれらが結合する炭素原子又は炭素原子と酸素原子と共に環を形成してもよい。
L04は、炭素数4~20、好ましくは炭素数4~15の第3級ヒドロカルビル基、各アルキル基がそれぞれ炭素数1~6のアルキル基であるトリアルキルシリル基、カルボニル基、エーテル結合又はエステル結合を含む炭素数4~20の飽和ヒドロカルビル基、又は式(L1)で表される基である。
xは、0~6の整数である。
L05は、置換されていてもよい炭素数1~8の飽和ヒドロカルビル基又は置換されていてもよい炭素数6~20のアリール基である。
yは0又は1であり、zは0~3の整数であり、2y+z=2又は3である。
L06は、置換されていてもよい炭素数1~8の飽和ヒドロカルビル基又は置換されていてもよい炭素数6~20のアリール基である。
L07~RL16は、それぞれ独立に、水素原子、又は置換されていてもよい炭素数1~15のヒドロカルビル基である。RL07~RL16は、これらから選ばれる2個が互いに結合してこれらが結合する炭素原子と共に環を形成していてもよく、その場合には、環の形成に関与する基は炭素数1~15のヒドロカルビレン基である。また、RL07~RL16は、隣接する炭素原子に結合するもの同士で何も介さずに結合し、二重結合を形成してもよい。))
【化13】
(式中、pは、1~5の整数である。qは、1~3の整数である。r1は、0~2の整数である。s1は、0~(2r1+4)の整数である。r2は、0~2の整数である。s2は、0~(2r2+4)の整数である。
3は、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビル基である。
4は、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビル基である。
4は、それぞれ独立に、単結合、エーテル結合、エステル結合、スルホン酸エステル結合、カーボネート結合又はカーバメート結合である。
Aは、それぞれ独立に、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
1は、単結合、フェニレン基、ナフチレン基又は(主鎖)-C(=O)-O-X11-である。X11は、ヒドロキシ基、エーテル結合、エステル結合若しくはラクトン環を含んでいてもよい炭素数1~10の脂肪族ヒドロカルビレン基、又はフェニレン基若しくはナフチレン基である。
2は、単結合又は-X21-C(=O)-O-である。X21は、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビレン基である。
3は、単結合、メチレン基、エチレン基、フェニレン基、フッ素化フェニレン基、トリフルオロメチル基で置換されたフェニレン基、-O-X31-、-C(=O)-O-X31-又は-C(=O)-NH-X31-である。X31は、炭素数1~6の脂肪族ヒドロカルビレン基、フェニレン基、フッ素化フェニレン基又はトリフルオロメチル基で置換されたフェニレン基であり、カルボニル基、エステル結合、エーテル結合又はヒドロキシ基を含んでいてもよい。
kは、0~4の整数である。)
【請求項7】
前記ベースポリマーが、下記式(b1)又は(b2)で表される繰り返し単位を含む請求項又は記載の化学増幅レジスト組成物。
【化14】
(式中、RAは、それぞれ独立に、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
pは、水素原子、又はヒドロキシ基、シアノ基、カルボニル基、カルボキシ基、エーテル結合、エステル結合、スルホン酸エステル結合、カーボネート結合、ラクトン環、スルトン環及びカルボン酸無水物から選ばれる少なくとも1つ以上の構造を含む極性基である。
3は、単結合又は(主鎖)-C(=O)-O-である。
12は、ハロゲン原子、シアノ基、又はヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビル基、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビルオキシ基又はヘテロ原子を含んでいてもよい炭素数2~20のヒドロカルビルカルボニル基である。
bは、1~4の整数である。)
【請求項8】
更に、前記ベースポリマーが、下記式(c1)~(c3)で表される繰り返し単位から選ばれる少なくとも1種を含む請求項のいずれか1項記載の化学増幅レジスト組成物。
【化15】
(式中、RAは、それぞれ独立に、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
1は、単結合又はフェニレン基である。
2は、-C(=O)-O-Z21-、-C(=O)-NH-Z21-又は-O-Z21-である。Z21は、炭素数1~6の脂肪族ヒドロカルビレン基、フェニレン基又はこれらを組み合わせて得られる2価の基であり、カルボニル基、エステル結合、エーテル結合又はヒドロキシ基を含んでいてもよい。
3は、単結合、フェニレン基、ナフチレン基又は(主鎖)-C(=O)-O-Z31-である。Z31は、ヒドロキシ基、エーテル結合、エステル結合若しくはラクトン環を含んでいてもよい炭素数1~10の脂肪族ヒドロカルビレン基、又はフェニレン基若しくはナフチレン基である。
4は、単結合又は-Z41-C(=O)-O-である。Z41は、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビレン基である。
5は、単結合、メチレン基、エチレン基、フェニレン基、フッ素化フェニレン基、トリフルオロメチル基で置換されたフェニレン基、-C(=O)-O-Z51-、-C(=O)-NH-Z51-又は-O-Z51-である。Z51は、炭素数1~6の脂肪族ヒドロカルビレン基、フェニレン基、フッ素化フェニレン基又はトリフルオロメチル基で置換されたフェニレン基であり、カルボニル基、エステル結合、エーテル結合又はヒドロキシ基を含んでいてもよい。
21及びR22は、それぞれ独立に、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビル基である。R21とR22とは、互いに結合してこれらが結合する硫黄原子と共に環を形成してもよい。
11は、単結合、エーテル結合、エステル結合、カルボニル基、スルホン酸エステル結合、カーボネート結合又はカーバメート結合である。
Rf1及びRf2は、それぞれ独立に、フッ素原子又は炭素数1~6のフッ素化アルキル基である。
Rf3及びRf4は、それぞれ独立に、水素原子、フッ素原子又は炭素数1~6のフッ素化アルキル基である。
-は、非求核性対向イオンである。
+は、オニウムカチオンである。
cは、0~3の整数である。)
【請求項9】
更に、有機溶剤を含む請求項のいずれか1項記載の化学増幅レジスト組成物。
【請求項10】
更に、クエンチャーを含む請求項のいずれか1項記載の化学増幅レジスト組成物。
【請求項11】
更に、水に不溶又は難溶でアルカリ現像液に可溶な界面活性剤、及び/又は水及びアルカリ現像液に不溶又は難溶な界面活性剤を含む請求項~1のいずれか1項記載の化学増幅レジスト組成物。
【請求項12】
請求項~1のいずれか1項記載の化学増幅レジスト組成物を用いて基板上にレジスト膜を形成する工程と、前記レジスト膜をKrFエキシマレーザー光、ArFエキシマレーザー光、電子線又は極端紫外線で露光する工程と、前記露光したレジスト膜を、現像液を用いて現像する工程とを含むパターン形成方法。
【請求項13】
現像液としてアルカリ水溶液を用いて、露光部を溶解させ、未露光部が溶解しないポジ型パターンを得る請求項1記載のパターン形成方法。
【請求項14】
現像液として有機溶剤を用いて、未露光部を溶解させ、露光部が溶解しないネガ型パターンを得る請求項1記載のパターン形成方法。
【請求項15】
前記露光が、屈折率1.0以上の液体をレジスト膜と投影レンズとの間に介在させて行う液浸露光である請求項1~1のいずれか1項記載のパターン形成方法。
【請求項16】
前記レジスト膜の上に更に保護膜を形成し、該保護膜と投影レンズとの間に前記液体を介在させて液浸露光を行う請求項1記載のパターン形成方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、オニウム塩化合物、化学増幅レジスト組成物及びパターン形成方法に関する。
【背景技術】
【0002】
近年、LSIの高集積化と高速度化に伴い、パターンルールの微細化が求められている中、次世代の微細加工技術として遠紫外線リソグラフィー及び極端紫外線(EUV)リソグラフィーが有望視されている。中でも、ArFエキシマレーザー光を用いるフォトリソグラフィーは、0.13μm以下の超微細加工に不可欠な技術である。
【0003】
ArFリソグラフィーは、130nmノードのデバイス製作から部分的に使われ始め、90nmノードデバイスからはメインのリソグラフィー技術となった。次の45nmノードのリソグラフィー技術として当初F2レーザーを用いた157nmリソグラフィーが有望視されたが、諸問題による開発遅延が指摘されたため、投影レンズとウエハーとの間に水、エチレングリコール、グリセリン等の空気より屈折率の高い液体を挿入することによって、投影レンズの開口数(NA)を1.0以上に設計でき、高解像度を達成することができるArF液浸リソグラフィーが急浮上し(非特許文献1)、実用段階にある。この液浸リソグラフィーには、水に溶出しにくいレジスト組成物が求められる。
【0004】
ArFリソグラフィーでは、精密かつ高価な光学系材料の劣化を防ぐため、少ない露光量で十分な解像性を発揮できる感度の高いレジスト組成物が求められている。これを実現する方法としては、その成分として波長193nmにおいて高透明なものを選択するのが最も一般的である。例えば、ベースポリマーについては、ポリアクリル酸及びその誘導体、ノルボルネン-無水マレイン酸交互重合体、ポリノルボルネン、開環メタセシス重合体、開環メタセシス重合体水素添加物等が提案されており、樹脂単体の透明性を上げるという点ではある程度の成果が得られている。
【0005】
近年、アルカリ水溶液現像によるポジティブトーンレジストとともに、有機溶剤現像によるネガティブトーンレジストも脚光を浴びている。ポジティブトーンでは達成できない非常に微細なホールパターンをネガティブトーンの露光で解像するため、解像性の高いポジ型レジスト組成物を用い、有機溶剤で現像することでネガティブパターンを形成するのである。さらに、アルカリ水溶液現像と有機溶剤現像との2回の現像を組み合わせることにより、2倍の解像力を得る検討も進められている。有機溶剤によるネガティブトーン現像用のArFレジスト組成物としては、従来型のポジ型ArFレジスト組成物を用いることができ、これを用いたパターン形成方法が、特許文献1~3に記載されている。
【0006】
近年の急速な微細化に適応できるよう、プロセス技術とともにレジスト組成物の開発も日々進んでいる。光酸発生剤も様々な検討がなされており、トリフェニルスルホニウムカチオンとパーフルオロアルカンスルホン酸アニオンとからなるスルホニウム塩が一般的に使われている。しかしながら、発生する酸であるパーフルオロアルカンスルホン酸、中でもパーフルオロオクタンスルホン酸(PFOS)は、難分解性、生体濃縮性、毒性懸念があり、レジスト組成物への適用は厳しく、現在はパーフルオロブタンスルホン酸を発生する光酸発生剤が用いられている。しかし、これをレジスト組成物に用いると、発生する酸の拡散が大きく、高解像性を達成するのが難しい。この問題に対して、部分フッ素置換アルカンスルホン酸及びその塩が種々開発されており、例えば、特許文献1には、従来技術として露光によりα,α-ジフルオロアルカンスルホン酸を発生する光酸発生剤、具体的にはジ(4-tert-ブチルフェニル)ヨードニウム 1,1-ジフルオロ-2-(1-ナフチル)エタンスルホナートやα,α,β,β-テトラフルオロアルカンスルホン酸を発生する光酸発生剤が記載されている。ただし、これらはいずれもフッ素置換率は下げられているものの、エステル構造等の分解可能な置換基を持たないため、易分解性による環境安全性の観点からは不十分であり、さらにアルカンスルホン酸の大きさを変化させるための分子設計に制限があり、また、フッ素原子を含む出発物質が高価である等の問題を抱えている。
【0007】
また、回路線幅の縮小に伴い、レジスト組成物においては酸拡散によるコントラスト劣化の影響が一層深刻になってきた。これは、パターン寸法が酸の拡散長に近づくためであり、マスクの寸法ズレの値に対するウエハー上の寸法ズレ(マスクエラーファクター(MEF))が大きくなることによるマスク忠実性の低下やパターン矩形性の劣化を招く。したがって、光源の短波長化及び高NA化による恩恵を十分に得るためには、従来の材料以上に溶解コントラストの増大又は酸拡散の抑制が必要となる。改善策の一つとして、ベーク温度を下げれば酸拡散が小さくなり、結果としてMEFを改善することは可能であるが、必然的に低感度化してしまう。
【0008】
光酸発生剤にバルキーな置換基や極性基を導入することは、酸拡散の抑制に有効である。特許文献4には、レジスト溶剤に対する溶解性や安定性に優れ、また幅広い分子設計が可能な2-アシルオキシ-1,1,3,3,3-ペンタフルオロプロパン-1-スルホン酸を有する光酸発生剤が記載されており、特にバルキーな置換基を導入した2-(1-アダマンチルオキシ)-1,1,3,3,3-ペンタフルオロプロパン-1-スルホン酸を有する光酸発生剤は酸拡散が小さい。また、特許文献5~7には、極性基として縮合環ラクトンやスルトン、チオラクトンを導入した光酸発生剤が記載されている。極性基の導入による酸拡散抑制効果によりある程度の性能向上が確認されているものの、未だ酸拡散の高度な制御には不十分であり、MEFやパターン形状、感度等を総合的に見て、リソグラフィー性能は満足のいくものではない。
【0009】
光酸発生剤のアニオンに極性基を導入することは酸拡散の抑制に有効であるが、溶剤溶解性の観点においては不利となる。特許文献8及び9では、溶剤溶解性を改善するため光酸発生剤のカチオン部に脂環式基を導入して溶剤溶解性を確保する試みが行われており、具体的にはシクロヘキサン環やアダマンタン環が導入されている。このような脂環式基の導入で溶解性は改善されるものの、溶解性を確保するためにはある程度の炭素数が必要であり、結果的に光酸発生剤の分子構造がかさ高くなるため、微細パターンの形成の際にラインウィドゥスラフネス(LWR)や寸法均一性(CDU)等のリソグラフィー性能が劣化してしまう。
【0010】
一方、フッ素原子は、立体的に水素原子に次いで小さく、かつ疎水性及び親油性に優れる元素である。中でも、トリフルオロメトキシ基は、対応するメトキシ基と比較して著しく疎水性に優れる置換基として知られている(非特許文献1)。これらを光酸発生剤のカチオンに導入した場合は、脂肪族脂環式基を導入した場合よりも立体的な寄与が小さく、良好な溶剤溶解性を付与することができると考えられるが、このような置換基をカチオンに導入した光酸発生剤については前例がない。更なる微細化の要求に応えるため、新規な光酸発生剤の開発は重要であり、酸拡散が十分に抑制され、かつ溶剤溶解性に優れる光酸発生剤の開発が望まれている。
【先行技術文献】
【特許文献】
【0011】
【文献】特開2008-281974号公報
【文献】特開2008-281975号公報
【文献】特許第4554665号公報
【文献】特開2007-145797号公報
【文献】特許5061484号公報
【文献】特開2016-147879号公報
【文献】特開2015-63472号公報
【文献】特許5573098号公報
【文献】特許6461919号公報
【非特許文献】
【0012】
【文献】「フッ素化学入門2010-基礎と応用の最前線」日本学術振興会フッ素化学第155委員会編、三共出版、2010年
【発明の概要】
【発明が解決しようとする課題】
【0013】
近年のレジストパターンの高解像性の要求に対し、従来のスルホニウム塩型の光酸発生剤を用いたレジスト組成物では、塩化合物であるが故に溶剤溶解性が十分ではなく、溶剤中で凝集することで不均一な酸発生挙動を示し、その結果、コントラストやLWR等のリソグラフィー性能が劣化してしまう。また、保管中に析出する懸念もある。
【0014】
本発明は、前記事情に鑑みなされたもので、特にKrFエキシマレーザー光、ArFエキシマレーザー光、電子線(EB)、EUV等の高エネルギー線を用いるフォトリソグラフィーにおいて、溶剤溶解性に優れ、かつ高感度で、露光裕度(EL)、LWR等のリソグラフィー性能に優れる化学増幅レジスト組成物に使用される新規スルホニウム塩、該スルホニウム塩を光酸発生剤として含む化学増幅レジスト組成物、及び該化学増幅レジスト組成物を用いるパターン形成方法を提供することを目的とする。
【課題を解決するための手段】
【0015】
本発明者らは、前記目的を達成するため鋭意検討を重ねた結果、特定の構造のスルホニウム塩が溶剤溶解性に優れ、これを光酸発生剤として用いる化学増幅レジスト組成物が、高感度であり、EL、LWR等のリソグラフィー性能に優れ、精密な微細加工に極めて有効であることを知見し、本発明をなすに至った。
【0016】
すなわち、本発明は、下記スルホニウム塩、化学増幅レジスト組成物及びパターン形成方法を提供する。
1.下記式(1)で表されるスルホニウム塩。
【化1】
(式中、pは、1~5の整数である。qは、1~3の整数である。
HFは、水素原子又はフッ素原子である。
1は、ヘテロ原子を含んでいてもよい炭素数1~20の(p+1)価の炭化水素基である。
2は、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビル基である。
q=1のとき、R1及び2つのR2のうちのいずれか2つが、互いに結合してこれらが結合する硫黄原子と共に環を形成してもよい。q=2のとき、2つのR1及びR2のうちのいずれか2つが、互いに結合してこれらが結合する硫黄原子と共に環を形成してもよい。q=3のとき、3つのR1のうちのいずれか2つが、互いに結合してこれらが結合する硫黄原子と共に環を形成してもよい。
-は、非求核性アニオンである。)
2.下記式(1A)で表されるものである1のスルホニウム塩。
【化2】
(式中、R1、R2、p、q、X-は、前記と同じ。)
3.下記式(1B)で表されるものである2のスルホニウム塩。
【化3】
(式中、R2、p、q及びX-は、前記と同じ。
3は、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビル基である。
1は、0~2の整数である。s1は、0~(2r1+4)の整数である。)
4.下記式(1C)で表されるものである3のスルホニウム塩。
【化4】
(式中、R3、p、q、r1、s1及びX-は、前記と同じ。
4は、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビル基である。
2は0~2の整数である。s2は0~(2r2+4)の整数である。)
5.X-が、下記式(2A)~(2D)のいずれかで表されるアニオンである1~4のいずれかのスルホニウム塩。
【化5】
(式中、Q1及びQ2は、それぞれ独立に、フッ素原子又は炭素数1~6のフッ素化アルキル基である。
3及びQ4は、それぞれ独立に、水素原子、フッ素原子又は炭素数1~6のフッ素化アルキル基である。
kは、0~4の整数である。
1~L4は、それぞれ独立に、単結合、エーテル結合、エステル結合、スルホン酸エステル結合、カーボネート結合又はカーバメート結合である。
5は、ヘテロ原子を含んでいてもよい炭素数1~30のヒドロカルビル基である。
1は、ヘテロ原子を含んでいてもよい炭素数1~30のヒドロカルビレン基である。
Aは、それぞれ独立に、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
1は、単結合、フェニレン基、ナフチレン基又は(主鎖)-C(=O)-O-X11-である。X11は、ヒドロキシ基、エーテル結合、エステル結合若しくはラクトン環を含んでいてもよい炭素数1~10の脂肪族ヒドロカルビレン基、又はフェニレン基若しくはナフチレン基である。
2は、単結合又は-X21-C(=O)-O-である。X21は、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビレン基である。
3は、単結合、メチレン基、エチレン基、フェニレン基、フッ素化フェニレン基、トリフルオロメチル基で置換されたフェニレン基、-O-X31-、-C(=O)-O-X31-又は-C(=O)-NH-X31-である。X31は、炭素数1~6の脂肪族ヒドロカルビレン基、フェニレン基、フッ素化フェニレン基又はトリフルオロメチル基で置換されたフェニレン基であり、カルボニル基、エステル結合、エーテル結合又はヒドロキシ基を含んでいてもよい。)
6.X-が、下記式(2A-1)~(2C-1)のいずれかで表されるアニオンである5のスルホニウム塩。
【化6】
(式中、Q3、Q4、R5、L1~L4、A1、RA、X1、X2及びkは、前記と同じ。)
7.X-が、下記式(2A-2)~(2C-2)のいずれかで表されるアニオンである6のスルホニウム塩。
【化7】
(式中、Q3、R5、L1~L4、A1、RA、X1及びX2は、前記と同じ。)
8.1~7のいずれかのスルホニウム塩からなる光酸発生剤。
9.下記式(a1)又は(a2)で表される繰り返し単位を有するベースポリマー、及び8の光酸発生剤を含む化学増幅レジスト組成物。
【化8】
(式中、RAは、それぞれ独立に、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
1は、単結合、フェニレン基、ナフチレン基又は(主鎖)-C(=O)-O-Y11-であり、Y11は、ヒドロキシ基、エーテル結合、エステル結合若しくはラクトン環を含んでいてもよい炭素数1~10のアルカンジイル基、又はフェニレン基若しくはナフチレン基である。
2は、単結合又は(主鎖)-C(=O)-O-である。
AL1及びAL2は、それぞれ独立に、酸不安定基である。
11は、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビル基である。
aは、0~4の整数である。)
10.下記式(a1)又は(a2)で表される繰り返し単位及び下記式(a3)又は(a4)で表される繰り返し単位を含むベースポリマーを含む化学増幅レジスト組成物。
【化9】
(式中、RAは、それぞれ独立に、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
1は、単結合、フェニレン基、ナフチレン基又は(主鎖)-C(=O)-O-Y11-であり、Y11は、ヒドロキシ基、エーテル結合、エステル結合若しくはラクトン環を含んでいてもよい炭素数1~10のアルカンジイル基、又はフェニレン基若しくはナフチレン基である。
2は、単結合又は(主鎖)-C(=O)-O-である。
AL1及びAL2は、それぞれ独立に、酸不安定基である。
11は、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビル基である。
aは、0~4の整数である。)
【化10】
(式中、pは、1~5の整数である。qは、1~3の整数である。
HFは、水素原子又はフッ素原子である。
1は、ヘテロ原子を含んでいてもよい炭素数1~20の(p+1)価の炭化水素基である。
2は、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビル基である。
q=1のとき、R1及び2つのR2のうちのいずれか2つが、互いに結合してこれらが結合する硫黄原子と共に環を形成してもよい。q=2のとき、2つのR1及びR2のうちのいずれか2つが、互いに結合してこれらが結合する硫黄原子と共に環を形成してもよい。q=3のとき、3つのR1のうちのいずれか2つが、互いに結合してこれらが結合する硫黄原子と共に環を形成してもよい。
4は、それぞれ独立に、単結合、エーテル結合、エステル結合、スルホン酸エステル結合、カーボネート結合又はカーバメート結合である。
Aは、それぞれ独立に、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
1は、単結合、フェニレン基、ナフチレン基又は(主鎖)-C(=O)-O-X11-である。X11は、ヒドロキシ基、エーテル結合、エステル結合若しくはラクトン環を含んでいてもよい炭素数1~10の脂肪族ヒドロカルビレン基、又はフェニレン基若しくはナフチレン基である。
2は、単結合又は-X21-C(=O)-O-である。X21は、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビレン基である。
3は、単結合、メチレン基、エチレン基、フェニレン基、フッ素化フェニレン基、トリフルオロメチル基で置換されたフェニレン基、-O-X31-、-C(=O)-O-X31-又は-C(=O)-NH-X31-である。X31は、炭素数1~6の脂肪族ヒドロカルビレン基、フェニレン基、フッ素化フェニレン基又はトリフルオロメチル基で置換されたフェニレン基であり、カルボニル基、エステル結合、エーテル結合又はヒドロキシ基を含んでいてもよい。
kは、0~4の整数である。)
11.前記ベースポリマーが、下記式(b1)又は(b2)で表される繰り返し単位を含む9又は10の化学増幅レジスト組成物。
【化11】
(式中、RAは、それぞれ独立に、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
pは、水素原子、又はヒドロキシ基、シアノ基、カルボニル基、カルボキシ基、エーテル結合、エステル結合、スルホン酸エステル結合、カーボネート結合、ラクトン環、スルトン環及びカルボン酸無水物から選ばれる少なくとも1つ以上の構造を含む極性基である。
3は、単結合又は(主鎖)-C(=O)-O-である。
12は、ハロゲン原子、シアノ基、又はヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビル基、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビルオキシ基又はヘテロ原子を含んでいてもよい炭素数2~20のヒドロカルビルカルボニル基である。
bは、1~4の整数である。)
12.更に、前記ベースポリマーが、下記式(c1)~(c3)で表される繰り返し単位から選ばれる少なくとも1種を含む9~11のいずれかの化学増幅レジスト組成物。
【化12】
(式中、RAは、それぞれ独立に、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
1は、単結合又はフェニレン基である。
2は、-C(=O)-O-Z21-、-C(=O)-NH-Z21-又は-O-Z21-である。Z21は、炭素数1~6の脂肪族ヒドロカルビレン基、フェニレン基又はこれらを組み合わせて得られる2価の基であり、カルボニル基、エステル結合、エーテル結合又はヒドロキシ基を含んでいてもよい。
3は、単結合、フェニレン基、ナフチレン基又は(主鎖)-C(=O)-O-Z31-である。Z31は、ヒドロキシ基、エーテル結合、エステル結合若しくはラクトン環を含んでいてもよい炭素数1~10の脂肪族ヒドロカルビレン基、又はフェニレン基若しくはナフチレン基である。
4は、単結合又は-Z41-C(=O)-O-である。Z41は、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビレン基である。
5は、単結合、メチレン基、エチレン基、フェニレン基、フッ素化フェニレン基、トリフルオロメチル基で置換されたフェニレン基、-C(=O)-O-Z51-、-C(=O)-NH-Z51-又は-O-Z51-である。Z51は、炭素数1~6の脂肪族ヒドロカルビレン基、フェニレン基、フッ素化フェニレン基又はトリフルオロメチル基で置換されたフェニレン基であり、カルボニル基、エステル結合、エーテル結合又はヒドロキシ基を含んでいてもよい。
21及びR22は、それぞれ独立に、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビル基である。R21とR22とは、互いに結合してこれらが結合する硫黄原子と共に環を形成してもよい。
11は、単結合、エーテル結合、エステル結合、カルボニル基、スルホン酸エステル結合、カーボネート結合又はカーバメート結合である。
Rf1及びRf2は、それぞれ独立に、フッ素原子又は炭素数1~6のフッ素化アルキル基である。
Rf3及びRf4は、それぞれ独立に、水素原子、フッ素原子又は炭素数1~6のフッ素化アルキル基である。
-は、非求核性対向イオンである。
+は、オニウムカチオンである。
cは、0~3の整数である。)
13.更に、有機溶剤を含む9~12のいずれかの化学増幅レジスト組成物。
14.更に、クエンチャーを含む請求項9~13のいずれか1項記載の化学増幅レジスト組成物。
15.更に、水に不溶又は難溶でアルカリ現像液に可溶な界面活性剤、及び/又は水及びアルカリ現像液に不溶又は難溶な界面活性剤を含む9~14のいずれかの化学増幅レジスト組成物。
16.9~15のいずれかの化学増幅レジスト組成物を用いて基板上にレジスト膜を形成する工程と、前記レジスト膜をKrFエキシマレーザー光、ArFエキシマレーザー光、EB又はEUVで露光する工程と、前記露光したレジスト膜を、現像液を用いて現像する工程とを含むパターン形成方法。
17.現像液としてアルカリ水溶液を用いて、露光部を溶解させ、未露光部が溶解しないポジ型パターンを得る16のパターン形成方法。
18.現像液として有機溶剤を用いて、未露光部を溶解させ、露光部が溶解しないネガ型パターンを得る16のパターン形成方法。
19.前記露光が、屈折率1.0以上の液体をレジスト膜と投影レンズとの間に介在させて行う液浸露光である16~18のいずれかのパターン形成方法。
20.前記レジスト膜の上に更に保護膜を形成し、該保護膜と投影レンズとの間に前記液体を介在させて液浸露光を行う19のパターン形成方法。
【発明の効果】
【0017】
本発明のスルホニウム塩を光酸発生剤として含む化学増幅レジスト組成物を用いてパターン形成を行った場合、感度に優れ、MEF、LWR等のリソグラフィー性能に優れるパターンを形成することができる。
【図面の簡単な説明】
【0018】
図1】実施例1-1で得られた化合物の1H-NMRスペクトルである。
図2】実施例1-2で得られた化合物の1H-NMRスペクトルである。
図3】実施例1-3で得られた化合物の1H-NMRスペクトルである。
図4】実施例1-4で得られた化合物の1H-NMRスペクトルである。
図5】実施例1-5で得られた化合物の1H-NMRスペクトルである。
【発明を実施するための形態】
【0019】
[スルホニウム塩]
本発明のスルホニウム塩は、下記式(1)で表されるものである。
【化13】
【0020】
式(1)中、pは、R1に結合するフッ素化アルコキシ基の数を表し、1~5の整数であるが、原料調達の観点から、1~3の整数が好ましく、1又は2がより好ましい。qは、1~3の整数である。
【0021】
式(1)中、RHFは、水素原子又はフッ素原子であるが、溶剤溶解性の観点からフッ素原子であることが好ましい。
【0022】
式(1)中、R1は、ヘテロ原子を含んでいてもよい炭素数1~20の(p+1)価の炭化水素基である。前記(p+1)価の炭化水素基は、飽和でも不飽和でもよく、直鎖状、分岐状、環状のいずれでもよい。その具体例としては、炭素数1~20のヒドロカルビレン基及び前記ヒドロカルビレン基から更に水素原子が(p-1)個脱離して得られる基が挙げられる。前記ヒドロカルビレン基としては、メタンジイル基、エタン-1,1-ジイル基、エタン-1,2-ジイル基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基、ノナン-1,9-ジイル基、デカン-1,10-ジイル基、ウンデカン-1,11-ジイル基、ドデカン-1,12-ジイル基、トリデカン-1,13-ジイル基、テトラデカン-1,14-ジイル基、ペンタデカン-1,15-ジイル基、ヘキサデカン-1,16-ジイル基、ヘプタデカン-1,17-ジイル基等の炭素数1~30のアルカンジイル基;シクロペンタンジイル基、シクロヘキサンジイル基、ノルボルナンジイル基、アダマンタンジイル基等の炭素数3~30の環式飽和ヒドロカルビレン基;フェニレン基、メチルフェニレン基、エチルフェニレン基、n-プロピルフェニレン基、イソプロピルフェニレン基、n-ブチルフェニレン基、イソブチルフェニレン基、sec-ブチルフェニレン基、tert-ブチルフェニレン基、ナフチレン基、メチルナフチレン基、エチルナフチレン基、n-プロピルナフチレン基、イソプロピルナフチレン基、n-ブチルナフチレン基、イソブチルナフチレン基、sec-ブチルナフチレン基、tert-ブチルナフチレン基等のアリーレン基;これらを組み合わせて得られる基等が挙げられる。
【0023】
また、前記(p+1)価の炭化水素基の水素原子の一部又は全部が、酸素原子、硫黄原子、窒素原子、ハロゲン原子等のヘテロ原子を含む基で置換されていてもよく、前記(p+1)価の炭化水素基を構成する-CH2-の一部が、酸素原子、硫黄原子、窒素原子等のヘテロ原子を含む基で置換されていてもよく、その結果、ヒドロキシ基、シアノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、カルボニル基、エーテル結合、エステル結合、スルホン酸エステル結合、カーボネート結合、ラクトン環、スルトン環、カルボン酸無水物、ハロアルキル基等を含んでいてもよい。
【0024】
式(1)中、R2は、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビル基である。前記ヒドロカルビル基は、飽和でも不飽和でもよく、直鎖状、分岐状、環状のいずれでもよい。その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基等の炭素数1~20のアルキル基;シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロプロピルメチル基、4-メチルシクロヘキシル基、シクロヘキシルメチル基、ノルボルニル基、アダマンチル基等の炭素数3~20の環式飽和ヒドロカルビル基;ビニル基、アリル基、プロペニル基、ブテニル基、ヘキセニル基等の炭素数2~20のアルケニル基;シクロヘキセニル基等の炭素数3~20の環式不飽和ヒドロカルビル基;フェニル基、ナフチル基等の炭素数2~20のアリール基;ベンジル基、1-フェニルエチル基、2-フェニルエチル基等の炭素数7~20のアラルキル基;これらを組み合わせて得られる基等が挙げられる。これらのうち、好ましくはアリール基である。また、前記ヒドロカルビル基の水素原子の一部又は全部が、酸素原子、硫黄原子、窒素原子、ハロゲン原子等のヘテロ原子を含む基で置換されていてもよく、前記ヒドロカルビル基を構成する-CH2-の一部が、酸素原子、硫黄原子、窒素原子等のヘテロ原子を含む基で置換されていてもよく、その結果、ヒドロキシ基、シアノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、カルボニル基、エーテル結合、エステル結合、スルホン酸エステル結合、カーボネート結合、ラクトン環、スルトン環、カルボン酸無水物、ハロアルキル基等を含んでいてもよい。
【0025】
q=1のとき、R1及び2つのR2のうちのいずれか2つが、互いに結合してこれらが結合する硫黄原子と共に環を形成してもよい。q=2のとき、2つのR1及びR2のうちのいずれか2つが、互いに結合してこれらが結合する硫黄原子と共に環を形成してもよい。q=3のとき、3つのR1のうちのいずれか2つが、互いに結合してこれらが結合する硫黄原子と共に環を形成してもよい。このとき、スルホニウムカチオンとしては、下記式で表されるもの等が挙げられる。
【化14】
(式中、破線は、R1又はR2との結合手である。)
【0026】
式(1)で表されるスルホニウム塩としては、下記式(1A)で表されるものが好ましい。
【化15】
(式中、R1、R2、p、q及びX-は、前記と同じ。)
【0027】
式(1A)で表されるスルホニウム塩のうち、下記式(1B)で表されるものがより好ましい。
【化16】
(式中、R2、p、q及びX-は、前記と同じ。)
【0028】
式(1B)中、R3は、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビル基である。前記ヒドロカルビル基は、飽和でも不飽和でもよく、直鎖状、分岐状、環状のいずれでもよい。その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、tert-ペンチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、2-エチルヘキシル基、n-ノニル基、n-デシル基等のアルキル基;、シクロペンチル基、シクロヘキシル基、シクロペンチルメチル基、シクロペンチルエチル基、シクロペンチルブチル基、シクロヘキシルメチル基、シクロヘキシルエチル基、シクロヘキシルブチル基、ノルボルニル基、トリシクロ[5.2.1.02,6]デカニル基、アダマンチル基、アダマンチルメチル基等の環式飽和ヒドロカルビル基;フェニル基、ナフチル基、アントラセニル基等のアリール基;これらを組み合わせて得られる基等が挙げられる。また、前記ヒドロカルビル基の水素原子の一部又は全部が、酸素原子、硫黄原子、窒素原子、ハロゲン原子等のヘテロ原子を含む基で置換されていてもよく、前記ヒドロカルビル基を構成する-CH2-の一部が、酸素原子、硫黄原子、窒素原子等のヘテロ原子を含む基で置換されていてもよく、その結果、ヒドロキシ基、シアノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、カルボニル基、エーテル結合、エステル結合、スルホン酸エステル結合、カーボネート結合、カーバメート結合、アミド結合、イミド結合、ラクトン環、スルトン環、チオラクトン環、ラクタム環、スルタム環、カルボン酸無水物、ハロアルキル基等を含んでいてもよい。
【0029】
式(1B)中、r1は、0~2の整数である。r1=0の場合はベンゼン環を表し、r1=1の場合はナフタレン環を表し、r1=2の場合はアントラセン環を表す。これらの中で、溶剤溶解性の観点からr1=0のベンゼン環であることが好ましい。
【0030】
式(1B)中、s1は、0~8の整数である。s1≧2のとき、2以上のR3は互いに同一であっても異なっていてもよく、2以上のR3が互いに結合して環を形成してもよい。このとき形成される環としては、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、ノルボルナン環、アダマンタン環等が挙げられる。
【0031】
式(1B)で表されるスルホニウム塩のうち、下記式(1C)で表されるものがより好ましい。
【化17】
(式中、R3、p、q、r1、s1及びX-は、前記と同じ。)
【0032】
式(1C)中、R4は、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビル基である。前記ヒドロカルビル基は、飽和でも不飽和でもよく、直鎖状、分岐状、環状のいずれでもよい。その具体例としては、R3で表されるヒドロカルビル基として例示したものと同様のものが挙げられる。
【0033】
式(1C)中、r2は、0~2の整数である。r2=0の場合はベンゼン環を表し、r2=1の場合はナフタレン環を表し、r2=2の場合はアントラセン環を表す。これらの中で、溶剤溶解性の観点からr2=0のベンゼン環であることが好ましい。
【0034】
式(1C)中、s2は、0~8の整数である。s2≧2のとき、2以上のR4は互いに同一であっても異なっていてもよく、2以上のR4が互いに結合して環を形成してもよい。このとき形成される環としては、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、ノルボルナン環、アダマンタン環等が挙げられる。
【0035】
式(1)で表されるスルホニウム塩のカチオンとしては、以下に示すものが挙げられるが、これらに限定されない。
【化18】
【0036】
【化19】
【0037】
【化20】
【0038】
【化21】
【0039】
【化22】
【0040】
【化23】
【0041】
【化24】
【0042】
【化25】
【0043】
【化26】
【0044】
【化27】
【0045】
【化28】
【0046】
【化29】
【0047】
式(1)中、X-は、非求核性アニオンである。前記非求核性アニオンとしては、下記式(2A)~(2D)のいずれかで表されるものが好ましい。
【化30】
【0048】
式(2A)~(2C)中、Q1及びQ2は、それぞれ独立に、フッ素原子又は炭素数1~6のフッ素化アルキル基であるが、発生酸の酸強度を高めるためにいずれもフッ素原子であることが好ましい。
【0049】
式(2A)~(2C)中、Q3及びQ4は、それぞれ独立に、水素原子、フッ素原子又は炭素数1~6のフッ素化アルキル基であるが、溶剤溶解性向上のため、少なくともいずれか1つはトリフルオロメチル基であることが好ましい。kは、0~4の整数であるが、1であることが特に好ましい。
【0050】
式(2A)~(2C)中、L1~L4は、それぞれ独立に、単結合、エーテル結合、エステル結合、スルホン酸エステル結合、カーボネート結合又はカーバメート結合であるが、合成上の観点からエーテル結合又はエステル結合であることが好ましく、エステル結合が更に好ましい。
【0051】
式(2A)中、R5は、ヘテロ原子を含んでいてもよい炭素数1~30のヒドロカルビル基である。前記ヒドロカルビル基としては、微細パターン形成において高解像性を得る点から、特に炭素数6~30であるものが好ましい。
【0052】
5で表される炭素数1~30のヒドロカルビル基は、飽和でも不飽和でもよく、直鎖状、分岐状、環状のいずれでもよい。その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、ペンタデシル基、ヘプタデシル基、イコシル基等の炭素数1~30のアルキル基;シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基、1-メチル-1-アダマンチル基、1-アダマンチルメチル基、ノルボルニル基、ノルボルニルメチル基、トリシクロデカニル基、テトラシクロドデカニル基、テトラシクロドデカニルメチル基、ジシクロヘキシルメチル基等の炭素数3~30の環式飽和ヒドロカルビル基;アリル基、3-シクロヘキセニル基等の炭素数2~30の不飽和脂肪族ヒドロカルビル基;フェニル基、1-ナフチル基、2-ナフチル基等の炭素数6~30のアリール基;ベンジル基、ジフェニルメチル基等の炭素数7~38のアラルキル基;これらを組み合わせて得られる基等が挙げられる。
【0053】
また、これらの基の水素原子の一部又は全部が、酸素原子、硫黄原子、窒素原子、ハロゲン原子等のヘテロ原子を含む基で置換されていてもよく、これらの基を構成する-CH2-の一部が、酸素原子、硫黄原子、窒素原子等のヘテロ原子を含む基で置換されていてもよく、その結果、ヒドロキシ基、シアノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、カルボニル基、エーテル結合、エステル結合、スルホン酸エステル結合、カーボネート結合、ラクトン環、スルトン環、カルボン酸無水物、ハロアルキル基等を含んでいてもよい。ヘテロ原子を含むヒドロカルビル基としては、テトラヒドロフリル基、メトキシメチル基、エトキシメチル基、メチルチオメチル基、アセトアミドメチル基、トリフルオロエチル基、(2-メトキシエトキシ)メチル基、アセトキシメチル基、2-カルボキシ-1-シクロヘキシル基、2-オキソプロピル基、4-オキソ-1-アダマンチル基、5-ヒドロキシ-1-アダマンチル基、5-tert-ブチルカルボニルオキシ-1-アダマンチル基、4-オキサトリシクロ[4.2.1.03,7]ノナン-5-オン-2-イル基、3-オキソシクロヘキシル基等が挙げられる。
【0054】
式(2B)中、A1は、ヘテロ原子を含んでいてもよい炭素数1~30のヒドロカルビレン基である。前記ヒドロカルビレン基は、飽和でも不飽和でもよく、直鎖状、分岐状、環状のいずれでもよい。その具体例としては、メタンジイル基、エタン-1,2-ジイル基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基、ノナン-1,9-ジイル基、デカン-1,10-ジイル基、ウンデカン-1,11-ジイル基、ドデカン-1,12-ジイル基、トリデカン-1,13-ジイル基、テトラデカン-1,14-ジイル基、ペンタデカン-1,15-ジイル基、ヘキサデカン-1,16-ジイル基、ヘプタデカン-1,17-ジイル基等のアルカンジイル基;シクロペンタンジイル基、シクロヘキサンジイル基、ノルボルナンジイル基、アダマンタンジイル基等の環式飽和ヒドロカルビレン基;フェニレン基、メチルフェニレン基、エチルフェニレン基、n-プロピルフェニレン基、イソプロピルフェニレン基、n-ブチルフェニレン基、イソブチルフェニレン基、sec-ブチルフェニレン基、tert-ブチルフェニレン基、ナフチレン基、メチルナフチレン基、エチルナフチレン基、n-プロピルナフチレン基、イソプロピルナフチレン基、n-ブチルナフチレン基、イソブチルナフチレン基、sec-ブチルナフチレン基、tert-ブチルナフチレン基等のアリーレン基;これらを組み合わせて得られる基等が挙げられる。また、前記ヒドロカルビレン基の水素原子の一部又は全部が、酸素原子、硫黄原子、窒素原子、ハロゲン原子等のヘテロ原子を含む基で置換されていてもよく、前記ヒドロカルビレン基を構成する-CH2-の一部が、酸素原子、硫黄原子、窒素原子等のヘテロ原子を含む基で置換されていてもよく、その結果、ヒドロキシ基、シアノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、カルボニル基、エーテル結合、エステル結合、スルホン酸エステル結合、カーボネート結合、ラクトン環、スルトン環、カルボン酸無水物、ハロアルキル基等を形成してもよい。原材料入手容易性の観点から、A1として好ましくは非置換のアルカンジイル基及び非置換の環式飽和ヒドロカルビレン基である。
【0055】
式(2C)中、RAは、それぞれ独立に、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
【0056】
式(2C)中、X1は、単結合、フェニレン基、ナフチレン基又は(主鎖)-C(=O)-O-X11-である。X11は、ヒドロキシ基、エーテル結合、エステル結合若しくはラクトン環を含んでいてもよい炭素数1~10の脂肪族ヒドロカルビレン基、又はフェニレン基若しくはナフチレン基である。
【0057】
式(2C)中、X2は、単結合又は-X21-C(=O)-O-である。X21は、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビレン基である。
【0058】
式(2C)中、X21で表されるヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビレン基としては、以下に示すものが挙げられるが、これらに限定されない。
【化31】
(式中、破線は、結合手である。)
【0059】
式(2D)中、X3は、単結合、メチレン基、エチレン基、フェニレン基、フッ素化フェニレン基、トリフルオロメチル基で置換されたフェニレン基、-O-X31-、-C(=O)-O-X31-又は-C(=O)-NH-X31-である。X31は、炭素数1~6の脂肪族ヒドロカルビレン基、フェニレン基、フッ素化フェニレン基又はトリフルオロメチル基で置換されたフェニレン基であり、カルボニル基、エステル結合、エーテル結合又はヒドロキシ基を含んでいてもよい。
【0060】
式(2A)で表されるアニオンとしては、下記式(2A-1)で表されるものが好ましい。
【化32】
(式中、Q3、Q4、R5及びL1は、前記と同じ。)
【0061】
式(2A-1)で表されるアニオンのうち、下記式(2A-2)で表されるものが更に好ましい。
【化33】
(式中、Q3、R5及びL1は、前記と同じ。)
【0062】
式(2A)で表されるアニオンとしては、以下に示すものが挙げられるが、これらに限定されない。なお、下記式中、Q3は、前記と同じであり、Acはアセチル基である。
【化34】
【0063】
【化35】
【0064】
【化36】
【0065】
【化37】
【0066】
【化38】
【0067】
【化39】
【0068】
【化40】
【0069】
【化41】
【0070】
式(2B)で表されるアニオンとしては、下記式(2B-1)で表されるものがより好ましい。
【化42】
(式中、Q3、Q4、A1、L2及びL3は、前記と同じ。)
【0071】
式(2B-1)で表されるアニオンのうち、下記式(2B-2)で表されるものが更に好ましい。
【化43】
(式中、Q3、A1、L2及びL3は、前記と同じ。)
【0072】
式(2B)で表されるアニオンとしては、以下に示すものが挙げられるが、これらに限定されない。なお、下記式中、Q3は、前記と同じである。
【化44】
【0073】
【化45】
【0074】
【化46】
【0075】
式(2C)で表されるアニオンとしては、下記式(2C-1)で表されるものが好ましい。
【化47】
(式中、Q3、Q4、L4、RA、X1、X2及びkは、前記と同じ。)
【0076】
式(2C-1)で表されるアニオンのうち、下記式(2C-2)で表されるものがより好ましい。
【化48】
(式中、Q3、L4、RA、X1及びX2は、前記と同じ。)
【0077】
式(2C)で表されるアニオンとしては、以下に示すものが挙げられるが、これらに限定されない。なお、下記式中、RAは、前記と同じである。
【化49】
【0078】
【化50】
【0079】
【化51】
【0080】
【化52】
【0081】
式(2D)で表されるアニオンとしては、以下に示すものが挙げられるが、これらに限定されない。なお、下記式中、RAは、前記と同じである。
【化53】
【0082】
本発明のスルホニウム塩の具体例としては、前述したアニオンとカチオンとの任意の組み合わせが挙げられる。
【0083】
本発明のスルホニウム塩の構造的な特徴としては、スルホニウムカチオンに溶剤溶解性が非常に高いフッ素化アルコキシ基が含まれる点が挙げられる。特にフッ素化アルコキシ基がトリフルオロメトキシ基である場合、前記スルホニウム塩は、溶剤溶解性が高く、溶剤溶解性の低いアニオンと塩を形成した場合においても良好な溶剤溶解性を確保することができる。本発明のスルホニウム塩は、溶剤溶解性に優れるため、スルホニウム塩が溶剤中で凝集することなく均一に溶解し、光酸発生剤として使用した場合はレジスト膜中に均一に分散する。露光により均一に分散した光酸発生剤から酸が発生することで、感度が良好であり、LWRやCDUを改善することができる。
【0084】
本発明のスルホニウム塩は、公知の方法で合成することができる。例えば、まず、対応するスルホキシドに対し、ハロケイ素試薬存在下で、Grignard試薬と反応させることで、前記スルホニウムカチオンを含むスルホニウム塩を合成する。次に、合成したスルホニウム塩と対応するアニオンとを塩交換反応させることで、目的とするスルホニウム塩へ変換することができる。対応するアニオンとの塩交換は、公知の方法で容易に行うことができ、例えば特開2007-145797号公報を参考にすることができる。
【0085】
なお、前記製造方法はあくまでも一例であり、本発明のスルホニウム塩の製造方法は、これに限定されない。
【0086】
[光酸発生剤]
前記スルホニウム塩は、光酸発生剤として好適に使用することができる。前記スルホニウム塩は、それ自身を光酸発生剤として使用することができるが、X-が式(2C)又は(2D)で表されるアニオンである場合は、このようなスルホニウム塩に由来する繰り返し単位を含むベースポリマー(ポリマーバウンド型光酸発生剤)として使用することでできる。
【0087】
[化学増幅レジスト組成物]
本発明の化学増幅レジスト組成物は、(A)式(1)で表されるスルホニウム塩からなる光酸発生剤、
(B)ベースポリマー、及び
(C)有機溶剤を含むものである。
【0088】
または、本発明の化学増幅レジスト組成物は、(B')式(1)で表され、X-が式(2C)又は(2D)で表されるアニオンであるスルホニウム塩に由来する繰り返し単位を含むベースポリマー及び有機溶剤を含むものであってもよい。このとき、(A)成分の式(1)で表されるスルホニウム塩からなる光酸発生剤は、含んでもよいが、含まなくてもよい。
【0089】
本発明の化学増幅レジスト組成物は、必要により、更に、
(D)その他の光酸発生剤、
(E)クエンチャー
を含んでもよく、更に必要により、
(F)水に不溶又は難溶でアルカリ現像液に可溶な界面活性剤、及び/又は水及びアルカリ現像液に不溶又は難溶な界面活性剤
を含んでもよく、なお更に必要により、
(G)その他の成分
を含んでもよい。
【0090】
(A)成分の式(1)で表されるスルホニウム塩からなる光酸発生剤の含有量は、後述するベースポリマー80質量部に対し、0.1~20質量部が好ましく、0.5~15質量部がより好ましい。(A)成分の含有量が前記範囲であれば、感度、解像性が良好であり、レジスト膜の現像後又は剥離時において異物の問題が生じるおそれがないため好ましい。(A)成分の光酸発生剤は、1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。
【0091】
[(B)ベースポリマー]
(B)成分のベースポリマーは、下記式(a1)で表される繰り返し単位(以下、繰り返し単位a1ともいう。)又は下記式(a2)で表される繰り返し単位(以下、繰り返し単位a2ともいう。)を含むものである。
【化54】
【0092】
式(a1)及び(a2)中、RAは、それぞれ独立に、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Y1は、単結合、フェニレン基、ナフチレン基又は(主鎖)-C(=O)-O-Y11-であり、Y11は、ヒドロキシ基、エーテル結合、エステル結合若しくはラクトン環を含んでいてもよい炭素数1~10のアルカンジイル基、又はフェニレン基若しくはナフチレン基である。Y2は、単結合又は(主鎖)-C(=O)-O-である。AL1及びAL2は、それぞれ独立に、酸不安定基である。
【0093】
式(a2)中、R11は、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビル基である。前記ヒドロカルビル基は、飽和でも不飽和でもよく、直鎖状、分岐状又は環状のいずれでもよい。その具体例としては、R3の説明において例示したものと同様のものが挙げられる。aは、0~4の整数であり、好ましくは0又は1である。
【0094】
式(a1)中のY1を変えた構造としては、以下に示すものが挙げられるが、これらに限定されない。なお、下記式中、RA及びAL1は、前記と同じである。
【化55】
【0095】
【化56】
【0096】
繰り返し単位a1を含むポリマーは、酸の作用で分解してカルボキシ基を生じ、アルカリ可溶性となる。
【0097】
AL1及びAL2で表される酸不安定基としては、特に限定されないが、例えば、下記式(L1)~(L4)から選ばれる基、炭素数4~20、好ましくは4~15の第3級ヒドロカルビル基、各アルキル基がそれぞれ炭素数1~6のアルキル基であるトリアルキルシリル基、カルボニル基、エーテル結合又はエステル結合を含む炭素数4~20の飽和ヒドロカルビル基等が好ましい。
【化57】
(式中、破線は、結合手である。)
【0098】
式(L1)中、RL01及びRL02は、水素原子又は炭素数1~18の飽和ヒドロカルビル基である。前記飽和ヒドロカルビル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル基等のアルキル基;シクロペンチル基、シクロヘキシル基、ノルボルニル基、トリシクロデカニル基、テトラシクロドデカニル基、アダマンチル基等の環式飽和ヒドロカルビル基が挙げられる。飽和ヒドロカルビル基としては、炭素数1~10のものが好ましい。
【0099】
L03は、炭素数1~18、好ましくは炭素数1~10のヒドロカルビル基であり、ヘテロ原子を含む基を含んでいてもよい。前記ヒドロカルビル基は、飽和でも不飽和でもよく、直鎖状、分岐状、環状のいずれでもよいが、飽和ヒドロカルビル基が好ましい。また、前記飽和ヒドロカルビル基の水素原子の一部又は全部が、ヒドロキシ基、飽和ヒドロカルビルオキシ基、オキソ基、アミノ基、飽和ヒドロカルビルアミノ基等で置換されていてもよく、前記飽和ヒドロカルビル基を構成する-CH2-の一部が酸素原子等のヘテロ原子を含む基で置換されていてもよい。前記飽和ヒドロカルビル基としては、RL01及びRL02で表される飽和ヒドロカルビル基として前述したものと同様のものが挙げられる。また、置換された飽和ヒドロカルビル基としては、以下に示す基等が挙げられる。
【化58】
(式中、破線は、結合手である。)
【0100】
L01、RL02及びRL03のいずれか2つは、互いに結合してこれらが結合する炭素原子又は炭素原子と酸素原子と共に環を形成してもよい。環を形成する場合には、環の形成に関与するRL01、RL02及びRL03は、それぞれ独立に、炭素数1~18、好ましくは炭素数1~10のアルカンジイル基であることが好ましい。
【0101】
式(L2)中、RL04は、炭素数4~20、好ましくは炭素数4~15の第3級ヒドロカルビル基、各アルキル基がそれぞれ炭素数1~6のアルキル基であるトリアルキルシリル基、カルボニル基、エーテル結合又はエステル結合を含む炭素数4~20の飽和ヒドロカルビル基、又は式(L1)で表される基である。xは、0~6の整数である。
【0102】
L04で表される第3級ヒドロカルビル基は、分岐状でも環状でもよく、その具体例としては、tert-ブチル基、tert-ペンチル基、1,1-ジエチルプロピル基、2-シクロペンチルプロパン-2-イル基、2-シクロヘキシルプロパン-2-イル基、2-(ビシクロ[2.2.1]ヘプタン-2-イル)プロパン-2-イル基、2-(アダマンタン-1-イル)プロパン-2-イル基、1-エチルシクロペンチル基、1-ブチルシクロペンチル基、1-エチルシクロヘキシル基、1-ブチルシクロヘキシル基、1-エチル-2-シクロペンテニル基、1-エチル-2-シクロヘキセニル基、2-メチル-2-アダマンチル基、2-エチル-2-アダマンチル基等が挙げられる。前記トリアルキルシリル基としては、トリメチルシリル基、トリエチルシリル基、ジメチル-tert-ブチルシリル基等が挙げられる。前記カルボニル基、エーテル結合又はエステル結合を含む飽和ヒドロカルビル基としては、3-オキソシクロヘキシル基、4-メチル-2-オキソオキサン-4-イル基、5-メチル-2-オキソオキソラン-5-イル基等が挙げられる。
【0103】
式(L3)中、RL05は、置換されていてもよい炭素数1~8の飽和ヒドロカルビル基又は置換されていてもよい炭素数6~20のアリール基である。前記置換されていてもよい飽和ヒドロカルビル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、tert-ペンチル基、n-ペンチル基、n-ヘキシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等の環式飽和ヒドロカルビル基、これらの基の水素原子の一部又は全部が、ヒドロキシ基、炭素数1~6の飽和ヒドロカルビルオキシ基、カルボキシ基、炭素数1~6の飽和ヒドロカルビルカルボニル基、オキソ基、アミノ基、炭素数1~6の飽和ヒドロカルビルアミノ基、シアノ基、メルカプト基、炭素数1~6の飽和ヒドロカルビルチオ基、スルホ基等で置換されたもの等が挙げられる。前記置換されていてもよいアリール基としては、フェニル基、メチルフェニル基、ナフチル基、アンスリル基、フェナンスリル基、ピレニル基、これらの基の水素原子の一部又は全部が、ヒドロキシ基、炭素数1~10の飽和ヒドロカルビルオキシ基、カルボキシ基、炭素数1~10の飽和ヒドロカルビルカルボニル基、オキソ基、アミノ基、炭素数1~10の飽和ヒドロカルビルアミノ基、シアノ基、メルカプト基、炭素数1~10の飽和ヒドロカルビルチオ基、スルホ基等で置換されたもの等が挙げられる。
【0104】
式(L3)中、yは0又は1であり、zは0~3の整数であり、2y+z=2又は3である。
【0105】
式(L4)中、RL06は、置換されていてもよい炭素数1~8の飽和ヒドロカルビル基又は置換されていてもよい炭素数6~20のアリール基である。前記置換されていてもよい飽和ヒドロカルビル基及び置換されていてもよいアリール基の具体例としては、それぞれRL05で表されるものとして例示したものと同様のものが挙げられる。
【0106】
L07~RL16は、それぞれ独立に、水素原子、又は置換されていてもよい炭素数1~15のヒドロカルビル基である。前記ヒドロカルビル基は、飽和でも不飽和でもよく、直鎖状、分岐状、環状のいずれでもよいが、飽和ヒドロカルビル基が好ましい。前記ヒドロカルビル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、tert-ペンチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-ノニル基、n-デシル基等のアルキル基;シクロペンチル基、シクロヘキシル基、シクロペンチルメチル基、シクロペンチルエチル基、シクロペンチルブチル基、シクロヘキシルメチル基、シクロヘキシルエチル基、シクロヘキシルブチル基等の環式飽和ヒドロカルビル基;これらの基の水素原子の一部又は全部が、ヒドロキシ基、炭素数1~10の飽和ヒドロカルビルオキシ基、カルボキシ基、炭素数1~10の飽和ヒドロカルビルオキシカルボニル基、オキソ基、アミノ基、炭素数1~10の飽和ヒドロカルビルアミノ基、シアノ基、メルカプト基、炭素数1~10の飽和ヒドロカルビルチオ基、スルホ基等で置換されたもの等が挙げられる。RL07~RL16は、これらから選ばれる2個が互いに結合してこれらが結合する炭素原子と共に環を形成していてもよく(例えば、RL07とRL08、RL07とRL09、RL07とRL10、RL08とRL10、RL09とRL10、RL11とRL12、RL13とRL14等)、その場合には、環の形成に関与する基は炭素数1~15のヒドロカルビレン基である。前記ヒドロカルビレン基としては、前記ヒドロカルビル基として例示したものから水素原子を1個除いたもの等が挙げられる。また、RL07~RL16は、隣接する炭素原子に結合するもの同士で何も介さずに結合し、二重結合を形成してもよい(例えば、RL07とRL09、RL09とRL15、RL13とRL15、RL14とRL15等)。
【0107】
式(L1)で表される酸不安定基のうち直鎖状又は分岐状のものとしては、以下に示す基が挙げられるが、これらに限定されない。
【化59】
(式中、破線は、結合手である。)
【0108】
式(L1)で表される酸不安定基のうち環状のものとしては、テトラヒドロフラン-2-イル基、2-メチルテトラヒドロフラン-2-イル基、テトラヒドロピラン-2-イル基、2-メチルテトラヒドロピラン-2-イル基等が挙げられる。
【0109】
式(L2)で表される酸不安定基としては、tert-ブトキシカルボニル基、tert-ブトキシカルボニルメチル基、tert-ペンチルオキシカルボニル基、tert-ペンチルオキシカルボニルメチル基、1,1-ジエチルプロピルオキシカルボニル基、1,1-ジエチルプロピルオキシカルボニルメチル基、1-エチルシクロペンチルオキシカルボニル基、1-エチルシクロペンチルオキシカルボニルメチル基、1-エチル-2-シクロペンテニルオキシカルボニル基、1-エチル-2-シクロペンテニルオキシカルボニルメチル基、1-エトキシエトキシカルボニルメチル基、2-テトラヒドロピラニルオキシカルボニルメチル基、2-テトラヒドロフラニルオキシカルボニルメチル基等が挙げられる。
【0110】
式(L3)で表される酸不安定基としては、1-メチルシクロペンチル基、1-エチルシクロペンチル基、1-n-プロピルシクロペンチル基、1-イソプロピルシクロペンチル基、1-n-ブチルシクロペンチル基、1-sec-ブチルシクロペンチル基、1-シクロヘキシルシクロペンチル基、1-(4-メトキシ-n-ブチル)シクロペンチル基、1-メチルシクロヘキシル基、1-エチルシクロヘキシル基、3-メチル-1-シクロペンテン-3-イル基、3-エチル-1-シクロペンテン-3-イル基、3-メチル-1-シクロヘキセン-3-イル基、3-エチル-1-シクロヘキセン-3-イル基等が挙げられる。
【0111】
式(L4)で表される酸不安定基としては、下記式(L4-1)~(L4-4)で表される基が特に好ましい。
【化60】
【0112】
式(L4-1)~(L4-4)中、破線は、結合位置及び結合方向である。RL41は、それぞれ独立に、炭素数1~10のヒドロカルビル基である。前記ヒドロカルビル基は、飽和でも不飽和でもよく、直鎖状、分岐状、環状のいずれでもよいが、飽和ヒドロカルビル基が好ましい。前記ヒドロカルビル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、tert-ペンチル基、n-ペンチル基、n-ヘキシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等の環式飽和ヒドロカルビル基が挙げられる。
【0113】
式(L4-1)~(L4-4)で表される基には、立体異性体(エナンチオマー又はジアステレオマー)が存在し得るが、式(L4-1)~(L4-4)をもってこれらの立体異性体の全てを代表して表す。前記酸不安定基が式(L4)で表される基である場合は、複数の立体異性体が含まれていてもよい。
【0114】
例えば、式(L4-3)は、下記式(L4-3-1)及び(L4-3-2)で表される基から選ばれる1種又は2種の混合物を代表して表すものとする。
【化61】
(式中、RL41は、前記と同じ。)
【0115】
また、式(L4-4)は、下記式(L4-4-1)~(L4-4-4)で表される基から選ばれる1種又は2種以上の混合物を代表して表すものとする。
【化62】
(式中、RL41は、前記と同じ。)
【0116】
式(L4-1)~(L4-4)、(L4-3-1)、(L4-3-2)、及び式(L4-4-1)~(L4-4-4)は、それらのエナンチオマー及びエナンチオマーの混合物をも代表して表すものとする。
【0117】
なお、式(L4-1)~(L4-4)、(L4-3-1)、(L4-3-2)、及び式(L4-4-1)~(L4-4-4)の結合方向が、それぞれビシクロ[2.2.1]ヘプタン環に対してexo側であることによって、酸触媒脱離反応における高反応性が実現される(特開2000-336121号公報参照)。ビシクロ[2.2.1]ヘプタン骨格を有する第3級exo-飽和ヒドロカルビル基を置換基とする単量体の製造において、下記式(L4-1-endo)~(L4-4-endo)で表されるendo-アルキル基で置換された単量体を含む場合があるが、良好な反応性の実現のためにはexo比率が50モル%以上であることが好ましく、exo比率が80モル%以上であることが更に好ましい。
【化63】
(式中、RL41は、前記と同じ。)
【0118】
式(L4)で表される酸不安定基としては、以下に示す基が挙げられるが、これらに限定されない。
【化64】
【0119】
また、AL1及びAL2で表される酸不安定基のうち、炭素数4~20の第3級ヒドロカルビル基、各アルキル基がそれぞれ炭素数1~6のアルキル基であるトリアルキルシリル基、及びカルボニル基、エーテル結合又はエステル結合を含む炭素数4~20の飽和ヒドロカルビル基としては、それぞれRL04の説明において例示したものと同様のものが挙げられる。
【0120】
繰り返し単位a1としては、以下に示すものが挙げられるが、これらに限定されない。なお、下記式中、RAは、前記と同じである。
【化65】
【0121】
【化66】
【0122】
【化67】
【0123】
【化68】
【0124】
【化69】
【0125】
なお、これらの具体例はY1が単結合の場合であるが、Y1が単結合以外の場合においても同様の酸不安定基と組み合わせることができる。Y1が単結合以外のものである場合の具体例は、前述したとおりである。
【0126】
繰り返し単位a2を含むポリマーは、繰り返し単位a1と同様に、酸の作用で分解してヒドロキシ基を生じ、アルカリ可溶性となる。繰り返し単位a2としては、以下に示すものが挙げられるが、これらに限定されない。なお、下記式中、RAは、前記と同じである。
【化70】
【0127】
【化71】
【0128】
前記ベースポリマーが、式(1)で表され、X-が式(2C)又は(2D)で表されるアニオンであるスルホニウム塩に由来する繰り返し単位を含むものである場合、繰り返し単位a1又はa2に加えて、下記式(a3)で表される繰り返し単位(以下、繰り返し単位a3ともいう。)又は下記式(a4)で表される繰り返し単位(以下、繰り返し単位a4ともいう。)を含む(以下、ポリマーバウンド型光酸発生剤Aともいう。)。
【化72】
(式中、RA、R1、R2、RHF、X1~X3、L4、Q1~Q4、k、p及びqは、前記と同じ。)
【0129】
前記ベースポリマーは、更に、下記式(b1)で表される繰り返し単位(以下、繰り返し単位b1ともいう。)又は下記式(b2)で表される繰り返し単位(以下、繰り返し単位b2ともいう。)を含むことが好ましい。
【化73】
【0130】
式(b1)及び(b2)中、RAは、それぞれ独立に、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Apは、水素原子、又はヒドロキシ基、シアノ基、カルボニル基、カルボキシ基、エーテル結合、エステル結合、スルホン酸エステル結合、カーボネート結合、ラクトン環、スルトン環及びカルボン酸無水物から選ばれる少なくとも1つ以上の構造を含む極性基である。Y3は、単結合又は(主鎖)-C(=O)-O-である。R12は、ハロゲン原子、シアノ基、又はヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビル基、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビルオキシ基又はヘテロ原子を含んでいてもよい炭素数2~20のヒドロカルビルカルボニル基である。bは、1~4の整数である。
【0131】
繰り返し単位b1としては、以下に示すものが挙げられるが、これらに限定されない。なお、下記式中、RAは、前記と同じである。
【化74】
【0132】
【化75】
【0133】
【化76】
【0134】
【化77】
【0135】
【化78】
【0136】
【化79】
【0137】
【化80】
【0138】
【化81】
【0139】
【化82】
【0140】
繰り返し単位b2としては、以下に示すものが挙げられるが、これらに限定されない。なお、下記式中、RAは、前記と同じである。
【化83】
【0141】
【化84】
【0142】
【化85】
【0143】
繰り返し単位b1又はb2としては、ArFリソグラフィーにおいては、特にラクトン環を極性基として有するものが好ましく、KrFリソグラフィー、EBリソグラフィー及びEUVリソグラフィーにおいては、フェノール部位を有するものが好ましい。
【0144】
前記ベースポリマーは、更に、下記式(c1)~(c3)のいずれかで表される繰り返し単位(以下それぞれ繰り返し単位c1~c3ともいう。)を含んでもよい。
【化86】
(式中、RAは、前記と同じ。)
【0145】
式(c1)~(c3)中、Z1は、単結合又はフェニレン基である。Z2は、-C(=O)-O-Z21-、-C(=O)-NH-Z21-又は-O-Z21-である。Z21は、炭素数1~6の脂肪族ヒドロカルビレン基、フェニレン基又はこれらを組み合わせて得られる2価の基であり、カルボニル基、エステル結合、エーテル結合又はヒドロキシ基を含んでいてもよい。Z3は、単結合、フェニレン基、ナフチレン基又は(主鎖)-C(=O)-O-Z31-である。Z31は、ヒドロキシ基、エーテル結合、エステル結合若しくはラクトン環を含んでいてもよい炭素数1~10の脂肪族ヒドロカルビレン基、又はフェニレン基若しくはナフチレン基である。Z4は、単結合又は-Z41-C(=O)-O-である。Z41は、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビレン基である。Z5は、単結合、メチレン基、エチレン基、フェニレン基、フッ素化フェニレン基、トリフルオロメチル基で置換されたフェニレン基、-C(=O)-O-Z51-、-C(=O)-NH-Z51-又は-O-Z51-である。Z51は、炭素数1~6の脂肪族ヒドロカルビレン基、フェニレン基、フッ素化フェニレン基又はトリフルオロメチル基で置換されたフェニレン基であり、カルボニル基、エステル結合、エーテル結合又はヒドロキシ基を含んでいてもよい。
【0146】
式(c1)中、R21及びR22は、それぞれ独立に、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビル基である。R21とR22とは、互いに結合してこれらが結合する硫黄原子と共に環を形成してもよい。
【0147】
21及びR22で表されるヒドロカルビル基は、飽和でも不飽和でもよく、直鎖状、分岐状、環状のいずれでもよい。その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基等のアルキル基;シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロプロピルメチル基、4-メチルシクロヘキシル基、シクロヘキシルメチル基、ノルボルニル基、アダマンチル基等の環式飽和ヒドロカルビル基;ビニル基、アリル基、プロペニル基、ブテニル基、ヘキセニル基等のアルケニル基;シクロヘキセニル基等の環式不飽和ヒドロカルビル基;フェニル基、ナフチル基等のアリール基;ベンジル基、1-フェニルエチル基、2-フェニルエチル基等のアラルキル基;これらを組み合わせて得られる基等が挙げられる。これらのうち、アリール基が好ましい。また、前記ヒドロカルビル基の水素原子の一部又は全部が、酸素原子、硫黄原子、窒素原子、ハロゲン原子等のヘテロ原子を含む基で置換されていてもよく、前記ヒドロカルビル基を構成する-CH2-の一部が、酸素原子、硫黄原子、窒素原子等のヘテロ原子を含む基で置換されていてもよく、その結果、ヒドロキシ基、シアノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、カルボニル基、エーテル結合、エステル結合、スルホン酸エステル結合、カーボネート結合、ラクトン環、スルトン環、カルボン酸無水物、ハロアルキル基等を含んでいてもよい。
【0148】
式(c1)で表される繰り返し単位のカチオンとしては、以下に示すものが挙げられるが、これらに限定されない。なお、下記式中、RAは、前記と同じである。
【化87】
【0149】
【化88】
【0150】
式(c1)中、M-は、非求核性対向イオンである。前記非求核性対向イオンとしては、塩化物イオン、臭化物イオン等のハロゲン化物イオン;トリフレートイオン、1,1,1-トリフルオロエタンスルホネートイオン、ノナフルオロブタンスルホネートイオン等のフルオロアルキルスルホネートイオン;トシレートイオン、ベンゼンスルホネートイオン、4-フルオロベンゼンスルホネートイオン、1,2,3,4,5-ペンタフルオロベンゼンスルホネートイオン等のアリールスルホネートイオン;メシレートイオン、ブタンスルホネートイオン等のアルキルスルホネートイオン;ビス(トリフルオロメチルスルホニル)イミドイオン、ビス(パーフルオロエチルスルホニル)イミドイオン、ビス(パーフルオロブチルスルホニル)イミドイオン等のイミドイオン;トリス(トリフルオロメチルスルホニル)メチドイオン、トリス(パーフルオロエチルスルホニル)メチドイオン等のメチドイオン等が挙げられる。
【0151】
前記非求核性対向イオンの他の例として、下記式(c1-1)で表されるα位がフッ素原子で置換されたスルホン酸アニオン及び下記式(c1-2)で表されるα位がフッ素原子で置換され、β位がトリフルオロメチル基で置換されたスルホン酸アニオンが挙げられる。
【化89】
【0152】
式(c1-1)中、R23は、水素原子又はヒドロカルビル基であり、該ヒドロカルビル基は、エーテル結合、エステル結合、カルボニル基、ラクトン環又はフッ素原子を含んでいてもよい。前記ヒドロカルビル基は、飽和でも不飽和でもよく、直鎖状、分岐状、環状のいずれでもよい。その具体例としては、後述する式(3A')のR111の説明において例示するものと同様のものが挙げられる。
【0153】
式(c1-2)中、R24は、水素原子、炭素数1~30のヒドロカルビル基又は炭素数6~20のヒドロカルビルカルボニル基であり、該ヒドロカルビル基及びヒドロカルビルカルボニル基は、エーテル結合、エステル結合、カルボニル基又はラクトン環を含んでいてもよい。前記ヒドロカルビル基及びヒドロカルビルカルボニル基のヒドロカルビル部は、飽和でも不飽和でもよく、直鎖状、分岐状、環状のいずれでもよい。その具体例としては、後述する式(3A')のR111の説明において例示するものと同様のものが挙げられる。
【0154】
式(c1-1)及び(c1-2)で表されるスルホン酸アニオンとしては、式(2A)で表されるアニオンとして例示したものと同様のものが挙げられる。
【0155】
式(c2)中、Z41で表されるヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビレン基としては、以下に示すものが挙げられるが、これらに限定されない。
【化90】
(式中、破線は、結合手である。)
【0156】
式(c2)中、Rf1及びRf2は、それぞれ独立に、フッ素原子又は炭素数1~6のフッ素化アルキル基であるが、発生酸の酸強度を高めるためにいずれもフッ素原子であることが好ましい。Rf3及びRf4は、それぞれ独立に、水素原子、フッ素原子又は炭素数1~6のフッ素化アルキル基であるが、溶剤溶解性向上のため、少なくともいずれか1つはトリフルオロメチル基であることが好ましい。cは、0~3の整数であるが、1であることが特に好ましい。
【0157】
式(c2)で表される繰り返し単位のアニオンを与えるモノマーとしては、式(2C)で表されるアニオンとして例示したものと同様のものが挙げられる。
【0158】
式(c3)で表される繰り返し単位のアニオンを与えるモノマーとしては、式(2D)で表されるアニオンとして例示したものと同様のものが挙げられる。
【0159】
式(c2)及び(c3)中、A+は、オニウムカチオンである。前記オニウムカチオンとしては、スルホニウムカチオン、ヨードニウムカチオン、アンモニウムカチオン等が挙げられるが、スルホニウムカチオン又はヨードニウムカチオンであることが好ましく、下記式(c4)で表されるスルホニウムカチオン又は下記式(c5)で表されるヨードニウムカチオンであることがより好ましい。
【化91】
【0160】
式(c4)及び(c5)中、R31~R35は、それぞれ独立に、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビル基である。前記ヒドロカルビル基は、飽和でも不飽和でもよく、直鎖状、分岐状、環状のいずれでもよい。その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基等のアルキル基;シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロプロピルメチル基、4-メチルシクロヘキシル基、シクロヘキシルメチル基、ノルボルニル基、アダマンチル基等の環式飽和ヒドロカルビル基;ビニル基、アリル基、プロペニル基、ブテニル基、ヘキセニル基等のアルケニル基;シクロヘキセニル基等の環式不飽和ヒドロカルビル基;フェニル基、ナフチル基等のアリール基;ベンジル基、1-フェニルエチル基、2-フェニルエチル基等のアラルキル基等が挙げられる。これらのうち、好ましくはアリール基である。また、前記ヒドロカルビル基の水素原子の一部又は全部が、酸素原子、硫黄原子、窒素原子、ハロゲン原子等のヘテロ原子を含む基で置換されていてもよく、これらの基の炭素原子間に酸素原子、硫黄原子、窒素原子等のヘテロ原子を含む基が介在していてもよく、その結果、ヒドロキシ基、シアノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、カルボニル基、エーテル結合、エステル結合、スルホン酸エステル結合、カーボネート結合、ラクトン環、スルトン環、カルボン酸無水物、ハロアルキル基等を含んでいてもよい。
【0161】
31及びR32は、互いに結合してこれらが結合する硫黄原子と共に環を形成してもよい。このとき、式(c4)で表されるスルホニウムカチオンとしては、下記式で表されるもの等が挙げられる。
【化92】
(式中、破線は、R33との結合手である。)
【0162】
式(c4)で表されるスルホニウムカチオンとしては、以下に示すものが挙げられるが、これらに限定されない。
【化93】
【0163】
【化94】
【0164】
【化95】
【0165】
【化96】
【0166】
【化97】
【0167】
【化98】
【0168】
【化99】
【0169】
【化100】
【0170】
【化101】
【0171】
【化102】
【0172】
【化103】
【0173】
【化104】
【0174】
【化105】
【0175】
【化106】
【0176】
【化107】
【0177】
【化108】
【0178】
【化109】
【0179】
【化110】
【0180】
【化111】
【0181】
【化112】
【0182】
【化113】
【0183】
【化114】
【0184】
式(c5)で表されるヨードニウムカチオンとしては、以下に示すものが挙げられるが、これらに限定されない。
【化115】
【0185】
繰り返し単位c1~c3としては、前述したアニオンとカチオンとの任意の組み合わせが挙げられる。
【0186】
前記ベースポリマーは、更に、酸不安定基によりヒドロキシ基が保護された構造を有する繰り返し単位(以下、繰り返し単位dともいう。)を含んでもよい。繰り返し単位dとしては、ヒドロキシ基が保護された構造を1つ又は2つ以上有し、酸の作用により保護基が分解してヒドロキシ基が生成するものであれば特に限定されないが、下記式(d1)で表されるものが好ましい。
【化116】
【0187】
式(d1)中、RAは、前記と同じ。R41は、ヘテロ原子を含んでいてもよい炭素数1~30の(d+1)価の炭化水素基である。R42は、酸不安定基である。dは、1~4の整数である。
【0188】
式(d1)中、R42で表される酸不安定基は、酸の作用により脱保護し、ヒドロキシ基を発生させるものであればよい。R42の構造は特に限定されないが、アセタール構造、ケタール構造、アルコキシカルボニル基、下記式(d2)で表されるアルコキシメチル基等が好ましく、特に下記式(d2)で表されるアルコキシメチル基が好ましい。
【化117】
(式中、破線は、結合手である。R43は、炭素数1~15のヒドロカルビル基である。)
【0189】
42で表される酸不安定基、式(d2)で表されるアルコキシメチル基及び繰り返し単位dの具体例としては、特開2020-111564号公報に記載された繰り返し単位dの説明において例示されたものと同様のものが挙げられる。
【0190】
前記ベースポリマーは、更に、前述したもの以外の他の繰り返し単位を含んでもよい。例えば、メタクリル酸メチル、クロトン酸メチル、マレイン酸ジメチル、イタコン酸ジメチル等の置換アクリル酸エステル類;マレイン酸、フマル酸、イタコン酸等の不飽和カルボン酸;ノルボルネン、ノルボルネン誘導体、テトラシクロ[6.2.1.13,6.02,7]ドデセン誘導体等の環状オレフィン類;無水イタコン酸等の不飽和酸無水物;その他の単量体に由来する繰り返し単位を含んでいてもよい。
【0191】
前記ベースポリマーの重量平均分子量(Mw)は、1,000~500,000が好ましく、3,000~100,000がより好ましい。Mwがこの範囲であれば、十分なエッチング耐性が得られ、露光前後の溶解速度差が確保できなくなることによる解像性の低下のおそれがない。なお、本発明においてMwは、テトラヒドロフラン(THF)を溶剤として用いたゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算測定値である。
【0192】
前記ベースポリマーにおいて、分子量分布(Mw/Mn)が広い場合は低分子量や高分子量のポリマーが存在するため、露光後、パターン上に異物が見られたり、パターンの形状が悪化したりするおそれがある。それゆえ、パターンルールが微細化するに従って、Mw/Mnの影響が大きくなりやすいことから、微細なパターン寸法に好適に用いられる化学増幅レジスト組成物を得るには、前記ポリマーのMw/Mnは1.0~2.0と狭分散であることが好ましい。
【0193】
前記ベースポリマーを合成するには、例えば、前述した繰り返し単位を与えるモノマーを、有機溶剤中、ラジカル重合開始剤を加えて加熱し、重合を行えばよい。
【0194】
前記ポリマーの合成方法の一例としては、不飽和結合を有するモノマーの1種又は複数種を、有機溶剤中、ラジカル開始剤を加えて加熱して重合を行う方法が挙げられる。重合反応に使用する有機溶剤としては、トルエン、ベンゼン、THF、ジエチルエーテル、ジオキサン、シクロヘキサン、シクロペンタン、メチルエチルエトン(MEK)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、γ-ブチロラクトン(GBL)等が挙げられる。前記重合開始剤としては、2,2'-アゾビスイソブチロニトリル(AIBN)、2,2'-アゾビス(2,4-ジメチルバレロニトリル)、ジメチル-2,2-アゾビス(2-メチルプロピオネート)、1,1'-アゾビス(1-アセトキシ-1-フェニルエタン)、ベンゾイルパーオキシド、ラウロイルパーオキシド等が挙げられる。これらの開始剤の添加量は、重合させるモノマーの合計に対し、0.01~25モル%であることが好ましい。反応温度は、50~150℃が好ましく、60~100℃がより好ましい。反応時間は2~24時間が好ましく、生産効率の観点から2~12時間がより好ましい。
【0195】
前記重合開始剤は、前記モノマー溶液へ添加して反応釜へ供給してもよいし、前記モノマー溶液とは別に開始剤溶液を調製し、それぞれを独立に反応釜へ供給してもよい。待機時間中に開始剤から生じたラジカルによって重合反応が進み超高分子体が生成する可能性があることから、品質管理の観点からモノマー溶液と開始剤溶液とは、それぞれ独立に調製して滴下することが好ましい。酸不安定基は、モノマーに導入されたものをそのまま用いてもよいし、重合後保護化あるいは部分保護化してもよい。また、分子量の調整のためにドデシルメルカプタンや2-メルカプトエタノールのような公知の連鎖移動剤を併用してもよい。この場合、これらの連鎖移動剤の添加量は、重合させるモノマーの合計に対し、0.01~20モル%であることが好ましい。
【0196】
ヒドロキシスチレン又はヒドロキシビニルナフタレンを共重合する場合は、ヒドロキシスチレン又はヒドロキシビニルナフタレンとその他のモノマーとを、有機溶剤中、ラジカル重合開始剤を加えて加熱重合してもよいが、アセトキシスチレン又はアセトキシビニルナフタレンを用い、重合後にアルカリ加水分解によってアセトキシ基を脱保護してポリヒドロキシスチレン又はヒドロキシポリビニルナフタレンにしてもよい。
【0197】
アルカリ加水分解時の塩基としては、アンモニア水、トリエチルアミン等が使用できる。また、反応温度は、好ましくは-20~100℃、より好ましくは0~60℃である。反応時間は、好ましくは0.2~100時間、より好ましくは0.5~20時間である。
【0198】
なお、前記モノマー溶液中の各モノマーの量は、例えば、前述した繰り返し単位の好ましい含有割合となるように適宜設定すればよい。
【0199】
前記製造方法で得られたポリマーは、重合反応によって得られた反応溶液を最終製品としてもよいし、重合液を貧溶剤へ添加し、粉体を得る再沈殿法等の精製工程を経て得た粉体を最終製品として取り扱ってもよいが、作業効率や品質安定化の観点から精製工程によって得た粉体を溶剤へ溶かしたポリマー溶液を最終製品として取り扱うことが好ましい。その際に用いる溶剤の具体例としては、特開2008-111103号公報の段落[0144]~[0145]に記載の、シクロヘキサノン、メチル-2-n-ペンチルケトン等のケトン類;3-メトキシブタノール、3-メチル-3-メトキシブタノール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール等のアルコール類;ジアセトンアルコール(DAA)等のケトアルコール類;プロピレングリコールモノメチルエーテル(PGME)、エチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類;PGMEA、プロピレングリコールモノエチルエーテルアセテート、乳酸エチル、ピルビン酸エチル、酢酸ブチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸tert-ブチル、プロピオン酸tert-ブチル、プロピレングリコールモノtert-ブチルエーテルアセテート等のエステル類;GBL等のラクトン類;ジエチレングリコール、プロピレングリコール、グリセリン、1,4-ブタンジオール、1,3-ブタンジオール等の高沸点のアルコール系溶剤;及びこれらの混合溶剤が挙げられる。
【0200】
前記ポリマー溶液中、ポリマーの濃度は、0.01~30質量%が好ましく、0.1~20質量%がより好ましい。
【0201】
前記反応溶液やポリマー溶液は、フィルター濾過を行うことが好ましい。フィルター濾過を行うことによって、欠陥の原因となり得る異物やゲルを除去することができ、品質安定化の面で有効である。
【0202】
前記フィルター濾過に用いるフィルターの材質としては、フルオロカーボン系、セルロース系、ナイロン系、ポリエステル系、炭化水素系等の材質のものが挙げられるが、化学増幅レジスト組成物の濾過工程では、いわゆるテフロン(登録商標)と呼ばれるフルオロカーボン系やポリエチレンやポリプロピレン等の炭化水素系又はナイロンで形成されているフィルターが好ましい。フィルターの孔径は、目標とする清浄度に合わせて適宜選択できるが、好ましくは100nm以下であり、より好ましくは20nm以下である。また、これらのフィルターを1種単独で使用してもよいし、複数のフィルターを組み合わせて使用してもよい。濾過方法は、溶液を1回のみ通過されるだけでもよいが、溶液を循環させ複数回濾過を行うことがより好ましい。濾過工程は、ポリマーの製造工程において任意の順番、回数で行うことができるが、重合反応後の反応溶液、ポリマー溶液又はその両方を濾過することが好ましい。
【0203】
前記ベースポリマーにおいて、各繰り返し単位の好ましい含有割合は、例えば以下に示す範囲(モル%)とすることができるが、これに限定されない。
(I)式(a1)又は(a2)で表される繰り返し単位の1種又は2種以上を、好ましくは1~60モル%、より好ましくは5~50モル%、更に好ましくは10~50モル%、
(II)式(b1)又は(b2)で表される繰り返し単位の1種又は2種以上を、好ましくは40~99モル%、より好ましくは50~95モル%、更に好ましくは50~90モル%、
(III)式(c1)~(c3)から選ばれる繰り返し単位の1種又は2種以上を、好ましくは0~30モル%、より好ましくは0~20モル%、更に好ましくは0~15モル%、及び
(IV)その他の単量体に由来する繰り返し単位の1種又は2種以上を、好ましくは0~80モル%、より好ましくは0~70モル%、更に好ましくは0~50モル%。
【0204】
前記ベースポリマーがポリマーバウンド型光酸発生剤Aである場合、各繰り返し単位の好ましい含有割合は、例えば以下に示す範囲(モル%)とすることができるが、これに限定されない。
(I)式(a1)又は(a2)で表される繰り返し単位の1種又は2種以上を、好ましくは1~60モル%、より好ましくは5~50モル%、更に好ましくは10~50モル%、
(II)式(a3)又は(a4)で表される繰り返し単位の1種又は2種以上を、好ましくは1~30モル%、より好ましくは3~20モル%、更に好ましくは5~15モル%、
(III)式(b1)又は(b2)で表される繰り返し単位の1種又は2種以上を、好ましくは10~40モル%、より好ましくは30~40モル%、更に好ましくは35~40モル%、
(IV)その他の単量体に由来する繰り返し単位の1種又は2種以上を、好ましくは0~80モル%、より好ましくは0~70モル%、更に好ましくは0~50モル%。
【0205】
(B)ベースポリマーは、1種単独で使用してもよく、組成比率、Mw及び/又はMw/Mnが異なる2種以上を組み合わせて使用してもよい。また、(B)ベースポリマーは、前記ポリマーのほかに、開環メタセシス重合体の水素添加物を含んでもよく、これについては特開2003-66612号公報に記載されたものを使用することができる。
【0206】
[(C)有機溶剤]
(C)成分の有機溶剤としては、前述した各成分及び後述する各成分を溶解可能なものであれば、特に限定されない。このような有機溶剤としては、シクロペンタノン、シクロヘキサノン、メチル-2-n-ペンチルケトン等のケトン類;3-メトキシブタノール、3-メチル-3-メトキシブタノール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール等のアルコール類;DAA等のケトアルコール類;PGME、エチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類;PGMEA、プロピレングリコールモノエチルエーテルアセテート、乳酸エチル、ピルビン酸エチル、酢酸ブチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸tert-ブチル、プロピオン酸tert-ブチル、プロピレングリコールモノtert-ブチルエーテルアセテート等のエステル類;GBL等のラクトン類、及びこれらの混合溶剤が挙げられる。
【0207】
これらの有機溶剤の中でも、(B)成分のベースポリマーの溶解性が特に優れている、1-エトキシ-2-プロパノール、PGMEA、シクロヘキサノン、GBL、DAA及びこれらの混合溶剤が好ましい。
【0208】
有機溶剤の使用量は、(B)ベースポリマー80質量部に対し、200~5,000質量部が好ましく、400~3,500質量部がより好ましい。(C)有機溶剤は、1種単独で使用してもよく、2種以上を混合して使用してもよい。
【0209】
[(D)その他の光酸発生剤]
本発明の化学増幅レジスト組成物は、(D)成分として(A)成分以外の光酸発生剤(以下、その他の光酸発生剤ともいう。)を含んでもよい。その他の光酸発生剤としては、高エネルギー線照射により酸を発生する化合物であれば、特に限定されない。好適なその他の光酸発生剤としては、下記式(3)で表されるものが挙げられる。
【化118】
【0210】
式(3)中、R101、R102及びR103は、それぞれ独立に、ヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビル基である。また、R101、R102及びR103のうちのいずれか2つが、互いに結合してこれらが結合する硫黄原子と共に環を形成してもよい。前記ヒドロカルビル基としては、式(c4)及び(c5)中のR31~R35の説明において例示したものと同様のものが挙げられる。
【0211】
式(3)中、スルホニウムカチオンとしては、式(c4)で表されるスルホニウムカチオンとして例示したものと同様のものが挙げられる。
【0212】
式(3)中、Xa-は、下記式(3A)~(3D)から選ばれるアニオンである。
【化119】
【0213】
式(3A)中、Rfaは、フッ素原子、又はヘテロ原子を含んでいてもよい炭素数1~40のヒドロカルビル基である。前記ヒドロカルビル基は、飽和でも不飽和でもよく、直鎖状、分岐状、環状のいずれでもよい。その具体例としては、後述する式(3A')のR111の説明において例示するものと同様のものが挙げられる。
【0214】
式(3A)で表されるアニオンとしては、下記式(3A')で表されるものが好ましい。
【化120】
【0215】
式(3A')中、RHFは、水素原子又はトリフルオロメチル基であり、好ましくはトリフルオロメチル基である。
【0216】
式(3A')中、R111は、ヘテロ原子を含んでいてもよい炭素数1~38のヒドロカルビル基である。前記ヒドロカルビル基としては、微細パターン形成において高解像性を得る点から、特に炭素数6~30であるものが好ましい。
【0217】
111で表される炭素数1~30のヒドロカルビル基は、飽和でも不飽和でもよく、直鎖状、分岐状、環状のいずれでもよい。その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、ペンタデシル基、ヘプタデシル基、イコシル基等の炭素数1~30のアルキル基;シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基、1-アダマンチルメチル基、ノルボルニル基、ノルボルニルメチル基、トリシクロデカニル基、テトラシクロドデカニル基、テトラシクロドデカニルメチル基、ジシクロヘキシルメチル基等の炭素数3~30の環式飽和ヒドロカルビル基;アリル基、3-シクロヘキセニル基等の炭素数2~30の不飽和脂肪族ヒドロカルビル基;フェニル基、1-ナフチル基、2-ナフチル基等の炭素数6~30のアリール基;ベンジル基、ジフェニルメチル基等の炭素数7~38のアラルキル基;これらを組み合わせて得られる基等が挙げられる。
【0218】
また、これらの基の水素原子の一部又は全部が、酸素原子、硫黄原子、窒素原子、ハロゲン原子等のヘテロ原子を含む基で置換されていてもよく、これらの基を構成する-CH2-の一部が、酸素原子、硫黄原子、窒素原子等のヘテロ原子を含む基で置換されていてもよく、その結果、ヒドロキシ基、シアノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、カルボニル基、エーテル結合、エステル結合、スルホン酸エステル結合、カーボネート結合、ラクトン環、スルトン環、カルボン酸無水物、ハロアルキル基等を含んでいてもよい。ヘテロ原子を含むヒドロカルビル基としては、テトラヒドロフリル基、メトキシメチル基、エトキシメチル基、メチルチオメチル基、アセトアミドメチル基、トリフルオロエチル基、(2-メトキシエトキシ)メチル基、アセトキシメチル基、2-カルボキシ-1-シクロヘキシル基、2-オキソプロピル基、4-オキソ-1-アダマンチル基、5-ヒドロキシ-1-アダマンチル基、5-tert-ブチルカルボニルオキシ-1-アダマンチル基、4-オキサトリシクロ[4.2.1.03,7]ノナン-5-オン-2-イル基、3-オキソシクロヘキシル基等が挙げられる。
【0219】
式(3A')で表されるアニオンを有するスルホニウム塩の合成に関しては、特開2007-145797号公報、特開2008-106045号公報、特開2009-7327号公報、特開2009-258695号公報等に詳しい。また、特開2010-215608号公報、特開2012-41320号公報、特開2012-106986号公報、特開2012-153644号公報等に記載のスルホニウム塩も好適に用いられる。
【0220】
式(3A)で表されるアニオンとしては、式(2A)で表されるアニオンとして例示したものと同様のものが挙げられる。
【0221】
式(3B)中、Rfb1及びRfb2は、それぞれ独立に、フッ素原子、又はヘテロ原子を含んでいてもよい炭素数1~40のヒドロカルビル基である。前記ヒドロカルビル基は、飽和でも不飽和でもよく、直鎖状、分岐状、環状のいずれでもよい。その具体例としては、前記R111の説明において例示したものと同様のものが挙げられる。Rfb1及びRfb2として好ましくは、フッ素原子又は炭素数1~4の直鎖状フッ素化アルキル基である。また、Rfb1及びRfb2は、互いに結合してこれらが結合する基(-CF2-SO2-N--SO2-CF2-)と共に環を形成してもよく、この場合、Rfb1とRfb2とが互いに結合して得られる基としては、特にフッ素化エチレン基又はフッ素化プロピレン基であることが好ましい。
【0222】
式(3C)中、Rfc1、Rfc2及びRfc3は、それぞれ独立に、フッ素原子、又はヘテロ原子を含んでいてもよい炭素数1~40のヒドロカルビル基である。前記ヒドロカルビル基は、飽和でも不飽和でもよく、直鎖状、分岐状、環状のいずれでもよい。その具体例としては、前記R111の説明において例示したものと同様のものが挙げられる。Rfc1、Rfc2及びRfc3として好ましくは、フッ素原子又は炭素数1~4の直鎖状フッ素化アルキル基である。また、Rfc1及びRfc2は、互いに結合してこれらが結合する基(-CF2-SO2-C--SO2-CF2-)と共に環を形成してもよく、この場合、Rfc1とRfc2とが互いに結合して得られる基としては、フッ素化エチレン基又はフッ素化プロピレン基であることが好ましい。
【0223】
式(3D)中、Rfdは、ヘテロ原子を含んでいてもよい炭素数1~40のヒドロカルビル基である。前記ヒドロカルビル基は、飽和でも不飽和でもよく、直鎖状、分岐状、環状のいずれでもよい。その具体例としては、前記R111の説明において例示したものと同様のものが挙げられる。
【0224】
式(3D)で表されるアニオンを有するスルホニウム塩の合成に関しては、特開2010-215608号公報及び特開2014-133723号公報に詳しい。
【0225】
式(3D)で表されるアニオンとしては、特開2018-197853号公報の式(1D)で表されるアニオンとして例示されたものと同様のものが挙げられる。
【0226】
なお、式(3D)で表されるアニオンを有する光酸発生剤は、スルホ基のα位にフッ素は有していないが、β位に2つのトリフルオロメチル基を有していることに起因して、ベースポリマー中の酸不安定基を切断するのに十分な酸性度を有している。そのため、光酸発生剤として使用することができる。
【0227】
また、(D)成分の光酸発生剤として、下記式(4)で表されるものも好ましい。
【化121】
【0228】
式(4)中、R201及びR202は、それぞれ独立に、ヘテロ原子を含んでいてもよい炭素数1~30のヒドロカルビル基である。R203は、ヘテロ原子を含んでいてもよい炭素数1~30のヒドロカルビレン基である。また、R201、R202及びR203のうちのいずれか2つが、互いに結合してこれらが結合する硫黄原子と共に環を形成してもよい。
【0229】
201及びR202で表されるヒドロカルビル基は、飽和でも不飽和でもよく、直鎖状、分岐状、環状のいずれでもよい。その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、tert-ペンチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、2-エチルヘキシル基、n-ノニル基、n-デシル基等の炭素数1~30のアルキル基;シクロペンチル基、シクロヘキシル基、シクロペンチルメチル基、シクロペンチルエチル基、シクロペンチルブチル基、シクロヘキシルメチル基、シクロヘキシルエチル基、シクロヘキシルブチル基、ノルボルニル基、オキサノルボルニル基、トリシクロ[5.2.1.02,6]デカニル基、アダマンチル基等の炭素数3~30の環式飽和ヒドロカルビル基;フェニル基、メチルフェニル基、エチルフェニル基、n-プロピルフェニル基、イソプロピルフェニル基、n-ブチルフェニル基、イソブチルフェニル基、sec-ブチルフェニル基、tert-ブチルフェニル基、ナフチル基、メチルナフチル基、エチルナフチル基、n-プロピルナフチル基、イソプロピルナフチル基、n-ブチルナフチル基、イソブチルナフチル基、sec-ブチルナフチル基、tert-ブチルナフチル基、アントラセニル基等の炭素数6~30のアリール基;これらを組み合わせて得られる基等が挙げられる。また、前記ヒドロカルビル基の水素原子の一部又は全部が、酸素原子、硫黄原子、窒素原子、ハロゲン原子等のヘテロ原子を含む基で置換されていてもよく、前記ヒドロカルビル基を構成する-CH2-の一部が、酸素原子、硫黄原子、窒素原子等のヘテロ原子を含む基で置換されていてもよく、その結果、ヒドロキシ基、シアノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、カルボニル基、エーテル結合、エステル結合、スルホン酸エステル結合、カーボネート結合、ラクトン環、スルトン環、カルボン酸無水物、ハロアルキル基等を含んでいてもよい。
【0230】
203で表されるヒドロカルビレン基は、飽和でも不飽和でもよく、直鎖状、分岐状、環状のいずれでもよい。その具体例としては、メタンジイル基、エタン-1,1-ジイル基、エタン-1,2-ジイル基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基、ノナン-1,9-ジイル基、デカン-1,10-ジイル基、ウンデカン-1,11-ジイル基、ドデカン-1,12-ジイル基、トリデカン-1,13-ジイル基、テトラデカン-1,14-ジイル基、ペンタデカン-1,15-ジイル基、ヘキサデカン-1,16-ジイル基、ヘプタデカン-1,17-ジイル基等の炭素数1~30のアルカンジイル基;シクロペンタンジイル基、シクロヘキサンジイル基、ノルボルナンジイル基、アダマンタンジイル基等の炭素数3~30の環式飽和ヒドロカルビレン基;フェニレン基、メチルフェニレン基、エチルフェニレン基、n-プロピルフェニレン基、イソプロピルフェニレン基、n-ブチルフェニレン基、イソブチルフェニレン基、sec-ブチルフェニレン基、tert-ブチルフェニレン基、ナフチレン基、メチルナフチレン基、エチルナフチレン基、n-プロピルナフチレン基、イソプロピルナフチレン基、n-ブチルナフチレン基、イソブチルナフチレン基、sec-ブチルナフチレン基、tert-ブチルナフチレン基等の環式不飽和ヒドロカルビレン基等が挙げられる。また、前記ヒドロカルビレン基の水素原子の一部又は全部が、酸素原子、硫黄原子、窒素原子、ハロゲン原子等のヘテロ原子を含む基で置換されていてもよく、前記ヒドロカルビレン基を構成する-CH2-の一部が、酸素原子、硫黄原子、窒素原子等のヘテロ原子を含む基で置換されていてもよく、その結果、ヒドロキシ基、シアノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、カルボニル基、エーテル結合、エステル結合、スルホン酸エステル結合、カーボネート結合、ラクトン環、スルトン環、カルボン酸無水物、ハロアルキル基等を含んでいてもよい。前記ヘテロ原子としては、酸素原子が好ましい。
【0231】
式(4)中、LAは、単結合、エーテル結合、又はヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビレン基である。前記ヒドロカルビレン基は、飽和でも不飽和でもよく、直鎖状、分岐状、環状のいずれでもよい。その具体例としては、R203で表されるヒドロカルビレン基として例示したものと同様のものが挙げられる。
【0232】
式(4)中、Xa、Xb、Xc及びXdは、それぞれ独立に、水素原子、フッ素原子又はトリフルオロメチル基である。ただし、Xa、Xb、Xc及びXdのうち少なくとも1つは、フッ素原子又はトリフルオロメチル基である。
【0233】
式(4)で表される光酸発生剤としては、下記式(4')で表されるものが好ましい。
【化122】
【0234】
式(4')中、LAは、前記と同じ。Xeは、水素原子又はトリフルオロメチル基であり、好ましくはトリフルオロメチル基である。R301、R302及びR303は、それぞれ独立に、水素原子、又はヘテロ原子を含んでいてもよい炭素数1~20のヒドロカルビル基である。前記ヒドロカルビル基は、飽和でも不飽和でもよく、直鎖状、分岐状、環状のいずれでもよい。その具体例としては、式(3A')中のR111で表されるヒドロカルビル基として例示したものと同様のものが挙げられる。m1及びm2は、それぞれ独立に、0~5の整数であり、m3は、0~4の整数である。
【0235】
式(4)で表される光酸発生剤としては、特開2017-026980号公報の式(2)で表される光酸発生剤として例示されたものと同様のものが挙げられる。
【0236】
前記その他の光酸発生剤のうち、式(3A')又は(3D)で表されるアニオンを含むものは、酸拡散が小さく、かつ溶剤への溶解性にも優れており、特に好ましい。また、式(4')で表されるものは、酸拡散が極めて小さく、特に好ましい。
【0237】
(D)成分の光酸発生剤を含む場合、その含有量は、(B)ベースポリマー80質量部に対し、0.1~40質量部が好ましく、0.5~20質量部がより好ましい。(D)成分の光酸発生剤の添加量が前記範囲であれば、解像性が良好であり、レジスト膜の現像後又は剥離時において異物の問題が生じるおそれもないため好ましい。(D)成分の光酸発生剤は、1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。
【0238】
[(E)クエンチャー]
本発明の化学増幅レジスト組成物は、更にクエンチャー(酸拡散制御剤)を含んでもよい。なお、本発明においてクエンチャーとは、化学増幅レジスト組成物中の光酸発生剤より発生した酸をトラップすることで未露光部への拡散を防ぎ、所望のパターンを形成するための材料のことである。
【0239】
(E)クエンチャーとしては、下記式(5)又は(6)で表されるオニウム塩が挙げられる。
【化123】
【0240】
式(5)中、R401は、水素原子、又はヘテロ原子を含んでいてもよい炭素数1~40のヒドロカルビル基であるが、スルホ基のα位の炭素原子に結合する水素原子が、フッ素原子又はフルオロアルキル基で置換されたものを除く。
【0241】
401で表されるヒドロカルビル基は、飽和でも不飽和でもよく、直鎖状、分岐状、環状のいずれでもよい。その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、tert-ペンチル基、n-ヘキシル基、n-オクチル基、2-エチルヘキシル基、n-ノニル基、n-デシル基等のアルキル基;シクロペンチル基、シクロヘキシル基、シクロペンチルメチル基、シクロペンチルエチル基、シクロペンチルブチル基、シクロヘキシルメチル基、シクロヘキシルエチル基、シクロヘキシルブチル基、ノルボルニル基、オキサノルボルニル基、トリシクロ[5.2.1.02,6]デカニル基、アダマンチル基等の環式飽和ヒドロカルビル基;フェニル基、ナフチル基、アントラセニル基等のアリール基;これらを組み合わせて得られる基等が挙げられる。また、前記ヒドロカルビル基の水素原子の一部又は全部が、酸素原子、硫黄原子、窒素原子、ハロゲン原子等のヘテロ原子を含む基で置換されていてもよく、前記ヒドロカルビル基を構成する-CH2-の一部が、酸素原子、硫黄原子、窒素原子等のヘテロ原子を含む基で置換されていてもよく、その結果、ヒドロキシ基、シアノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、カルボニル基、エーテル結合、エステル結合、スルホン酸エステル結合、カーボネート結合、ラクトン環、スルトン環、カルボン酸無水物、ハロアルキル基等を含んでいてもよい。
【0242】
式(6)中、R402は、水素原子、又はヘテロ原子を含んでいてもよい炭素数1~40のヒドロカルビル基である。前記ヒドロカルビル基としては、R401の具体例として例示した置換基のほか、トリフルオロメチル基、トリフルオロエチル基等のフッ素化アルキル基や、ペンタフルオロフェニル基、4-トリフルオロメチルフェニル基等のフッ素化アリール基も挙げられる。
【0243】
式(5)で表されるオニウム塩のアニオンとしては、以下に示すものが挙げられるが、これらに限定されない。
【化124】
【0244】
【化125】
【0245】
式(6)で表されるオニウム塩のアニオンとしては、以下に示すものが挙げられるが、これらに限定されない。
【化126】
【0246】
【化127】
【0247】
式(5)及び(6)中、Mq+は、オニウムカチオンである。前記オニウムカチオンとしては、下記式(7a)、(7b)又は(7c)で表されるものが好ましい。
【化128】
【0248】
式(7a)~(7c)中、R411~R419は、それぞれ独立に、ヘテロ原子を含んでいてもよい炭素数1~40のヒドロカルビル基である。また、R411とR412とは、互いに結合してこれらが結合する硫黄原子と共に環を形成してもよく、R416とR417とは、互いに結合してこれらが結合する窒素原子と共に環を形成してもよい。前記ヒドロカルビル基としては、式(5)中のR401の説明において述べたものと同様のものが挙げられる。
【0249】
Mq+で表されるオニウムカチオンとして具体的には、以下に示すものが挙げられるが、これらに限定されない。なお、下記式中、Meはメチル基である。
【化129】
【0250】
【化130】
【0251】
【化131】
【0252】
式(5)又は(6)で表されるオニウム塩の具体例としては、前述したアニオン及びカチオンの任意の組み合わせが挙げられる。なお、これらのオニウム塩は、既知の有機化学的方法を用いたイオン交換反応によって容易に調製される。イオン交換反応ついては、例えば特開2007-145797号公報を参考にすることができる。
【0253】
式(5)又は(6)で表されるオニウム塩は、本発明の化学増幅レジスト組成物においてクエンチャーとして機能する。これは、前記オニウム塩の各カウンターアニオンが、弱酸の共役塩基であることに起因する。ここでいう弱酸とは、ベースポリマーに含まれる酸不安定基含有単位の酸不安定基を脱保護させることのできない酸性度を示すものを意味する。式(5)又は(6)で表されるオニウム塩は、α位がフッ素化されているスルホン酸のような強酸の共役塩基をカウンターアニオンとして有するオニウム塩型光酸発生剤と併用させたときに、クエンチャーとして機能する。すなわち、α位がフッ素化されているスルホン酸のような強酸を発生するオニウム塩と、フッ素置換されていないスルホン酸やカルボン酸のような弱酸を発生するオニウム塩とを混合して用いた場合、高エネルギー線照射により光酸発生剤から生じた強酸が未反応の弱酸アニオンを有するオニウム塩と衝突すると、塩交換により弱酸を放出し、強酸アニオンを有するオニウム塩を生じる。この過程で強酸がより触媒能の低い弱酸に交換されるため、見かけ上、酸が失活して酸拡散の制御を行うことができる。
【0254】
ここで、強酸を発生する光酸発生剤がオニウム塩である場合には、前述したように高エネルギー線照射により生じた強酸が弱酸に交換することはできるが、一方で、高エネルギー線照射により生じた弱酸は未反応の強酸を発生するオニウム塩と衝突して塩交換を行うことはしづらいと考えられる。これは、オニウムカチオンがより強酸のアニオンとイオン対を形成しやすいという現象に起因する。
【0255】
(E)クエンチャーとして、式(5)又は(6)で表されるオニウム塩を含む場合、その含有量は、(B)ベースポリマー80質量部に対し、0.1~10質量部であることが好ましく、0.1~5質量部であることがより好ましい。(E)成分のクエンチャーが前記範囲であれば、解像性が良好であり、著しく感度が低下することがないため好ましい。式(5)又は(6)で表されるオニウム塩は、1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。
【0256】
また、(E)成分のクエンチャーとして、含窒素化合物を使用することもできる。このような含窒素化合物としては、特開2008-111103号公報の段落[0146]~[0164]に記載の、第1級、第2級又は第3級アミン化合物、特に、ヒドロキシ基、エーテル結合、エステル結合、ラクトン環、シアノ基、スルホン酸エステル結合を有するアミン化合物が挙げられる。また、特許第3790649号公報に記載の化合物のように、第1級又は第2級アミンをカーバメート基で保護した化合物も挙げることができる。
【0257】
また、含窒素化合物として含窒素置換基を有するスルホン酸スルホニウム塩を使用してもよい。このような化合物は、未露光部ではクエンチャーとして機能し、露光部は自身の発生酸との中和によってクエンチャー能を失う、いわゆる光崩壊性塩基として機能する。光崩壊性塩基を用いることによって、露光部と未露光部のコントラストをより強めることができる。光崩壊性塩基としては、例えば特開2009-109595号公報、特開2012-46501号公報等を参考にすることができる。
【0258】
(E)成分のクエンチャーとして含窒素化合物を含む場合、その含有量は、(B)ベースポリマー80質量部に対し、0.001~12質量部が好ましく、0.01~8質量部がより好ましい。前記含窒素化合物は、1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。
【0259】
[(F)水に不溶又は難溶でアルカリ現像液に可溶な界面活性剤、及び/又は水及びアルカリ現像液に不溶又は難溶な界面活性剤]
本発明の化学増幅レジスト組成物は、更に(F)水に不溶又は難溶でアルカリ現像液に可溶な界面活性剤、及び/又は水及びアルカリ現像液に不溶又は難溶な界面活性剤を含んでもよい。このような界面活性剤としては、特開2010-215608号公報や特開2011-16746号公報に記載のものを参照することができる。
【0260】
水及びアルカリ現像液に不溶又は難溶な界面活性剤としては、前記公報に記載の界面活性剤の中でも、FC-4430(スリーエム社製)、サーフロン(登録商標)S-381(AGCセイミケミカル(株)製)、オルフィン(登録商標)E1004(日信化学工業(株)製)、KH-20、KH-30(AGCセイミケミカル(株)製)、及び下記式(surf-1)で表されるオキセタン開環重合物等が好ましい。
【化132】
【0261】
ここで、R、Rf、A、B、C、m、nは、前述の記載にかかわらず、式(surf-1)のみに適用される。Rは、2~4価の炭素数2~5の脂肪族基である。前記脂肪族基としては、2価のものとしてはエチレン基、1,4-ブチレン基、1,2-プロピレン基、2,2-ジメチル-1,3-プロピレン基、1,5-ペンチレン基等が挙げられ、3価又は4価のものとしては下記のものが挙げられる。
【化133】
(式中、破線は、結合手であり、それぞれグリセロール、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトールから派生した部分構造である。)
【0262】
これらの中でも、1,4-ブチレン基、2,2-ジメチル-1,3-プロピレン基等が好ましい。
【0263】
Rfは、トリフルオロメチル基又はペンタフルオロエチル基であり、好ましくはトリフルオロメチル基である。mは、0~3の整数であり、nは、1~4の整数であり、nとmの和はRの価数であり、2~4の整数である。Aは、1である。Bは、2~25の整数であり、好ましくは4~20の整数である。Cは、0~10の整数であり、好ましくは0又は1である。また、式(surf-1)中の各構成単位は、その並びを規定したものではなく、ブロック的に結合してもランダム的に結合してもよい。部分フッ素化オキセタン開環重合物系の界面活性剤の製造に関しては、米国特許第5650483号明細書等に詳しい。
【0264】
水に不溶又は難溶でアルカリ現像液に可溶な界面活性剤は、ArF液浸リソグラフィーにおいてレジスト保護膜を用いない場合、レジスト膜の表面に配向することによって水のしみ込みやリーチングを低減させる機能を有する。そのため、レジスト膜からの水溶性成分の溶出を抑えて露光装置へのダメージを下げるために有用であり、また、露光後、ポストエクスポージャーベーク(PEB)後のアルカリ水溶液現像時には可溶化し、欠陥の原因となる異物にもなり難いため有用である。このような界面活性剤は、水に不溶又は難溶でアルカリ現像液に可溶な性質であり、ポリマー型の界面活性剤であって、疎水性樹脂とも呼ばれ、特に撥水性が高く滑水性を向上させるものが好ましい。
【0265】
このようなポリマー型界面活性剤としては、下記式(8A)~(8E)のいずれかで表される繰り返し単位から選ばれる少なくとも1種を含むものが挙げられる。
【化134】
【0266】
式(8A)~(8E)中、RBは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。W1は-CH2-、-CH2CH2-、-O-又は互いに分離した2個の-Hである。Rs1は、それぞれ独立に、水素原子、又は炭素数1~10のヒドロカルビル基である。Rs2は、単結合、又は炭素数1~5の直鎖状若しくは分岐状のヒドロカルビレン基である。Rs3は、それぞれ独立に、水素原子、炭素数1~15のヒドロカルビル基若しくはフッ素化ヒドロカルビル基、又は酸不安定基である。Rs3がヒドロカルビル基又はフッ素化ヒドロカルビル基の場合、炭素-炭素結合間に、エーテル結合又はカルボニル基が介在していてもよい。Rs4は、炭素数1~20の(u+1)価の炭化水素基又はフッ素化炭化水素基である。uは、1~3の整数である。Rs5は、それぞれ独立に、水素原子、又は-C(=O)-O-Rs7で表される基である。Rs7は、炭素数1~20のフッ素化ヒドロカルビル基である。Rs6は、炭素数1~15のヒドロカルビル基又はフッ素化ヒドロカルビル基であり、その炭素-炭素結合間に、エーテル結合又はカルボニル基が介在していてもよい。
【0267】
s1で表されるヒドロカルビル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、シクロブチル基、n-ペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、n-へプチル基、n-オクチル基、n-ノニル基、n-デシル基、アダマンチル基、ノルボルニル基等が挙げられる。これらのうち、炭素数1~6のものが好ましい。
【0268】
s2で表されるヒドロカルビレン基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基等が挙げられる。
【0269】
s3又はRs6で表されるヒドロカルビル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、アルキル基、アルケニル基、アルキニル基等が挙げられるが、アルキル基が好ましい。前記アルキル基としては、Rs1で表されるヒドロカルビル基として例示したもののほか、n-ウンデシル基、n-ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等が挙げられる。Rs3又はRs6で表されるフッ素化ヒドロカルビル基としては、前述したヒドロカルビル基の炭素原子に結合する水素原子の一部又は全部がフッ素原子で置換された基が挙げられる。前述のように、これらの炭素-炭素結合間にエーテル結合又はカルボニル基が介在していてもよい。
【0270】
s3で表される酸不安定基としては、前述した式(L1)~(L4)で表される基、炭素数4~20、好ましくは4~15の第3級ヒドロカルビル基、各アルキル基がそれぞれ炭素数1~6のアルキル基であるトリアルキルシリル基、炭素数4~20のオキソアルキル基等が挙げられる。
【0271】
s4で表される(u+1)価の炭化水素基又はフッ素化炭化水素基としては、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、前述したヒドロカルビル基又はフッ素化ヒドロカルビル基等から更に水素原子がu個脱離して得られる基が挙げられる。
【0272】
s7で表されるフッ素化ヒドロカルビル基としては、直鎖状、分岐状、環状のいずれでもよく、具体的には、前記ヒドロカルビル基の水素原子の一部又は全部がフッ素原子で置換されたものが挙げられ、その具体例としては、トリフルオロメチル基、2,2,2-トリフルオロエチル基、3,3,3-トリフルオロ-1-プロピル基、3,3,3-トリフルオロ-2-プロピル基、2,2,3,3-テトラフルオロプロピル基、1,1,1,3,3,3-ヘキサフルオロイソプロピル基、2,2,3,3,4,4,4-ヘプタフルオロブチル基、2,2,3,3,4,4,5,5-オクタフルオロペンチル基、2,2,3,3,4,4,5,5,6,6,7,7-ドデカフルオロヘプチル基、2-(パーフルオロブチル)エチル基、2-(パーフルオロヘキシル)エチル基、2-(パーフルオロオクチル)エチル基、2-(パーフルオロデシル)エチル基等が挙げられる。
【0273】
式(8A)~(8E)のいずれかで表される繰り返し単位としては、以下に示すものが挙げられるが、これらに限定されない。なお、下記式中、RBは、前記と同じである。
【化135】
【0274】
【化136】
【0275】
【化137】
【0276】
【化138】
【0277】
【化139】
【0278】
前記ポリマー型界面活性剤は、更に、式(8A)~(8E)で表される繰り返し単位以外のその他の繰り返し単位を含んでいてもよい。その他の繰り返し単位としては、メタクリル酸やα-トリフルオロメチルアクリル酸誘導体等から得られる繰り返し単位が挙げられる。ポリマー型界面活性剤中、式(8A)~(8E)で表される繰り返し単位の含有量は、全繰り返し単位中、20モル%以上が好ましく、60モル%以上がより好ましく、100モル%が更に好ましい。
【0279】
前記ポリマー型界面活性剤のMwは、1,000~500,000が好ましく、3,000~100,000がより好ましい。Mw/Mnは、1.0~2.0が好ましく、1.0~1.6がより好ましい。
【0280】
前記ポリマー型界面活性剤を合成する方法としては、式(8A)~(8E)で表される繰り返し単位、必要に応じてその他の繰り返し単位を与える不飽和結合を含むモノマーを、有機溶剤中、ラジカル開始剤を加えて加熱し、重合させる方法が挙げられる。重合時に使用する有機溶剤としては、トルエン、ベンゼン、THF、ジエチルエーテル、ジオキサン等が挙げられる。重合開始剤としては、AIBN、2,2'-アゾビス(2,4-ジメチルバレロニトリル)、ジメチル2,2-アゾビス(2-メチルプロピオネート)、ベンゾイルパーオキシド、ラウロイルパーオキシド等が挙げられる。反応温度は、50~100℃が好ましい。反応時間は、4~24時間が好ましい。酸不安定基は、モノマーに導入されたものをそのまま用いてもよいし、重合後保護化あるいは部分保護化してもよい。
【0281】
前記ポリマー型界面活性剤を合成する場合、分子量の調整のためにドデシルメルカプタンや2-メルカプトエタノールのような公知の連鎖移動剤を使用してもよい。その場合、これらの連鎖移動剤の添加量は、重合させる単量体の総モル数に対し、0.01~10モル%が好ましい。
【0282】
(F)成分の界面活性剤を含む場合、その含有量は、(B)ベースポリマー80質量部に対し、0.1~50質量部が好ましく、0.5~10質量部がより好ましい。添加量が0.1質量部以上であればレジスト膜表面と水との後退接触角が十分に向上し、50質量部以下であればレジスト膜表面の現像液に対する溶解速度が小さく、形成した微細パターンの高さが十分に保たれる。
【0283】
[(G)その他の成分]
本発明の化学増幅レジスト組成物は、(G)その他の成分として、酸により分解し酸を発生する化合物(酸増殖化合物)、有機酸誘導体、フッ素置換アルコール、酸の作用により現像液への溶解性が変化するMw3,000以下の化合物(溶解阻止剤)等を含んでもよい。前記酸増殖化合物としては、特開2009-269953号公報又は特開2010-215608号公報に記載の化合物を参照できる。前記酸増殖化合物を含む場合、その含有量は、(B)ベースポリマー80質量部に対し、0~5質量部が好ましく、0~3質量部がより好ましい。含有量が多すぎると、酸拡散の制御が難しく、解像性の劣化、パターン形状の劣化が起こることがある。前記有機酸誘導体、フッ素置換アルコール及び溶解阻止剤としては、特開2009-269953号公報又は特開2010-215608号公報に記載の化合物を参照できる。
【0284】
[パターン形成方法]
本発明のパターン形成方法は、前述した化学増幅レジスト組成物を用いて基板上にレジスト膜を形成する工程、前記レジスト膜をKrFエキシマレーザー光、ArFエキシマレーザー光、EB又はEUVで露光する工程、及び前記露光したレジスト膜を、現像液を用いて現像する工程を含む。
【0285】
前記基板としては、例えば、集積回路製造用の基板(Si、SiO2、SiN、SiON、TiN、WSi、BPSG、SOG、有機反射防止膜等)、あるいはマスク回路製造用の基板(Cr、CrO、CrON、MoSi2、SiO2等)を用いることができる。
【0286】
レジスト膜は、例えば、スピンコーティング等の方法で膜厚が0.05~2μmとなるように前記化学増幅レジスト組成物を塗布し、これをホットプレート上で、好ましくは60~150℃、1~10分間、より好ましくは80~140℃、1~5分間プリベークすることで形成することができる。
【0287】
レジスト膜の露光は、KrFエキシマレーザー光、ArFエキシマレーザー光又はEUVを用いる場合は、目的のパターンを形成するためのマスクを用いて、露光量が好ましくは1~200mJ/cm2、より好ましくは10~100mJ/cm2となるように照射することで行うことができる。EBを用いる場合は、目的のパターンを形成するためのマスクを用いて又は直接、露光量が好ましくは1~300μC/cm2、より好ましくは10~200μC/cm2となるように照射する。
【0288】
なお、露光は、通常の露光法のほか、屈折率1.0以上の液体をレジスト膜と投影レンズとの間に介在させて行う液浸法を用いることも可能である。その場合には、水に不溶な保護膜を用いることも可能である。
【0289】
前記水に不溶な保護膜は、レジスト膜からの溶出物を防ぎ、膜表面の滑水性を上げるために用いられ、大きく分けて2種類ある。1つはレジスト膜を溶解しない有機溶剤によってアルカリ水溶液現像前に剥離が必要な有機溶剤剥離型と、もう1つはアルカリ現像液に可溶でレジスト膜可溶部の除去とともに保護膜を除去するアルカリ水溶液可溶型である。後者は特に水に不溶でアルカリ現像液に溶解する1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール残基を有するポリマーをベースとし、炭素数4以上のアルコール系溶剤、炭素数8~12のエーテル系溶剤、及びこれらの混合溶剤に溶解させた材料が好ましい。前述した水に不溶でアルカリ現像液に可溶な界面活性剤を炭素数4以上のアルコール系溶剤、炭素数8~12のエーテル系溶剤、又はこれらの混合溶剤に溶解させた材料とすることもできる。
【0290】
露光後、PEBを行ってもよい。PEBは、例えば、ホットプレート上で、好ましくは60~150℃、1~5分間、より好ましくは80~140℃、1~3分間加熱することで行うことができる。
【0291】
現像は、例えば、好ましくは0.1~5質量%、より好ましくは2~3質量%のテトラメチルアンモニウムヒドロキシド(TMAH)等のアルカリ水溶液の現像液を用い、好ましくは0.1~3分間、より好ましくは0.5~2分間、浸漬(dip)法、パドル(puddle)法、スプレー(spray)法等の常法により現像することで、露光部が溶解し、基板上に目的のパターンが形成される。
【0292】
また、パターン形成方法の手段として、レジスト膜形成後に、純水リンス(ポストソーク)を行うことによって膜表面からの酸発生剤等の抽出、あるいはパーティクルの洗い流しを行ってもよいし、露光後に膜上に残った水を取り除くためのリンス(ポストソーク)を行ってもよい。
【0293】
更に、ダブルパターニング法によってパターン形成をしてもよい。ダブルパターニング法としては、1回目の露光とエッチングで1:3トレンチパターンの下地を加工し、位置をずらして2回目の露光によって1:3トレンチパターンを形成して1:1のパターンを形成するトレンチ法、1回目の露光とエッチングで1:3孤立残しパターンの第1の下地を加工し、位置をずらして2回目の露光によって1:3孤立残しパターンを第1の下地の下に形成した第2の下地を加工してピッチが半分の1:1のパターンを形成するライン法が挙げられる。
【0294】
本発明のパターン形成方法において、現像液として前記アルカリ水溶液の現像液のかわりに、有機溶剤を用いて未露光部を溶解させるネガティブトーン現像の方法を用いてもよい。
【0295】
この有機溶剤現像には、現像液として、2-オクタノン、2-ノナノン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、2-ヘキサノン、3-ヘキサノン、ジイソブチルケトン、メチルシクロヘキサノン、アセトフェノン、メチルアセトフェノン、酢酸プロピル、酢酸ブチル、酢酸イソブチル、酢酸ペンチル、酢酸ブテニル、酢酸イソペンチル、ギ酸プロピル、ギ酸ブチル、ギ酸イソブチル、ギ酸ペンチル、ギ酸イソペンチル、吉草酸メチル、ペンテン酸メチル、クロトン酸メチル、クロトン酸エチル、プロピオン酸メチル、プロピオン酸エチル、3-エトキシプロピオン酸エチル、乳酸メチル、乳酸エチル、乳酸プロピル、乳酸ブチル、乳酸イソブチル、乳酸ペンチル、乳酸イソペンチル、2-ヒドロキシイソ酪酸メチル、2-ヒドロキシイソ酪酸エチル、安息香酸メチル、安息香酸エチル、酢酸フェニル、酢酸ベンジル、フェニル酢酸メチル、ギ酸ベンジル、ギ酸フェニルエチル、3-フェニルプロピオン酸メチル、プロピオン酸ベンジル、フェニル酢酸エチル、酢酸2-フェニルエチル等を用いることができる。これらの有機溶剤は、1種単独で使用してもよく、2種以上を混合して使用してもよい。
【実施例
【0296】
以下、合成例、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記実施例に限定されない。なお、使用した装置は、以下のとおりである。
・IR:サーモフィッシャーサイエンティフィック社製NICOLET 6700
1H-NMR:日本電子(株)製ECA-500
・MALDI TOF-MS:日本電子(株)製S3000
【0297】
[1]オニウム塩の合成
[実施例1-1]PAG-1の合成
(1)中間体In-1の合成
【化140】
窒素雰囲気下、マグネシウム(109.4g)、THF(2,250g)及び原料M-1(1,084.6g)からGrignard試薬を調製した。反応系を10℃以下に冷却し、ジフェニルスルホキシド(303.4g)及び塩化メチレン(1,500g)からなる溶液を添加した。添加後、内温20℃以下を維持しながらクロロトリメチルシラン(678.2g)を滴下した。滴下後、内温20℃以下で2時間熟成した。熟成後、反応系を冷却し、36質量%塩酸(150g)及び水(2,250g)からなる水溶液を滴下して反応を停止した。その後、ジイソプロピルエーテル(2,100g)及び水(4,500g)を加えて水層を分取した。さらに、ジイソプロピルエーテル(1,950g)で分取した水層を2回洗浄した。洗浄した水層は、このまま次工程に使用した。
【0298】
(2)PAG-1の合成
【化141】
窒素雰囲気下、中間体In-1の水溶液(50.0g)、中間体In-2(8.1g)及びメチルイソブチルケトン(50g)を仕込み、室温で30分間攪拌した。有機層を分取し、水洗を行い、その後減圧濃縮することで、PAG-1を無色透明の油状物として得た(収量11.5g、収率100%)。
【0299】
PAG-1のIRスペクトルデータ及びTOF-MSの結果を以下に示す。また、核磁気共鳴スペクトル(1H-NMR/DMSO-d6)の結果を図1に示す。
IR(D-ATR): ν= 3499, 3064, 2910, 2855, 1754, 1710, 1586, 1493, 1478, 1449, 1407, 1369, 1330, 1318, 1255, 1216, 1182, 1103, 1089, 1035, 1012, 993, 917, 865, 840, 751, 732, 684, 641, 615, 575, 553, 528, 517, 503 cm-1.
MALDI TOF-MS: POSITIVE M+347(C19H14F3OS+相当)
NEGATIVE M-391(C14H16F5O5S-相当)
【0300】
[実施例1-2]PAG-2の合成
【化142】
【0301】
中間体In-2を中間体In-3に変更した以外は、実施例1-1(2)と同様の方法でPAG-2を合成した(収量8.5g、収率98%)。
【0302】
PAG-2のIRスペクトルデータ及びTOF-MSの結果を以下に示す。また、核磁気共鳴スペクトル(1H-NMR/DMSO-d6)の結果を図2に示す。
IR(D-ATR): ν= 3477, 3098, 2908, 2853, 1785, 1729, 1586, 1492, 1478, 1448, 1344, 1252, 1177, 1104, 1075, 1035, 1010, 942, 844, 808, 751, 683, 642, 585, 551, 524, 504 cm-1.
MALDI TOF-MS: POSITIVE M+347(C19H14F3OS+相当)
NEGATIVE M-503(C22H25F2O9S-相当)
【0303】
[実施例1-3]PAG-3の合成
【化143】
【0304】
中間体In-2を中間体In-4に変更した以外は、実施例1-1(2)と同様の方法でPAG-3を合成した(収量8.5g、収率98%)。
【0305】
PAG-3のIRスペクトルデータ及びTOF-MSの結果を以下に示す。また、核磁気共鳴スペクトル(1H-NMR/DMSO-d6)の結果を図3に示す。
IR(D-ATR): ν= 3476, 3064, 2974, 1785, 1730, 1586, 1522, 1493, 1477, 1448, 1366, 1252, 1212, 1177, 1111, 1075, 1037, 1005, 934, 904, 841, 748, 683, 642, 573, 552, 524, 504 cm-1.
MALDI TOF-MS: POSITIVE M+347(C19H14F3OS+相当)
NEGATIVE M-891(C19H11F5I3O9S-相当)
【0306】
[実施例1-4]PAG-4の合成
【化144】
【0307】
中間体In-2を中間体In-5に変更した以外は、実施例1-1(2)と同様の方法でPAG-4を合成した(収量11.2g、収率91%)。
【0308】
PAG-4のIRスペクトルデータ及びTOF-MSの結果を以下に示す。また、核磁気共鳴スペクトル(1H-NMR/DMSO-d6)の結果を図4に示す。
IR(D-ATR): ν= 3556, 3065, 2969, 1771, 1709, 1586, 1493, 1478, 1448, 1409, 1370, 1255, 1214, 1173, 1128, 1073, 1012, 995, 928, 906, 842, 751, 684, 643, 553, 525, 503 cm-1.
MALDI TOF-MS: POSITIVE M+347(C19H14F3OS+相当)
NEGATIVE M-887(C29H20F13O11S3 -相当)
【0309】
[実施例1-5]PAG-5の合成
【化145】
【0310】
中間体In-2を中間体In-6に変更した以外は、実施例1-1(2)と同様の方法でPAG-5を合成した(収量78.2g、収率95%)。
【0311】
PAG-5のIRスペクトルデータ及びTOF-MSの結果を以下に示す。また、核磁気共鳴スペクトル(1H-NMR/DMSO-d6)の結果を図5に示す。
IR(D-ATR): ν= 3110, 3088, 2935, 2865, 1747, 1711, 1637, 1585, 1496, 1477, 1450, 1406, 1377, 1328, 1316, 1303, 1263, 1253, 1212, 1192, 1166, 1109, 1091, 1076, 1008, 992, 955, 937, 930, 900, 865, 841, 815, 769, 758, 724, 687, 641, 613, 577, 551, 526, 518, 498, 471, 403 cm-1.
MALDI TOF-MS: POSITIVE M+347(C19H14F3OS+相当)
NEGATIVE M-475(C18H20F5O7S-相当)
【0312】
[実施例1-6~1-11]PAG-6~PAG-11の合成
各種有機合成反応により種々のオニウム塩を合成した。化学増幅レジスト組成物に用いたオニウム塩の構造を以下に示す。
【化146】
【0313】
[2]ベースポリマーの合成
化学増幅レジスト組成物に用いたベースポリマーを、以下に示す方法で合成した。なお、得られたポリマーのMwは、溶剤としてTHFを用いたGPCによりポリスチレン換算値として測定した。
【0314】
[合成例1]ポリマーP-1の合成
窒素雰囲気下、フラスコにメタクリル酸3-ヒドロキシ-1-アダマンチル5.0g、α-メタクリルオキシ-γ-ブチロラクトン14.4g、メタクリル酸1-イソプロピルシクロペンチル20.8g、V-601(富士フイルム和光純薬(株)製)0.49g、2-メルカプトエタノール0.41g及びPGMEA56gをとり、単量体-重合開始剤溶液を調製した。窒素雰囲気とした別のフラスコにPGMEA19gをとり、攪拌しながら80℃まで加熱した後、前記単量体-重合開始剤溶液を4時間かけて滴下した。滴下終了後、重合液の温度を80℃に保ったまま2時間攪拌を続け、次いで室温まで冷却した。得られた重合液を、激しく攪拌したメタノール640gに滴下し、析出したポリマーをろ別した。得られたポリマーをメタノール240gで2回洗浄した後、50℃で20時間真空乾燥して白色粉末状のポリマーP-1を得た(収量35.3g、収率88%)。GPCにて分析したところ、ポリマーP-1のMwは8,500、Mw/Mnは1.58であった。
【化147】
【0315】
[合成例2~13]ポリマーP-2~P-13の合成
モノマーの種類及び配合比を変えた以外は、合成例1と同様の方法で、ポリマーP-2~P-13を合成した。ポリマーP-1~P-13のモノマーの種類と導入比を、下記表1に示す。
【0316】
【表1】
【0317】
表1中、各モノマーは、以下のとおりである。
【化148】
【0318】
【化149】
【0319】
【化150】
【0320】
【化151】
【0321】
[3]化学増幅レジスト組成物の調製
[実施例2-1~2-22、比較例1-1~1-12]
本発明のスルホニウム塩(PAG-1~PAG-11)、比較用光酸発生剤(PAG-A~PAG-G)、ベースポリマー(P-1~P-13)、クエンチャー(Q-1~Q-5)及びアルカリ可溶型界面活性剤(SF-1)を下記表2及び3に示す組成で、界面活性剤A(オムノバ社)0.01質量%を含む溶剤中に溶解して溶液を調製し、該溶液を0.2μmのテフロン(登録商標)型フィルターで濾過することにより、化学増幅レジスト組成物(R-1~R-22、CR-1~CR-12)を調製した。
【0322】
【表2】
【0323】
【表3】
【0324】
表2及び3中、溶剤、アルカリ可溶型界面活性剤SF-1、比較用光酸発生剤PAG-A~PAG-G及びクエンチャーQ-1~Q-5は、以下のとおりである。
・溶剤:PGMEA(プロピレングリコールモノメチルエーテルアセテート)
GBL(γ-ブチロラクトン)
DAA(ジアセトンアルコール)
【0325】
・アルカリ可溶型界面活性剤SF-1:ポリ(メタクリル酸2,2,3,3,4,4,4-へプタフルオロ-1-イソブチル-1-ブチル・メタクリル酸9-(2,2,2-トリフルオロ-1-トリフルオロメチルエチルオキシカルボニル)-4-オキサトリシクロ[4.2.1.03,7]ノナン-5-オン-2-イル)
【化152】
Mw=7,700、Mw/Mn=1.82
【0326】
・比較用光酸発生剤:PAG-A~PAG-G
【化153】
【0327】
・クエンチャー:Q-1~Q-5
【化154】
【0328】
・界面活性剤A:3-メチル-3-(2,2,2-トリフルオロエトキシメチル)オキセタン・テトラヒドロフラン・2,2-ジメチル-1,3-プロパンジオール共重合物(オムノバ社製)
【化155】
a:(b+b'):(c+c')=1:4~7:0.01~1(モル比)
Mw=1,500
【0329】
[4]化学増幅レジスト組成物の評価:ArFリソグラフィー評価(1)
[実施例3-1~3-11、比較例2-1~2-6]
シリコン基板上に反射防止膜溶液(日産化学(株)製ARC29A)を塗布し、200℃で60秒間ベークして反射防止膜(膜厚100nm)を作製した。前記反射防止膜上に、各化学増幅レジスト組成物(R-1~R-11、CR-1~R-6)をスピンコーティングし、ホットプレートを用いて100℃で60秒間ベークし、膜厚90nmのレジスト膜を作製した。これをArFエキシマレーザースキャナー((株)ニコン製、NSR-S610C、NA=1.30、二重極、Crマスク)を用いて、ウエハー上寸法がライン幅40nm、ピッチ80nmのラインアンドスペースパターン(LSパターン)の露光を、露光量とフォーカスを変化させながら(露光量ピッチ:1mJ/cm2、フォーカスピッチ:0.025μm)液浸露光によって行い、露光後、表4に示す温度で60秒間PEBを行った。なお、液浸液としては水を用いた。その後、2.38質量%のTMAH水溶液で30秒間パドル現像を行い、純水でリンス、スピンドライを行い、ポジティブパターンを得た。現像後のLSパターンを、(株)日立ハイテクノロジーズ製測長SEM(CG4000)で観察し、感度、露光裕度(EL)、MEF及びLWRを、下記方法に従い評価した。結果を表4に示す。
【0330】
[感度評価]
ライン幅40nm、ピッチ80nmのLSパターンが得られる最適露光量Eop(mJ/cm2)を求め、これを感度とした。この値が小さいほど感度が高い。
【0331】
[EL評価]
前記LSパターンにおける40nmのスペース幅の±10%(36~44nm)の範囲内で形成される露光量から、次式によりEL(単位:%)を求めた。この値が大きいほど性能が良好である。
EL(%)=(|E1-E2|/Eop)×100
1:ライン幅36nm、ピッチ80nmのLSパターンを与える最適な露光量
2:ライン幅44nm、ピッチ80nmのLSパターンを与える最適な露光量
op:ライン幅40nm、ピッチ80nmのLSパターンを与える最適な露光量
【0332】
[MEF評価]
ピッチは固定したまま、マスクのライン幅を変えて、Eopで照射されたそれぞれのLSパターンのライン幅を観察した。マスクのライン幅とLSパターンのライン幅の変化から、次式によりMEFの値を求めた。この値が1に近いほど性能が良好である。
MEF=(LSパターンのライン幅/マスクのライン幅)-b
b:定数
【0333】
[LWR評価]
opで照射して得たLSパターンを、ラインの長手方向に10箇所の寸法を測定し、その結果から標準偏差(σ)の3倍値(3σ)をLWRとして求めた。この値が小さいほど、ラフネスが小さく均一なライン幅のパターンが得られる。
【0334】
【表4】
【0335】
表4に示した結果より、本発明の光酸発生剤を含む化学増幅レジスト組成物は、良好な感度でEL、MEF及びLWRにも優れることがわかった。よって、本発明の化学増幅レジスト組成物は、ArF液浸リソグラフィーの材料として好適であることが示された。
【0336】
[5]化学増幅レジスト組成物の評価:ArFリソグラフィー評価(2)
[実施例4-1~4-3、比較例3-1]
各化学増幅レジスト組成物(R-12~R-14、CR-7)を、信越化学工業(株)製スピンオンカーボン膜ODL-180(カーボンの含有量が80質量%)を180nm、その上にケイ素含有スピンオンハードマスクSHB-A941(ケイ素の含有量が43質量%)を35nmの膜厚で成膜したトライレイヤープロセス用の基板上にスピンコーティングし、ホットプレートを用いて100℃で60秒間ベークし、膜厚100nmのレジスト膜を形成した。これを、ArFエキシマレーザー液浸スキャナー((株)ニコン製、NSR-S610C、NA=1.30、σ=0.90/0.72、クロスポール開口35度、Azimuthally偏光照明、6%ハーフトーン位相シフトマスク、クロスポール照明)で、ウエハー上寸法が45nm、ピッチ110nmのコンタクトホールパターン(CHパターン)の露光を、露光量とフォーカスを変化(露光量ピッチ:1mJ/cm2、フォーカスピッチ:0.025μm)させながら行い、露光後、表5に示す温度で60秒間PEBを行った。なお、液浸液としては水を用いた。その後、酢酸n-ブチルで30秒間パドル現像を行い、4-メチル-2-ペンタノールでリンスし、スピンドライを行い、ネガティブパターンを得た。現像後のCHパターンを(株)日立ハイテクノロジーズ製測長SEM(CG4000)で観察し、感度、MEF、CDU及び焦点深度(DOF)を、下記方法に従い評価した。結果を表5に示す。
【0337】
[感度評価]
ホール寸法45nm、ピッチ110nmのCHパターンが得られる最適露光量Eop(mJ/cm2)を求め、これを感度とした。この値が小さいほど感度が高い。
【0338】
[MEF評価]
ピッチは固定したまま、マスクの寸法を変えて、Eopで照射されたそれぞれのCHパターンを観察した。マスクの寸法とCHパターンの寸法の変化から、次式によりMEFの値を求めた。この値が1に近いほど性能が良好である。
MEF=(CHパターンの寸法/マスクの寸法)-b
b:定数
【0339】
[CDU評価]
前記感度評価におけるEopで照射して得たCHパターンを、同一露光量ショット内10箇所(1箇所につき9個のCHパターン)の寸法を測定し、その結果から標準偏差(σ)の3倍値(3σ)をCDUとして求めた。この値が小さいほど、CHパターンの寸法均一性が優れる。
【0340】
[DOF評価]
焦点深度評価として、前記CHパターンにおける45nmの寸法の±10%(40.5~49.5nm)の範囲で形成されるフォーカス範囲を求めた。この値が大きいほど、焦点深度が広い。
【0341】
【表5】
【0342】
表5に示した結果より、本発明の光酸発生剤を含む化学増幅レジスト組成物は、良好な感度で、MEF、CDU及びDOFにも優れることがわかった。よって、本発明の化学増幅レジスト組成物は、ArF液浸リソグラフィーの材料として好適であることが示された。
【0343】
[6]EUVリソグラフィー評価
[実施例5-1~5-8、比較例4-1~4-5]
各化学増幅レジスト組成物(R-15~R-22、CR-8~CR-12)を、信越化学工業(株)製ケイ素含有スピンオンハードマスクSHB-A940(ケイ素の含有量が43質量%)を膜厚20nmで形成したSi基板上にスピンコートし、ホットプレートを用いて100℃で60秒間プリベークして膜厚50nmのレジスト膜を作製した。これを、ASML社製EUVスキャナーNXE3300(NA0.33、σ0.9/0.6、ダイポール照明)で、ウエハー上寸法が18nm、ピッチ36nmのLSパターンの露光を、露光量とフォーカスを変化(露光量ピッチ:1mJ/cm2、フォーカスピッチ:0.020μm)させながら行い、露光後、表6に示す温度で60秒間PEBした。その後、2.38質量%のTMAH水溶液で30秒間パドル現像を行い、界面活性剤含有リンス材料でリンス、スピンドライを行い、ポジ型パターンを得た。現像後のLSパターンを、(株)日立ハイテクノロジーズ製測長SEM(CG6300)で観察し、感度、EL、LWR及びDOFを、下記方法に従い評価した。結果を表6に示す。
【0344】
[感度評価]
ライン幅18nm、ピッチ36nmのLSパターンが得られる最適露光量Eop(mJ/cm2)を求め、これを感度とした。
【0345】
[EL評価]
前記LSパターンにおける18nmのスペース幅の±10%(16.2~19.8nm)の範囲内で形成される露光量から、次式によりEL(単位:%)を求めた。この値が大きいほど性能が良好である。
EL(%)=(|E1-E2|/Eop)×100
1:ライン幅16.2nm、ピッチ36nmのLSパターンを与える最適な露光量
2:ライン幅19.8nm、ピッチ36nmのLSパターンを与える最適な露光量
op:ライン幅18nm、ピッチ36nmのLSパターンを与える最適な露光量
【0346】
[LWR評価]
opで照射して得たLSパターンを、ラインの長手方向に10箇所の寸法を測定し、その結果から標準偏差(σ)の3倍値(3σ)をLWRとして求めた。この値が小さいほど、ラフネスが小さく均一なライン幅のパターンが得られる。
【0347】
[DOF評価]
焦点深度評価として、前記LSパターンにおける18nmの寸法の±10%(16.2~19.8nm)の範囲で形成されるフォーカス範囲を求めた。この値が大きいほど、焦点深度が広い。
【0348】
【表6】
【0349】
表6に示した結果より、本発明の光酸発生剤を含む化学増幅レジスト組成物は、良好な感度でEL、LWR及びDOFに優れることがわかった。よって、本発明の化学増幅レジスト組成物は、EUVリソグラフィー用の材料として好適であることが示された。
図1
図2
図3
図4
図5