IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社日立ハイテクノロジーズの特許一覧

<>
  • 特許-透過型電子顕微鏡 図1
  • 特許-透過型電子顕微鏡 図2
  • 特許-透過型電子顕微鏡 図3
  • 特許-透過型電子顕微鏡 図4
  • 特許-透過型電子顕微鏡 図5
  • 特許-透過型電子顕微鏡 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-22
(45)【発行日】2024-05-30
(54)【発明の名称】透過型電子顕微鏡
(51)【国際特許分類】
   H01J 37/18 20060101AFI20240523BHJP
   H01J 37/26 20060101ALI20240523BHJP
   H01J 37/153 20060101ALI20240523BHJP
   H01J 37/147 20060101ALI20240523BHJP
   H01J 37/20 20060101ALI20240523BHJP
【FI】
H01J37/18
H01J37/26
H01J37/153 A
H01J37/147 A
H01J37/20 F
【請求項の数】 9
(21)【出願番号】P 2023514210
(86)(22)【出願日】2021-04-13
(86)【国際出願番号】 JP2021015266
(87)【国際公開番号】W WO2022219699
(87)【国際公開日】2022-10-20
【審査請求日】2023-09-22
(73)【特許権者】
【識別番号】501387839
【氏名又は名称】株式会社日立ハイテク
(74)【代理人】
【識別番号】110002572
【氏名又は名称】弁理士法人平木国際特許事務所
(72)【発明者】
【氏名】塙 暁成
(72)【発明者】
【氏名】矢口 紀恵
(72)【発明者】
【氏名】菊池 秀樹
【審査官】鳥居 祐樹
(56)【参考文献】
【文献】特開2010-192126(JP,A)
【文献】特開2013-101791(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01J 37/18
H01J 37/26
H01J 37/153
H01J 37/147
H01J 37/20
(57)【特許請求の範囲】
【請求項1】
試料を透過した電子線を用いて前記試料を観察する透過型電子顕微鏡であって、
前記電子線を出射する電子線源、
前記試料を載置するステージ、
前記電子線源と前記ステージを収容する鏡筒、
前記鏡筒の内部における前記電子線源の側の第1空間と前記ステージの側の第2空間との間を気密封止する隔膜、
前記隔膜を移動させる機構、
を備え、
前記隔膜は、前記電子線の少なくとも一部を透過する透過部を有し、
前記機構は、
前記隔膜が前記第1空間と前記第2空間との間を気密封止するとともに前記電子線の少なくとも一部を透過する第1位置に、前記隔膜を配置する第1モード、
前記隔膜が前記第1空間と前記第2空間との間を気密封止せず前記電子線と衝突しない第2位置に、前記隔膜を配置する第2モード、
を切り替えることができるように構成されている
ことを特徴とする透過型電子顕微鏡。
【請求項2】
前記透過型電子顕微鏡はさらに、前記試料を透過した前記電子線を用いて前記試料の観察像を生成する制御部を備え、
前記透過型電子顕微鏡はさらに、前記第2空間に配置され前記鏡筒の内部の真空度を計測する真空計を備え、
前記機構は、前記第1モードまたは前記第2モードを実施する前に、前記隔膜を前記第1位置に移動させ、
前記制御部は、前記第1モードにおいては、前記鏡筒の内部の真空度が第1真空度に達している時点において前記試料を透過した前記電子線を用いて、前記観察像を生成する
ことを特徴とする請求項1記載の透過型電子顕微鏡。
【請求項3】
前記機構は、前記第1モードから前記第2モードへ移行する際には、前記鏡筒の内部の真空度が前記第1真空度よりも高真空の第2真空度に達している時点において、前記隔膜を前記第1位置から前記第2位置へ移動させ、
前記制御部は、前記第2モードにおいては、前記鏡筒の内部の真空度が前記第2真空度に達している時点において前記試料を透過した前記電子線を用いて、前記観察像を生成する
ことを特徴とする請求項2記載の透過型電子顕微鏡。
【請求項4】
前記透過型電子顕微鏡はさらに、前記鏡筒の内部にガスを導入するガス導入機構を備え、
前記ガス導入機構は、前記機構が前記第1モードまたは前記第2モードを実施する前に、前記鏡筒の内部にガスを導入し、
前記ガス導入機構は、前記第2モードにおいては、前記機構が前記隔膜を前記第1位置から前記第2位置へ移動させる前に、前記ガスの導入を停止する
ことを特徴とする請求項1記載の透過型電子顕微鏡。
【請求項5】
前記透過型電子顕微鏡はさらに、前記鏡筒の内部にガスを導入するガス導入機構を備え、
前記ガス導入機構は、前記機構が前記第1モードまたは前記第2モードを実施する前に、前記鏡筒の内部にガスを導入し、
前記透過型電子顕微鏡はさらに、前記鏡筒の内部を真空排気する排気装置を備え、
前記排気装置は、前記第2モードにおいては、前記機構が前記隔膜を前記第1位置から前記第2位置へ移動させる前に、前記第1モードにおける排気能力よりも高い排気能力で前記鏡筒の内部を真空排気する
ことを特徴とする請求項1記載の透過型電子顕微鏡。
【請求項6】
前記透過型電子顕微鏡はさらに、前記電子線の収差を補正する収差補正器を備え、
前記透過型電子顕微鏡はさらに、前記収差補正器の補正量を制御する収差補正器制御部を備え、
前記機構は、前記収差補正器制御部が前記補正量を決定する前に、前記第2モードへ移行し、
前記収差補正器制御部は、前記第2モードにおいて前記試料を透過した前記電子線を用いて、前記補正量を決定する
ことを特徴とする請求項1記載の透過型電子顕微鏡。
【請求項7】
前記透過型電子顕微鏡はさらに、前記電子線源と前記ステージとの間において前記電子線を偏向させる偏向器を備え、
前記隔膜は、前記電子線源と前記偏向器との間に配置されている
ことを特徴とする請求項1記載の透過型電子顕微鏡。
【請求項8】
前記透過型電子顕微鏡はさらに、前記電子線源と前記ステージとの間において前記電子線を偏向させる偏向器を備え、
前記隔膜は、前記ステージと前記偏向器との間に配置されている
ことを特徴とする請求項1記載の透過型電子顕微鏡。
【請求項9】
前記透過型電子顕微鏡はさらに、前記試料の表面上において前記電子線を走査する走査部を備える
ことを特徴とする請求項1記載の透過型電子顕微鏡。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、透過型電子顕微鏡に関する。
【背景技術】
【0002】
その場観察(In-situ)は、「本来の場所で」との意味が語源となっている通り、実際のプロセス(使用方法や)が起きる実環境下における観察や測定のことである。透過型電子顕微鏡(TEM)においてのその場観察(In-situ)は、電子顕微鏡内部において、加熱や冷却、ガス雰囲気などの条件を用い、実環境下と同様に再現させることにより、材料の挙動をサブオングストローブの解像度で観察することが可能である。
【0003】
その場観察技術において、密閉空間を確保する技術として、差動排気絞りや、隔膜を用いた環境セルホルダなどが一般的に使用されている。差動排気絞りは、オリフィスを用いることにより、排気コンダクタンスを得ることが可能である。環境セルホルダは、試料の上下に隔膜を用いることにより、限られた空間を密閉することが可能である。
【0004】
特許文献1は、『電子銃が真空に保たれる走査型電子顕微鏡装置を提供する。』ことを課題として、『電子銃窓35に加速電子を透過し大気に耐える金属膜、炭素膜、ダイヤモンド膜、ダイヤモンドライクカーボン膜を設け、密封容器33内が真空に保たれる電子銃2を備える走査型電子顕微鏡装置1とする。』という技術を開示している(要約参照)。
【0005】
特許文献2は、『簡単な構成で安価にX線の遮蔽が可能な荷電粒子ビーム装置を実現する。』ことを課題として、『電子銃室1と集束レンズ室3とを真空的に遮断する場合、電子ビームの通路上に仕切弁6が配置される。この時、電子ビームは仕切弁に向かって照射されるが、電子ビームは開口11内の円盤12に衝突する。この円盤12への電子ビームの衝突によってX線xが発生するが、円盤12は、例えば、炭素によって形成されているので、そのX線の発生量は極めて微量であると共にそのX線のエネルギーは小さいので、仕切弁等の構成部品や隔壁4,5、あるいは、電子銃室1や集束レンズ室3を形成する鏡筒の壁部分によって吸収され、鏡筒外部に漏洩するX線の量は無視し得る程度となる。』という技術を開示している(要約参照)。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2008-262886号公報
【文献】特開平10-134756号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
特許文献1と2が記載している技術は、ガス雰囲気を保持するためには有用な手段であるが、透過像を観察する透過型電子顕微鏡においては以下のような技術的な課題があることを、本発明の発明者は知得した。
【0008】
透過型電子顕微鏡や走査透過型電子顕微鏡(STEM)におけるIn-situの使用方法について説明する。近年、MEMS(Micro Electro Mechanical Systems)チップなどを用いた環境セルホルダの安定性能が向上し、In-situにおける像観察の高分解能化が進んでいる。
【0009】
TEM像を形成するコントラストとして、散乱コントラスト、回折コントラスト、位相コントラストがある。これまでIn-situ観察において主に使用されていた低倍観察は、透過波や回折波を用いた回折コントラストまたは散乱コントラストにより、TEM/STEM像のコントラストを形成している。
【0010】
他方で高倍率のTEM/STEM像観察においては、透過波と回折波を用いた位相コントラストによって像コントラストを形成する。このとき、例えば導電性のシリコン窒化膜などを用いて密閉空間を形成すると、アモルファスなどの非晶質部分のコントラストが、実サンプルのコントラストと重畳してしまう。これにより、正しいTEM像としてのコントラストを得ることが困難となる。
【0011】
したがって、特許文献1や2が記載している密閉空間を確保するための手法は、その場観察において高倍率のTEM/STEM像を得ることが困難である。この点は、従来より使用されている環境セルホルダも同様である。環境セルホルダを採用する場合は、密閉空間を確保するための隔膜が常に試料の上下に設けられているので、位相コントラストの影響を受けてしまうからである。
【0012】
本発明は、上記のような課題に鑑みてなされたものであり、透過型電子顕微鏡において観察像に対する位相コントラストの影響を緩和し、高倍率高分解能の像観察を可能とすることを目的とする。
【課題を解決するための手段】
【0013】
本発明に係る透過型電子顕微鏡は、鏡筒内を隔膜によって電子線源側とステージ側との間で気密封止する第1モードと、気密封止しない第2モードとを切り替えることができるように構成されている。
【発明の効果】
【0014】
本発明に係る透過型電子顕微鏡によれば、観察像に対する位相コントラストの影響を緩和し、高倍率高分解能の像観察が可能である。
【図面の簡単な説明】
【0015】
図1】実施形態1に係る透過型電子顕微鏡1の構成を説明する側面模式図である。
図2】圧力保持空間203の近傍を拡大した図である。
図3】隔膜201の構造を示す側断面図である。
図4】透過型電子顕微鏡1の動作手順を説明するフローチャートである。
図5】収差補正器108を用いて収差を補正する手順を説明するフローチャートである。
図6】実施形態4に係る透過型電子顕微鏡1の構成を説明する側面模式図である。
【発明を実施するための形態】
【0016】
<実施の形態1>
図1は、本発明の実施形態1に係る透過型電子顕微鏡1の構成を説明する側面模式図である。鏡筒100の内部には、圧力保持空間203が配置されている。圧力保持空間203の近傍については後述する。
【0017】
電子銃101によって生成された電子ビームを照射レンズ102~104により集束し、試料ステージ105に搭載された試料(不図示)へ照射する。試料を透過した電子は、結像レンズ110~113を介してCCDカメラ114の撮像面に導かれる。CCDカメラ114が検出した電子像は、主制御装置121に取り込まれた後に画像化される。作業者は、この像を試料像として観察する。試料ステージ105は、主制御装置121から指令を受ける絞り制御基板120により制御される。照射レンズ102~104および結像レンズ110~113は、主制御装置121から指令を受けるレンズ制御装置122によって制御される。主制御装置121で画像化された像は表示装置123に表示される。収差補正器108については後述する。
【0018】
鏡筒100の内部は、真空排気ポンプ131によって、10-5Pa程度まで真空排気される。真空計106は、鏡筒100内部の気圧(真空度)を測定する。ガス導入機構107は、主制御装置121から指令を受けるガス制御装置124によって制御され、鏡筒100内部へ導入するガスの流量を制御する。ガス導入機構107は試料ステージ105近傍に設置されており、試料ステージ105に搭載された試料(不図示)に対してガスを噴射できる。ガス導入機構107から鏡筒100内部へ導入するガス種は、例えば希ガスを用いることができるが、これに限らない。ガス導入機構107は試料ステージ105近傍(直上)に設置され、試料ステージ105上に取り付けられた試料に対して、導入ガスを直接噴射できる。
【0019】
In-situ観察は、試料が実環境において反応する様子を観察することを目的としているので、試料近傍を実環境に近い状態にする必要がある。試料近傍へガスを導入することにより、試料近傍の雰囲気を、試料が実際に反応する気圧に近づけることができる。ガス導入量を調整することにより、任意気圧の雰囲気を形成することができるので、様々な試料をIn-situモードによって観察することができる。
【0020】
図2は、圧力保持空間203の近傍を拡大した図である。電子銃101と照射レンズ102の間には、差動排気絞り204を用いた圧力保持空間203が配置されている。圧力保持空間203の作用により、試料の近傍へガスを導入したとしても、電子銃101に対するガスの影響を最小限に抑えることができる。
【0021】
圧力保持空間203の底面を境界として、鏡筒100内部を電子銃101側の空間(第1空間)とステージ側の空間(第2空間)とに区分し、差動排気絞り204と隔膜201によって、両空間の間を気密封止する。これにより、ガスの影響をさらに抑制することができる。
【0022】
隔膜201は、隔膜挿抜機構202の先端に取り付けられている。隔膜201は、圧力保持空間203の圧力差を保持するために、真空シール部205を組み込むことができる。真空シール部205により、差動排気絞り204の上下(電子銃101側と照射レンズ102側)において圧力差を保持することができる。圧力差の保持とは、隔膜201を境界とする一方の空間が大気圧であり、他方の空間が10-5Pa程度であるとしても、各空間が差圧の影響を相互に受けないことを表す。この数値は1例であり、例えば大気圧と超高真空度(10-5Pa未満の気圧)との間の差圧を保持するようにしてもよい。
【0023】
隔膜挿抜機構202は、隔膜201が圧力保持空間203を気密封止するとともに電子線を通過させる位置(第1位置)と、隔膜201が圧力保持空間203を気密封止せず電子線と衝突しない位置(第2位置)との間で、隔膜201を移動させることができる。隔膜挿抜機構202は、隔膜201を水平方向(電子線の光軸に対して直交する平面内の方向)と垂直方向(電子線の光軸と平行な方向)ともに移動させることができる。移動機構としては、DCモータ、ステッピングモータ、エアーシリンダーなどを用いることができる。
【0024】
図3は、隔膜201の構造を示す側断面図である。隔膜201は、導電性膜211とベース212によって構成されている。導電性膜211は、電子線213の少なくとも一部を通過させるとともに、導電性膜211の両側において生じる圧力差を耐えることができる材料によって構成されている。ベース212は、電子線213を通過させる穴を有しており、その穴を塞ぐようにして導電性膜211が配置されている。
【0025】
導電性膜211の膜厚は、保持圧力差と電子線213を透過させることを考慮して、例えば数nm~数百nmとする。電子線213の透過と保持圧力の関係は、膜厚とベース212のサイズのトレードオフ関係となる。例えば、電子線213を透過させるためには膜厚が薄い方が有利であるが、保持圧力能力が低下してしまう。例えばベース212のサイズを0.5mm×0.5mmとする場合は、導電性膜211の膜厚を数十nmとする。
【0026】
隔膜201には、真空保持を目的としたOリングが組み込まれている。導電性膜211は数十nmの薄膜であるので、隔膜201を移動させるとき損傷する可能性がある。そこで隔膜201の振動を抑制するために、Oリングを用いて除振する。
【0027】
導電性膜211を電子線213の光軸上に配置した場合、電子線213は導電性膜211上で散乱し、スポット径が大きくなってしまう。そこで本実施形態1においては、隔膜201と隔膜挿抜機構202を、照射レンズ102の上部(電子銃101に近い側)に配置することとした。これにより、照射レンズ102~104の縮小作用を用いて、スポット径に合わせて散乱影響も縮小することが可能となり、スポット径への影響を軽減することができる。
【0028】
導電性膜211は、単体で圧力差を保持することができるが、鏡筒100内に設置された場合には、隔膜201とシール面との間の真空シールが必要となる。真空シール部205はこのための部材である。真空シール部205は隔膜挿抜機構202側で空間をシールする必要はなく、例えば差動排気絞り204側でシールしてもよい。その他、隔膜201の設置に伴い、真空を保持する必要がある場所にも、真空シール部205を配置してもよい。
【0029】
<実施の形態1:隔膜201のモードについて>
導電性膜211としてシリコン窒化膜などを用いた場合、TEM観察像上において、アモルファスなどの非晶質部分のコントラストが、実サンプルのコントラストと重畳してしまう現象が発生し、正しいTEM像としてのコントラストを得ることができない。そこで本実施形態1においては、隔膜201を電子線の光軸上に配置した第1モード(隔膜201を第1位置に配置するモード)と、隔膜201を光軸上から外した第2モード(隔膜201を第2位置に配置するモード)とを設ける。隔膜挿抜機構202は、主制御装置121からの指令にしたがって、第1モードと第2モードを切り替えることができる。
【0030】
第1モードにおいて、隔膜201は電子線の光軸上に挿入された状態にある。第1モードにおいては、隔膜201は圧力保持空間203の上下における差圧を保持し、さらに導電性膜211を透過した電子線が試料に対して照射される。透過した電子線が結像レンズ110~113によって結像され、CCDカメラ114上に結像され、主制御装置121を介し、表示装置123上で観察像が表示される。電子線は導電性膜211を透過しているので、高分解能の観察時には位相コントラストの影響を受けてしまうが、低倍率での観察時(低分解能)には位相コントラストの影響は小さい。したがって第1モードは、分解能よりも、試料近傍の圧力を高めた状態で観察することを優先していることになる。
【0031】
第2モードにおいて、隔膜201は電子線の光軸上から抜去された状態にあり、圧力保持空間203の上下における差圧は差動排気絞り204のみによって保持されている。電子線は導電性膜211の影響を受けることなく試料に対して照射され、第1モードと同様に結像される。第2モードは一般的な透過型電子顕微鏡と同様であり、電子線光軸上には何もない状態である。したがって、隔膜201における電子線散乱や位相コントラストの影響を受けることはなく、高分解能での像観察が可能である。
【0032】
酸化還元反応のように、大気に暴露することにより、材料の挙動が変化するサンプルが存在する。そのようなサンプルに対しては、第1モードにおいて空気を導入することにより、同反応を観察することができる。さらに反応後の状態を第2モードによって高分解能で観察することもできる。
【0033】
図4は、透過型電子顕微鏡1の動作手順を説明するフローチャートである。透過型電子顕微鏡1は、その場観察モードに移行すると、本フローチャートを開始する。その場観察モードへ移行する指示は、例えばオペレータが主制御装置121に対して適当なインターフェースを介して入力する。以下図4の各ステップについて説明する。
【0034】
図4:ステップS401)
主制御装置121は、隔膜210を第1位置(第1モードを実施するときの位置)へ配置するように、隔膜挿抜機構202に対して指示する。隔膜挿抜機構202はその指示にしたがって隔膜201を移動させる。
【0035】
図4:ステップS402)
主制御装置121は、鏡筒100内部へガスを導入するように、ガス導入機構107を制御する。この時点で隔膜201は第1モードの位置にあるので、圧力保持空間203は気密封止されている。
【0036】
図4:ステップS403)
オペレータが第1モードを実施するように主制御装置121へ指示すると、主制御装置121はS403~S406(第1モード)を実施する。
【0037】
図4:ステップS404)
主制御装置121は、真空計106による計測結果を取得する。真空度が第1モードに適した値(ガス導入によって試料近傍の圧力が比較的高まった状態)であることを確認した後、ステップS405へ進む。真空度が低すぎる(ガス流量が多過ぎる)場合は、ガス導入量を下げるかまたは真空排気ポンプ131の排気能力を上げるかのうち少なくともいずれかを実施する。真空度が高すぎる(ガス流量が少なすぎる)場合は、ガス導入量を上げるかまたは真空排気ポンプ131の排気能力を下げるかのうち少なくともいずれかを実施する。真空度が第1モードに適した値になるまで本ステップを継続する。
【0038】
図4:ステップS405~S406)
主制御装置121は、隔膜201を第1位置に維持したまま(S405)、主に低倍率で試料の観察像を取得する(S406)。
【0039】
図4:ステップS407~S411)
オペレータが第2モードを実施するように主制御装置121へ指示すると、主制御装置121はS407~S411(第2モード)を実施する。
【0040】
図4:ステップS408)
主制御装置121は、ガス導入を停止するように、ガス導入機構107を制御する。第2モードは真空度を高めた状態で試料を観察するモードなので、試料近傍のガス濃度が低いことが望ましいからである。ガス導入を停止することに代えて、真空排気ポンプ131の排気能力を第1モード実施時よりも高めることにより、試料近傍の真空度を高めてもよい。これらを併用してもよい。
【0041】
図4:ステップS409)
主制御装置121は、真空計106による計測結果を取得する。真空度が第2モードに適した値(試料近傍の圧力が比較的低い状態)であることを確認した後、ステップS410へ進む。真空度が低すぎる(圧力が高すぎる)場合は、本ステップを継続することにより、真空排気ポンプ131が試料近傍を真空排気するのを待つ。真空度が高すぎる(圧力が低すぎる)場合は、ガス導入を再開するかまたは真空排気ポンプ131の排気能力を下げるかのうち少なくともいずれかを実施する。真空度が第2モードに適した値になるまで本ステップを継続する。
【0042】
図4:ステップS410~S411)
主制御装置121は、隔膜201を第2位置に移動させ(S410)、主に試料の高分解能の観察像を取得する(S411)。
【0043】
図4において、第1モードを用いて試料のガス反応を観察し、その後、第2モードに移行し、高分解能で観察してもよい。このように、第1モードと第2モードを組み合わせてもよい。第2モードにおいては、エネルギー分散型X線分析(EDX)や、電子エネルギー損失分光法(EELS)などの各種分析装置の使用も可能である。
【0044】
<実施の形態1:まとめ>
本実施形態1に係る透過型電子顕微鏡1は、隔膜201が圧力保持空間203を気密封止するとともに電子線を透過させる第1モードと、隔膜201が圧力保持空間203を気密封止せず電子線と衝突しない第2モードとを切り替える。これにより、第1モードにおいては観察像の分解能よりも試料近傍の圧力を高めた状態で観察することを優先し、第2モードにおいては隔膜201の位相コントラストと実サンプルのコントラストが重畳してしまう課題を回避することにより高分解能の観察を優先することができる。したがって、観察対象の特性に応じて、その場観察を適切に実施できる。
【0045】
本実施形態1に係る透過型電子顕微鏡1は、その場観察モードに移行すると、隔膜201を第1モードの位置に移動させた上で鏡筒100内部へガス導入を開始する。第1モードを実施する場合は、隔膜201を第1位置に保持しておき、真空度が第1モードに適した値になった状態で透過電子線を用いて観察像を得る。これにより、ユーザは観察モードを指定するのみで、自動的にその場観察に適した動作モードを実施して観察像を得ることができる。
【0046】
本実施形態1に係る透過型電子顕微鏡1は、その場観察モードに移行すると、隔膜201を第1モードの位置に移動させた上で鏡筒100内部へガス導入を開始する。第2モードを実施する場合は、真空度が十分上がるまでガスを抜いた後、隔膜201を第2位置へ移動させた状態で、等価電子線を用いて観察像を得る。これにより、ユーザは観察モードを指定するのみで、自動的にその場観察に適した動作モードを実施して観察像を得ることができる。
【0047】
本実施形態1において、導電性膜211に代えて金属などの材料を用い、圧力保持空間203を完全に封止することにより、差圧を保持しつつ、試料を反応させる動作モードと試料を観察する動作モードを使い分けることが考えられる。しかし、本実施形態1の第1モードのように、試料近傍の圧力を高めつつ電子線が隔膜を透過するような使用態様は困難である。したがって本実施形態1のように、第1モードと第2モードを切り替える構成は、観察用途に応じて動作モードを切り替える点において、有用である。
【0048】
<実施の形態2>
実施形態1において説明した第1モードと第2モードを切り替える構成は、走査透過型電子顕微鏡(STEM)においても用いることができる。STEMは、電子線を細く絞り、試料上を操作させることにより、様々な情報を得ることが可能である。特に、HAADF像は、Zコントラスト像を得られるので、有用な観察手法である。STEMにおいては、電子線のプローブ径が分解能に直結する。可能な限り電子線を細く絞ることにより、高分解能観察が可能となる。
【0049】
ガス導入機構107にて導入されたガスは、照射系配管206内と試料室207内に充満する。これらの圧力が高い場合(高圧力下)は、電子銃101から放出された電子線が散乱し、電子線のスポット径が大きくなってしまうので、STEMによる高分解能観察には向かない。そこで実施形態1と同様に、観察目的に合わせて第1モードと第2モードを使い分けることにより、適切な観察条件下でのSTEM像観察が可能となる。真空度と電子線の散乱は相関があり、真空度により制御ができる。その観点においても、第1モードと第2モードを使い分けることが有用である。
【0050】
<実施の形態3>
STEM像観察においては、収差補正器108を用いて球面収差を低減することが可能である。これにより、プローブ径を細く絞り、高分解能観察が可能である。電子顕微鏡などで使用される磁場レンズにおいて、レンズの中心から離れた場所を通過する電子線は、大きく屈折される。これにより電子線は、試料面上の一点に集束することができず、プローブ径が大きくなってしまう。一方、収差補正器108を用いると、磁場レンズによって生じた屈折を打ち消すことが可能であり、試料面上でプローブ径を小さく(細く)することができる。
【0051】
収差補正器108を使用する場合、事前に既成収差の補正を実施しておく必要がある。例えばアモルファス領域と透過像(ロンチグラム像)を用いた手法や、実像を用いた補正手法が一般的である。
【0052】
隔膜201を電子線光軸上に挿入した場合、透過像を用いる収差補正手法は、TEM同様に位相コントラストの影響を受けてしまい、最適な透過像(ロンチグラム像)を観察することができず、球面収差を補正することができない。これは、アモルファスのコントラストが透過像に対して重畳してしまうことが原因である。実像を用いた手法は、HAADF像などを観察しながら、収差を補正する。この場合、隔膜201における電子線散乱など、別の要因が影響してしまい、同じく収差を適切に補正できない。
【0053】
そこで本実施形態3においては、隔膜201を抜去した第2モードにおいて収差補正器108によって収差を補正し、補正完了後に、隔膜201を挿入した第1モードによって観察像を得ることとした。その他の構成は実施形態1~2と同様である。
【0054】
図5は、収差補正器108を用いて収差を補正する手順を説明するフローチャートである。収差補正モードを実施するようにユーザが主制御装置121へ指示すると、主制御装置121は本フローチャートを開始する。主制御装置121は、真空計106の計測結果を取得し、鏡筒100内の真空度が第2モードに適した値であるか否かを確認する(S501)。真空度が適切でない場合は、図4と同様に適切な真空度を得るまで待機する。主制御装置121は第2モードに移行し、隔膜201を第2位置へ移動させる(S502)。主制御装置121は、収差補正器108の収差補正量を調整する(S503)。調整手法は上記の通りである。補正量を調整した後、図4のフローチャートに移行する(S504)。
【0055】
<実施の形態4>
図6は、本発明の実施形態4に係る透過型電子顕微鏡1の構成を説明する側面模式図である。実施形態1~3においては、隔膜201を照射レンズ102上部の圧力保持空間203部に設置している。これに代えて隔膜201は、図6に示すように試料室207内に設置することも可能である。電子線散乱の観点からは、ガス雰囲気領域は可能な限り短い領域であることが望ましい。そこで本実施形態4においては試料直上に隔膜201を設けることとした。その他の構成は実施形態1~3と同様である。
【0056】
第1モードにおいてガス導入機構107から導入されたガスは、試料室207内のみに充満し、照射系配管206内部には影響を及ぼさない。したがって、導入ガスによる電子線の散乱の影響は最小限に抑制することができる。
【0057】
<本発明の変形例について>
本発明は、前述した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本開示を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
【0058】
以上の実施形態においては、透過型電子顕微鏡について説明したが、本発明はイオン顕微鏡を含むその他の荷電粒子線装置に対して適用することができる。すなわち、鏡筒内の圧力保持空間を気密封止する必要がある荷電粒子線装置において、本発明を用いて、第1モードと第2モードを切り替えることができる。
【符号の説明】
【0059】
100:鏡筒
101:電子銃
102~104:照射レンズ
105:試料ステージ
106:真空計
107:ガス導入機構
108:収差補正器
110~113:電子レンズ
114:CCDカメラ
120:制御基板
121:主制御装置
122:レンズ制御装置
123:表示装置
124:ガス制御装置
201:隔膜
202:隔膜挿抜機構
203:圧力保持空間
204:差動排気絞り
205:真空シール部
206:照射系配管
207:試料室
211:導電性膜
212:ベース
図1
図2
図3
図4
図5
図6