IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社荏原製作所の特許一覧

特許7502109監視システム内の通信経路を確定する方法及び監視システム
<>
  • 特許-監視システム内の通信経路を確定する方法及び監視システム 図1
  • 特許-監視システム内の通信経路を確定する方法及び監視システム 図2
  • 特許-監視システム内の通信経路を確定する方法及び監視システム 図3
  • 特許-監視システム内の通信経路を確定する方法及び監視システム 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-10
(45)【発行日】2024-06-18
(54)【発明の名称】監視システム内の通信経路を確定する方法及び監視システム
(51)【国際特許分類】
   H04W 48/16 20090101AFI20240611BHJP
   H04W 4/38 20180101ALI20240611BHJP
   F04D 29/00 20060101ALI20240611BHJP
【FI】
H04W48/16 130
H04W4/38
F04D29/00 B
【請求項の数】 4
(21)【出願番号】P 2020137347
(22)【出願日】2020-08-17
(65)【公開番号】P2022033457
(43)【公開日】2022-03-02
【審査請求日】2023-04-07
(73)【特許権者】
【識別番号】000000239
【氏名又は名称】株式会社荏原製作所
(74)【代理人】
【識別番号】110001519
【氏名又は名称】弁理士法人太陽国際特許事務所
(72)【発明者】
【氏名】梁 倩
(72)【発明者】
【氏名】山田 泰雅
(72)【発明者】
【氏名】坂巻 裕太
【審査官】石田 信行
(56)【参考文献】
【文献】国際公開第2019/087639(WO,A1)
【文献】米国特許出願公開第2012/0156034(US,A1)
【文献】国際公開第2012/124112(WO,A1)
【文献】特開2019-125098(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04W 4/00 ー 99/00
H04B 7/24 ー 7/26
F04D 29/00
(57)【特許請求の範囲】
【請求項1】
監視システム内の通信経路を確定する方法であって、
回転機械に設置され前記回転機械の状態量を検出する1又は複数の監視装置から、前記1又は複数の監視装置と無線通信が可能な複数の上位機器へ、少なくとも送信元の前記1又は複数の監視装置が特定可能な情報を含む所定強度の無線通信信号を送信するステップと、
前記複数の上位機器のそれぞれにおいて、受信した前記無線通信信号の通信状態情報を取得するステップであって、前記通信状態情報は、前記無線通信信号の電波強度と、単位時間当たりの電波が正常に受信された回数又は受信した電波強度のばらつきが所定値以内か否かに基づいて特定される安定性とを含む、ステップと、
前記複数の上位機器のそれぞれが取得した前記通信状態情報に基づき、前記1又は複数の監視装置のうちの一の監視装置と、前記一の監視装置が検出した前記状態量を含む情報を取得する一の上位機器とを選定するステップと、を備える、
監視システム内の通信経路を確定する方法。
【請求項2】
前記一の監視装置は、前記一の上位機器に対してのみ前記状態量を含む情報を送信する、
請求項に記載の監視システム内の通信経路を確定する方法。
【請求項3】
前記複数の上位機器と通信可能な管理装置又は前記複数の上位機器内の任意の上位機器において、選定された前記一の監視装置及び前記一の上位機器に対する再選定指示を受信した際に、前記一の監視装置及び前記一の上位機器の選定をやり直すステップを更に備える、
請求項1又は請求項2に記載の監視システム内の通信経路を確定する方法。
【請求項4】
1又は複数の回転機械に設置され、前記1又は複数の回転機械の状態量を検出する1又は複数の監視装置と、
前記1又は複数の監視装置と無線通信が可能な複数の上位機器であって、前記1又は複数の監視装置との間の前記無線通信における通信状態情報を取得する通信状態情報取得部を備え、前記通信状態情報は、前記無線通信の電波強度と、単位時間当たりの電波が正常に受信された回数、又は受信した電波強度のばらつきが所定値以内か否かに基づいて特定される安定性とを含む、前記複数の上位機器と、
前記複数の上位機器から前記1又は複数の回転機械の前記状態量を含む情報を取得して管理する管理装置であって、前記複数の上位機器のそれぞれの前記通信状態情報取得部において取得された前記1又は複数の監視装置のうちの一の監視装置との間の無線通信における前記通信状態情報に基づき、前記一の監視装置と前記一の監視装置が検出した前記状態量を含む情報を取得する一の上位機器とを選定する選定部を備える、前記管理装置と、を備える、
監視システム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は回転機械の動作を監視する監視システム内の通信経路を確定する方法及び当該方法を実施可能な監視システムに関するものである。
【背景技術】
【0002】
流体を移送する回転機械の技術分野において、大規模プラントや工場といった製造設備で用いられる回転機械に生じる異常を検知するために、一の回転機械の適所に複数のセンサを設置して、その回転機械の状態を監視することが行われている。例えば特許文献1には、複数のセンサが回転機械であるポンプの異常を検知した際に、センサに接続された制御システムがネットワークを介して監視システムにその旨報知することで、遠隔地に設置された監視システムにおいて回転機械の管理を可能としたものが記載されている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2003-036321号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、製造設備で用いられる回転機械は、当該設備内の各所に複数個設置されている場合が多い。このような設備内の複数の回転機械を管理しようとすると、例えば特許文献1に記載されたもののように、各回転機械に複数のセンサを搭載し、当該センサの検出結果を収集することとなるが、設備内に存在するセンサの総数が極めて多いため、これらのセンサを有線で制御システム等に接続することは煩雑な作業であり、回転機械の設置に要する工数の増大を招く恐れがある。そこで、上述した有線接続に代えて、回転機械に設置される複数のセンサに無線通信機能を追加し、且つ設備内の適所にセンサとの無線通信が可能なアクセスポイントあるいは(無線ルータを含む)ゲートウェイ等の上位通信機器(以下、これらをまとめて「上位機器」という)を設置して、無線によりセンサの検出結果を収集すれば、上述した配線の作業を省略することができる。しかしこの場合、上位機器は設備内の適所、例えばその通信可能距離等を考慮して所定間隔毎に設置されるものであるため、一のセンサから送信された信号を受信可能な上位機器は1つとは限らない。一のセンサが送信した信号が複数の上位機器で受信されてしまうと、当該信号を受信した複数の上位機器が同一の情報(一のセンサが検出した状態量の情報)を管理装置に送信することとなり、通信負荷及び通信コストが無用に増大する恐れがある。加えて、管理装置側において同一の情報が複数回受信されると、管理装置側における回転機械の状態量のデータ管理が煩雑になる恐れもある。
【0005】
本開示は、上述した課題に鑑み、通信負荷や通信コストを抑制することができ、且つデータ管理が容易な、監視システム内の通信経路を確定する方法及び監視システムを提供することを目的とする。
【課題を解決するための手段】
【0006】
上記目的を達成するために、本開示の第1の態様に係る監視システム1内の通信経路を確定する方法は、例えば図1乃至図3に示すように、回転機械P1~Pnに設置され前記回転機械P1~Pnの状態量を検出する1又は複数の監視装置M11~Mn2から、前記1又は複数の監視装置M11~Mn2と無線通信が可能な複数の上位機器G1~Gmへ、少なくとも送信元の前記1又は複数の監視装置M11~Mn2が特定可能な情報を含む所定強度の無線通信信号SG1、SG2を送信するステップS11と、前記複数の上位機器G1~Gmのそれぞれにおいて、受信した前記無線通信信号SG1、SG2の通信状態情報を取得するステップS13と、前記複数の上位機器G1~Gmのそれぞれが取得した前記通信状態情報に基づき、前記1又は複数の監視装置M11~Mn2のうちの一の監視装置と、前記一の監視装置が検出した前記状態量を含む情報を取得する一の上位機器とを選定するステップS15と、を含むものである。
【0007】
このように構成すると、上位機器が取得した無線状態情報に基づいて、一の監視装置とこの一の監視装置と通信を行う際の無線通信の状態が最も良好な一の上位機器を通信経路の一部として選定することができる。これにより、監視システム内の各監視装置の通信経路が一意に確定するため、異常の検知を実施する際の通信負荷及び通信コストの上昇を抑えた監視システムを提供することができるようになる。
【0008】
本開示の第2の態様に係る監視システム1内の通信経路を確定する方法は、例えば図3に示すように、上記本開示の第1の態様に係る監視システム1内の通信経路を確定する方法において、前記通信状態情報は、前記無線通信信号の電波強度と安定性とを含むものである。
【0009】
このように構成すると、電波強度だけでなく、信号の安定性をも考慮して一の監視装置及び一の上位機器を選定することになり、通信経路を構成する一の監視装置及び一の上位機器の選定を精度よく行うことができる。
【0010】
本開示の第3の態様に係る監視システム1内の通信経路を確定する方法は、上記本開示の第1又は2の態様に係る監視システム1内の通信経路を確定する方法において、前記1又は複数の監視装置M11~Mn2は、前記一の上位機器に対してのみ前記状態量を含む情報を送信するものである。
【0011】
このように構成すると、状態量情報信号の送信先となる上位機器を限定することで、送信先以外の上位機器が当該信号の影響を受けることがない。
【0012】
本開示の第4の態様に係る監視システム1内の通信経路を確定する方法は、上記本開示の第1又は2の態様に係る監視システム1内の通信経路を確定する方法において、前記複数の上位機器G1~Gmと通信可能な管理装置C又は前記複数の上位機器G1~Gm内の任意の上位機器において、選定された前記一の監視装置及び前記一の上位機器に対する再選定指示を受信した際に、前記一の監視装置及び前記一の上位機器の選定をやり直すステップを更に含むものである。
【0013】
このように構成すると、種々の要因で通信環境が変更された場合等にも迅速に対処でき、状態量情報信号を確実に収集することができる。
【0014】
本開示の第5の態様に係る監視システム1は、例えば図1及び図2に示すように、1又は複数の回転機械P1~Pnに設置され、前記1又は複数の回転機械P1~Pnの状態量を検出する1又は複数の監視装置M11~Mn2と、前記1又は複数の監視装置M11~Mn2と無線通信が可能な複数の上位機器G1~Gmであって、前記1又は複数の監視装置M11~Mn2との間の前記無線通信における通信状態情報を取得する通信状態情報取得部25、35を備える、前記複数の上位機器G1~Gmと、前記複数の上位機器G1~Gmから前記1又は複数の回転機械P1~Pnの前記状態量を含む情報を取得して管理する管理装置Cであって、前記複数の上位機器G1~Gmのそれぞれの前記通信状態情報取得部25、35において取得された前記1又は複数の監視装置M11~Mn2のうちの一の監視装置との間の無線通信における前記通信状態情報に基づき、前記一の監視装置と前記一の監視装置が検出した前記状態量を含む情報を取得する一の上位機器とを選定する選定部43を備える、前記管理装置Cと、を含むものである。
【0015】
このように構成すると、管理装置において、上位機器が取得した無線状態情報に基づいて、一の監視装置及びこの一の監視装置と通信を行う際の無線通信の状態が最も良好な一の上位機器を通信経路として選定することができる。これにより、監視システム内の各監視装置と管理装置の間の通信経路が一意に確定しているため、異常の検知を実施する際の通信負荷及び通信コストの上昇を抑えることができる。また、管理装置においては重複する情報を受信することがなくなり、異常を検知するために収集される回転機械の状態量のデータの管理が容易になる。
【発明の効果】
【0016】
上述した構成を備えることにより、通信負荷や通信コストを抑制することができ、且つデータ管理が容易な、監視システム内の通信経路を確定する方法及び監視システムを提供することができるようになる。
【図面の簡単な説明】
【0017】
図1】本開示の一実施の形態に係る監視システムの一例を示す模式図である。
図2】本開示の一実施の形態に係る監視システムの一部を示す概略ブロック図である。
図3】本開示の一実施の形態に係る監視システム内の通信経路を確定する方法を示すフローチャートである。
図4】本開示の一実施の形態に係る監視システムにおける異常の検知方法を示すフローチャートである。
【発明を実施するための形態】
【0018】
以下、図面を参照して本開示を実施するための各実施の形態について説明する。なお、以下では本開示の目的を達成するための説明に必要な範囲を模式的に示し、本開示の該当部分の説明に必要な範囲を主に説明することとし、説明を省略する箇所については公知技術によるものとする。
【0019】
図1は、本開示の一実施の形態に係る監視システムの一例を示す模式図である。本実施の形態に係る監視システム1は、図1に示すように、所定の広さを備える製造設備、例えば工場F内で用いられているn(1≦n)個の回転機械としてのポンプ装置P1~Pnを監視するためのシステムとして構築されたものであってよい。そして、この監視システム1は、当該ポンプ装置P1~Pnを監視するために、m(1<m<n)個の上位機器G1~Gmと、管理装置Cとを含んでいる。なお、本実施の形態においては、回転機械としてポンプ装置のみを例示しているが、このポンプ装置に代えて、あるいはポンプ装置に加えて、コンプレッサ、タービン、冷凍機、冷却塔等の他の回転機械を採用することができる。
【0020】
ポンプ装置P1~Pnは、工場F内の任意の位置に設置された、例えば液体を移送可能な横軸単段ポンプとすることができる。このポンプ装置P1~Pnは、主に内部にインペラを備えるポンプ本体10と、ポンプ本体10内のインペラを回転させる、永久磁石型モータ、誘導モータ、あるいはSRモータ等からなる電動機11とを含むものであって良い。なお、ポンプ装置P1~Pnは横軸単段ポンプには限定されず、例えば縦軸多段ポンプや水中ポンプといった他の構造のポンプ装置であってもよい。また、本実施の形態においては、説明を簡略化するために工場F内に同一構造のポンプ装置P1~Pnが複数個配設されている場合について説示しているが、工場F内にその構造が異なるポンプ装置が混在して設置されていてもよい。
【0021】
上述した複数のポンプ装置P1~Pnのそれぞれには、1乃至複数の監視装置M11~Mn2が取り付けられている。この監視装置M11~Mn2には、設置対象であるポンプ装置P1~Pnの状態量を検出可能なものを採用することができる。ここで、ポンプ装置P1~Pnの状態量とは、ポンプ装置P1~Pnに関連する種々のパラメータ情報、例えばポンプ本体10の吐出圧力や吐出流量、ポンプ装置P1~Pnに生じる振動、ポンプ本体10又は電動機11の温度、あるいは電動機11の電流値を含むものである。これに関連して、監視装置M11~Mn2には、種々のセンサ部14(図2参照。)を備えたものを採用することができる。当該センサ部14としては、ポンプ本体10の吐出圧力を検出可能な圧力センサ、ポンプ本体10の吐出流量を検出可能な流量センサ、ポンプ装置P1~Pnの振動を検出可能な加速度センサ、電動機11の温度を検出可能な温度センサ、あるいは電動機11の電流を検出可能な電流センサ等を挙げることができるが、これらに限定されない。また、1乃至複数の監視装置M11~Mn2は、無線通信機能を備えていることが好ましく、当該無線通信機能を用いることで、上位機器G1~Gmへ各種の情報を送信可能となっている。
【0022】
上位機器G1~Gmは、工場F内に所定間隔毎に設けられ、複数のポンプ装置P1~Pnに取り付けられた監視装置M11~Mn2から送信された情報を受信し、管理装置Cに送信するための機器である。この上位機器G1~Gmは、アクセスポイントあるいはゲートウェイの機能を有する機器であってよい。本実施の形態においては、各上位機器G1~Gmの全てがゲートウェイとして機能している場合を説明するが、各上位機器G1~Gmは少なくともアクセスポイント機能を有していれば足り、本実施の形態のもののように、各上位機器G1~Gmの全てがネットワーク通信可能である必要はない。したがって、上位機器G1~Gmのうちの一部のみが、あるいは上位機器G1~Gmとは別に設けられたネットワーク接続用のゲートウェイ(図示省略)のみがネットワーク通信可能であってもよい。また、各上位機器G1~Gmの工場F内における配置は、この上位機器G1~Gmと監視装置M11~Mn2との間の無線通信の通信可能距離や、デッドスポットが形成されないこと等を考慮して、例えば数メートル~数十メートル程度の間隔を空けて設定することが好ましい。さらに、上記機器G1~Gmと監視装置M11~Mn2との間の無線通信の手段は、典型的には国際規格(IEEE802.15.4、IEEE802.15.1、IEEE802.15.11a、11b、11g、11n、11ac、11ad、ISO/IEC14513-3-10、IEEE802.15.4g)方式(Bluetooth(登録商標)、BluetoothLowEnergy、Wi-Fi(登録商標)、ZigBee(登録商標)、Sub-GHz、EnOcean(登録商標)等)の通信手段が用いられる。そして、各上位機器G1~Gmにおいて収集された情報は、ネットワークNWを介して管理装置Cにて一括管理される。
【0023】
管理装置Cは、工場F内の(1又は)複数のポンプ装置P1~Pnの状態量を収集・管理するためのものであり、例えばクラウドベースのデータ処理プラットフォームを採用することができる。この管理装置Cは、好ましくはネットワークNWに接続されており、上位機器G1~Gmが送信した情報を取得することにより、ポンプ装置P1~Pnの状態量を管理し、ポンプ装置P1~Pnの異常あるいは異常の兆候(以下、これらをまとめて単に「異常」という)を検知することができるものであってよい。本実施の形態に係る監視システムにおける異常の検知方法については、後述する。なお、本実施の形態においては管理装置Cとしてクラウドベースのデータ処理プラットフォームを例示しているが、この管理装置Cを周知のサーバコンピュータや、上位機器G1~GmとローカルにあるいはネットワークNWを介して接続された集中監視システム等の形式で構成することも可能である。
【0024】
さらに、本実施の形態に係る監視システム1の管理装置Cは、ネットワークNWを介して管理者ADが有する端末装置TDに接続可能であることが好ましい。端末装置TDとしては、周知のコンピュータやモバイルPC、タブレットデバイス等を採用することができ、この端末装置TDにより、管理装置Cと管理者ADとの間の入出力動作を実現することができる。
【0025】
上述した一連の構成を備える監視システム1において、上位機器G1~Gmは上述の通り通信可能距離等を考慮して所定間隔毎に設置されている。これにより、監視装置M11~Mn2のうちの多くのもの(例えばポンプ装置P1に設置された監視装置M11~M13)は、通信可能距離内に1つの上位機器(例えば上位機器G1)のみが存在している。他方、隣接する2つの上位機器(例えば上位機器G1と上位機器G2)の中間位置に設置されているような監視装置(例えばポンプ装置P2に設置された監視装置M21~M22)においては、通信可能距離内に2つの上位機器が存在している。このように通信可能距離内に複数の上位機器が存在している監視装置(M21~M22)においては、当該上位機器(G1、G2)それぞれとの間に無線通信が可能であるが、監視装置が複数の上位機器に対して状態量を含む情報(以下、「状態量情報」ともいう。)を送信することは、同一の情報の通信を複数回行うことになり、通信負荷及び通信コストの上昇と管理装置Cにおけるデータ管理の煩雑化を招く原因となり得る。そこで、以下には、上述した監視システム1内の通信経路を確定する方法に関連した、監視システム1内の各構成要素について説明を行う。
【0026】
図2は、本開示の一実施の形態に係る監視システム1の一部、詳しくはその通信可能範囲内に複数の上位機器G1、G2が存在している監視装置M11の通信経路を構成し得る部分を示す概略ブロック図である。なお、以下の説明においては監視装置を代表して監視装置M11のみを説明しているが、(センサ部14で検出される状態量やポンプ装置に対する設置位置は異なるものの)監視装置自体の基本的な構成は、他の監視装置も下記の監視装置M11と同様であってよい。同じく、以下の説明においては上位機器を代表して上位機器G1及びG2の2つについて説明するが、上位機器自体の基本的な構成は、他の上位機器も下記の上位機器G1、G2と同様であってよい。
【0027】
監視装置M21は、図2に示すように、コントローラ12と、無線通信部13と、センサ部14と、メモリ15とを主に含むものである。このうち、コントローラ12は、監視装置M21全体を制御するための演算装置を含むものである。また、無線通信部13は、特定の上位機器との間に無線通信を実現するための通信手段であって、アンテナ等の通信機器を含み、上位機器G1、G2の無線通信部21、31との間で双方向通信が可能なものであって良い。さらに、センサ部14は、監視装置M21が設置されたポンプ装置P2の1又は複数の状態量を検出するものである。そして、メモリ15は、コントローラ12において実行されるプログラムや、センサ部14において検出したポンプ装置P2の状態量、及び監視装置M21の固有アドレス等が格納されるものである。
【0028】
上述した監視装置M21の無線通信部13は、上位機器G1、G2に対して所定の無線通信信号SG1、SG2を送信することが可能である。ここで送信される所定の無線通信信号SG1、SG2は、当該信号を受信した上位機器G1、G2側において信号の送信元となる監視装置M21を特定可能な情報としての固有アドレスを少なくとも含む。また、この無線通信信号SG1、SG2は、当該固有アドレスに加えて、監視装置M21が設置されているポンプ装置P2に関する情報、ポンプ装置P2に対する監視装置M21の設置位置、無線通信信号SG1、SG2の送信時における電波強度、あるいはセンサ部14が検出した状態量等を、上位機器G1、G2あるいは管理装置Cからの要求等に応じて、適宜含むことができる。なお、本実施の形態に係る無線通信信号SG1、SG2は、監視装置M21を特定可能な情報として固有アドレスを含むものを採用しているが、監視装置M21を特定可能な情報であれば当該固有アドレス以外の情報であってもよい。また、所定の無線通信信号SG1、SG2は、後述する通信経路を確定するために生成された信号であってもよいし、監視装置M21が任意の上位機器に対して状態量情報を送信するために生成される信号を援用してもよい。本実施の形態においては、通信経路を確定する際に送信される信号を「無線通信信号(SG1、SG2)」と呼び、通信経路が確定した後に各監視装置M11~Mn2で取得した状態量を含む状態量情報を送信するための信号を「状態量情報信号」と呼んで、両者を区別している。
【0029】
本実施の形態においては、監視装置M21の通信可能範囲内には2つの上位機器G1、G2が存在している。これら2つの上位機器G1、G2はゲートウェイとして機能し、且つ両者は同様の構成を備えている。詳しくは、図2に示すように、上位機器G1、G2は、無線通信部21、31と、制御部22、32と、ネットワークインタフェース23、33と、メモリ24、34とを主に含むものである。
【0030】
無線通信部21、31は、少なくとも監視装置M21との間に無線通信を実現するためのものであって、アンテナ等の通信機器を含み、少なくとも監視装置M21の無線通信部13との間で双方向通信が可能なものであって良い。また、制御部22、32は、各上位機器G1、G2全体を制御するための演算装置である。さらに、ネットワークインタフェース23、33は、インターネットに代表されるネットワークNWに接続するためのインタフェースユニットである。そして、メモリ24、34は、制御部22、32において実行されるプログラムや、無線通信部21、31を介して受信したポンプ装置P2の状態量情報及び通信状態情報等が格納されるものである。
【0031】
上位機器G1、G2の制御部22、32は、通信状態情報取得部25、35と、状態量情報取得部26、36とを含むことができる。このうち通信状態情報取得部25、35は、無線通信部21、31で取得した無線通信信号SG1、SG2から、無線状態情報を取得するためのものである。ここで、無線状態情報とは、無線通信信号SG1、SG2の通信の状態を示す情報であり、詳しくは無線通信信号SG1、SG2の電波強度及び安定性の少なくとも一方、好ましくは両方を含むものである。この無線状態情報のうち、無線通信信号SG1、SG2の電波強度(dBm)は周知の測定器を用いることで特定でき、無線通信信号SG1、SG2の安定性は、例えば単位時間当たりの電波の正常な受信回数、又は受信電波強度のばらつき(偏差)が一定値以内か否かに基づいて特定することができる。また、状態量情報取得部26、36は、無線通信部21、31で受信した状態量情報信号を取得するものである。ここで取得される状態量情報信号は、ネットワークインタフェース23、33を介して管理装置Cに送信されることで、ポンプ装置P2の異常検知に利用される。
【0032】
管理装置Cは、図2に示すように、例えばクラウドサービスを構成するための仮想マシン(VM)の形態で提供することができる。この仮想マシンからなる管理装置Cは、ネットワークNW上にアクセス可能な状態で提供され、少なくとも演算モジュール41と、ストレージ領域42を含むものとすることができる。
【0033】
管理装置Cの演算モジュール41は、選定部43と異常検知部44とを含むことができる。このうち、選定部43は、2つの上位機器G1、G2の通信状態情報取得部25、35において取得された、監視装置M21との間の無線通信信号SG1、SG2の無線状態情報を参酌し、監視装置M21と、この監視装置M21が検出したポンプ装置P2の状態量情報信号を取得するのに適した上位機器が上位機器G1と上位機器G2のいずれであるかとを選定するためのものである。この選定は、演算モジュール41が自動で行うようにしてもよいし、端末装置TDのモニタに各上位機器G1、G2で取得された無線状態情報を表示し、管理者ADが選定することで実現できるようにしてもよい。また、異常検知部44は、ポンプ装置P1~Pnの状態量に基づいてポンプ装置P1~Pnに異常が生じているか否かを検知するものである。異常検知部44における異常検知の手法としては、教師あり学習(例えばニューラルネットワークやサポートベクターマシンを用いたもの)又は教師なし学習(例えばオートエンコーダやクラスタリングを用いたもの)を経て生成された学習済モデルによるもの、あるいは閾値を用いたルールベースのもの等を用いて自動的に検知(あるいは推論)することが好ましい。なお、端末装置TDのモニタに各上位機器G1、G2で取得された状態量を表示することで、管理者ADが異常の有無を手動で判断するようにしてもよい。
【0034】
また、管理装置Cのストレージ領域42は、演算モジュール41で用いられる各種プログラムや、取得したポンプ装置P1~Pnの状態量及び通信状態情報等を格納するためのものである。このストレージ領域42は、例えばネットワーク上の任意のデータベースの領域を割り当てることで構成することができるものである。
【0035】
次に、本実施の形態に係る監視システム1における通信経路を確定する方法について、説明を行う。なお、以下の説明においては、監視システム1の特に図2に示す部分において、一の監視装置M21が検出したポンプ装置P2の状態量情報信号を取得すべき上位機器を特定することで、この監視装置M21と管理装置Cの間の通信経路を確定する方法を例示的に説明する。なお、当該通信経路を確定する方法は、工場F等に新たに監視システム1を適用したタイミングに加え、例えば新たにポンプ装置、監視装置あるいは上位機器が工場F内に設置されたタイミングで実施すればよい。
【0036】
図3は、本開示の一実施の形態に係る監視システム1内の通信経路を確定する方法を示すフローチャートである。管理装置Cからの要求等に基づき、当該方法が実施されると、図3に示すように、先ず、一の監視装置M21から、当該監視装置M21の通信可能範囲内に存在する全ての上位機器に対して、所定の無線通信信号を送信する(ステップS11)。本実施の形態においては、図2に示すように、監視装置M21の通信可能範囲内には2つの上位機器G1、G2が存在しているため、監視装置M21はこれらの上位機器G1、G2に対して所定の無線通信信号SG1、SG2を送信し、上位機器G1、G2は、監視装置M21から送信された当該所定の無線通信信号SG1、SG2をそれぞれ受信する(ステップS12)。この所定の無線通信信号SG1、SG2に含まれる具体的な情報については既に一例を上述しているのでここでは説明を省略する。また、複数の上位機器G1、G2に送信される無線通信信号SG1、SG2を共通の信号とすると、後述する比較が容易となり好ましい。
【0037】
次に、監視装置M21から送信された所定の無線通信信号を受信した各上位機器G1、G2において、受信した所定の無線通信信号の無線状態情報を取得する(ステップS13)。ここで、無線状態情報としては、無線通信信号の電波強度と、無線通信信号の安定性の少なくとも一方、好ましくはその両方を含むものであってよい。
【0038】
各上位機器G1、G2において取得された無線状態情報は、ネットワークインタフェース23、33により、ネットワークNWを介して管理装置Cに送信される(ステップS14)。そして、管理装置Cに集約された一の監視装置M21と各上位機器G1、G2との間の無線状態情報を比較等することにより、一の監視装置M21とこの一の監視装置M21との通信を行うのに最適な一の上位機器とが選定される(ステップS15)。当該選定は、各上位機器G1、G2から送信された無線状態情報に含まれる電波強度の値及び/又は安定性の値の大小関係を比較することで選定部43が自動的に選定を行うようにしてもよいし、これらの値を管理者ADが確認することにより手動で選定を行うようにしてもよいし、これらを組み合わせてもよい。
【0039】
管理装置Cにおいて一の監視装置M21及びこの一の監視装置M21に対する一の上位機器(例えば上位機器G2)の選定が完了すると、管理装置Cは、当該選定結果を、例えば一の上位機器G2に一の監視装置M21が特定可能な固有アドレス等の情報と共に返信する(ステップS16)。そして、選定結果を受信した上位機器G2は、当該選定結果に基づいて一の監視装置M21との間の通信を確立する(ステップS17)。上述した一連の工程により、一の監視装置M21から送信される状態量情報信号は、一の上位機器G2を経由して管理装置Cへ送信されるという通信経路が確定される。なお、監視装置と上位機器との間の通信を確立する(以下、これを「ペアリング」ともいう)方法としては、例えば監視装置M21及び上位機器G2のメモリ15、34内に、送信先の上位機器情報及び受信する監視装置情報、あるいは通信に用いるキー情報等を格納しておき、無線通信を行う際、当該情報を添付あるいは参照することで、特定の通信経路で通信を行うよう設定すればよい。
【0040】
上述の工程をその通信可能距離内に複数の上位機器が存在している全ての監視装置に対して実行すれば、工場F内の全ての監視装置M11~Mn2の通信経路が確定する。これにより、各監視装置M11~Mn2から送信される状態量情報信号は、常に一の通信経路を経て管理装置Cに送信されることとなり、通信負荷及び通信コストを抑制することができると共に、管理装置Cにおけるデータ管理を容易とすることができるようになる。
【0041】
図4は、本開示の一実施の形態に係る監視システム1における異常の検知方法を示すフローチャートである。図4に示すように、本実施の形態に係る監視システム1は、管理装置Cにおいて、上述した通信経路が確定した後に、以下の工程を実施することにより、ポンプ装置P1~Pnの異常を検知することができる。なお、以下の説明は、異常の検知対象を工場F内の全てのポンプ装置P1~Pnとした場合について記載しているが、特定のポンプ装置のみを異常の検知対象とすることも可能である。
【0042】
本実施の形態に係る監視システム1における異常の検知に際しては、先ず、予め設定された時間が経過したことにより、あるいは管理者ADからの入力動作等により、工場F内のポンプ装置P1~Pnの状態量の検出タイミングとなったか否かを検知する(ステップS21)。そして、当該状態量の検出タイミングとなったことを検知した際(ステップS21でYes)には、管理装置Cあるいは上位機器G1~Gmから各監視装置M11~Mn2へ状態量の取得要求を送信すること、あるいは各監視装置M11~Mn2内の図示しないタイマ機能等に基づき、各監視装置M11~Mn2において、状態量情報信号を、事前にペアリングされた一の上位機器に対して送信する(ステップS22)。例えば図3に示す工程を経て通信経路が確定された監視装置M21にあっては、ステップS22において、状態量情報信号は上位機器G2にのみ送信され、通信可能範囲内に存在する他の上位機器G1には送信されない。なお、ここで送信される状態量情報信号に含まれる状態量のデータは、センサ部14において所定期間の間に検出されメモリ15内に蓄積された複数の状態量のデータであってもよいし、センサ部14がリアルタイムに検出した状態量のデータのみであってもよい。また、ここで送信される状態量情報信号には、状態量のデータに加えて、当該状態量を検出した監視装置の固有アドレスや、送信先情報としての一の上位機器に関する情報、あるいは監視装置が設置されたポンプ装置の情報等を含むことが好ましい。
【0043】
次に、各監視装置M11~Mn2から送信された状態量情報信号を受信した上位機器G1~Gmは、当該状態量情報信号を、ネットワークインタフェース23、33を用いて、管理装置Cに送信する(ステップS23)。そして、複数の上位機器G1~Gmから送信された状態量情報信号を受信した管理装置Cは、当該状態量情報信号を、必要に応じて過去に受信した状態量情報をも参酌しつつ異常検知部44において分析し、異常の有無を判定する(ステップS24)。
【0044】
上記の通り、本実施の形態に係る監視システム1においては、上述したように監視装置M11~Mn2から管理装置Cに至るまでの通信経路が確定されているため、一の監視装置からの状態量情報信号は一の通信経路を介して送信される。したがって、管理装置Cに集約されるデータは同一の情報を含んでいないため、集約されたデータの重複をチェックしたりする必要がなく、データ管理を容易にしている。
【0045】
ところで、上記監視システム1が適用される工場Fは、製造する製品の変更や機械の劣化等に伴って、機械のレイアウトが変更となったり、機械の入れ替えが行われたりすることが通常である。特に、機械のレイアウトが変更となった場合には、監視装置と上位機器との位置関係が変わったり、監視装置と上位機器との間に障害物が設置されたりすることが起こり得る。このような場合には、当然に監視装置と上位機器との通信状態が変位するため、通信経路を再設定することが好ましい。そこで、本開示の監視システム1の通信経路を確定する方法においては、オプションとして、上述したステップに加えて、ペアリングが行われた後に、選定された一の監視装置及び一の上位機器に対する再選定指示を管理装置Cあるいは任意の上位装置が受信した際に、一の監視装置及び一の上位機器の選定(図3参照。)をやり直すステップを備えていると好ましい。このようなステップを備えることにより、確定した通信経路を容易に変更することができるようになり、通信環境の変更に柔軟に対応できるようになる。
【0046】
また、上記選定をやり直すステップを実行するトリガとしての再選定指示は、管理者ADによる入力動作等に基づくものであってもよいし、再選定指示のタイミングを管理装置C等が自動で判断できるようにしてもよい。管理装置Cにおいて自動で再選定指示のタイミングを判断する場合には、上位機器G1~Gmが、通信可能範囲内にある(ペアリングされていないものを含む)全ての監視装置M11~Mn2との間の通信状態を定期的に把握できる必要がある。したがって、通信経路が確定した後においても、各上位機器とその通信可能範囲内の全ての監視装置との間において無線通信信号の送受信を定期的に行うことが好ましい。この際、当該送受信される無線通信信号には、特に上位機器側の制御部の負荷が大きくならないよう、データ量の小さな信号を用いるとよい。
【0047】
本開示は上述した実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲内で種々変更して実施することが可能である。そして、それらはすべて、本開示の技術思想に含まれるものである。
【符号の説明】
【0048】
1 監視システム
10 ポンプ本体
11 電動機
12 コントローラ
13 無線通信部
14 センサ部
15 メモリ
21、31 無線通信部
22、32 制御部
23、33 ネットワークインタフェース
24、34 メモリ
25、35 通信状態情報取得部
26、36 状態量取得部
41 演算モジュール
42 ストレージ領域
43 選定部
44 異常検知部
AD 管理者
C 管理装置
F 工場
G1~Gm 上位機器
M11~Mn2 監視装置
NW ネットワーク
P1~Pn ポンプ装置(回転機械)
SG1、SG2 無線通信信号
TD 端末装置
図1
図2
図3
図4