(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-14
(45)【発行日】2024-06-24
(54)【発明の名称】複数の荷電粒子ビームのための装置
(51)【国際特許分類】
H01J 37/04 20060101AFI20240617BHJP
H01J 37/147 20060101ALI20240617BHJP
H01J 37/09 20060101ALI20240617BHJP
H01J 37/153 20060101ALI20240617BHJP
H01J 37/10 20060101ALI20240617BHJP
H01J 37/05 20060101ALI20240617BHJP
H01J 37/28 20060101ALI20240617BHJP
【FI】
H01J37/04 A
H01J37/147 B
H01J37/09 A
H01J37/153 B
H01J37/10
H01J37/05
H01J37/28 B
【外国語出願】
(21)【出願番号】P 2023059915
(22)【出願日】2023-04-03
(62)【分割の表示】P 2021503887の分割
【原出願日】2019-07-31
【審査請求日】2023-04-07
(32)【優先日】2018-08-09
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2019-04-01
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】504151804
【氏名又は名称】エーエスエムエル ネザーランズ ビー.ブイ.
(74)【代理人】
【識別番号】100079108
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100109346
【氏名又は名称】大貫 敏史
(74)【代理人】
【識別番号】100117189
【氏名又は名称】江口 昭彦
(74)【代理人】
【識別番号】100134120
【氏名又は名称】内藤 和彦
(72)【発明者】
【氏名】レン,ウェイミン
(72)【発明者】
【氏名】リウ,シュエドン
(72)【発明者】
【氏名】フー,シュエラン
(72)【発明者】
【氏名】チェン,ゾン-ウェイ
【審査官】大門 清
(56)【参考文献】
【文献】特開2013-196951(JP,A)
【文献】国際公開第2018/122176(WO,A1)
【文献】特表2018-513543(JP,A)
【文献】特開2007-317467(JP,A)
【文献】特表2007-500948(JP,A)
【文献】米国特許出願公開第2016/0284505(US,A1)
【文献】特開2012-243763(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01J 37/04
H01J 37/147
H01J 37/09
H01J 37/153
H01J 37/10
H01J 37/05
H01J 37/28
(57)【特許請求の範囲】
【請求項1】
荷電粒子光学システムであって、
ソースによって生成される一次荷電粒子ビームの複数のビームレットを偏向させるように構成された、第1の偏向器アレイと、
前記ソースの複数のイメージをイメージ面上に形成するために前記複数のビームレットを合焦させるように構成された、第1のレンズと、
前記複数のイメージをサンプル上に投影するように、及びその上に複数のプローブスポットを形成するように構成された、対物レンズと、
前記複数のビームレットと、前記複数のプローブスポットによる照明に起因して前記サンプルから放出される二次荷電粒子とを分離するように構成された、ビームセパレータと、
前記ビームセパレータと前記第1のレンズとの間に配設され、前記ビームセパレータによって生じる分散を補償するように構成された荷電粒子分散補償器と、
を備え、
前記イメージ面が前記ビームセパレータよりも前記第1のレンズの近くに形成される、
荷電粒子光学システム。
【請求項2】
前記第1の偏向器アレイは、前記複数のプローブスポットの所定のピッチを取得するため、及び、その収差を減少させるために設定される偏向角度で、前記複数のビームレットを偏向させるように構成された、請求項1に記載の荷電粒子光学システム。
【請求項3】
前記第1の偏向器アレイの上にあり、前記複数のプローブスポットの電流を制限するように構成された、第1のアパーチャアレイを更に備える、請求項1に記載の荷電粒子光学システム。
【請求項4】
前記荷電粒子源と前記第1のアパーチャアレイとの間にあり、前記一次荷電粒子ビームを合焦させるように構成された、第2のレンズを更に備える、請求項3に記載の荷電粒子光学システム。
【請求項5】
前記第2のレンズは、前記一次荷電粒子ビームを平行ビームとして合焦させるように構成される、請求項4に記載の荷電粒子光学システム。
【請求項6】
前記第2のレンズは、前記複数のプローブスポットの前記電流を変化させるように構成された可動レンズである、請求項5に記載の荷電粒子光学システム。
【請求項7】
前記複数のプローブスポットの収差を補償するように構成された、補償器アレイを更に備える、請求項5に記載の荷電粒子光学システム。
【請求項8】
前記第2のレンズの上にあり、前記ソースに近く、また、前記複数のビームレット内で使用されない前記一次荷電粒子ビームの周辺部分を遮断するように構成された、メインアパーチャを更に備える、請求項5に記載の荷電粒子光学システム。
【請求項9】
前記メインアパーチャと前記第1のアパーチャアレイとの間にあり、前記複数のビームレット内で使用されない前記一次荷電粒子ビームの一部を遮断するように構成された、第2のアパーチャアレイを更に備える、請求項8に記載の荷電粒子光学システム。
【請求項10】
前記第2のアパーチャアレイは前記第2のレンズの上にあり、また前記ソースに近い、請求項9に記載の荷電粒子光学システム。
【請求項11】
前記第2のレンズの上にあり、前記ソースに近く、また、前記複数のビームレット内で使用されない前記一次荷電粒子ビームの一部を遮断するように構成された、第2のアパーチャアレイを更に備える、請求項7に記載の荷電粒子光学システム。
【請求項12】
前記第1のアパーチャアレイ上に法線入射するように前記複数のビームレットを偏向させるように構成された、第2の偏向器アレイを更に備える、請求項4に記載の荷電粒子光学システム。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
[0001] 本願は、2018年8月9日出願の米国出願第62/716,832号及び2019年4月1日出願の米国出願第62/827,765号の優先権を主張し、その全体が参照により本明細書に組み込まれる。
【0002】
[0002] 本明細書に提供される実施形態は、1つ以上の電子ビームを利用する電子顕微鏡装置などのマルチビーム装置を開示し、より具体的には、とりわけクーロン相互作用効果を低減させること又は伝送レンズの使用などによってビーム分散が低減したマルチビーム電子顕微鏡を開示する。
【背景技術】
【0003】
[0003] 集積回路(IC)の製造プロセスにおいて、未完成又は完成した回路コンポーネントは、設計に従って製造されていること及び欠陥が無いことを保証するために検査される。走査型電子顕微鏡(SEM)などの、光学顕微鏡又は電荷粒子(例えば、電子)ビーム顕微鏡を利用する検査システムが採用可能である。ICコンポーネントの物理サイズは小型化し続けているため、欠陥検出における精度及び収率がますます重要になる。検査スループットを増加させるために複数の荷電粒子ビームが使用できるが、その際、装置のイメージング分解能は損なわれ、検査ツールを所望の目的には不適切なものとする可能性がある。
【0004】
[0004] 分解能をナノメートル未満まで下げることが可能な、走査型電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM)などの電荷粒子(例えば、電子)ビーム顕微鏡は、サブ100ナノメートルのフィーチャサイズを有するICコンポーネントを検査するための実用的なツールとしての機能を果たす。SEMツールにおいて、相対的に高いエネルギーを有する一次電子のビームは、相対的に低い着地エネルギーでサンプル上に着地するために減速され、その上にプローブスポットを形成するように合焦される。この一次電子の合焦されたプローブスポットに起因して、表面から二次電子が生成されることになる。サンプル表面にわたってプローブスポットを走査すること、及び二次電子を収集することによって、パターン検査ツールはサンプル表面のイメージを取得することができる。
【0005】
[0005] 単一又は複数ビーム検査ツール内の、ビームセパレータ、レンズ、ビーム偏向器などの光学コンポーネントは、検査に使用されるビーム内に分散を導入し得る。例えば、一次電子のビームは光軸に沿って生成され得るが、二次電子を収集するためのディテクタはオフアクシスで配置される。複数の一次ビーム又は複数の二次ビームを含む検査システムにおいて、二次電子のビームを一次電子から分離し、二次ビームをオフアクシスディテクタに向けて誘導するために、ビームセパレータを使用することができる。ビームセパレータは、電磁気力を使用して電子を偏向させるために使用される磁気偏向器を備えるため、ビームセパレータは、通過するビーム内に分散を生成することができる。分散は、効果の中でもとりわけ、検査されるサンプル表面のイメージを再構築するための分解能を低下させる可能性がある。
【発明の概要】
【0006】
[0006] 本開示の実施形態は、荷電粒子源の仮想イメージを形成するように構成された偏向器と、イメージ面上に荷電粒子源の実像を形成するように構成された伝送レンズとを含み得る、荷電粒子光学システムを提供することができる。イメージ面は、荷電粒子源によって生成される一次荷電粒子と、一次荷電粒子とサンプルとの相互作用によって生成される二次荷電粒子とを分離するように構成された、ビームセパレータの少なくとも近くに形成され得る。イメージ面は、ビームセパレータの偏向面に形成され得る。粒子光学システムは、ビームセパレータの分散影響を低減させるために有用であり得る。
【0007】
[0007] いくつかの実施形態において、ソースによって生成される一次荷電粒子ビームの複数のビームレットを偏向させるように構成された第1の偏向器アレイと、イメージ面上にソースの複数のイメージを形成するために複数のビームレットを合焦させるように構成された第1のレンズと、複数のイメージをサンプル上に投影し、サンプル上に複数のプローブスポットを形成するように構成された、対物レンズとを含む、荷電粒子光学システムが提供され得る。第1の偏向器アレイは、イメージ形成素子アレイを含むことができる。第1のレンズは、伝送レンズを含むことができる。
【0008】
[0008] いくつかの実施形態において、第1の偏向器アレイの上にあり、複数のプローブスポットの電流を制限するように構成された、第1のアパーチャアレイも提供することができる。第1のアパーチャアレイは、ビーム制限アパーチャアレイを含むことができる。
【0009】
[0009] いくつかの実施形態において、荷電粒子源と第1のアパーチャアレイとの間にあり、一次荷電粒子ビームを合焦させるように構成された、第2のレンズも提供することができる。第2のレンズは、集光レンズを含むことができる。第2のレンズは、可動レンズ又は回転防止レンズを含むことができる。
【0010】
[0010] いくつかの実施形態において、複数のプローブスポットの収差を補償するように構成された、補償器アレイも提供することができる。補償器アレイは、収差補償器アレイ、非点収差補償器アレイ、又はフィールド曲率アレイを含むことができる。
【0011】
[0011] いくつかの実施形態において、第2のレンズの上にあり、ソースに近く、また複数のビームレット内で使用されない一次荷電粒子ビームの周辺部分を遮断するように構成された、メインアパーチャも提供することができる。
【0012】
[0012] いくつかの実施形態において、第2のアパーチャアレイも提供することができる。第2のアパーチャアレイは、メインアパーチャと第1のアパーチャアレイとの間にあり、複数のビームレット内で使用されない一次荷電粒子ビームの一部を遮断するように構成することができる。第1のアパーチャアレイは、クーロンアパーチャアレイを含み得る、プリビームレット形成機構を含むことができる。
【0013】
[0013] いくつかの実施形態において、複数のビームレットを、通常は第1のアパーチャアレイ上に入射するように偏向させるように構成された、第2の偏向器アレイも提供することができる。第2の偏向器アレイは、プリビームレット屈曲偏向器アレイを含むことができる。
【0014】
[0014] いくつかの実施形態において、荷電粒子源によって生成される荷電粒子ビームのビームレットを偏向させるように構成された、第1の偏向器と、ビームレットの荷電粒子がサンプルと相互作用することに応答して、ビームレットとサンプルから生成される二次荷電粒子とを分離させるように構成されたビームセパレータの領域内で、イメージ面上に荷電粒子源のイメージを形成するために、ビームレットを合焦させるように構成された、第1のレンズとを含む、荷電粒子光学システムを提供することができる。第1の偏向器は、イメージ形成素子アレイの一部とすることができる。第1のレンズは、伝送レンズとすることができる。
【0015】
[0015] いくつかの実施形態において、荷電粒子源によって生成されるビームの複数のビームレットを偏向させること、イメージ面上にソースの複数のイメージを形成するためにレンズによって複数のビームレットを合焦させること、及び、複数のプローブスポットサンプル上に形成するために複数のイメージをサンプル上に投影することを含む、サンプル上に複数のプローブスポットを形成する方法を提供することができる。レンズは伝送レンズとすることができる。
【0016】
[0016] 本開示のいくつかの実施形態は、複数のビームレットの一次荷電粒子とサンプルから放出される二次荷電粒子とを分離するように構成された荷電粒子セパレータよりも、第1のレンズの近くに形成されるイメージ面上に、荷電粒子源の複数のイメージを形成するために、複数のビームレットを合焦させるように構成された第1のレンズを含むことができる、マルチビーム装置を提供することができる。装置は、複数のイメージをサンプル上に投影するように、及びその上に複数のプローブスポットを形成するように構成された、対物レンズを更に含むことができる。
【0017】
[0017] いくつかの実施形態において、マルチビーム装置は、一次荷電粒子ビームの複数のビームレットのうちの少なくとも1つを、一次光軸から外側に放射状に偏向させるように、及び、第1のレンズ上に入射するように構成された、第1の偏向器アレイを含むことができ、イメージ面は、一次荷電粒子ビームの一次光軸に対して垂直に、また、第1のレンズと荷電粒子セパレータとの間に形成される。装置は、荷電粒子源と第1のレンズとの間に配設され、一次荷電粒子ビームを合焦させるように構成された、第2のレンズを更に含むことができる。装置は、荷電粒子セパレータによって生じる分散を補償するように構成された荷電粒子分散補償器、及び、第1の偏向器アレイと荷電粒子源との間に配設され、複数のビームレットのプローブ電流を制限するように構成された、第1のアパーチャアレイも、含むことができる。いくつかの実施形態において、第2のレンズは、一次荷電粒子ビームの一次光軸に対して垂直に、主平面上に配設された、可動レンズとすることができる。第2のレンズはコンデンサレンズを含むことができる。マルチビーム装置は、荷電粒子源と第2のレンズとの間に配設され、一次荷電粒子ビームの周辺部分を塞ぐように構成された、アパーチャプレート、及び、アパーチャプレートと第2のレンズとの間に配設され、一次荷電粒子ビームから複数のビームレットを生成するように構成された、第2のアパーチャアレイを、更に含むことができる。いくつかの実施形態において、第1のレンズは伝送レンズを含むことができる。伝送レンズは、形成されるイメージ面の位置を調節することによって複数のビームレットの拡大を調節し、第1のレンズと荷電粒子セパレータとの間にイメージ面を形成するように構成された、調節可能レンズとすることができる。
【0018】
[0018] 本開示のいくつかの実施形態は、一次荷電粒子ビームの複数のビームレットを偏向させるように構成された、第1の偏向器アレイを含むことができる、マルチビーム装置を提供することができ、第1の偏向器アレイは、一次荷電粒子ビームの一次光軸に対して実質的に平行になるように、複数のビームレットのうちの少なくとも1つをコリメートするように構成される。マルチビーム装置は、複数のビームレットの一次荷電粒子とサンプルから放出される二次荷電粒子とを分離するように構成された荷電粒子セパレータよりも第1のレンズの近くに形成されるイメージ面上に、荷電粒子源の複数のイメージを形成するために、複数のビームレットを合焦させるように構成された第1のレンズ、及び、複数のイメージをサンプル上に投影するように、及びその上に複数のプローブスポットを形成するように構成された、第2のレンズを更に含むことができる。
【0019】
[0019] 本開示のいくつかの実施形態は、マルチビーム装置を使用してサンプルを観察する方法を提供することができる。方法は、複数のビームレットの一次荷電粒子とサンプルから放出される二次荷電粒子とを分離するように構成された、荷電粒子セパレータよりも第1のレンズの近くに形成されるイメージ面上に、荷電粒子源の複数のイメージを形成するために、第1のレンズを使用して複数のビームレットを合焦させること、及び、対物レンズを使用して、複数のイメージをサンプル上に投影し、その上に複数のプローブスポットを形成することを、含むことができる。
【0020】
[0020] 本発明の例示の利点及び効果は添付の図面に関連した下記の説明から明らかとなり、添付の図面では本開示の特定の実施形態が例として示されている。
【図面の簡単な説明】
【0021】
【
図1】[0021]本開示の実施形態に一致する、例示的電子ビーム検査(EBI)システムを示す概略図である。
【
図2A】[0022]
図1の例示的電子ビーム検査システムの一部とすることができる例示的電子ビームツールを示す図である。
【
図2B】[0023]ビームセパレータの例示的構成を示す図である。
【
図2C】[0024]ビームセパレータの例示的構成を示す図である。
【
図3】[0025]本開示の実施形態に一致する、例示的電子ビーム検査を示す図である。
【
図4A】[0026]本開示の実施形態に一致する、例示的電子ビーム検査ツールを示す図である。
【
図4B】[0026]本開示の実施形態に一致する、例示的電子ビーム検査ツールを示す図である。
【
図4C】[0026]本開示の実施形態に一致する、例示的電子ビーム検査ツールを示す図である。
【
図4D】[0027]本開示の実施形態に一致する、例示的電子ビーム検査ツールを示す図である。
【
図4E】[0027]本開示の実施形態に一致する、例示的電子ビーム検査ツールを示す図である。
【
図4F】[0027]本開示の実施形態に一致する、例示的電子ビーム検査ツールを示す図である。
【
図4G】[0027]本開示の実施形態に一致する、例示的電子ビーム検査ツールを示す図である。
【
図5A】[0028]本開示の実施形態に一致する、例示的電子ビーム検査ツールを示す図である。
【
図5B】[0028]本開示の実施形態に一致する、例示的電子ビーム検査ツールを示す図である。
【
図5C】[0028]本開示の実施形態に一致する、例示的電子ビーム検査ツールを示す図である。
【
図6A】[0029]本開示の実施形態に一致する、例示的電子ビーム検査ツールの一部を示す図である。
【
図6B】[0029]本開示の実施形態に一致する、例示的電子ビーム検査ツールの一部を示す図である。
【
図7】[0030]本開示の実施形態に一致する、ビームを形成するための例示的方法を表すフローチャートである。
【
図8】[0031]本開示の実施形態に一致する、マルチビーム検査ツールを使用してサンプルを観察する例示的方法を表すフローチャートである。
【発明を実施するための形態】
【0022】
[0032] 次に例示的実施形態について詳細に言及し、その例は添付の図面に示される。下記の説明は添付の図面を参照し、別段に明記されていない限り、図面において異なる図面内の同じ番号は、同じか又は同様の要素を表す。例示的実施形態の下記の説明で示される実装は、本発明に一致するすべての実装を表すものではない。代わりに、添付の特許請求の範囲に示される本発明に関する態様に一致するシステム、装置、及び方法の単なる例である。例えば、いくつかの実施形態は電子ビームの利用に関連して説明されるが、本開示はこれに限定されない。他のタイプの荷電粒子ビームも同様に適用可能である。更に、光学イメージング、光検出、X線検出などの、他のイメージングシステムが使用可能である。図面内のコンポーネントの相対寸法は、見やすくするために誇張されている場合がある。
【0023】
[0033] 電子デバイスは、基板と呼ばれるシリコンの部片上に形成される回路で構築される。多くの回路は同じシリコンの部片上にまとめて形成可能であり、集積回路又はICと呼ばれる。これらの回路のサイズは劇的に縮小されているため、より多くの回路を基板上に取り付けることができる。例えば、スマートフォン内のICチップは親指の爪のように小さくすることが可能であり、それでもなお、20億個を超えるトランジスタを含み得、各トランジスタのサイズはヒトの髪の毛の1000分の1のサイズとすることが可能である。
【0024】
[0034] これらの極端に小さなICを作成することは複雑で時間及び費用のかかるプロセスであり、しばしば何百もの個別のステップを含む。たとえ1つのステップにでもエラーがあれば、完成したICを使用できなくする欠陥を生じさせる可能性がある。したがって、製造プロセスの1つの目標は、こうした欠陥を回避して、プロセスにおいて作成される機能ICの数を最大にすること、すなわち、プロセスの全収率を向上させることである。
【0025】
[0035] 収率を向上させる1つの構成要素は、十分な数の機能集積回路を生成することを保証するために、チップ作成プロセスを監視することである。プロセスを監視する1つの手法は、チップ回路構造を形成する様々なステージにおいてチップ回路構造を検査することである。検査はSEMを使用して実施可能である。SEMは、これらの極端に小さな構造をイメージングするため、実際には構造の「ピクチャ」を撮影するために使用可能である。イメージは、構造が適切に形成されたかどうか、また更に構造が適切な場所に形成されたかどうかを判定するために使用可能である。構造に欠陥がある場合、欠陥が再発しないようにプロセスを調節することができる。
【0026】
[0036] いくつかの検査ツールにおいて、荷電粒子源から発生した一次ビームは光軸に沿って進み、サンプルに当たって、二次ビームが光軸に沿ってサンプルから発生することができる。二次ビームをディテクタに迂回させるために、光軸上にビームセパレータを提供することができる。したがって、一次ビームは初期にビームセパレータを通過し、その後サンプルに到達することができる。遭遇する可能性のあるいくつかの問題のうちの1つは、一次ビームがビームセパレータを介して進むときに分散を経験する可能性があり、結果として生じるサンプル上のビームスポットは、サイズを大きくすることなどによって所望の形状から外れる可能性があることである。これが、イメージング分解能を劣化させる場合がある。本開示のいくつかの実施形態において、こうした分散の影響を減少させるか又は無くすことができる。例えば、ビームセパレータ近くのイメージ面上にソースのイメージを形成するように構成された、伝送レンズを提供することができる。いくつかの実施形態によれば、ビームは、サンプル上に形成されるプローブスポットのサイズを増加させることなどによってサンプル上のソースの最終イメージの品質を低下させることなく、ビームセパレータを通過することができる。したがって、イメージング分解能が向上し得る。
【0027】
[0037] ビーム分散を減少させることに加えて、例えば、より小さなプローブスポットをサンプル上に生成するために一次荷電粒子ビームの拡大を減少させることによって、伝送レンズは、イメージング分解能を更に向上させる際に有用であり得る。ビームセパレータ近くに中間イメージ面を形成することでビーム分散を減少させることができるが、拡大は高分解能を達成するほど十分に小さくない可能性がある。対照的に、ビームセパレータよりも伝送レンズの近くに中間イメージ面を形成することで、一次荷電粒子ビームの拡大を減少させることができるが、結果としてビーム分散は増加する可能性がある。荷電粒子セパレータよりも伝送レンズの近くにイメージ面を形成することによって、イメージング分解能を強化するための取り組みにおいてビーム分散は悪化し、イメージング分解能の喪失を生じさせる可能性がある。したがって、所望の解決策は、イメージング分解能における全体の機能強化を達成するために、ビーム分散を減少させながら一次荷電粒子ビームの拡大を減少させることであり得る。
【0028】
[0038] 本開示のいくつかの実施形態において、マルチビーム装置は、中間イメージ面上に荷電粒子源の複数のイメージを形成するために複数ビームレットを合焦させるように構成された、レンズを含むことができる。中間イメージ面は荷電粒子セパレータから離れて形成し、より小さなプローブスポットを発生させるために、一次荷電粒子ビームの拡大の減少を可能にすることができる。装置は、荷電粒子セパレータから離れたイメージ面の形成に起因して生じるビームレットの分散を補償するための、荷電粒子分散補償器を更に備えることができる。本開示のいくつかの実施形態は、イメージング分解能全体を機能強化するために、ビーム分散を減少させながら、一次ビームの拡大を減少させることができる。
【0029】
[0039] 本開示の範囲を限定することなく、実施形態の説明及び図面は、例示的に電子ビームを使用するものとして示すことができる。しかしながら実施形態は、本発明を特定の荷電粒子に限定するために使用されるものではない。例えば、ビーム形成のためのシステム及び方法は、光子、X線、及びイオンなどに適用可能である。更に、「ビーム」という用語は、とりわけ、一次電子ビーム、一次電子ビームレット、二次電子ビーム、又は二次電子ビームレットを指すことができる。
【0030】
[0040] 本明細書で使用する場合、別段に明記されていない限り、「又は」という用語は、実行不可能な場合を除き、すべての可能な組み合わせを包含する。例えば、あるコンポーネントがA又はBを含み得ると示されている場合、別段に明記されていないか又は実行不可能でない限り、コンポーネントはA、又はB、又はA及びBを含むことができる。第2の例として、あるコンポーネントがA、B、又はCを含み得ると示されている場合、別段に明記されていないか又は実行不可能でない限り、コンポーネントはA、又はB、又はC、又はA及びB、又はA及びC、又はB及びC、又はA及びB及びCを含むことができる。
【0031】
[0041] 次に、本開示の実施形態に一致する、例示的電子ビーム検査(EBI)システム10を示す、
図1を参照する。
図1に示されるように、EBIシステム10は、メインチャンバ11、ロード/ロックチャンバ20、電子ビームツール100、及び機器フロントエンドモジュール(EFEM)30を含む。電子ビームツール100は、メインチャンバ11内に配置される。
【0032】
[0042] EFEM30は、第1のローディングポート30a及び第2のローディングポート30bを含む。EFEM30は、追加のローディングポートを含むことができる。第1のローディングポート30a及び第2のローディングポート30bは、例えば、検査するべきウェーハ(例えば、半導体ウェーハ又は他の材料で作られたウェーハ)又はサンプル(以後、ウェーハ及びサンプルは集合的に「ウェーハ」と呼ぶことができる)を含む、ウェーハ前部開口統合ポッド(FOUP)を受け取ることができる。EFEM30内の1つ以上のロボットアーム(図示せず)は、ウェーハをロード/ロックチャンバ20へ移送することができる。
【0033】
[0043] ロード/ロックチャンバ20は、大気圧より下の第1の圧力に達するようにロード/ロックチャンバ20内の気体分子を除去する、ロード/ロック真空ポンプシステム(図示せず)に接続される。第1の圧力に達した後、1つ以上のロボットアーム(図示せず)は、ウェーハをロード/ロックチャンバ20からメインチャンバ11へ移送することができる。メインチャンバ11は、第1の圧力より下の第2の圧力に達するようにメインチャンバ11内の気体分子を除去する、メインチャンバ真空ポンプシステム(図示せず)に接続される。第2の圧力に達した後、ウェーハは、電子ビームツール100による検査を受ける。電子ビームツール100は、単一ビームシステム又はマルチビームシステムとすることができる。コントローラ19が、電子ビームツール100に電子的に接続される。
図1においてコントローラ19は、メインチャンバ11、ロード/ロックチャンバ20、及びEFEM30を含む構造の外部にあるように示されているが、コントローラ19は構造の一部であり得ることが理解されよう。
【0034】
[0044] 本開示は、電子ビーム検査システムを収納するメインチャンバ11の例を提供しているが、最も広義には、本開示の態様は電子ビーム検査システムを収容するチャンバに限定されないことに留意されたい。むしろ、本明細書で考察する原理は、第2の圧力より下で動作する他のツールにも適用可能であることが理解されよう。
【0035】
[0045]
図2Aは、
図1のEBIシステムの一部であり得る例示的電子ビームツール100Aを示す。電子ビームツール100A(本明細書では「装置100A」とも呼ばれる)は、電子源101、ガンアパーチャプレート171、コンデンサレンズ110、ソース変換ユニット120、一次投影光学システム130、二次イメージングシステム150、及び電子検出デバイス140Mを備える。一次投影光学システム130は、対物レンズ131を備えることができる。サンプル表面7を伴うサンプル1を、可動ステージ(図示せず)上に提供することができる。電子検出デバイス140Mは、複数の検出要素140_1、140_2、及び140_3を備えることができる。ビームセパレータ160及び偏向スキャンユニット132を、一次投影光学システム130内部に配置することができる。
【0036】
[0046] 電子源101、ガンアパーチャプレート171、コンデンサレンズ110、ソース変換ユニット120、ビームセパレータ160、偏向スキャンユニット132、及び一次投影光学システム130は、装置100Aの一次光軸100_1と位置合わせすることができる。二次イメージングシステム150及び電子検出デバイス140Mは、装置100Aの二次光軸150_1と位置合わせすることができる。
【0037】
[0047] 電子源101は、カソード(図示せず)及び抽出器又はアノード(図示せず)を備えることができ、動作の間、電子源101は一次電子をカソードから放出するように構成され、一次電子は、一次ビームクロスオーバ(仮想又は実)101sを形成する一次電子ビーム102を形成するために、抽出器又はアノードによって抽出又は加速される。一次電子ビーム102は、一次ビームクロスオーバ101sから放出されているように視覚化することができる。
【0038】
[0048] ソース変換ユニット120は、イメージ形成要素アレイ(
図2Aには図示せず)及びビーム制限アパーチャアレイ(
図2Aには図示せず)を備えることができる。イメージ形成要素アレイは、一次電子ビーム102の複数の一次ビームレット102_1、102_2、102_3に影響を与えること、及び、一次ビームレット102_1、201_2、102_3の各々について1つの、一次ビームクロスオーバ101sの複数の平行イメージ(仮想又は実)を形成することができる、複数のマイクロ偏向器又はマイクロレンズを備えることができる。ビーム制限アパーチャアレイは、個々の一次ビームレット102_1、102_2、及び102_3の直径を制限するように構成可能である。
図2Aは、一例として3つの一次ビームレット102_1、102_2、及び102_3を示し、ソース変換ユニット120は任意数の一次ビームレットを形成するように構成可能であることを理解されよう。例えば、ソース変換ユニット120は、一次ビームレットの3×3アレイを形成するように構成可能である。ソース変換ユニット120は、プローブスポット102_1S、102_2S、及び102_3Sの収差を補償するように構成された、収差補償器アレイを更に含むことができる。いくつかの実施形態において、収差補償器アレイは、プローブスポット102_1S、102_2S、及び102_3Sのフィールド曲率収差をそれぞれ補償するように構成されたマイクロレンズを伴う、フィールド曲率補償器アレイを含むことができる。いくつかの実施形態において、収差補償器アレイは、プローブスポット102_1S、102_2S、及び102_3Sの非点収差をそれぞれ補償するように構成された、マイクロ非点収差補償器を伴う、非点収差補償器を含むことができる。いくつかの実施形態において、イメージ形成要素アレイ、フィールド曲率補償器アレイ、及び非点収差補償器アレイは、マイクロ偏向器、マイクロレンズ、及びマイクロ非点収差補償器の複数の層を、それぞれ備えることができる。多層アレイの例は、米国特許出願第62/567,134号により詳細に記載されており、その全体が本明細書に組み込まれる。
【0039】
[0049] コンデンサレンズ110は、一次電子ビーム102を合焦させるように構成される。コンデンサレンズ110は、コンデンサレンズ110の合焦力を変化させることによって、ソース変換ユニット120のダウンストリームにある一次ビームレット102_1、102_2、及び102_3の電流を調節するように、更に構成可能である。それによってビームレット102_1、102_2、及び102_3は、コンデンサレンズ110によって変更可能な合焦状況を有することができる。代替として、電流は、個々の一次ビームレットに対応するビーム制限アパーチャアレイ内のビーム制限アパーチャの半径サイズを変化させることによって、変更可能である。したがって、ビームレットの電流は、ビームレットの軌道に沿った異なる場所において、異なるものとすることができる。サンプル表面上のビームレットの電流(例えば、プローブスポット電流)が所望の量に設定されるように、ビームレット電流を調節することができる。
【0040】
[0050] コンデンサレンズ110は、その第1の主平面の位置が移動可能であるように構成可能な、可動コンデンサレンズとすることができる。可動コンデンサレンズは、磁気レンズ、又は静電レンズ、又は電磁レンズ(例えば、複合レンズ)であるように構成可能である。可動コンデンサレンズは、米国特許第9,922,799号及び米国特許出願第2017/0025243号により詳細に記載されており、そのどちらも、その全体が本明細書に組み込まれる。いくつかの実施形態において、コンデンサレンズは、ビームレットの電流を変化させながら、オフアクシスビームレットの回転角度は変更せずに維持することが可能な、回転防止レンズとすることができる。いくつかの実施形態において、コンデンサレンズ110は、移動可能な第1の主平面を伴う回転防止レンズを含む、可動回転防止コンデンサレンズとすることができる。回転防止レンズ又は可動回転防止コンデンサレンズは、国際出願第PCT/EP2017/084429号により詳細に記載されており、その全体が参照により組み込まれる。
【0041】
[0051] 対物レンズ131は、ビームレット102_1、102_2、及び102_3を検査用のサンプル1上に合焦させるように構成可能であり、現在の実施形態では、3つのプローブスポット102_1S、102_2S、及び102_3Sを表面7上に形成することができる。ガンアパーチャプレート171は、動作中、クーロン効果を低減させるために、一次電子ビーム102の周辺電子を塞ぐように構成される。クーロン効果は、一次ビームレット102_1、102_2、102_3のプローブスポット102_1S、102_2S、及び102_3Sの各々のサイズを大きくし、したがって検査分解能を劣化させる可能性がある。
【0042】
[0052] ビームセパレータ160は、例えば、静電ダイポールフィールドE1及び磁気ダイポールフィールドB1を生成する静電偏向器を備える、ウィーンフィルタとすることができる。ビームセパレータ160は、ローレンツ力を使用して、通過する電子に影響を与えることができる。ビームセパレータ160を活動化して、静電ダイポールフィールドE1及び磁気ダイポールフィールドB1を生成することができる。動作中、ビームセパレータ160は、一次ビームレット102_1、102_2、及び102_3の個々の電子に、静電ダイポールフィールドE1による静電力をかけるように構成可能である。静電力は、ビームセパレータ160の磁気ダイポールフィールドB1によって個々の電子にかけられる磁力と、大きさは等しいが、方向は反対である。一次ビームレット102_1、102_2、及び102_3は、ビームセパレータ160をほぼまっすぐ通過することができる。
【0043】
[0053] 偏向スキャンユニット132は、動作中、表面7のあるセクション内の個々のスキャン域にわたって、プローブスポット102_1S、102_2S、及び102_3Sをスキャンするために、一次ビームレット102_1、102_2、及び102_3を偏向させるように構成される。プローブスポット102_1S、102_2S、及び102_3Sにおける一次ビームレット102_1、102_2、及び102_3によるサンプル1の照明に応答して、二次電子がサンプル1から出現し、動作中、サンプル1から放出される3つの二次電子ビーム102_1se、102_2se、及び102_3seを形成する。二次電子ビーム102_1se、102_2se、及び102_3seの各々は、典型的には、(50eVより小さいか又は50eVに等しい電子エネルギーを有する)二次電子、及び(50eVと、一次ビームレット102_1、102_2、及び102_3の着地エネルギーとの間の、電子エネルギーを有する)後方散乱電子を含む、異なるエネルギーを有する電子を含む。ビームセパレータ160は、二次電子ビーム102_1se、102_2se、及び102_3seを二次イメージングシステム150に向けて偏向させるように構成される。二次イメージングシステム150はその後、二次電子ビーム102_1se、102_2se、及び102_3seを、電子検出デバイス140Mの検出要素140_1、140_2、及び140_3上に合焦させる。検出要素140_1、140_2、及び140_3は、対応する二次電子ビーム102_1se、102_2se、及び102_3seを検出し、例えば、サンプル1の対応するスキャン域のイメージを構築するために信号処理ユニット(図示せず)に送信可能な対応する信号を生成するように、配置される。
【0044】
[0054] 前述のように、ビームセパレータ160は、ウィーンフィルタなどの磁気偏向器を含む偏向デバイスとすることができる。偏向デバイスは、通過する電子を偏向させることができる。電子の偏向方向及び偏向角度は、電子の移動方向及びエネルギー(例えば、速度で表すことができる)に依存する。したがって、二次電子又は後方散乱電子とは異なる方向に移動する一次電子は、二次電子又は後方散乱電子と区別することができる。したがって、一次ビームレット102_1、102_2、及び102_3は、ビームセパレータ160をほぼまっすぐ通過することが可能である一方で、二次電子ビーム102_1se、102_2se、及び102_3seは光軸100_1から離れて偏向される。しかしながら、一次ビームレット102_1、102_2、及び102_3自体は、異なるエネルギーレベルの電子を含むことができる。したがって、ビームセパレータ160を通過する一次ビームレット102_1、102_2、及び102_3の電子は、必ずしも完全にまっすぐ通過するとは限らず、代わりに、偏向角度で偏向される可能性がある。したがって、各ビームレットにおける電子の偏向角度は異なり、それにより、一次ビームレット102_1、102_2、及び102_3の各々において、分散が発生することになる。例えば、
図2Aは、公称エネルギーV
0及びエネルギーの広がりΔVを伴う、一次ビームレットの各々の分散を示す。一次ビームレットの各々は、ビームレットが、エネルギーV
0に対応するビームレット部分、エネルギーV
0+ΔV/2に対応するビームレット部分、及び、エネルギーV
0-ΔV/2に対応するビームレット部分に分散されるように、分散を経験する可能性がある。
【0045】
[0055] 分散は、プローブスポット102_1S、102_2S、及び102_3Sを、偏向方向に関する方向(例えば、
図2Aにおける半径方向)に拡大させることなどによって、サンプル1上に所望の形状から外れたプローブスポットを形成するために、一次ビームレット102_1、102_2、及び102_3に影響を与えることができる。したがって分散は、プローブスポットを、例えば長方形に形成させることができる。ビームセパレータ160によって生じる分散は、イメージング分解能を劣化させる可能性がある。
【0046】
[0056] 更に分散は、電子検出デバイス140M上により大きなスポットを形成するように、二次電子ビーム102_1se、102_2se、及び102_3seに影響を与えることができる。分散は、二次電子収集効率を劣化させ、クロストークに寄与する可能性がある。
【0047】
[0057] 次に、本開示の実施形態に一致する、投影システムの一部の例示的構成を示す、
図2Bを参照する。
図2Bの投影システムは、一次投影光学システム130の一部を形成することができる。
図2Bは一次光軸100_1と位置合わせされた中央ビームレット102_1のみを示す。ビームレット102_1は、中間イメージ面2上に合焦可能である。すなわち、ビームレット102_1は、イメージ面2内の合焦スポットと共に形成可能である。イメージ面2は、ビームセパレータ160の偏向面160_2の上に位置する。異なるエネルギーを有する一次光軸100_1に沿って進むビームレット102_1の電子は、ビームセパレータ160を出た後に分散し得る。したがって電子は、イメージ面2上に仮想半径シフト3を有し得る。すなわち電子は、半径シフト3によって、イメージ面2上の元の位置から変位した仮想位置から放出されるように視覚化され得る。半径方向は一次光軸100_1に対して直角である。半径シフト3に起因して、イメージ面2上の合焦スポットは拡大しているように視覚化される。したがって、サンプル1上に形成されるビームスポット102Sは広がり得る。更に、
図2Bは中央ビームレットのみを示しているが、この効果はオフアクシスビームレットに対してより強く影響を与える可能性がある。オフアクシスビームレットは、ある角度でビームセパレータを通過し得、したがってビームセパレータを介してより長い距離を進み得、磁場及び電場の影響をより多く受け、したがって分散が増幅する。
【0048】
[0058] 半径シフト3は、イメージ面2が偏向面160_2に近づくにつれて減少し得る。半径シフト3は、
図2Cに示すように、イメージ面2が偏向面160_2と一致した場合、ゼロになるか、あるいはゼロに近づくか又はほぼゼロになり得る。したがってビームレットスポット102Sは、ビームセパレータ160が存在しないか又は活動化されていないときに比べて、同じか又はほぼ同じに形成可能である。
【0049】
[0059] ビームセパレータ160は、その中央に偏向面160_2を有するように表され得るが、偏向は偏向面160_2に直接ではない場所にある電子に対して生じ得ることを理解されよう。例えばウィーンフィルタは、ある距離にわたって一次光軸100_1に平行に延在するように配置された電極及び磁気ポール片を備え得るため、電場及び磁場はあるエリアにわたって発生する。したがって電子は、電場及び磁場の始まりに達すると同時に偏向を開始し得、場を出るまで偏向し続け得る。いくつかの実施形態において、ビームセパレータによって生じる偏向は、ビームセパレータの中央面に位置し得る偏向面によって近似され得る。偏向面は、電場又は磁場の分布の中心に対応する位置で、ビームセパレータと交差し得る。いくつかの実施形態において、偏向面は、ビームセパレータを形成する構造の幾何学的中心に位置し得る。
【0050】
[0060]
図2B及び
図2Cに示すように、ビームレット102_1は、例えばビームセパレータ160の上にレンズを提供することによって、イメージ面2内にイメージを生成するように形成され得る。一次ビーム又はビームレットを合焦させるために、レンズ又はレンズアレイが提供され得る。
【0051】
[0061]
図3は、本開示の実施形態に一致する、分散を減少させるために有用であり得る装置200Aを示す。装置200Aは、
図1の電子ビームツール100として使用され得る。
図3に示すように、電子源101、ガンアパーチャプレート171の主開口、コンデンサレンズ110、ソース変換ユニット120、及び対物レンズ131は、装置の一次光軸200_1と位置合わせされる。電子源101は、一次光軸200_1に沿って、及びソースクロスオーバ(仮想又は実)101sと共に、一次電子ビーム102を生成する。
【0052】
[0062] コンデンサレンズ110は、発散度を減少させるため、又は一次光軸200_1に沿った平行ビームになるために、一次電子ビーム102を合焦させることができる。すなわち、いくつかの実施形態において、コンデンサレンズ110は、一次電子ビーム102を平行ビームとして合焦させることができる。コンデンサレンズ110は、ソース変換ユニット120上に垂直に入射するべき一次電子ビーム102を形成するように構成可能である。ソース変換ユニット120の例は、米国特許第9,691,586号、米国特許出願第2017/0025243号、及び国際出願第PCT/EP2017/084429号に見られ、それらはすべて、それらの全体が参照により組み込まれる。
【0053】
[0063] ソース変換ユニット120において、一次電子ビーム102の3つのビームレット102_1、102_2、及び102_3がそれぞれ偏向されるように、偏向器が提供され得る。したがって偏向されたビームレットは、一次ビームクロスオーバ101sの仮想イメージを形成することができる。ビームレット102_1、102_2、及び102_3は、例えば一次光軸200_1に向かって、又は一次光軸200_1の外側に向かって、又は一次光軸200_1の周りを回転して、偏向され得る。
【0054】
[0064] 一次投影システム130は、伝送レンズ133及び対物レンズ131を含む。伝送レンズ133は一次光軸200_1と位置合わせされ、いくつかの実施形態では定常レンズとすることができ、他の実施形態では可動レンズとすることができる。伝送レンズ133は、ソース変換ユニット120とビームセパレータ160との間に位置決めされる。伝送レンズ133は、一次ビームクロスオーバ101sの仮想イメージをイメージ面2上に投影する。イメージ面2は、中間実イメージ面とすることができる。伝送レンズ133は、一次ビームクロスオーバ101sの複数の中間実イメージ102_1i、102_2i、及び102_3iをイメージ面2上に形成するために、ビームレット102_1、102_2、及び102_3を合焦させることができる。例えば伝送レンズ133は、合焦スポットがイメージ面2上に形成されるように、通過するビームの各々を合焦させるように構成可能である。
【0055】
[0065] イメージ面2は、ビームセパレータ160の領域内にあり得る。伝送レンズ133及びビームセパレータ160は、イメージ面2が適切に位置するように、配置又は調節可能である。例えばビームセパレータ160は、その偏向面160_2がイメージ面2に近いか又はイメージ面2と一致するように、配置可能である。伝送レンズ133は、イメージ面2が偏向面160_2に近いか又は偏向面160_2と一致するように、配置可能であり、またその合焦力を設定することが可能である。伝送レンズ133は、イメージ面2が伝送レンズ133から指定の距離だけ離れるようにも構成可能である。伝送レンズ133は、イメージ面2が、ビームセパレータ160とその中心で、例えば一次光軸200_1に沿ってビームセパレータ160の中心点で、垂直に交差するように構成可能である。
【0056】
[0066] 伝送レンズ133は、例えば静電レンズ、磁気レンズ、又は電磁複合レンズとすることができる。レンズによって生成される磁場又は静電場は、例えばレンズの合焦力を変更するために、レンズの電気的励起を調節することによって変動可能である。したがってレンズは、励起を調節することによって、レンズから指定の距離だけ離れたイメージ面を形成するように構成可能である。
【0057】
[0067]
図3において、一次投影光学システム130内のビームレットの経路は単に概略的であり得る。例えば、
図3に示されるように、対物レンズ131と伝送レンズ133との間に点線で表されるビームレットは、一次投影光学システム130などの光学素子に入るビームレットと光学素子を出るビームレットとの間の対応関係を示すことができる。すなわち、ビームレットの軌道は、
図3の一次投影光学システム130内に示されるものとは異なってよい。ビームレットの相対的位置は、光学素子の構成及び動作モードと共に変化し得る。
【0058】
[0068] 一次投影光学システム130の伝送レンズ133及び対物レンズ131は、協働してサンプル1上にビームスポットを形成するように構成可能である。対物レンズ131は、サンプル1の表面7上に3つの偏向ビームレットを合焦させ、それに応じて、プローブスポットとして働くように、その上に一次ビームクロスオーバ101sの3つのイメージ102_1S、102_2S、及び102_3Sを生成する。二次電子ビーム102_1se、102_2se、及び102_3seは、プローブスポット102_1S、102_2S、及び102_3Sからのサンプル1から放出され得る。ビームセパレータ160は、二次電子ビーム102_1se、102_2se、及び102_3seを二次光学システム150に向けて誘導する。
【0059】
[0069] 次に、本開示の実施形態に一致する、例示的マルチビーム装置211Aを示す
図4Aを参照する。
図4Aにおいて、X軸は半径方向に対応し、Z軸は装置211Aの一次光軸211_1に沿った方向に対応する。装置211Aは、
図1の電子ビームツール100として使用可能である。
【0060】
[0070] 装置211Aにおいて、ソース101の一次ビームクロスオーバ101sから放出される一次電子ビーム102は、コンデンサレンズ110Mによってコリメート可能であり、ソース変換ユニット120上に垂直に入射可能である。ソース変換ユニット120には、ビーム制限アパーチャアレイ121及びイメージ形成要素アレイ122が提供可能である。ビーム制限アパーチャアレイ121は、ビーム制限アパーチャ121_1、121_2、及び121_3を含むことができる。ビーム制限アパーチャ121_1、121_2、及び121_3は、一次電子ビーム102のビームレット102_1、102_2、及び102_3のサイズを制限する。イメージ形成要素アレイ122は、イメージ形成偏向器122_1、122_2、及び122_3を含むことができる。偏向器122_1、122_2、及び122_3は、一次ビームクロスオーバ101sの仮想イメージを形成するために、ビームレット102_1、102_2、及び102_3を偏向させることができる。いくつかの実施形態において、一次光軸211_1から更に遠くの偏向器は、ビームレットをより大きく偏向させることができる。更に、イメージ形成要素アレイ122は複数の層を含むことができ、また偏向器122_1、122_2、及び122_3は、別々の層内に提供することができる。偏向器122_1、122_2、及び122_3は、互いに独立して個別に制御することができる。いくつかの実施形態において、偏向器は、サンプル1上に形成されるプローブスポットのピッチを調節するように制御可能である。
【0061】
[0071] コンデンサレンズ110Mは、ビームレット102_1、102_2、及び102_3の電流を調節するために移動できるように構成可能である。可動コンデンサレンズ110Mは、位置P1において主平面110M_2を有することができ、装置の一次光軸211_1に沿って移動可能である。例えば主平面110M_2は、位置P1から、電子源101から更に遠くの位置P2へと移動可能であり、それに応じてビームレット102_1、102_2、及び102_3の電流は減少し得る。主平面110M_2は、ビームレット102_1、102_2、及び102_3の電流が増加し得るように、電子源101のより近くへ移動することができる。加えて、ビームレット102_1、102_2、及び102_3の電流は、ビーム制限アパーチャ121_1、121_2、及び121_3のサイズを変更することによって変更可能である。一次電子ビーム102は、ビームレットの電流を変化させるとき、平行ビームとして維持することができる。
【0062】
[0072] 伝送レンズ133は、一次ビームクロスオーバ101sの仮想イメージをイメージ面2上に投影するために、ビームレット102_1、102_2、及び102_3を合焦させ、一次ビームクロスオーバ101sの実イメージ102_1i、102_2i、及び102_3iを形成する。対物レンズ131は、サンプル1の表面7上にプローブスポット102_1S、102_2S、及び102_3Sを形成するために、イメージ102_1i、102_2i、及び102_3iをサンプル1上に投影する。偏向器122_1、122_2、及び122_3は、プローブスポット102_1S、102_2S、及び102_3Sが互いに所定の量だけ間隔を置いて配置されるように、ビームレットを偏向させることができる。
【0063】
[0073] イメージ形成要素アレイ122の中央に配置される偏向器は、装置211Aの一次光軸211_1と位置合わせすることができる。したがって、いくつかの実施形態において、中央偏向器は、ビームレット102_1の軌道をまっすぐに維持するように構成可能である。いくつかの実施形態において、中央偏向器は省くことができる。しかしながら、いくつかの実施形態において、一次電子源101は、ソース変換ユニット120の中心と必ずしも位置合わせされない場合がある。更に、
図4Aは装置211Aの側面を示し、ビームレット102_1は一次光軸211_1上にあるが、異なる側から見るとビームレット102_1は一次光軸211_1から外れている可能性があることを理解されよう。すなわち、いくつかの実施形態において、ビームレット102_1、102_2、及び102_3はすべてオフアクシスであり得る。オフアクシスコンポーネントは、一次光軸211_1に対してオフセットであり得る。
【0064】
[0074] 偏向されるビームレットの偏向角度は、1つ以上の基準に基づいて設定可能である。
図4Aに示されるように、偏向器122_2及び122_3は、オフアクシスビームレットを半径方向外側に向かって、又は、一次光軸211_1から離して、偏向させることができる。いくつかの実施形態において、偏向器122_2及び122_3は、オフアクシスビームレットを半径方向内側に向かって、又は一次光軸211_1に向かって、偏向させることができる。ビームレットの偏向角度は、ビームレット102_1、102_2、及び102_3がサンプル1上に垂直に着地するように設定可能である。対物レンズ131などのレンズに起因するイメージのオフアクシス収差は、レンズを通過するビームレットの経路を調節することによって減少させることができる。したがって、偏向器122_2及び122_3によって生成されるオフアクシスビームレット102_2及び102_3の偏向角度は、プローブスポット102_2S及び102_3Sが小さな収差を有するように設定可能である。ビームレットは、オフアクシスプローブスポット102_2S及び102_3Sの収差を低減させるために、対物レンズ131の前面焦点を通過するか又は前面焦点に近づくように偏向させることができる。いくつかの実施形態において、偏向器は、プローブスポット102_1S、102_2S、及び102_3Sが小さな収差を有する間、ビームレット102_1、102_2、及び102_3をサンプル1上に垂直に着地させるように設定可能である。伝送レンズ133及び対物レンズ131の配置は、ビームレット102_1、102_2、及び102_3が対物レンズ131の前面焦点を通過するか又は前面焦点に近づくような偏向角度で、ビームレット102_1、102_2、及び102_3を偏向させるように、イメージ形成要素アレイ122が構成可能である間、ビームレット102_1、102_2、及び102_3を合焦させるように構成可能である。
【0065】
[0075] 1つのビームレットは、異なるエネルギーレベルの電子を含むことができる。イメージ面2はビームセパレータ160の偏向面160_2にあるため、ビームセパレータ160を出た後、異なるエネルギーレベルの電子は異なる角度で偏向されるが、(
図2Bのような)イメージ面2上の半径シフト3はほぼゼロである。偏向された電子は、分散の影響を受けることなくサンプル1上にプローブスポットを形成するために、対物レンズ131によって再合焦させることができる。
【0066】
[0076] プローブスポット102_1S、102_2S、及び102_3Sでの一次ビームレット102_1、102_2、及び102_3による照明に応答して、二次電子SEがサンプル1から出現し、ビームセパレータ160によって二次イメージングシステムに向かって偏向される。
【0067】
[0077]
図4Aに示されるように、伝送レンズ133は、イメージ面2が偏向面160_2にあるように構成可能である。しかしながら、いくつかの実施形態において、イメージ面2は必ずしも、ビームセパレータ160の偏向面160_2にある必要はない。イメージ面2は、偏向面160_2の上又は下に位置し得る。いくつかの実施形態において、伝送レンズ133は、ビームレット102_1、102_2、及び102_3上のビームセパレータ160の分散に起因して、プローブスポット102_1S、102_2S、及び102_3Sのサイズが相対的に20%以内で増加することを保証するように構成可能である。
【0068】
[0078]
図2Bに示されるように、イメージ面2と偏向面160_2との間の距離が増加するにつれて、半径シフト3は増加する。その結果、プローブスポット102Sのサイズは増加する。いくつかの実施形態において、イメージ面2と偏向面160_2との間の距離は、プローブスポットのサイズが(例えば、ビームセパレータ160がオフのとき)非分散サイズと比較して20%未満で増加するように選択される。非分散スポットサイズが10nmであるとき、分散による影響を受けるプローブスポット102_1S、102_2S、及び102_3Sのサイズは、例えば12nm内に制限され得る。したがって、伝送レンズ133は、イメージ面2がビームセパレータ160にあるか又はビームセパレータ160の近くの領域内にあるように構成可能である。伝送レンズ133によって形成されるイメージ面2は、一次光軸211_1の方向(Z方向)で、ビームセパレータ160の縁部内に位置し得るか、又は、ビームセパレータ160を越えて位置し得る。
【0069】
[0079] いくつかの半導体製造プロセスにおいて、20%未満の分散に起因するビームスポットのサイズ増加を目的とすることは、検査するべきパターンの最小フィーチャサイズをイメージングするのに適し得る。例えば、7nmノード技術を用いる際、20%未満又は20%に等しいプローブスポットのサイズ増加は、パターン内に最小オブジェクトをイメージングするための十分な分解能を保証するのに適し得る。とりわけ14nm、10nm、及び5nm技術などの、他のプロセスに対して、他の閾値を適切に設定することができる。
【0070】
[0080] ビームセパレータ160の偏向面160_2の少なくとも近くのイメージ面2上に荷電粒子源101のイメージを形成するように構成された伝送レンズは、偏向面160_2にあるか、又は、ビームセパレータ160の偏向面160_2から一定の量だけオフセットされた、イメージ面2を形成するように構成された、伝送レンズ133を含むことができる。偏向面160_2からのイメージ面2のオフセットの量は、例えば、非分散サイズに関するビームスポットのサイズ増加が20%に制限される量などに対応し得る。
【0071】
[0081] 次に、本開示の実施形態に一致する、例示的マルチビーム装置212Aを示す
図4Bを参照する。
図4Aに示される装置211Aの実施形態と比べて、212Aは、プリビームレット形成機構172及び収差補償器アレイ122-2も含む。プリビームレット形成機構172は、クーロンアパーチャアレイを備えることができる。プリビームレット形成機構172の中央アパーチャ及び収差補償器アレイ122-2の中央偏向器は、装置212Aの一次光軸212_1と位置合わせすることができる。
【0072】
[0082] プリビームレット形成機構172には、複数のプリトリミングアパーチャ(例えば、クーロンアパーチャアレイ)が提供可能である。プリビームレット形成機構172は、可動コンデンサレンズ110Mの上に、また電子源101の近くに、提供可能である。
図4Bにおいて、3つのビームレット102_1、102_2、及び102_3はそれぞれ、3つのプリトリミングアパーチャを通過し、一次電子ビーム102の残りの部分の多くは遮断される。すなわち、プリビームレット形成機構172は、一次電子ビーム102から、3つのビームレット102_1、102_2、及び102_3を形成しない電子の多く又はほとんどをトリミングすることができる。プリビームレット形成機構172は、一次電子ビーム102がソース変換ユニット120に入る前に、プローブスポット102_1S、102_2S、及び102_3Sを形成するために最終的に使用されないことになる電子を遮断することができる。このようにして、ビーム制限アパーチャアレイ121の上のクーロン効果を大幅に減少させることができる。初期のステージで電子を遮断するためにガンアパーチャプレート171を電子源101の近くに提供することができる一方で、複数のビームレットの周辺の電子を更に遮断するためにプリビームレット形成機構172を提供することもできる。
【0073】
[0083] プリビームレット形成機構172がソース101にごく接近して配置されるとき、所望のビームレットサイズ又は形状を達成するために必要なプリトリミングアパーチャのサイズは、製造するには小さ過ぎる可能性がある。このような場合、プリビームレット形成機構172は、プリトリミングアパーチャの製造可能なサイズ又は形状を容易にする距離だけソース110から離して配置することができ、クーロン効果を減少させるために初期のステージで電子を遮断するように、ガンアパーチャプレート171を使用し、プリビームレット形成機構172の上に配置することができる。ビームレットの一部にはならない電子をより効果的に遮断するために、プローブスポット102_1S、102_2S、及び102_3Sの所望の電流の設定を容易にするためのプリトリミングアパーチャのサイズが選択される。より小さな電流にはより小さなサイズが使用され、より大きな電流にはより大きなサイズが使用される。所望の電流を取得するために一次電子ビーム102を遮断するために、所望のサイズのプリトリミングアパーチャを移動させることができるように、プリビームレット形成機構172は、一次光軸212_1に対して垂直な方向に移動可能とすることができる。例えばモータを、プリビームレット形成機構172に結合することができ、また、X-Y面内で(Y軸は、
図4Bのページ面の内/外である)プリビームレット形成機構172を移動させるように構成可能である。ガンアパーチャプレート171及びプリビームレット形成機構172がどちらも提供されるような場合、プリビームレット形成機構172の上のガンアパーチャプレート171は、プリビームレット形成機構172が移動しているとき、電子の放出時にソース101を安定的に保つことができる。
【0074】
[0084] いくつかの実施形態において、プリビームレット形成機構172は可動コンデンサレンズ110Mの下に配置することができる。プリビームレット形成機構172を電子源101のより近くに配置することで、クーロン効果をより効果的に減少させることができる。いくつかの実施形態において、プリビームレット形成機構172が依然として製造可能でありながらソース101の十分近くに配置できるとき、ガンアパーチャプレート171を省くことができる。
【0075】
[0085] イメージ面2は対物レンズ131のオブジェクト面であり、対物レンズ131の特徴は一定のままとすることができる。すなわちいくつかの実施形態において、ビームレット102_1、102_2、及び102_3(したがって、プローブスポット102_1S、102_2S、及び102_3S)の電流が変化するとき、対物レンズ131の特徴は必ずしも変化しない。例えば、ビームレット102_1、102_2、及び102_3の電流が変動するとき、対物レンズの励起は変動しない可能性がある。
【0076】
[0086] ソース変換ユニット120には、イメージ形成要素アレイ122-1及び収差補償器アレイ122-2が提供可能である。装置212Aのイメージ形成要素アレイ122―1は、
図4Aに示される装置211Aのビーム制限アレイ122と同じであり得る。イメージ形成要素アレイ122-1は、ビームレット102_1、102_2、及び102_3がサンプル1上に垂直に着地するように、又はプローブスポット102_1S、102_2S、及び102_3Sが小さな収差を有するように、設定可能な、イメージ形成マイクロ偏向器122_1d、122_2d、122_3dのアレイを備えることができる。収差補償器アレイ122-2は、収差を補償するように構成された、収差補償器122_1c、122_2c、及び122_3cのアレイを備えることができる。例えば、収差補償器アレイ122-2は、プローブスポット102_1S、102_2S、及び102_3Sのフィールド曲率収差又は非点収差を補償することができる。ソース変換ユニット120のイメージ形成マイクロ偏向器は、ビームレットが一次光軸212_1の外側に向かって、又は一次光軸212_1の内側に向かって、あるいは一次光軸212_1の周りを回転して、偏向するように構成可能である。
【0077】
[0087] 次に、本開示の実施形態に一致する、例示的マルチビーム装置213Aを示す
図4Cを参照する。
図4Bに示される装置212Aの実施形態と比べて、装置213Aは、例えば装置212Aの実施形態における伝送レンズ133と交換可能な、可動伝送レンズ133Mを含む。可動伝送レンズ133Mは、装置213Aの一次光軸213_1と位置合わせすることができる。
【0078】
[0088] 可動伝送レンズ133Mは、位置M1に主平面133M_2を有することができ、装置の一次光軸213_1に沿って移動可能である。例えば、主平面133M_2は、位置M1から、ソース変換ユニット120から更に離れた位置M2へと移動可能である。可動伝送レンズ133Mの位置を調節することは、イメージ面2内に形成されるイメージ102_1i、102_2i、及び102_3iの位置に影響を及ぼし得、したがって、サンプル1上のプローブスポット102_1S、102_2S、及び102_3Sのピッチを変化させる。プローブスポット102_1S、102_2S、及び102_3Sのピッチは、主平面133M_2がソース変換ユニット120から更に遠くへ移動するときに増加する。イメージ形成マイクロ偏向器122_1d、122_2d、122_3dは、ビームレットをサンプル1上に垂直に、又は小さな収差で着地させるように、ビームレット102_1、102_2、及び102_3を偏向させることができる。
【0079】
[0089] いくつかの実施形態において、プローブスポット102_1S、102_2S、及び102_3Sのピッチは、互いに同じであるか又は異なることができる。レンズを調節することによってピッチが変化するとき、及び、すべてのビームレットがこのレンズを通過するとき、ピッチは共に制御可能である。例えば、主平面133M_2などのレンズの主平面が移動するとき、又は、イメージ面2が移動するとき、プローブスポット102_1S、102_2S、及び102_3Sのピッチは共に制御可能である。
【0080】
[0090] 次に、本開示の実施形態に一致する、例示的マルチビーム装置214Aを示す
図4Dを参照する。
図4Dにおいて、X軸は半径方向に対応し、Z軸はマルチビーム装置214Aの一次光軸214_1に沿った方向に対応する。マルチビーム装置214Aは、
図1の電子ビームツール100として使用可能である。
【0081】
[0091] 装置214Aにおいて、電子源101の一次ビームクロスオーバ101sから放出される一次電子ビーム102は、ソース変換ユニット120上に垂直に入射するように、コンデンサレンズ110Mによってコリメートすることができる。ソース変換ユニット120には、ビーム制限アパーチャアレイ121及びイメージ形成要素アレイ122が提供可能である。ビーム制限アパーチャアレイ121は、ビーム制限アパーチャ121_1、121_2、及び121_3を備えることができる。ビーム制限アパーチャ121_1、121_2、及び121_3は、一次電子ビーム102のビームレット102_1、102_2、及び102_3のサイズを制限するように構成可能である。イメージ形成要素アレイ122は、イメージ形成偏向器122_1、122_2、及び122_3を備えることができる。偏向器122_1、122_2、及び122_3は、一次ビームクロスオーバ101sの仮想イメージを形成するために、ビームレット102_1、102_2、及び102_3を偏向させることができる。いくつかの実施形態において、一次光軸211_1から更に離れた偏向器は、ビームレットをより大きく偏向させることができる。更に、イメージ形成要素アレイ122は複数の層を備えることができ、偏向器122_1、122_2、及び122_3は別々の層(図示せず)内に提供可能である。偏向器122_1、122_2、及び122_3は、互いに独立して個別に制御することができる。いくつかの実施形態において、偏向器はサンプル1上に形成されるプローブスポットのピッチを調節するように制御することができる。
【0082】
[0092]
図4Dに示されるように、マルチビーム装置214Aは、一次電子ビーム102の周辺電子をトリミングするように構成されたガンアパーチャプレート171を備えることができる。一次電子ビーム102の発散度により、ガンアパーチャプレート171を電子源101に近づき過ぎて配置すると、コンデンサレンズ110M上に入射する一次電子ビーム102の断面を効果的に減少させることができない。加えて、ガンアパーチャプレート171上の電子源101からのデブリ又は粒子の堆積は、アパーチャサイズを望ましくなく減少させる可能性がある。ガンアパーチャプレート171を電子源101から離し過ぎて配置すると、結果として、一次電子ビーム102のより大きな部分をトリミングすることによって、ビーム電流の低下を生じさせる可能性があり、これも望ましくない。したがって、ガンアパーチャプレート171は、電子源101の一次ビームクロスオーバ101sから最適な距離だけ離して配置することができる。
【0083】
[0093] ビーム制限アパーチャアレイ121と組み合わせて、コンデンサレンズ110Mは、ビームレット102_1、102_2、及び102_3の電流を調節するように構成することができる。いくつかの実施形態において、調節可能コンデンサレンズ110Mは、マルチビーム装置214Aの一次光軸214_1に沿って移動可能な主平面110M_2を有することができる。例えば主平面110M_2は、ビームレット102_1、102_2、及び102_3の電流を減少させるために電子源101から更に遠くへ移動することが可能であり、主平面110M_2は、ビームレット102_1、102_2、及び102_3の電流を増加させるために電子源101のより近くに移動することが可能である。主平面110M_2の位置を調節することと組み合わせて、ビーム制限アパーチャアレイ121のアパーチャのサイズを変更することで、ビームレット102_1、102_2、及び102_3の電流を変化させることができる。ビームレットの電流は、ビームレットがビーム制限アパーチャアレイ121のアパーチャを通過した後に変化させることができる。一次電子ビーム102は、ビームレットの電流が変動するときに、平行ビームとして維持することができる。
【0084】
[0094] 伝送レンズ133は、一次ビームクロスオーバ101sの実イメージ102_1i、102_2i、及び102_3iを形成するために、中間イメージ面2上に一次ビームクロスオーバ101sの仮想イメージを投影するためにビームレット102_1、102_2、及び102_3を合焦させるように構成可能である。
図4Dに示されるように、伝送レンズ133は、中間イメージ面2がビームセパレータ160の偏向面160_2よりも伝送レンズ133のより近くに形成されるように構成可能である。中間イメージ面2の位置は、一次電子ビーム102又は一次ビームクロスオーバ101sの拡大を調節するために、一次光軸214_1に沿って調節することができる。本開示との関連において、「より近い」とは、実又は仮想にかかわらずオブジェクトの物理的な近接を示す。例えば、イメージ面2がビームセパレータ160よりも伝送レンズ133により近い場合、イメージ面2から伝送レンズ133までの一次光軸214_1に沿った垂直距離が、イメージ面2からビームセパレータ160までの垂直距離よりも小さいことを意味する。イメージ面2と伝送レンズ133との間の垂直距離は、イメージ面2と伝送レンズ133の中心軸との間の、一次光軸214_1に沿った距離として測定可能である。イメージ面2とビームセパレータ160との間の垂直距離は、イメージ面2とビームセパレータ160の偏向面160_2との間の一次光軸214_1に沿った距離として測定可能である。
【0085】
[0095] いくつかの実施形態において、一次ビームクロスオーバ101sの小さな拡大が望ましい場合がある。例えば一次ビームクロスオーバ101sから生成されるより小さなプローブスポット(例えば、102_1S、102_2S、及び102_3S)は、結果としてイメージ解像度の機能を拡張することができる。拡大は、プローブスポットのサイズと一次ビームクロスオーバ101sのサイズとの比率に基づいて決定することができる。
【0086】
[0096] いくつかの実施形態において、拡大は、対物レンズ131の焦点距離とコンデンサレンズ110Mの焦点距離との比率として示すことができる。プローブスポットがより小さいくなるように小さな拡大を取得するために、対物レンズ131の短い焦点距離及びコンデンサレンズ110Mの長い焦点距離が必要であり得、結果として分解能の機能が拡張される。
【0087】
[0097] マルチビーム装置214Aにおいて、拡大は、対物レンズ131とサンプル1との間の距離と、中間イメージ面2と対物レンズ131との間の距離との比率に基づいて決定することができる。中間イメージ面2と対物レンズ131との間の距離を増加させることで、一次ビームクロスオーバ101sの拡大を更に減少させることができる。
【0088】
[0098] 伝送レンズ133は、例えば、静電レンズ、磁気レンズ、又は電磁複合レンズとすることができる。伝送レンズ133の焦点距離又は合焦力は、レンズの電気的励起を変化させることによって、又は伝送レンズ133の物理的位置(
図4Dには図示せず)を変化させることによって、又はその両方によって調節可能である。したがって伝送レンズ133は、必要に応じて適宜、拡大を変更するために、
図4Dに示されるようにイメージ面2をレンズから指定された距離だけ離して形成するように構成可能である。
【0089】
[0099] マルチビーム装置214Aは、サンプル1上に入射する一次荷電粒子を、一次荷電粒子との相互作用時にサンプル1から放出される二次電子又は後方散乱電子から分離するための、ビームセパレータ160を備えることができる。いくつかの実施形態において、適切な空間を置いて二次イメージングシステム150を配置できるようにするために、ビームセパレータ160が対物レンズ131により近くなるように、対物レンズ131と伝送レンズ133との間にビームセパレータを配置することができる。
【0090】
[00100] 次に、本開示の実施形態に一致する、例示的マルチビーム装置215Aを示す
図4Eを参照する。
図4Dに示されるマルチビーム装置214Aの実施形態と比べて、マルチビーム装置215Aは、プリビームレット形成機構172を含む。プリビームレット形成機構172は、クーロンアパーチャアレイを備えることができる。
【0091】
[00101] いくつかの実施形態において、プリビームレット形成機構172には、複数のプリトリミングアパーチャ(例えば、クーロンアパーチャアレイ)を提供することができる。プリビームレット形成機構172は、可動コンデンサレンズ110Mの上に、また電子源101の近くに提供可能である。
図4Eにおいて、一次電子ビーム102は3つのプリトリミングアパーチャを通過し、一次電子ビーム102の残りの部分の多くがトリミングされる。すなわち、プリビームレット形成機構172は、ビーム制限アパーチャアレイ121の上のクーロン効果を低減させるために、一次電子ビーム102から、3つのビームレット102_1、102_2、及び102_3を形成しない電子の多く又はほとんどをトリミングすることができる。複数のプリトリミングアパーチャの形状及びサイズは、クーロン効果の低減を最大にするように調節可能である。
【0092】
[00102] いくつかの実施形態において、初期のステージで電子を遮断するために、ガンアパーチャプレート171を電子源101の近くに提供することが可能であり、一方で、複数のビームレットの周辺の電子を更に遮断するために、プリビームレット形成機構172を提供することも可能である。いくつかの実施形態において、プリビームレット形成機構172はガンアパーチャプレート171無しで使用することができる。これによって、よりシンプルなカラム設計、より低い保守コスト、又はより少ないツールダウンタイムが可能になり得る。
【0093】
[00103] 次に、本開示の実施形態に一致する、例示的マルチビーム装置216Aを示す
図4Fを参照する。
図4Dに示されるマルチビーム装置214Aの実施形態に加えて、マルチビーム装置216Aは、ビーム分散補償器161を含む。
【0094】
[00104] ビーム分散補償器161は、(本開示の初期で考察したような)ビームセパレータ160によって生じる電子ビームの分散を補償するように構成可能である。ビーム分散補償器161は、ビームセパレータ160と伝送レンズ133との間に配置することができる。ビーム分散補償器161は、その中央に偏向面161_2を有するように表すことができる。ビーム分散補償器161は、例えばウィーンフィルタを備えることができる。ビーム分散補償器161の例及びビーム分散を補償する例示的方法は、米国特許出願第2019/0035595号に見ることができ、その全体が参照により組み込まれる。
【0095】
[00105] マルチビーム装置216Aは、イメージング分解能を機能強化するために、拡大を低減し、ビーム分散を補償するように構成可能である。中間イメージ面2の位置は、伝送レンズ133の電気的励起を変化させることによって調節可能である。イメージ面2の位置における変化は、拡大を変動させることができる。例えば、ビームセパレータ160からは離れるが伝送レンズ133にはより近づけてイメージ面2を形成することで、結果としてより小さな拡大を生じさせることができる。しかしながら、こうした構成では、ビーム分散は逆効果になり得る。一次ビームレット(102_1、102_2、及び102_3)のビーム分散全体の影響を軽減するために、ビーム分散補償器161を使用することができる。したがって、ビームセパレータから離して形成されたイメージ面2と組み合わせたビーム分散補償器161を含むマルチビーム装置216Aは、イメージング分解能を向上させる際に有用であり得る。
【0096】
[00106] 次に、本開示の実施形態に一致する、例示的マルチビーム装置217Aを示す
図4Gを参照する。
図4Fに示されるマルチビーム装置216Aの実施形態と比べて、マルチビーム装置217Aは、プリビームレット形成機構172も含むことができる。プリビームレット形成機構172は、可動コンデンサレンズ110Mの上、及び電子源101の近くに提供される、クーロンアパーチャアレイを備えることができる。
図4Gにおいて、一次電子ビーム102は3つのプリトリミングアパーチャを通過し、一次電子ビーム102の残りの部分の多くはトリミングされる。すなわち、プリビームレット形成機構172は、ビーム制限アパーチャアレイ121の上のクーロン効果を低減させるために、3つのビームレット102_1、102_2、及び102_3を形成しない一次電子ビーム102からの電子のほとんどをトリミングすることができる。複数のプリトリミングアパーチャの形状及びサイズは、クーロン効果の低減を最大にするように調節可能である。
【0097】
[00107] プリビームレット形成機構172を導入することによるクーロン効果の低減に加えて、マルチビーム装置217Aの実施形態は、伝送レンズ133の焦点距離を表す中間イメージ面2上に一次ビームクロスオーバ101sの実イメージを形成するように構成された、伝送レンズ133を含む。中間イメージ面2の場所は、伝送レンズ133の電気的励起を変化させることによって調節可能である。電気的励起における変化は、焦点距離の変化を生じさせ得、それによって分解能を向上させるために拡大を変化させる。更に、マルチビーム装置217Aの実施形態は、ビームセパレータ160によって生じるビームレット102_1、102_2、及び102_3の分散を補償するように構成されたビーム分散補償器161を含む。
【0098】
[00108] 次に、本開示の実施形態に一致する、例示的マルチビーム装置221Aを示す
図5Aを参照する。装置221Aは、(例えば、収束モード又は平行モードの)中でもとりわけ、発散モードで動作することができる。発散モードでは、一次電子ビーム102を平行(又はほぼ平行)ビームにコリメートするのではなく、コンデンサレンズ110は、電子ビーム102を発散ビームとして形成するために、電子ビーム102をある程度だけ合焦させるように構成することができる。発散モードにおいて、一次電子ビーム102の電流密度は、平行モードで動作するときよりも小さくすることができる。したがって、ビームレット102_1、102_2、及び102_3の電流を低減させることができる。
【0099】
[00109] 装置221Aには、プリ屈曲マイクロ偏向器を含むことができるプリビームレット屈曲偏向器アレイ123を提供することができる。例えば、プリビームレット屈曲偏向器アレイ123は、プリ屈曲マイクロ偏向器123_1、123_2、及び123_3を備えることができる。プリビームレット屈曲偏向器アレイ123は、ビームレット102_1、102_2、及び102_3を、一次光軸221_1に対して平行に、及びビーム制限アパーチャアレイ121上に法線入射するように、偏向させるために提供することができる。プリビームレット屈曲偏向器アレイ123は、ビームレットがビーム制限アパーチャ121_1、121_2、及び121_3にある角度で入ることによって生じ得る、電子散乱を低減させるために、ビームレットを偏向させることができる。ビームレットにおける電子散乱は、それぞれのプローブスポットサイズを大きくするか、又は背景雑音に寄与し、したがって対応するスキャン領域のイメージ解像度を劣化させる可能性がある。
【0100】
[00110] コンデンサレンズ110は、ビームレット102_1、102_2、及び102_3が、ビーム制限アパーチャ121_1、121_2、及び121_3を通過した後、所望の電流を有するようにするために、電子ビーム102を合焦させるように構成可能である。ソース変換ユニット120には、ビーム制限アパーチャアレイ121、イメージ形成要素アレイ122、及びプリビームレット屈曲偏向器アレイ123が提供可能である。ビーム制限アパーチャアレイ121は、ビームレット102_1、102_2、及び102_3のサイズ又は電流を所望のレベルに制限することができる。イメージ形成要素アレイ122は、一次ビームクロスオーバ101sの仮想イメージを形成するように構成可能なイメージ形成マイクロ偏向器122_1d、122_2d、及び122_3dを備えることができる。
【0101】
[00111] 伝送レンズ133は、ビームレット102_1、102_2、及び102_3を合焦させ、実イメージ102_1i、102_2i、及び102_3iを形成するために、一次ビームクロスオーバ101sの仮想イメージをイメージ面2上に投影することができる。対物レンズ131は、表面7上にプローブスポット102_1S、102_2S、及び102_3Sを形成するために、サンプル1上にイメージ102_1i、102_2i、及び102_3iを投影することができる。
【0102】
[00112] イメージ形成マイクロ偏向器122_1d、122_2d、122_3dは、プローブスポット102_1S、102_2S、及び102_3Sがサンプル表面7上で互いに間隔を置いて配置されるように、ビームレット102_1、102_2、及び102_3を偏向させるように構成可能である。
【0103】
[00113] いくつかの実施形態において、イメージ形成マイクロ偏向器122_1d、122_2d、122_3dは、ビームレット102_1、102_2、及び102_3をサンプル表面7上に垂直に着地するように調節するか、又は、プローブスポット102_1S、102_2S、及び102_3Sの収差を低減させるために、使用することができる。
【0104】
[00114] 装置221Aにおいて、ソース変換ユニット120は、ビームレット102_1、102_2、及び102_3が、ソース変換ユニットを介して一次光軸221_1に対してほぼ平行に進むように、構成可能である。ビームレット102_1、102_2、及び102_3は、プリビームレット屈曲偏向器アレイ123、ビーム制限アパーチャアレイ121、及びイメージ形成要素アレイ122の、それぞれの要素を介してまっすぐ進むことができる。ソース変換ユニット120を介するまっすぐな軌道を有するビームレットは、ビーム制限アパーチャアレイ121及びイメージ形成要素アレイ122の収差を低減させることができる。加えて、ソース変換ユニット120の層をコンパクトにすることができる。更に、ソース変換ユニット120の製造をより効率的にすることができる。
【0105】
[00115] 次に、本開示の実施形態に一致する、例示的マルチビーム装置222Aを示す
図5Bを参照する。
図5Aに示される装置221Aの実施形態と比べて、装置222Aは、プリビームレット形成機構172及び収差補償器アレイ122-2も含む。プリビームレット形成機構172は、クーロンアパーチャアレイを備えることができる。プリビームレット形成機構の中央アパーチャ及び収差補償器アレイ122-2の中央偏向器は、装置222Aの一次光軸222_1と位置合わせすることができる。更に、装置222Aには、回転防止コンデンサレンズ110ARを提供することができる。
【0106】
[00116] 電子源101によって生成される一次電子ビーム102からの電子は、プリビームレット形成機構172のビームレット形成アパーチャによって、3つのビームレット102_1、102_2、及び102_3の周辺からトリミングすることができる。ビームレット102_1、102_2、及び102_3の電流を変更するために、回転防止コンデンサレンズ110ARの合焦力を変化させるとき、ビームレット102_1、102_2、及び102_3は、プリビームレット屈曲偏向器アレイ123、ビーム制限アパーチャアレイ121、及びイメージ形成要素アレイ122を通過できるように、ソース変換ユニット120上のビームレット102_1、102_2、及び102_3の回転角度は変化なく維持することができる。
【0107】
[00117] 回転防止コンデンサレンズ110ARは、回転防止レンズとすることができる。回転防止レンズは、通過する電子ビームの回転角度に影響を与えることなく変化可能な合焦力を有することができる。回転防止レンズの例は、国際出願第PCT/EP2017/084429号に提供され、その全体が参照により組み込まれる。回転防止レンズは2つのレンズによって形成可能である。例えば、回転防止レンズは、2つの磁気レンズによって、又は、1つの磁気レンズ及び1つの静電レンズによって、形成可能である。回転防止レンズ内部のレンズの励起を適切に調節することによって、通過する電子ビームの回転角度に影響を与えることなく、レンズの合焦力を変化させることができる。
【0108】
[00118] 回転防止コンデンサレンズ110ARは、可動回転防止レンズ(MARL)とすることができる。MARLの場合、回転防止コンデンサレンズ110ARは3つのレンズによって形成可能である。可動回転防止レンズの例も、国際出願第PCT/EP2017/084429号に提供されている。
【0109】
[00119] プリビームレット形成機構172には、ビームレット102_1、102_2、及び102_3を形成するために役立ち得る複数のプリトリミングアパーチャを提供することができる。回転防止コンデンサレンズ110ARは、ビームレット102_1、102_2、及び102_3がビームレット制限機構121のそれぞれの開口を通過することを保証するために役立ち得る。
【0110】
[00120] ソース変換ユニット120には、イメージ形成要素アレイ122-1及び収差補償器アレイ122-2を提供することができる。装置222Aのイメージ形成要素アレイ122-1は、
図5Aに示される装置221Aのイメージ形成要素アレイ122と同じとすることができる。イメージ形成要素アレイ122―1は、ビームレット102_1、102_2、及び102_3がサンプル1上に垂直に着地するように、又は、プローブスポット102_1S、102_2S、及び102_3Sが小さな収差を有するように、設定可能な、イメージ形成マイクロ偏向器122_1d、122_2d、及び122_3dのアレイを備えることができる。収差補償器アレイ122-2は、プローブスポット102_1S、102_2S、及び102_3Sのフィールド曲率収差又は非点収差を補償することができる、収差補償器122_1c、122_2c、及び122_3cのアレイを備えることができる。
【0111】
[00121] 次に、本開示の実施形態に一致する、例示的マルチビーム装置223Aを示す
図5Cを参照する。
図5Bに示される装置222Aの実施形態と比べて、装置223Aは、例えば装置222Aの実施形態における伝送レンズ133の代わりとなり得る、可動伝送レンズ133Mを含むことができる。可動伝送レンズ133Mは、装置223Aの一次光軸223_1と位置合わせすることができる。
【0112】
[00122] 可動伝送レンズ133Mは、所定の位置に主平面133M_2を有することができ、装置の一次光軸223_1に沿って移動することができる。例えば、主平面110M_2は、ソース変換ユニット120のより近くに、又はソース変換ユニット120から更に離れて、移動することができる。可動伝送レンズ133Mの位置を調節することは、イメージ面2内に形成されるイメージ102_1i、102_2i、及び102_3iの位置に影響を与え、したがってサンプル1上のプローブスポット102_1S、102_2S、及び102_3Sのピッチを変化させることができる。
【0113】
[00123]
図6A及び
図6Bは、本開示の実施形態に一致する、イメージ形成要素アレイ122における例示的偏向角度調節を示す。
図6A及び
図6Bの配置は、本明細書で考察する例示的実施形態の一部を形成することができる。偏向器は、電子源から発生するビームを偏向させるように構成可能である。偏向器は、イメージ形成要素アレイ122の偏向器122_1、122_2、及び122_3などの、偏向器のアレイの一部とすることができる。偏向器122_1、122_2、及び122_3は、ビームを光軸(Z軸)の周りに対称的に偏向させるように構成可能である。
図6Aの実施形態の側面図において、偏向器122_1は、紙面から外への方向でビームレット102_1を偏向させるように構成可能である。
【0114】
[00124] 偏向器122_2は、偏向器の一例である。
図6Aに示されるように、偏向器122_2は、半径方向外側へ、またZ軸に対して偏向角度θで、ビームレット102_2を偏向させる。角度θが増加するにつれて、ビームレット分離が増加し得る。したがって、イメージ102_1i、102_2i、及び102_3iは、イメージ面2上での分離距離が増加した状態で形成することができる。プローブスポット102_1S、102_2S、及び102_3Sなどのビームスポットは、ピッチが増加した状態で形成可能である。
【0115】
[00125] イメージ形成要素アレイ122は、偏向器の3×3アレイを備えることができる。偏向器の3×3アレイの中央偏向器は、装置の一次光軸と位置合わせ可能であり、したがって、中央ビームの軌道をまっすぐに維持するように構成可能である。中央偏向器は省くこともできる。いくつかの実施形態において、より多いか又は少ない偏向器を提供することができる。例えば、偏向器の11×11アレイが提供可能である。アレイのすべての偏向器は、通過するビームに対して所望の偏向角度を生成するように構成可能である。いくつかの実施形態において、いくつかの偏向器は、通過するビームを異なる偏向角度で偏向させるように構成可能である。より多くの偏向器が提供される実施形態では、例えば半径方向外側に向けて位置決めされた偏向器は、ビーム上により大きな偏向角度を生成するように構成可能である。
【0116】
[00126]
図6Bに示されるように、ビームレットは一次光軸に向けて半径方向内側に偏向させることもできる。ビームレットが内側に向けて偏向されるとき、ビームレットがビームセパレータ160に達する前に、ビームクロスオーバを形成することができる。更に、ビームレットを内側に向けて偏向させることで、ビームレットは対物レンズ103に達した際にかなり大きなビーム分離を有するようにさせることが可能であり、したがって、ビームレットはかなり大きな収差を伴ってサンプル上にプローブスポットを形成し得る。
【0117】
[00127] 可動伝送レンズが使用されるとき、イメージ形成要素アレイ122の偏向器は、可動伝送レンズの主平面の基準位置からの変位の量に基づく偏向角度で、ビームレットを偏向させるように構成可能である。偏向器は、所定の範囲の偏向角度内でビームレットを偏向させるように構成可能である。偏向器によって付与される偏向の量は、偏向器に印加される電圧によって決定可能である。
【0118】
[00128] いくつかの実施形態において、偏向器は小さな偏向角度を生成するように構成可能である。例えば、複数の偏向器を使用して、個々の小さな偏向角度よりも大きな角度でビームレットをまとめて偏向させるように、単一のビームレットを調節することができる。こうした小さな偏向角度の利点は、偏向器アレイが製造しやすいこと、及び必要な電気的励起が低くてよいことである。更に、こうした構成は電力効率がより良い可能性がある。
【0119】
[00129]
図7は、本開示の実施形態に一致する、ビームを形成するための例示的方法700を示すフローチャートである。方法700は、例えば
図1に示されるようなEBIシステム10のコントローラ19によって実行可能である。コントローラ19は、方法700の1つ以上のブロックを実装するようにプログラミング可能である。例えばコントローラ19は、荷電粒子ビームを生成するように、及び他の機能を実施するように、荷電粒子ビーム装置のモジュールに命じることができる。
【0120】
[00130] ステップ710において、荷電粒子ビームは荷電粒子源によって生成可能である。例えば電子源101は、一次光軸に沿って形成される一次電子ビーム102を放出するように制御可能である。ステップ710は、複数のビームレットを生成することを含むことができる。一次電子ビーム102は、ガンアパーチャ171又はプリビームレット形成機構172によってトリミングすることができる。ステップ710は、一次電子ビーム102を合焦させることを含むことができる。一次電子ビーム102はコンデンサレンズ110を合焦させることができる。一次電子ビーム102を合焦させることは、電場又は磁場を生成することを含むことができる。一次電子ビームレット102_1、102_2、及び102_3は、ソース変換ユニット120に向かって誘導することができる。
【0121】
[00131] ステップ720において、荷電粒子ビームは偏向器によって偏向可能である。例えば、ビームレット102_1、102_2、及び102_3を含む一次電子ビーム102は、プリビームレット屈曲偏向器アレイ123の偏向器によって偏向させることができる。一次ビーム102は、ビームレット102_1、102_2、及び102_3が一次光軸に対して平行になるように、またビーム制限アレイ121上に法線入射するように、偏向させることができる。偏向器に電圧を印加することができる。
【0122】
[00132] ステップ730において、ビームレットのサイズを制限することができる。例えば、ビームレット102_1、102_2、及び102_3のサイズは、ビーム制限アレイ121のそれぞれの開口を通過させるようにすることによって、制限することができる。
【0123】
[00133] ステップ740において、ビームレットは偏向器によって偏向させることができる。例えば、ビームレット102_1、102_2、及び102_3は、イメージ形成要素アレイ122の個々の偏向器によって偏向させることができる。偏向器122_1、122_2、及び122_3などのイメージ形成要素アレイ122の個々の偏向器は、ビームレット102_1、102_2、及び102_3を偏向角度θだけ偏向させるように制御可能である。偏向器に電圧を印加することができる。ステップ740においてビームレットを偏向させることは、ビームレットを一次光軸に対して垂直の方向に偏向させることを含むことができる。ビームレットは半径方向外側に向けて偏向させることができる。ステップ740は、荷電粒子源101の一次ビームクロスオーバ101sの仮想イメージを形成することを含むことができる。偏向角度は、ビームレット102_1、102_2、及び102_3がサンプル1上に垂直に着地するように設定することができる。偏向角度は、伝送レンズ133及び対物レンズ131の特性に基づくものとすることができる。
【0124】
[00134] ステップ750において、ビームレットは中間イメージ面上に合焦することができる。例えば、ビームレット102_1、102_2、及び102_3は、伝送レンズ133によってイメージ面2上に合焦させることができる。一次ビームクロスオーバ101sの複数の中間実イメージ102_1i、102_2i、及び102_3iは、イメージ面2上に形成することができる。イメージ面2は、一次荷電粒子と二次荷電粒子とを分離するように構成されたビームセパレータ160の少なくとも近くとすることができる。伝送レンズ133は、電場又は磁場を生成するように制御可能である。ステップ750は、イメージ面2内に形成されるイメージの分離を調節するように、可動レンズを制御することを含むことができる。例えば、可動伝送レンズ133は、中間実イメージ102_1i、102_2i、及び102_3iの間の分離距離を調節するように、また、プローブスポット102_1S、102_2S、及び102_3Sのピッチを調節するように、移動することができる。
【0125】
[00135] ステップ760において、ビームレットはターゲット上に合焦することができる。例えばビームレット102_1、102_2、及び102_3は、対物レンズ131によって検査のためにサンプル1上に合焦させることが可能であり、表面7上にプローブスポット102_1S、102_2S、及び102_3Sを形成することが可能である。ステップ750において中間実イメージ102_1i、102_2i、及び102_3iの間の分離距離を調節することで、プローブスポット102_1S、102_2S、及び102_3Sのピッチを変更することができる。ステップ740において偏向角度を設定することで、プローブスポット102_1S、102_2S、及び102_3Sの収差を低減させることができる。
【0126】
[00136] ステップ770において、二次電子は、二次イメージングシステムに向かって誘導されるように偏向することができる。例えば、プローブスポット102_1S、102_2S、及び102_3Sにおける一次ビームレット102_1、102_2、及び102_3による照明に応答して、二次イメージングシステム150に誘導され得る二次電子ビーム102_1se、102_2se、及び102_3seを形成するために、二次電子はサンプル1から出現し得る。ビームセパレータ160は、二次電子ビーム102_1se、102_2se、及び102_3seを二次イメージングシステム150に向けて偏向させるように制御可能である。二次イメージングシステム150は、その後、二次電子ビーム102_1se、102_2se、及び102_3seを、電子検出デバイス140Mの検出要素140_1、140_2、及び140_3上に合焦させることができる。
【0127】
[00137] ステップ780において、サンプルのイメージを構築することができる。例えば検出要素140_1、140_2、及び140_3は、対応する二次電子ビーム102_1se、102_2se、及び102_3seを検出すること、並びに、サンプル1の対応するスキャン域のイメージを構築するために信号処理ユニットに送信可能な対応する信号を生成することができる。
【0128】
[00138]
図8は、本開示の実施形態に一致する、マルチビーム検査ツールを使用してサンプルを観察する例示的方法800を示すフローチャートである。方法800は、例えば
図1に示されるように、EBIシステム10のコントローラ19によって実行可能である。コントローラ19は、方法800の1つ以上のブロックを実装するようにプログラム可能である。例えばコントローラ19は、荷電粒子ビームを生成するように、及び他の機能を実施するように、荷電粒子ビーム装置のモジュールに命じることができる。
【0129】
[00139] ステップ810において、荷電粒子ビーム(例えば、
図2Aの一次電子ビーム102)が荷電粒子源(例えば、
図2Aの電子源101)によって生成可能である。例えば、電子源101は、一次光軸に沿って形成された一次電子ビーム102を放出するように制御可能である。一次電子ビームは、ガンアパーチャプレート(例えば、
図2Aのガンアパーチャプレート171)又はアパーチャアレイ(例えば、
図4Bのプリビームレット形成機構172)、あるいはその両方によってトリミング可能である。
【0130】
[00140] ステップ820において、複数のビームレット(例えば、ビームレット102_1、102_2、及び102_3)が、プリビームレット形成機構を通過した後に生成可能である。生成されるビームレットの数は、プリビームレット形成機構のプリトリミングアパーチャの数に基づくことができる。例示の目的で、3つのビームレット及び3つのプリトリミングアパーチャが例えば
図4Aに示されている。ステップ820は、コンデンサレンズ(例えば、
図4Aのコンデンサレンズ110M)によって、ビームレットを合焦させることを含むことができる。例えば、
図4Dに示されるマルチビーム装置214Aの実施形態において、コンデンサレンズは一次電子ビームを合焦させることができる。一次電子ビーム又はビームレットを合焦させることは、電場又は磁場を生成することを含むことができる。いくつかの実施形態において、コンデンサレンズはビームレット又は一次電子ビームをコリメートするように構成可能である。ビームレット102_1、102_2、及び102_3は、ソース変換ユニット120に向けて誘導することができる。
【0131】
[00141] ステップ830において、ビームレットのサイズを制限することができる。例えば、ビームレット102_1、102_2、及び102_3のサイズは、ビーム制限アレイ(例えば、
図4Aのビーム制限アレイ121)のそれぞれの開口を通過させるようにすることによって、制限することができる。ビームレットのサイズを減少させることでビーム電流を減少させることができるが、ビームレットの断面内により小さなプローブスポット及び実質的に均一な電子エネルギー分布を生成することに役立てることができる。これによって、とりわけ、イメージング分解能を向上させることができる。
【0132】
[00142] ステップ840において、伝送レンズ(例えば、
図4Dの伝送レンズ133)上のビーム偏向器(例えば、
図4Aのイメージ形成要素アレイ122)によって、1つ以上のビームレットを偏向させることができる。例えば、ビームレット102_1、102_2、及び102_3は、イメージ形成要素アレイの個々の偏向器によって偏向させることができる。オンアクシスビームレット102_1は偏向されない場合があることを理解されよう。偏向器122_1、122_2、及び122_3などのイメージ形成要素アレイの個々の偏向器は、それぞれ、偏向器に電圧信号を印加することによって、ビームレット102_1、102_2、及び102_3を偏向させるように制御可能である。例えば、ビームレット102_2、及び102_3を偏向させるために、それぞれ、偏向器122_2及び122_3に電圧信号を印加することができるが、例えば
図4Dに示されるように、ビームレット102_1をいずれの偏向もなしに通過させるために偏向器に電圧信号を印加しないことができる。
【0133】
[00143] ステップ840においてビームレットを偏向させることは、1つ以上のビームレットを伝送レンズ(例えば、
図4Dの伝送レンズ133)上に入射させるために半径方向外側に向けて偏向させることを含むことができる。
【0134】
[00144] ステップ850において、ビームレットは中間イメージ面(例えば、イメージ面2)上に合焦することができる。例えばビームレットは、伝送レンズによってイメージ面上に合焦することができる。ビームクロスオーバ(例えば、一次ビームクロスオーバ101s)の複数の中間実イメージ(例えば、
図4Dの中間実イメージ102_1i、102_2i、及び102_3i)を、イメージ面上に形成することができる。イメージ面は、一次荷電粒子と二次荷電粒子とを分離するように構成されたビームセパレータ(例えば、ビームセパレータ160)から離して形成することができる。伝送レンズは、電場又は磁場を生成するように制御可能である。ステップ850は、イメージ面内に形成されるイメージの分離を調節するために可動レンズを制御することを含むことができる。例えば可動伝送レンズ(例えば、
図5Cの可動伝送レンズ133M)は、中間実イメージ間の水平分離距離を調節するように、及びプローブスポット(例えば、
図4Dのプローブスポット102_1S、102_2S、及び102_3S)のピッチを調節するように、一次光軸に対して平行な方向に移動することができる。
【0135】
[00145] いくつかの実施形態において、伝送レンズは
図4Dに示されるように定常である。伝送レンズの焦点距離は、電気的励起を変化させることによって調節可能である。伝送レンズの焦点距離を変更することで、中間イメージ面の位置を変化させることが可能であり、それによって、ビームレットの拡大及び形成されるプローブスポットのサイズが変化する。
【0136】
[00146] ステップ860において、ビーム分散補償器(例えば、
図4Fのビーム分散補償器161)は、ビームセパレータを通過する一次ビームレットの決定された分散に基づいて、1つ以上のビームレットの分散を補償することができる。中間イメージ面をビームセパレータから離して形成することによって、ビーム分散を増加させ、イメージ解像度の損失を生じさせる可能性がある。この問題を緩和するために、ビーム分散補償器は、ビームレットを適宜分散させることができる。ビーム分散補償器は、例えばウィーンフィルタを備えることができる。
【0137】
[00147] ステップ870において、補償されたビームレットは、検査のために対物レンズ(例えば、
図4Dの対物レンズ131)によってターゲット(例えばサンプル1)上に合焦することが可能であり、また、サンプルの表面(例えば、
図4Dの表面7)上にプローブスポット102_1S、102_2S、及び102_3Sを形成することができる。ステップ850において、中間実イメージ102_1i、102_2i、及び102_3iの間の水平分離距離を調節することで、プローブスポットのピッチを変更することができる。プローブスポットのピッチが小さ過ぎる場合、近隣のビームレット間のクロストークがビームレットサイズに影響を与え、それによってイメージ解像度に影響を与える可能性がある。
【0138】
[00148] ステップ880において、二次電子は、二次イメージングシステム(例えば、
図2Aの二次イメージングシステム150)に向けて誘導されるように、ビームセパレータによって偏向させることができる。ビームセパレータは、二次イメージングシステムに向けて二次電子ビーム(例えば、
図2Aの二次電子ビーム102_1se、102_2se、及び102_3se)を偏向させるように制御可能である。二次イメージングシステムは、その後、二次電子ビームを、電子検出デバイス(例えば、
図2Aの電子検出デバイス140M)の検出要素(例えば、
図2Aの検出要素140_1、140_2、及び140_3)上に合焦させることができる。
【0139】
[00149] ステップ890において、サンプルのプローブ領域のイメージを構築することができる。例えば、検出要素140_1、140_2、及び140_3は、対応する二次電子ビームを検出すること、及び、サンプルの対応するスキャン域のイメージを構築するために信号処理ユニットに送信可能な対応する信号を生成することができる。
【0140】
[00150] 下記の条項を使用して、本実施形態を更に詳細に説明することができる。
1.荷電粒子光学システムであって、
ソースによって生成される一次荷電粒子ビームの複数のビームレットを偏向させるように構成された、第1の偏向器アレイと、
ソースの複数のイメージをイメージ面上に形成するために複数のビームレットを合焦させるように構成された、第1のレンズと、
複数のイメージをサンプル上に投影するように、及びその上に複数のプローブスポットを形成するように構成された、対物レンズと、
を備える、荷電粒子光学システム。
2.複数のビームレットと、複数のプローブスポットによる照明に起因してサンプルから放出される二次荷電粒子とを分離するように構成された、ビームセパレータ、
を更に備える、条項1の荷電粒子光学システム。
3.イメージ面が少なくともビームセパレータに近い、条項2の荷電粒子光学システム。
4.複数のプローブスポットの所定のピッチを取得するため、及び、その収差を減少させるために、第1の偏向器アレイによって偏向される複数のビームレットの偏向角度が設定される、条項3の荷電粒子光学システム。
5.第1の偏向器アレイの上にあり、複数のプローブスポットの電流を制限するように構成された、第1のアパーチャアレイを更に備える、条項1から4のいずれかの荷電粒子光学システム。
6.荷電粒子源と第1のアパーチャアレイとの間にあり、一次荷電粒子ビームを合焦させるように構成された、第2のレンズを更に備える、条項5の荷電粒子光学システム。
7.第2のレンズは、一次荷電粒子ビームを平行ビームとして合焦させるように構成される、条項6の荷電粒子光学システム。
8.第2のレンズは、複数のプローブスポットの電流を変化させるように構成された可動レンズである、条項7の荷電粒子光学システム。
9.複数のプローブスポットの収差を補償するように構成された、補償器アレイを更に備える、条項7又は8の荷電粒子光学システム。
10.第2のレンズの上にあり、ソースに近く、また、複数のビームレット内で使用されない一次荷電粒子ビームの周辺部分を遮断するように構成された、メインアパーチャを更に備える、条項7から9のいずれかの荷電粒子光学システム。
11.メインアパーチャと第1のアパーチャアレイとの間にあり、複数のビームレット内で使用されない一次荷電粒子ビームの一部を遮断するように構成された、第2のアパーチャアレイを更に備える、条項10の荷電粒子光学システム。
12.第2のアパーチャアレイは第2のレンズの上にあり、またソースに近い、条項11の荷電粒子光学システム。
13.第2のレンズの上にあり、ソースに近く、また、複数のビームレット内で使用されない一次荷電粒子ビームの一部を遮断するように構成された、第2のアパーチャアレイを更に備える、条項9の荷電粒子光学システム。
14.第1のアパーチャアレイ上に法線入射するように複数のビームレットを偏向させるように構成された、第2の偏向器アレイを更に備える、条項6の荷電粒子光学システム。
15.複数のプローブスポットの収差を補償するように構成された、補償器アレイを更に備える、条項14の荷電粒子光学システム。
16.第2のレンズの上にあり、ソースに近く、また、複数のビームレット内で使用されない一次荷電粒子ビームの周辺部分を遮断するように構成された、メインアパーチャを更に備える、条項15の荷電粒子光学システム。
17.メインアパーチャと第1のアパーチャアレイとの間にあり、複数のビームレット内で使用されない一次荷電粒子ビームの一部を遮断するように構成された、第2のアパーチャアレイを更に備える、条項16の荷電粒子光学システム。
18.第2のアパーチャアレイは第2のレンズの上にあり、ソースに近い、条項17の荷電粒子光学システム。
19.第2のアパーチャアレイは第2のレンズの下にある、条項17の荷電粒子光学システム。
20.第2のレンズの上にあり、ソースに近く、また、複数のビームレット内で使用されない一次荷電粒子ビームの一部を遮断するように構成された、第2のアパーチャアレイを更に備える、条項15の荷電粒子光学システム。
21.第2のレンズは、第1のアパーチャアレイの下にある複数のビームレットの電流を変更するように、及び、第1のアパーチャアレイ上の複数のビームレットの回転角度を変更せずに維持するように構成された、回転防止レンズである、条項18又は19の荷電粒子光学システム。
22.第1のレンズは、複数のプローブスポットのピッチを変更するように構成される、条項12、13、又は21のいずれかの荷電粒子光学システム。
23.イメージ面は、複数のビームレット上のビームセパレータの分散に起因して、複数のプローブスポットのサイズが相対的に20%以内で増加することを保証するように構成される、条項1、12、13、又は21のいずれかの荷電粒子光学システム。
24.イメージ面はビームセパレータの偏向面にある、条項23の荷電粒子光学システム。
25.荷電粒子光学システムであって、
荷電粒子源によって生成される荷電粒子ビームのビームレットを偏向させるように構成された、第1の偏向器と、
ビームレットと、ビームレットの荷電粒子がサンプルと相互作用することに応答してサンプルから生成される二次荷電粒子とを分離するように構成された、ビームセパレータの領域内で、イメージ面上に荷電粒子源のイメージを形成するために、ビームレットを合焦させるように構成された、第1のレンズと、
を備える、荷電粒子光学システム。
26.第1の偏向器は、システムの光軸に向かってビームレットを偏向させるように構成される、
条項25の荷電粒子光学システム。
27.第1の偏向器は、システムの光軸から外側に向かってビームレットを偏向させるように構成される、
条項25の荷電粒子光学システム。
28.複数のプローブスポットをサンプル上に形成する方法であって、
荷電粒子源によって生成されるビームの複数のビームレットを偏向させること、
ソースの複数のイメージをイメージ面上に形成するために、レンズによって複数のビームレットを合焦させること、及び、
複数のプローブスポットをその上に形成するために、サンプル上に複数のイメージを投影すること、
を含む、複数のプローブスポットをサンプル上に形成する方法。
29.ビームセパレータによって、複数のビームレットと、複数のプローブスポットによる照明に起因してサンプルから生成される二次荷電粒子とを分離すること、
を更に含む、条項28の方法。
30.イメージ面は、ビームセパレータの偏向面にあるか、又は偏向面の近くにある、条項29の方法。
31.第1のアパーチャアレイによって、複数のプローブスポットの電流を制限すること、
を更に含む、条項30の方法。
32.ビームの合焦状況を変更することによって、電流を変化させること、
を更に含む、条項31の方法。
33.第1のアパーチャアレイの上の第2のアパーチャアレイによって、複数のプローブスポット内で使用されないビームの一部をトリミングすること、
を更に含む、条項32の方法。
34.第2のアパーチャアレイはソースに近い、条項33の方法。
35.複数のビームレットの偏向角度を変更することによって、複数のプローブスポットのピッチを変更すること、
を更に含む、条項30の方法。
36.レンズの主平面を移動することによって、複数のプローブスポットのピッチを変更すること、
を更に含む、条項30の方法。
37.イメージ面を移動することによって、複数のプローブスポットのピッチを変更すること、
を更に含む、条項30の方法。
38.複数のプローブスポットのピッチは互いに異なる、条項4の荷電粒子光学システム。
39.複数のプローブスポットのピッチは互いに異なる、条項22の荷電粒子光学システム。
40.複数のプローブスポットのピッチは互いに等しい、条項4の荷電粒子光学システム。
41.複数のプローブスポットのピッチは互いに等しい、条項22の荷電粒子光学システム。
42.複数のプローブスポットのピッチは互いに異なる、条項35の方法。
43.複数のプローブスポットのピッチは互いに異なる、条項36又は37の方法。
44.複数のプローブスポットのピッチは互いに等しい、条項34の方法。
45.複数のプローブスポットのピッチは互いに等しい、条項36又は37の方法。
46.マルチビーム装置であって、
複数のビームレットの一次荷電粒子とサンプルから放出される二次荷電粒子とを分離するように構成された荷電粒子セパレータよりも、第1のレンズのより近くに形成されるイメージ面上に、荷電粒子源の複数のイメージを形成するために、複数のビームレットを合焦させるように構成された、第1のレンズと、
複数のイメージをサンプル上に投影するように、及びその上に複数のプローブスポットを形成するように構成された、対物レンズと、
を備える、マルチビーム装置。
47.一次荷電粒子ビームの複数のビームレットのうちの少なくとも1つを、一次光軸から半径方向外側に向けて偏向させるように、及び第1のレンズ上に入射するように構成された、第1の偏向器アレイを更に備える、条項46の装置。
48.第1の偏向器アレイと荷電粒子源との間に配設され、複数のビームレットのプローブ電流を制限するように構成された、第1のアパーチャアレイを更に備える、条項47の装置。
49.荷電粒子セパレータによって生じる分散を補償するように構成された、荷電粒子分散補償器を更に備える、条項46から48のいずれか一項の装置。
50.荷電粒子分散補償器は荷電粒子セパレータと第1のレンズとの間に配設される、条項49の装置。
51.イメージ面は荷電粒子分散補償器と第1のレンズとの間に形成される、条項49及び50のうちのいずれか一項の装置。
52.第1のレンズは、形成されるイメージ面の場所を調節することによって、複数のビームレットの拡大を調節するように構成された調節可能レンズである、条項46から51のいずれか一項の装置。
53.拡大は、複数のプローブスポットのうちの1つのサイズと、複数のビームレットのうちの対応するビームレットのサイズとの比率に基づく、条項52の装置。
54.第1のレンズは、第1のレンズと荷電粒子セパレータとの間にイメージ面を形成するように構成される、条項46から53のいずれか一項の装置。
55.イメージ面は、一次荷電粒子ビームの一次光軸に垂直に、また第1のレンズと荷電粒子セパレータとの間に形成される、条項47から54のいずれか一項の装置。
56.荷電粒子源と第1のレンズとの間に配設され、また一次荷電粒子ビームを合焦させるように構成された、第2のレンズを更に備える、条項47から55のいずれか一項の装置。
57.第2のレンズは、一次荷電粒子ビームの一次光軸に垂直な主平面上に配設される可動レンズである、条項56の装置。
58.第2のレンズの主平面は、複数のビームレットのプローブ電流を調節するために一次光軸に沿って調節される、条項57の装置。
59.荷電粒子源と第2のレンズとの間に配設され、一次荷電粒子ビームの周辺部分を塞ぐように構成された、アパーチャプレートを更に備える、条項56から58のいずれか一項の装置。
60.アパーチャプレートと第2のレンズとの間に配設され、一次荷電粒子ビームから複数のビームレットを生成するように構成された、第2のアパーチャアレイを更に備える、条項56から59のいずれか一項の装置。
61.第1のレンズは第2のレンズと荷電粒子セパレータとの間に配設される、条項56から60のいずれか一項の装置。
62.マルチビーム装置であって、
一次荷電粒子ビームの複数のビームレットを偏向させるように構成された、第1の偏向器アレイと、
複数のビームレットの一次荷電粒子とサンプルから放出される二次荷電粒子とを分離するように構成された荷電粒子セパレータよりも、第1のレンズのより近くに形成されるイメージ面上に、荷電粒子源の複数のイメージを形成するために、複数のビームレットを合焦させるように構成された、第1のレンズと、
複数のイメージをサンプル上に投影するように、及びその上に複数のプローブスポットを形成するように構成された、対物レンズと、
を備える、マルチビーム装置。
63.第1の偏向器アレイは、一次荷電粒子ビームの一次光軸に対して実質的に平行になるように、複数のビームレットのうちの少なくとも1つをコリメートするように構成される、条項62の装置。
64.荷電粒子源と第1の偏向器アレイとの間に配設され、一次荷電粒子ビームの周辺部分を塞ぐように構成された、アパーチャプレートを更に備える、条項62及び63のいずれか一項の装置。
65.イメージ面は、一次荷電粒子ビームの一次光軸に垂直に、また第1のレンズと荷電粒子セパレータとの間に形成される、条項63及び64のいずれか一項の装置。
66.第1の偏向器アレイと第1のレンズとの間に配設され、複数のビームレットのうちの少なくとも1つを、一次光軸から半径方向外側に向けて偏向させるように、及び第1のレンズ上に入射するように構成された、第2の偏向器アレイを更に備える、条項63から65のいずれか一項の装置。
67.第1のレンズは、第1のレンズと荷電粒子セパレータとの間にイメージ面を形成するように構成される、条項62から66のいずれか一項の装置。
68.第1のレンズと荷電粒子源との間に配設され、複数のビームレットのプローブ電流を制限するように構成された、第1のアパーチャアレイを更に備える、条項62から67のいずれか一項の装置。
69.第1のレンズは、形成されるイメージ面の場所を調節することによって、複数のビームレットの拡大を調節するように構成された調節可能レンズである、条項62から68のいずれか一項の装置。
70.拡大は、複数のプローブスポットのうちの1つのサイズと、複数のビームレットのうちの対応するビームレットのサイズとの比率に基づく、条項69の装置。
71.荷電粒子セパレータによって生じる分散を補償するように構成された、荷電粒子分散補償器を更に備える、条項62から70のいずれか一項の装置。
72.荷電粒子分散補償器は荷電粒子セパレータと第1のレンズとの間に配設される、条項71の装置。
73.イメージ面は荷電粒子分散補償器と第1のレンズとの間に形成される、条項71及び72のうちのいずれか一項の装置。
74.荷電粒子源と第1のレンズとの間に配設され、また一次荷電粒子ビームを合焦させるように構成された、第2のレンズを更に備える、条項62から73のいずれか一項の装置。
75.第2のレンズは、一次荷電粒子ビームの一次光軸に垂直な主平面上に配設される可動レンズである、条項74の装置。
76.第2のレンズの主平面は、複数のビームレットのプローブ電流を調節するために一次光軸に沿って調節される、条項75の装置。
77.第1のレンズは第2のレンズと荷電粒子セパレータとの間に配設される、条項74から76のいずれか一項の装置。
78.アパーチャプレートと第2のレンズとの間に配設され、一次荷電粒子ビームから複数のビームレットを生成するように構成された、第2のアパーチャアレイを更に備える、条項74から77のいずれか一項の装置。
79.マルチビーム装置を使用してサンプルを観察する方法であって、
荷電粒子セパレータよりも第1のレンズのより近くに形成されるイメージ面上に荷電粒子源の複数のイメージを形成するために、第1のレンズを使用して複数のビームレットを合焦させること、及び、
対物レンズを使用して、複数のイメージをサンプル上に投影すること、及びその上に複数のプローブスポットを形成すること、
を含む、方法。
80.複数のビームレットのうちの少なくとも1つを、一次荷電粒子ビームの一次光軸から半径方向外側に向けて、及び第1の偏向器アレイを使用して第1のレンズ上に入射するように、偏向させることを更に含む、条項79の方法。
81.イメージ面は、一次荷電粒子ビームの一次光軸に垂直に、また第1のレンズと荷電粒子セパレータとの間に形成される、条項80の方法。
82.荷電粒子源と第1のレンズとの間に配設された第2のレンズを使用して、一次荷電粒子ビームを合焦させることを更に含む、条項80及び81のいずれか一項の方法。
83.複数のビームレットのプローブ電流を調節するために、一次光軸に沿って第2のレンズの主平面の場所を調節することを更に含む、条項82の方法。
84.荷電粒子源と第2のレンズとの間に配設されたアパーチャプレートを使用して、一次荷電粒子ビームの周辺部分を塞ぐことを更に含む、条項82及び83のいずれか一項の方法。
85.アパーチャプレートと第2のレンズとの間に配設された第2のアパーチャアレイを使用して、一次荷電粒子ビームから複数のビームレットを形成することを更に含む、条項84の方法。
86.荷電粒子分散補償器を使用して、荷電粒子セパレータによって生じる分散を補償することを更に含む、条項79から85のいずれか一項の方法。
87.イメージ面は荷電粒子分散補償器と第1のレンズとの間に形成される、条項79から86のいずれか一項の方法。
88.第1の偏向器アレイと荷電粒子源との間に配設された第1のアパーチャアレイを使用して、複数のビームレットのプローブ電流を制限することを更に含む、条項80から87のいずれか一項の方法。
89.第1のレンズを調節することによって、複数のビームレットの拡大を調節することを更に含む、条項79から88のいずれか一項の方法。
90.第1のレンズを調節することは、一次光軸に垂直に形成されるイメージ面の場所を変更するために、第1のレンズの電気的励起を少なくとも調節することを含む、条項89の方法。
91.拡大は、複数のプローブスポットのうちの1つのサイズと複数のビームレットのうちの対応するビームレットのサイズとの比率に基づいて決定される、条項89及び90のいずれか一項の方法。
92.イメージ面と第1のレンズとの間の垂直距離は、イメージ面と荷電粒子セパレータとの間の垂直距離よりも短い、条項55の装置。
93.イメージ面と第1のレンズとの間の垂直距離は、イメージ面と荷電粒子セパレータとの間の垂直距離よりも短い、条項65の装置。
【0141】
[00151] いくつかの実施形態において、コントローラは荷電粒子ビームシステムを制御することができる。コントローラは、荷電粒子ビームを生成するように荷電粒子源を制御すること、及び、サンプルにわたって荷電粒子ビームをスキャンするように偏向器を制御することなどの、様々な機能を実行するように、荷電粒子ビームシステムのコンポーネントに命じることができる。コントローラは、様々な後処理機能、イメージ収集、イメージ細分化、イメージ処理、輪郭を生成すること、収集したイメージ上にインジケータを重畳することなども実行することができる。コントローラは、ハードディスク、クラウドストレージ、ランダムアクセスメモリ(RAM)、他のタイプのコンピュータ可読メモリなどの、記憶媒体である、ストレージを備えることができる。ストレージは、スキャンされたローイメージデータをオリジナルイメージとして保存するため、又は、後処理されたイメージを保存するために使用可能である。コントローラはクラウドストレージと通信可能である。ビーム形成、又は本開示に一致する他の機能及び方法を実施するために、コントローラ19のプロセッサのための命令を記憶する、非一時的コンピュータ可読媒体が提供可能である。一般的な形の非一時的媒体は、例えば、フロッピーディスク、フレキシブルディスク、ハードディスク、ソリッドステートドライブ、磁気テープ、又は任意の他の磁気データ記憶媒体、CD-ROM、任意の他の光データ記憶媒体、ホールのパターンを伴う任意の物理媒体、RAM、PROM、及びEPROM、FLASH-EPROM又は任意の他のフラッシュメモリ、NVRAM、キャッシュ、レジスタ、任意の他のメモリチップ又はカートリッジ、及びそれらのネットワーク化されたバージョンを含む。
【0142】
[00152] 図面内のブロック図は、本開示の様々な例示的実施形態に従った、システム、方法、及びコンピュータハードウェア又はソフトウェア製品の、可能な実装のアーキテクチャ、機能、及び動作を示す。この点で、概略図内の各ブロックは、電子回路などのハードウェアを使用して実装可能な一定の算術演算又は論理演算処理を表すことができる。ブロックは、指定された論理機能を実装するための1つ以上の実行可能命令を含むコードのモジュール、セグメント、又は一部を表すこともできる。いくつかの代替の実装において、ブロック内に示される機能は図に示される順序以外で生じることが可能であることを理解されたい。例えば、連続して示される2つのブロックは、実質的に同時に実行又は実装可能であるか、あるいは、2つのブロックは関連する機能に応じて時には逆の順序で実行可能である。いくつかのブロックは省いてもよい。例えば、コンデンサレンズが平行ビームを形成するように構成されるとき、ステップS720のようにビームレット制限アパーチャアレイ121に入る前にビームを偏向させることは必要でない可能性があり、したがってステップS720は省くことができる。更に、非点収差を補償するなどのステップ、又はその他のステップを追加することも可能である。ブロック図の各ブロック及びブロックの組み合わせは、指定された機能又は行為を実行する特定用途向けハードウェアベースシステムによって、又は特定用途向けハードウェア及びコンピュータ命令の組み合わせによって、実装可能であることも理解されたい。
【0143】
[00153] 本発明をいくつかの例示的実施形態に関して説明してきたが、下記に請求するような本発明の趣旨及び範囲を逸脱することなく、他の修正及び変形を実行することができることを理解されよう。例えば、1つ以上のレンズ又は他の光学コンポーネントを、様々な点で、本明細書で考察する例示的な粒子光学システムの特定の構造に追加することができる。光学コンポーネントは、例えば拡大、ズーム、及びイメージ回転防止などのために提供可能である。