IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 住友大阪セメント株式会社の特許一覧

<>
  • 特許-光導波路素子、および光変調器 図1
  • 特許-光導波路素子、および光変調器 図2
  • 特許-光導波路素子、および光変調器 図3
  • 特許-光導波路素子、および光変調器 図4
  • 特許-光導波路素子、および光変調器 図5
  • 特許-光導波路素子、および光変調器 図6
  • 特許-光導波路素子、および光変調器 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-17
(45)【発行日】2024-06-25
(54)【発明の名称】光導波路素子、および光変調器
(51)【国際特許分類】
   G02F 1/035 20060101AFI20240618BHJP
【FI】
G02F1/035
【請求項の数】 5
(21)【出願番号】P 2020164627
(22)【出願日】2020-09-30
(65)【公開番号】P2022056727
(43)【公開日】2022-04-11
【審査請求日】2023-02-07
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成28年度、国立研究開発法人情報通信研究機構「高度通信・放送研究開発委託研究/高い環境耐性を有するキャリアコンバータ技術の研究関発/5G時代に対応した大容量・低遅延・シームレスな光/ミリ波変換デバイスの開発と実証評価」、産業技術力強化法第17条の適用を受ける特許出願
(73)【特許権者】
【識別番号】000183266
【氏名又は名称】住友大阪セメント株式会社
(74)【代理人】
【識別番号】110001081
【氏名又は名称】弁理士法人クシブチ国際特許事務所
(72)【発明者】
【氏名】大石 健太
(72)【発明者】
【氏名】片岡 優
(72)【発明者】
【氏名】高野 真悟
【審査官】堀部 修平
(56)【参考文献】
【文献】国際公開第2019/224908(WO,A1)
【文献】特開平08-054657(JP,A)
【文献】国際公開第2019/155679(WO,A1)
【文献】特開平10-104559(JP,A)
【文献】米国特許出願公開第2012/0099812(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G02F 1/00 - 1/125
G02F 1/21 - 7/00
G02B 6/12 - 6/14
(57)【特許請求の範囲】
【請求項1】
光導波路が形成された基板と、
前記基板の上に形成された、前記光導波路を伝搬する光波を制御する電極と、
を有する光導波路素子であって、
前記光導波路は、前記基板上に延在する凸部により構成され、
前記電極は、前記基板との間にNb及び酸素原子で構成される下地層と、下地層の上に形成された上部層と、で構成され、
前記下地層は、酸素に対するNbの元素比率Nb/Oが1.0以上である、
光導波路素子。
【請求項2】
前記下地層は、30nm以下の厚さである、
請求項1に記載の光導波路素子。
【請求項3】
前記下地層は、酸素原子を含む前記基板上に形成されるか、または前記基板上に形成された酸化物の膜の上に形成される、
請求項1または2に記載の光導波路素子。
【請求項4】
前記電極は、前記基板上において、前記光導波路を挟む位置に当該光導波路に沿って配された複数の電極で構成される、
請求項1ないし3のいずれか一項に記載の光導波路素子。
【請求項5】
光の変調を行う光変調素子である請求項1ないしのいずれか一項に記載の光導波路素子と、
前記光導波路素子を収容する筺体と、
前記光導波路素子に光を入力する光ファイバと、
前記光導波路素子が出力する光を前記筺体の外部へ導く光ファイバと、
を備える光変調器。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光導波路を用いた機能素子である光導波路素子、及び光導波路素子である光変調素子を用いた光変調器に関する。
【背景技術】
【0002】
高速/大容量光ファイバ通信システムにおいては、導波路型の光変調器を組み込んだ光送信装置が多く用いられている。中でも、電気光学効果を有するLiNbO(以下、LNともいう)を基板に用いた光変調素子は、インジウムリン(InP)、シリコン(Si)、あるいはガリウム砒素(GaAs)などの半導体系材料を用いた光変調素子に比べて、光の損失が少なく且つ広帯域な光変調特性を実現し得ることから、高速/大容量光ファイバ通信システムに広く用いられている。
【0003】
一方、光ファイバ通信システムにおける変調方式は、近年の伝送容量の増大化の流れを受け、QPSK(Quadrature Phase Shift Keying)やDP-QPSK(Dual Polarization - Quadrature Phase Shift Keying)等、多値変調や、多値変調に偏波多重を取り入れた伝送フォーマットが主流となっている。
【0004】
近年のインターネットサービスの普及加速は通信トラフィックのより一層の増大を招き、光変調素子の更なる小型化、広帯域化、省電力化の検討が今も進められている。
【0005】
そのような光変調素子の小型化、広帯域化、省電力化の一つの策として、基板中における信号電界と導波光との相互作用をより強めるべく(すなわち、電界効率を高めるべく)薄膜化したLN基板(例えば、厚さ20μm以下)の表面に帯状の凸部を形成することで構成されるリブ型光導波路またはリッジ型光導波路(以下、総称して凸状光導波路という)を用いた光変調器も実用化されつつある(例えば、特許文献1、2)。
【0006】
現在では、さらなる高速化のため、電界効率を更に高めるべく、凸状光導波路の位置により近接して電極を設ける検討も進められている。電極の構造としてはAu(金)が主に用いられるが、Auは、LN基板に対する密着性が低く、実用上十分な固着強度を得られないことから、一般的には、電極の下地層としてTi(チタン)の膜を形成することで、基板に対する電極の固着強度が確保される。
【0007】
しかしながら、本発明の発明者の知見では、上記の構成を有する従来の電極をリブ型光導波路の位置により近接して設けた場合には、凸状光導波路を伝搬する光波に顕著な光損失が発生し得る。
【先行技術文献】
【特許文献】
【0008】
【文献】特開2007-264548号公報
【文献】国際公開第2018/1031916号明細書
【発明の概要】
【発明が解決しようとする課題】
【0009】
上記背景より、リブ型光導波路やリッジ型光導波路等の凸状光導波路を用いる光導波路素子において、凸状光導波路に近接して設けられた電極により伝搬光に損失が発生するのを抑制することが求められている。
【課題を解決するための手段】
【0010】
本発明の一の態様は、光導波路が形成された基板と、前記基板の上に形成された、前記光導波路を伝搬する光波を制御する電極と、を有する光導波路素子であって、前記光導波路は、前記基板上に延在する凸部により構成され、前記電極は、前記基板との間にNb及び酸素原子で構成される下地層と、下地層の上に形成された上部層と、で構成され、前記下地層は、酸素に対するNbの元素比率Nb/Oが1.0以上である
本発明の他の態様によると、前記下地層は、30nm以下の厚さである。
本発明の他の態様によると、前記下地層は、酸素原子を含む前記基板上に形成されるか、または前記基板上に形成された酸化物の膜の上に形成される。
発明の他の態様によると、前記電極は、前記基板上において、前記光導波路を挟む位置に当該光導波路に沿って配された複数の電極で構成される。
本発明の他の態様は、光の変調を行う光変調素子である上記いずれかの光導波路素子と、光導波路素子を収容する筺体と、前記光導波路素子に光を入力する光ファイバと、前記光導波路素子が出力する光を前記筺体の外部へ導く光ファイバと、を備える光変調器である。
【発明の効果】
【0011】
本発明によれば、リブ型光導波路やリッジ型光導波路等の凸状光導波路を用いる光導波路素子において、凸状光導波路に近接して設けられた電極により伝搬光に損失が発生するのを効果的に抑制することができる。
【図面の簡単な説明】
【0012】
図1】本発明の一実施形態に係る光変調器の構成を示す図である。
図2図1に示す光変調器に用いられる光変調素子の構成を示す図である。
図3図2に示す光変調素子のIII-III断面矢視図である。
図4】電極の下地層に種々の金属を用いた場合の、光吸収損失のシミュレーション結果を示す図である。
図5】電極の下地層に種々の金属を用いた場合の、基板に対する電極の固着強度の評価結果を示す図である。
図6】基板上にNbの下地層を含む電極を構成した場合の、電極構成部分の断面における組成分析の結果を示す図である。
図7】本発明に係る光変調素子の他の例を示す図である。
【発明を実施するための形態】
【0013】
以下、本発明の実施形態について、図面を参照して説明する。なお、以下に示す実施形態に係る光導波路素子は、LN基板を用いて構成される光変調素子であるが、本発明に係る光導波路素子は、これには限られない。本発明は、LN基板以外の基板を用いる光導波路素子や、光変調以外の機能を有する光導波路素子にも、同様に適用することができる。
【0014】
図1は、本発明の一実施形態に係る光導波路素子である光変調素子、および光変調器の構成を示す図である。本実施形態では、光導波路素子はマッハツェンダ光導波路を用いて光変調を行う光変調素子102である。
【0015】
光変調器100は、筺体104の内部に光変調素子102を収容する。なお、筺体104は、最終的にはその開口部に板体であるカバー(不図示)が固定されて、その内部が気密封止される。
【0016】
光変調器100は、筺体104内に光を入力するための入力光ファイバ106と、光変調素子102により変調された光を筺体104の外部へ導く出力光ファイバ108と、を有する。
【0017】
光変調器100は、また、光変調素子102に光変調動作を行わせるための高周波電気信号を外部から受信するためのコネクタ110と、当該コネクタ110が受信した高周波電気信号を光変調素子102の電極(例えば、信号用電極)の一端へと中継するための中継基板112を備える。また、光変調器100は、光変調素子102の電極の他端に接続される、所定のインピーダンスを有する終端器114を備える。ここで、光変調素子102の電極と、中継基板112及び終端器114と、の間は、例えば金属ワイヤ等のボンディングにより電気的に接続される。
【0018】
図2は、図1に示す光変調器100の筺体104に収容される光導波路素子である光変調素子102の構成を示す図である。光変調素子102は、基板220上に形成された光導波路224で構成されている。基板220は、例えば、20μm以下(例えば2μm)の厚さに加工され薄膜化された、電気光学効果を有するXカットのLN基板である。
【0019】
光導波路は、薄膜化された基板220の表面に形成された、帯状に延在する凸部で構成された凸状光導波路(例えば、リブ型光導波路又はリッジ型光導波路)である。ここで、LN基板は、応力が加わると光弾性効果により屈折率が局所的に変化し得るため、基板全体の機械強度を補強すべく、一般的には接着層350(後述)を介してガラス等の支持板222に接着されている。
【0020】
光導波路224は、例えばマッハツェンダ光導波路であり、2つの分岐部と、互いに並行に延在する2本の並行導波路226a、226bとを含む。基板220上には、また、並行導波路226a、226bの屈折率を変化させて当該並行導波路226a、226bを伝搬する光波を制御する電極230a、230b、230cが設けられている。以下、電極230a、230b、230cを総称して電極230ともいう。
【0021】
電極230は、従来技術に従い、例えば、所定のインピーダンスを有するコプレーナ伝送線路を構成している。具体的には、電極230aは、中心電極であり、基板220の面内において並行導波路226a、226bに沿うように、これら並行導波路の間に挟まれる位置に形成されている。また、電極230bおよび230cは、接地電極であり、それぞれ、並行導波路226a及び226bを挟んで電極230aと対向する位置に、これら並行導波路に沿って形成されている。
【0022】
電極230は、基板220の図示右下の末端が終端器114で終端されていることにより、コネクタ110を介して基板220の図示左下の末端から入力される高周波信号を、図示左方から右方へ進行波として伝搬させる。これにより、電極230は、並行導波路226a、226bを図示左方から右方へ伝搬する光波を制御する信号線路を構成する。
【0023】
図3は、図2に示す光変調素子102のIII-III断面矢視図である。基板220は、接着層350を介して、例えばガラスである支持板222に接着されている。凸状光導波路である並行導波路226aは、基板220に形成された凸部300により構成されている。基板220の面から測った凸部300の高さt1は、10μm以下(例えば1μm)である。
【0024】
基板220上には、並行導波路226aを挟んで電極230a及び230bが配されている。電極230aおよび電極230bは、共に、基板220上に高さt2で形成されている。この高さt2は、電極230が所定のインピーダンスを持つように、及び電極230を伝搬する高周波電気信号の進行波が所定範囲内の損失で且つ所定の速度で伝搬するように、設定される。
【0025】
電極230a及び電極230bのうち、いずれか並行導波路226aに近い方の電極(本実施形態では電極230a)と、並行導波路226aとの間隔w2は、例えばw1の0.5倍以上2倍以下(すなわち、0.5w1≦w2≦2w1)である。なお、当然ながら、電極230aと電極230bとが並行導波路226aを中心として対象に構成されている場合には、電極230a及び電極230bと、並行導波路226aと、の間のそれぞれの間隔は、互いに同じ間隔w2となる。
【0026】
電極230a及び電極230bは、互いに同様の構成を有しており、それぞれ、上部層302a及び302bと、下地層304a及び304bと、により構成されている。ここで、図3には、電極230cは示されていないが、電極230cも、電極230a及び電極230bと同様の上部層及び下地層で構成されているものと理解されたい。
【0027】
以下、上部層302a、302b及び図示しない電極230cの上部層を総称して上部層302ともいい、下地層304a、304b及び図示しない電極230cの下地層を総称して下地層304ともいうものとする。すなわち、電極230は、上部層302と、下地層304と、で構成されている。
【0028】
上部層302は、従来技術と同様に、例えばAu(金)で構成される。上部層302を構成するAuは、基板220上に直接形成した場合には基板220に対して実用上十分な固着強度を持たないことから、下地層304を介して基板220上に形成される。
【0029】
従来、基板との固着強度を確保するために設けられる下地層は、一般的にはTi(チタン)で構成される。本発明の発明者は、凸状光導波路の近傍に電極が設けられる場合、その電極の下地層を構成する金属により、凸状光導波路を伝搬する光が吸収されることにより、凸状光導波路の伝搬光に損失(光吸収損失)が発生することを見出した。
【0030】
そして、本発明の発明者は、このような光吸収損失の原因として、下地層の金属の光吸収スペクトルにおいて光変調素子の動作光波長(例えば、光通信に用いられる光波長1.55μm及び又は1.3μm)が光吸収域に存在すること、及び凸状光導波路を伝搬する伝搬光のモードフィールドの一部が凸状導波路近傍の基板部分へ広がっていることによるものとの知見を得た。
【0031】
下地層の厚さは、また、厚いほど大きな光吸収損失を生じ得る。従い、下地層は、固着強度が良好であって動作光波長を光吸収域に含まない金属で構成され、且つ光吸収損失を一定レベル以下に抑制し得る厚さで形成されることが必要である。
【0032】
本発明の発明者は、下地層の素材および厚さについての検討を重ね、基板に対する固着強度を実用水準に維持しつつ上記のような光吸収損失を抑制する解決策として、下地層用の金属として従来用いられていたTiに代えてNb(ニオブ)を用いることが有効であるとの知見を得た。
【0033】
上記知見に従い、本実施形態では、特に、下地層304が、膜厚t3のNbで構成されている。基板220上における下地層および上部層の形成は、例えば電子ビーム蒸着(EB蒸着)により行われ得る。
【0034】
図4は、種々の金属を下地層304とした場合の、下地層304の厚さに対する光吸収損失増加量のシミュレーション結果の一部である。図4には、下地層304を用いない場合(Au(上部層302)単膜の場合)に加えて、下地層304としてTi、Al(アルミニウム)、及びNbを用いた場合の計算結果が示されている。図4において、横軸は下地層304の厚さt3、縦軸は並行導波路226aの単位長さ(1cm)を伝搬する際の光吸収損失量である。シミュレーションに用いたモデルは、図3に示す構成と同様であり、w1=0.9μm、w2=0.55μm、t1=0.4μm、t2=1.0μm、t4=0.6μm、θ=65°であって、上部層302としてAu、動作光波長として1.55μmを仮定した。ここで、t4は、基板220の裏面から測った凸部300の高さであり、θは、基板220の面に対する凸部300の側面の立ち上がり角度である。また、光吸収損失の算出に際し、Ti、Al、及びNbの光吸収スペクトルから得られる各金属の動作波長1.55μmでの光吸収量を用いた。
【0035】
ライン400で示すAu単膜の(下地層が存在しない)場合の光吸収損失αは、上記構成におけるバックグラウンドとしての光吸収損失であり、この基準ラインからの光吸収損失の増加分として、下地層304における光吸収損失を評価し得る。
【0036】
ライン402、404、及び406は、それぞれ、下地層304を構成する金属をTi、Al、及びNbで構成した場合の光吸収損失を示している。これらの金属においては、ライン402で示すTiが最も光吸収損失が大きく、その膜厚と共に光吸収損失が大きく増加していく。
【0037】
一方、動作波長を光吸収域に含まないAl及びNbを下地層304とした場合を示すライン404、406は、Tiの場合(ライン402)に比べて光吸収損失が大幅に軽減されることが判る。図4に示す評価結果の範囲では、下地層304がAlの場合(ライン404)において最も光吸収損失が小さく、且つ下地層の厚さに対して光吸収損失はほぼ一定である。しかしながら、Alは、一般的には基板への固着強度は低いことが知られている。
【0038】
図5は、種々の金属を下地層とした場合の、LN基板に対する電極の固着強度を評価した結果を示す表である。この評価において、上部層は、厚さ100nmのAuとした。固着強度の評価は、日本工業規格JIS K 5600-5-6:1999に従った。すなわち、LN基板の基板面全体に電極の層を形成した後、カッターを用いて当該電極に切れ目を入れ、LN基板平面において10個×10個(合計100個)の同じサイズの矩形試料を構成する。次に、上記規格で指定されている粘着性を持った粘着テープを上記100個の試料上に張り付け、当該テープをLN基板から剥がしたときに、LN基板上に残った試料の数により、固着強度を評価した。なお、下地層及び上部層は、EB蒸着を用いてLN基板上に形成した。
【0039】
図5に示す試料01は、Au単膜(下地層なし、上部層のみ)の試料であり、付着率は0%である。試料02ないし04は、下地層として従来のTiを用いた試料であり、下地層の厚さ1μm以上において付着率100%である。これに対し、下地層としてAlを用いた試料05ないし07では、いずれの厚さでも付着率は100%を下回り、実用に耐え得るレベルの固着強度は得られない。
【0040】
一方、下地層としてNbを用いた試料08-11では、厚さ1μm以上で付着率は100%であり、実用上十分な固着強度を得られることが判る。
【0041】
図6は、LN基板上にNbの下地層とAuの上部層とを形成した試料における、これら電極を形成した部分の断面組成分析の結果である。図5における評価と同様に、下地層及び上部層は、EB蒸着を用いて形成されている。図6の横軸は位置、縦軸は組成比(原子パーセント)である。また、図6において、ライン610、612、及び614は、それぞれ、酸素、Nb、及びAuの組成比の位置変化を示している。
【0042】
図6において、LN基板と下地層との界面600の近傍では、LN基板の酸素は減少し、下地層ではNbに加えて酸素が存在する。一方で、下地層と上部層との界面602では、下地層にはAuが存在し、上部層にはNbが存在する。このことから、LN基板とNbの下地層との間の固着力は、酸素を介したLNとNbとの結合によるものであり、Nbの下地層とAuの上部層との間の固着力は、NbとAuの合金化による結合によるものと考えられる。
【0043】
図6において、Nbの下地層における、酸素に対するNbの元素比率Nb/Oは、1.2である。Nb酸化物は、NbO、NbO等の種々の形態をとり得ることを考慮すると、実質的には、Nbの下地層中における元素比率Nb/Oは、1.0以上であればよく、1.2以上であれば好ましいものと考えられる。
【0044】
なお、Nbの下地層において界面602の近傍にまで酸素が存在するのは、LN基板からの酸素が浸透したものか、あるいは、環境雰囲気中に存在する酸素が下地層に浸透したものと考えられる。
【0045】
図3を参照し、本実施形態では、従い、下地層304はNbで構成されており、下地層304における、酸素に対するNbの元素比率は1.2である。
【0046】
また、図4のライン406及び400より、Nbで構成される下地層の厚さは、30nm以下であることが望ましい。Nbの下地層の厚さがこの範囲であれば、光吸収損失を、Au単膜での値αに対し2倍の2α以下、または従来のTiを用いた下地層の場合の値、約6αに対し、1/3以下の値に抑制することができる。本実施形態では、w2=2.0μmであり、Nbで構成される下地層304の厚さt3は、例えば10nmである。このときの、並行導波路226aにおける光吸収損失は、6.0dB/cmである。
【0047】
上記の構成を有する光変調素子102は、凸状光導波路である並行導波路226aの光波を制御する電極230の下地層がNbで構成されているため、基板220に対する電極230の固着強度を実用に耐え得る水準に維持しつつ、従来のTiを下地層として用いる光導波路素子に比べて、並行導波路226aにおける光吸収損失を1/3以下まで効果的に抑制することができる。
【0048】
なお、本発明は上記実施形態およびその変形例の構成に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能である。
【0049】
例えば、上述の実施形態では、基板220はLN基板であるものとしたが、基板220の材料はLNには限られない。Nbで構成される下地層304が形成される基板220は、その組成に酸素を含む材料、例えばタンタル酸リチウム(LiTaO)で構成されていてもよい。あるいは、下地層304が、基板220上に形成された酸化物の被膜、例えばSiOから成るバッファ層の上に形成される場合には、基板220は、InP等の半導体や、いわゆるシリコン・フォトニクス・デバイスに用いられるSi基板であってもよい。
【0050】
また、上述の実施形態では、電極230の下地層304及び上部層302はEB蒸着で形成されるものとしたが、電極230の形成手段はEB蒸着には限られない。例えば、電極230の下地層304及び上部層302は、EB蒸着以外の蒸着法またはスパッタリング法等で形成されてもよい。
【0051】
また、本実施形態では、光変調素子102として、一対の並行導波路226a、226bを含む単一のマッハツェンダ光導波路を構成する光導波路224により光変調動作が行われる光変調素子を示したが、電極230に一例として示す電極の構成は、単一のマッハツェンダ光導波路で構成される光変調素子には限られない。図3に示す上述した電極230と同様の下地層304を有する電極は、例えば、図7に示すような、いわゆるネスト型マッハツェンダ光導波路を2つ用いて構成される、DP-QPSK変調を行う光変調素子702にも同様に用いることができる。このようなDP-QPSK変調を行う光変調素子においては、更なる小型化、広帯域化、省電力化が求められる一方で、基板720上の並行導波路や電極の設置面積に制限により、導波路と電極との間隔が更に狭くなることから光吸収損失の課題がより顕在化する。
【0052】
光変調素子702では、例えば、基板220と同様の基板720上に形成された凸状光導波路である並行導波路726a、726b、726c、726d(図示破線)に沿ってそれぞれ延在する電極730a、730b、730c、730dを、図3に示す電極230と同様の上部層302及び下地層304により構成するものとすることができる。これにより、このようなDP-QPSK変調を行う光変調素子においても、並行導波路726a等における光吸収損失を低減して、良好な変調特性を得ることができる。
【0053】
以上、説明したように、本実施形態に示す光導波路素子である光変調素子102は、光導波路224が形成された基板220と、基板220の上に形成された、光導波路224を伝搬する光波を制御する電極230と、を有する。ここで、光導波路224は、基板220上に延在する凸部(例えば、凸部300)により構成される。そして、電極230は、基板220との間にNbで構成される下地層304と、下地層304の上に形成された上部層302と、で構成されている。
【0054】
この構成によれば、電極230の下地層としてNbを用いることにより、凸状光導波路である光導波路224(例えば並行導波路226a)において、電極230の存在に起因する光吸収損失を効果的に低減することができる。
【0055】
また、下地層304は、30nm以下の厚さである。この構成によれば、電極230の存在に起因して光導波路224に発生する光吸収損失を、従来のTiの下地層を用いる構成に比べて1/3に低減することができる。
【0056】
また、下地層304は、酸素原子を含む基板220上に形成されるか、または基板220上に形成された酸化物の膜の上に形成される。この構成によれば、Nbで構成される下地層304とLN等により構成される基板との間において、実用に耐え得る水準の固着力を確保することができる。
【0057】
また、下地層304は、酸素原子を含み、酸素に対するNbの元素比率Nb/Oが1.0以上である。この構成によれば、Nbで構成される下地層304とLN等により構成される基板との間において、実用に耐え得る水準の固着力をより確実に確保することができる。
【0058】
また、電極230は、基板220上において、例えば光導波路224を構成する並行導波路226aを挟む位置に当該並行導波路226aに沿って配された複数の(例えば2つ)の電極230a、230bで構成される。この構成によれば、並行導波路226aを挟んで近接して配置される電極によって当該並行導波路226aの伝搬光に光吸収損失が発生するのを効果的に抑制することができる。
【0059】
また、光導波路素子である光変調素子102と、光変調素子102を収容する筺体104と、光変調素子102に光を入力する入力光ファイバ106と、光変調素子102が出力する光を筺体104の外部へ導く出力光ファイバ108と、により光変調器100を構成し得る。このように構成される光変調器100は、電極230の存在に起因して発生し得る凸状光導波路(例えば並行導波路226a)における光吸収損失が抑制された光変調素子102を用いているので、良好な光変調特性及び光伝送特性を実現し得る。
【符号の説明】
【0060】
100…光変調器、102、702…光変調素子、104…筺体、106…入力光ファイバ、108…出力光ファイバ、110…コネクタ、112…中継基板、114…終端器、220、720…基板、222…支持板、224、724…光導波路、226a、226b、726a、726b、726c、726d…並行導波路、230、230a、230b、230c、730a、730b、730c、730d…電極、300…凸部、302、302a、302b…上部層、304、304a、304b…下地層、350…接着層、600、602…界面。
図1
図2
図3
図4
図5
図6
図7