IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社前川製作所の特許一覧

特許7505976加振力特定システム、及び加振力特定方法
<>
  • 特許-加振力特定システム、及び加振力特定方法 図1
  • 特許-加振力特定システム、及び加振力特定方法 図2
  • 特許-加振力特定システム、及び加振力特定方法 図3
  • 特許-加振力特定システム、及び加振力特定方法 図4
  • 特許-加振力特定システム、及び加振力特定方法 図5
  • 特許-加振力特定システム、及び加振力特定方法 図6
  • 特許-加振力特定システム、及び加振力特定方法 図7
  • 特許-加振力特定システム、及び加振力特定方法 図8
  • 特許-加振力特定システム、及び加振力特定方法 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-17
(45)【発行日】2024-06-25
(54)【発明の名称】加振力特定システム、及び加振力特定方法
(51)【国際特許分類】
   G01M 7/02 20060101AFI20240618BHJP
   G01L 5/00 20060101ALI20240618BHJP
【FI】
G01M7/02 C
G01L5/00 Z
【請求項の数】 8
(21)【出願番号】P 2020212711
(22)【出願日】2020-12-22
(65)【公開番号】P2022098994
(43)【公開日】2022-07-04
【審査請求日】2023-11-10
(73)【特許権者】
【識別番号】000148357
【氏名又は名称】株式会社前川製作所
(74)【代理人】
【識別番号】110000785
【氏名又は名称】SSIP弁理士法人
(72)【発明者】
【氏名】志賀 元泰
(72)【発明者】
【氏名】奥 達也
(72)【発明者】
【氏名】松本 康平
(72)【発明者】
【氏名】▲桑▼原 剛
(72)【発明者】
【氏名】高橋 渉
【審査官】中村 圭伸
(56)【参考文献】
【文献】特開平02-281118(JP,A)
【文献】特開2004-239701(JP,A)
【文献】特開平09-079925(JP,A)
【文献】国際公開第2019/039156(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01M 7/02 - 7/06
G01L 1/22
G01L 5/00 - 5/28
(57)【特許請求の範囲】
【請求項1】
回転装置と基礎との間に設けられた少なくとも一つの起歪体と、
各々の前記起歪体に設けられた少なくとも一つのひずみゲージと、
入力されるサインスイープ信号に基づき前記回転装置に加振力を付与するための加振装置と、
前記加振装置から付与される前記加振力を測定するためのフォースセンサと、
前記フォースセンサからの出力結果と、前記加振装置が前記加振力を付与するときの各々の前記ひずみゲージからの出力結果とに基づき、入力となる前記加振力と、各々の前記ひずみゲージのひずみ応答との関係を示す伝達関数を取得するための伝達関数取得部と、
前記回転装置が動作するときの各々の前記ひずみゲージからの出力結果と、前記伝達関数取得部によって取得された前記伝達関数とに基づき、動作中の前記回転装置で生じる力を特定するための加振力特定部と
を備える加振力特定システム。
【請求項2】
前記少なくとも一つのひずみゲージは、複数のひずみゲージを含み、
前記伝達関数取得部は、前記複数のひずみゲージの各々に対応する複数の前記伝達関数を取得するように構成された請求項1に記載の加振力特定システム。
【請求項3】
前記少なくとも一つのひずみゲージは、互いに交差する方向に各々が延在する2つのひずみゲージを含む請求項2に記載の加振力特定システム。
【請求項4】
各々の前記ひずみゲージは、前記回転装置の回転軸を基準とした径方向において、前記回転装置のハウジングよりも平面視で外側に設けられる請求項1から3のいずれかに記載の加振力特定システム。
【請求項5】
前記伝達関数取得部は、前記回転装置において前記加振力が付与される複数の作用点の各々について、複数の前記伝達関数を取得するように構成された請求項1から4のいずれかに記載の加振力特定システム。
【請求項6】
前記少なくとも一つのひずみゲージは、複数のひずみゲージを含み、
前記伝達関数取得部は、前記回転装置において前記加振力が付与される前記複数の作用点の各々について、複数の前記伝達関数を取得するように構成され、
前記ひずみゲージの個数と前記作用点の個数が同一である請求項5に記載の加振力特定システム。
【請求項7】
前記起歪体は、前記回転装置であるレシプロ式圧縮機と前記基礎との間に設けられる請求項1から6のいずれかに記載の加振力特定システム。
【請求項8】
加振力特定システムによる加振力特定方法であって、
回転装置と基礎との間に設けられた少なくとも一つの起歪体と、各々の前記起歪体に設けられた少なくとも一つのひずみゲージと、入力されるサインスイープ信号に基づき前記回転装置に加振力を付与するための加振装置と、前記加振装置から付与される前記加振力を測定するためのフォースセンサとを備える前記加振力特定システムの前記フォースセンサからの出力結果と、前記加振装置が前記加振力を付与するときの各々の前記ひずみゲージからの出力結果とに基づき、入力となる前記加振力と、各々の前記ひずみゲージのひずみ応答との関係を示す伝達関数を取得するための伝達関数取得工程と、
前記回転装置が動作するときの各々の前記ひずみゲージからの出力結果と、前記伝達関数取得工程において取得された前記伝達関数とに基づき、動作中の前記回転装置で生じる力を特定するための加振力特定工程と
を備える加振力特定方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、加振力特定システム、及び加振力特定方法に関する。
【背景技術】
【0002】
従来、加振器から構造物に付与される加振力と、加振力が付与された構造物の応答とに基づき、構造物の伝達関数を求めることが知られている。例えば、特許文献1で開示される正弦波掃引加振法においては、構造物にロードセルと加速度計とが設けられる。供給される正弦波信号に基づき加振器が構造物に付与する加振力をロードセルは取得する。加速度計は構造物の応答として加速度を取得する。これらの取得結果により、伝達関数が求められる。
【先行技術文献】
【特許文献】
【0003】
【文献】特公平3-079658号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
加速度計の代わりにひずみゲージを採用して、構造物としての回転装置の伝達関数を求めることが考えられる。求めた伝達関数により、動作中の回転装置で生じる力が特定できる。この場合、回転装置が低い回転数で動作するときであっても、ひずみゲージの応答が高感度で取得される必要があるが、特許文献1にはそれを達成するための具体的構成の開示はない。
【0005】
本開示の目的は、回転装置が低い回転数で動作するときであっても、回転装置で生じる力を精度良く特定できる加振力特定システム、及び加振力特定方法を提供することである。
【課題を解決するための手段】
【0006】
本発明の少なくとも一実施形態に係る加振力特定システムは、
回転装置と基礎との間に設けられた少なくとも一つの起歪体と、
各々の前記起歪体に設けられた少なくとも一つのひずみゲージと、
入力されるサインスイープ信号に基づき前記回転装置に加振力を付与するための加振装置と、
前記加振装置から付与される前記加振力を測定するためのフォースセンサと、
前記フォースセンサからの出力結果と、前記加振装置が前記加振力を付与するときの各々の前記ひずみゲージからの出力結果とに基づき、入力となる前記加振力と、各々の前記ひずみゲージのひずみ応答との関係を示す伝達関数を取得するための伝達関数取得部と、
前記回転装置が動作するときの各々の前記ひずみゲージからの出力結果と、前記伝達関数取得部によって取得された前記伝達関数とに基づき、動作中の前記回転装置で生じる力を特定するための加振力特定部と
を備える。
【0007】
本発明の少なくとも一実施形態に係る加振力特定方法は、
加振力特定システムによる加振力特定方法であって、
回転装置と基礎との間に設けられた少なくとも一つの起歪体と、各々の前記起歪体に設けられた少なくとも一つのひずみゲージと、入力されるサインスイープ信号に基づき前記回転装置に加振力を付与するための加振装置と、前記加振装置から付与される前記加振力を測定するためのフォースセンサとを備える前記加振力特定システムの前記フォースセンサからの出力結果と、前記加振装置が前記加振力を付与するときの各々の前記ひずみゲージからの出力結果とに基づき、入力となる前記加振力と、各々の前記ひずみゲージのひずみ応答との関係を示す伝達関数を取得するための伝達関数取得工程と、
前記回転装置が動作するときの各々の前記ひずみゲージからの出力結果と、前記伝達関数取得工程において取得された前記伝達関数とに基づき、動作中の前記回転装置で生じる力を特定するための加振力特定工程と
を備える。
【発明の効果】
【0008】
幾つかの実施形態によれば、回転装置が低い回転数で動作するときであっても、回転装置で生じる力を精度良く特定できる加振力特定システム、及び加振力特定方法を提供できる。
【図面の簡単な説明】
【0009】
図1】一実施形態に係る加振力特定システムの正面図である。
図2】一実施形態に係る加振力特定システムの平面図である。
図3】一実施形態に係る回転装置において加振力が付与される作用点を示す斜視図である。
図4】一実施形態に係るひずみゲージからのひずみ応答を示す図である。
図5】一実施形態に係る伝達関数取得部より取得された伝達関数を示す図である。
図6】一実施形態に係る回転装置の動作時におけるひずみ応答スペクトルを示す図である。
図7】一実施形態に係る回転装置の動作中に生じる力を特定した結果を示す図である。
図8】一実施形態に係る加振力特定システムの機能を示すブロック図である。
図9】一実施形態に係る加振力特定方法を示す工程図である。
【発明を実施するための形態】
【0010】
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載され又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一つの構成要素を「備える」、「具える」、「具備する」、「含む」、又は「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
【0011】
図1は一実施形態に係る加振力特定システム1の正面図であり、図2は一実施形態に係る加振力特定システム1の平面図である。
一実施形態の加振力特定システム1は、回転装置7で生じる力を特定するように構成される。一実施形態の回転装置7は、回転軸7aと、回転軸7aを支持するハウジング7bとを備える。
一実施形態の回転装置7は圧縮機である。より具体的な一例として、回転装置7はレシプロ式圧縮機である。回転装置7は、例えばロータリー式圧縮機などでもよい。
【0012】
一実施形態では、加振力特定システム1は、回転装置7と基礎6との間に設けられた少なくとも一つの起歪体10と、各々の起歪体10に設けられた少なくとも一つのひずみゲージ20と、回転装置7に加振力を付与するための加振装置30と、該加振力を測定するためのフォースセンサ35と、入力となる該加振力と各々のひずみゲージ20のひずみ応答との関係を取得するための伝達関数取得部40と、動作中の回転装置7で生じる力を特定するための加振力特定部50とを備える。
図1図2では、一実施形態に係る複数のひずみゲージ20のうちの一部において、伝達関数取得部40との接続状態の図示を省略している。起歪体10とひずみゲージ20の個数は各々1個でもよい。
起歪体10とひずみゲージ20の具体的構成の一例は後述する。
【0013】
一実施形態では、加振装置30から回転装置7に付与される加振力は、加振装置30に入力されるサインスイープ信号34に基づく。つまり、加振力の周期は入力されるサインスイープ信号34に応じて連続的に変化する。なお、一実施形態の加振装置30は、回転装置7に付与する力の向きを一方側と他方側とに交互に切り替えることで加振力を生成する。
一実施形態の各々のひずみゲージ20は、上記加振力の付与時に起歪体10で生じたひずみを検出するように構成される。加振力の付与時、ひずみゲージ20からの出力結果と、フォースセンサ35からの出力結果とに基づき、伝達関数取得部40は伝達関数を取得する。
また、一実施形態の各々のひずみゲージ20は、回転装置7の動作時に起歪体10で生じたひずみを検出するようにも構成される。回転装置7の動作時、ひずみゲージ20からの出力結果と、取得された伝達関数とに基づき、回転装置7で生じる力を加振力特定部50は特定する。
一実施形態では、回転装置7の動作時に加振装置30とフォースセンサ35はいずれも、回転装置7との接続状態を解除される。
【0014】
加振力特定部50が加振力を特定する原理は以下の通りである。
周波数をω、ひずみゲージ20の応答スペクトルをε、伝達関数取得部40によって取得される伝達関数(応答関数行列)をH、加振力スペクトルをFとすると、以下の式(1)が成立する。
ε(ω)=H(ω)F(ω)・・・式(1)
式(1)の行列式の成分を具体化すると式(2)のようになる。
【数1】
式(2)において、nはひずみゲージ20の個数を示す自然数であり、mは回転装置7に付与される加振力の個数(後述の作用点5の個数と一致する)を示す自然数である。
一実施形態では、伝達関数取得部40は、ひずみゲージ20の応答スペクトルであるε(ω)と、加振装置30が作動するときのフォースセンサ35の出力結果であるF(ω)と、式(2)とに基づき、少なくとも一つの伝達関数を取得する(このときの式(2)のωは、加振装置30から付与される加振力の周波数となる)。
一実施形態では、取得される伝達関数の個数はnにmを乗じた値である。一例として、伝達関数の個数は行列としてのH(ω)を構成する成分の個数である。
式(1)を変形すると式(3)のようになる。式(3)のHinv(ω)はH(ω)の逆行列である。
F(ω)=Hinv(ω)ε(ω)・・・式(3)
加振力特定部50は、伝達関数取得部40により取得されたH(ω)と、回転装置7が動作するときのひずみゲージ20の出力結果であるε(ω)と、式(3)とに基づき、F(ω)を特定する(このときの式(3)のωは回転装置7の回転数を示す)。特定されるF(ω)は、加振力が付与される作用点5(後述)で生じている力である。加振装置30の加振位置から得られる規定の慣性テンソルIを用いると、回転装置7の中心位置で生じる力F’は式(4)によって表される。
F’(ω)=F(ω)I・・・式(4)
加振力特定部50は、式(4)に基づきF’(ω)を特定する。
以上のF(ω)又はF’(ω)が、加振力特定部50によって特定される回転装置7で生じる力となる。
【0015】
一実施形態に係る起歪体10は複数設けられる。起歪体10の形状は加振力特定システム1に応じて自在に設計可能である。また、起歪体10の個数も自在に調節可能である。起歪体10の個数は一例として4個である。該個数は1個、2個、3個、又は5個以上であってもよい。
一実施形態に係る各々の起歪体10は、互いに異なる起歪体10a、10bを含む。
一実施形態の起歪体10aは基礎6に固定される。一例として、起歪体10aは平面視において回転装置7のハウジング7bを避けた位置に設けられる。例えば、起歪体10aは回転軸7aの径方向の外側にハウジング7bから変位した位置に設けられてもよい。あるいは、起歪体10aは回転装置7の軸線方向の外側にハウジング7bから変位した位置に設けられてもよい。
一実施形態の起歪体10aは上下方向に延在する。より具体的には、起歪体10aは棒状である。起歪体10aは、上端部11aと、下端部11bと、中央部11cとを有する。上端部11aと下端部11bは同径である一方、中央部11cは上端部11aと下端部11bよりも小径である。この場合、中央部11cは上端部11a及び下端部11bに比べてたわみ易くなる。なお、上端部11a、下端部11b、及び中央部11cは互いに別々の部材であってもよいし、単一の部材によって形成されてもよい。また、起歪体10aは、上下方向に亘り同一の外径を有する円柱状でもよいし、あるいは、円柱状に代えて角柱状などを呈してもよい。
一実施形態の起歪体10bは起歪体10aと回転装置7を連結する。一実施形態の起歪体10bは水平方向に延在する板状である。この場合、起歪体10bは上下方向にたわみ易くなる。一実施形態の起歪体10bは、起歪体10aに固定された一端と、回転装置7が固定される他端とを有する。
なお、他の実施形態では起歪体10は単一の部材であってもよい。
【0016】
一実施形態における、基礎6、起歪体10a、10b、及び回転装置7の固定構造は以下の通りである。
起歪体10aの下端部11bには雄ねじが形成されており、図示外のナットが基礎6に固定されている。下端部11bがナットに螺合することで、起歪体10aは基礎6に固定される。
起歪体10aの上端部11aにも雄ねじが形成されており、図示外のナットが螺合している。起歪体10bの一端に形成された穴が上端部11aに挿入されて、起歪体10bがナットに上から当たる。その後、別のナットが上端部11aに螺合し、起歪体10bに上から押し当たるまで締め付けられる。これにより、上端部11aは起歪体10bの一端に固定される。
起歪体10bの他端と回転装置7のハウジング7bとのそれぞれに図示外の穴が形成されている。これらの穴の位置が上下に重なるよう回転装置7の配置が調整された後、これらの穴に図示外のボルトが差し込まれる。その後、ボルトの軸部にナットが螺合し、起歪体10b又は回転装置7のいずれかに押し当たるまで締め付けられる。これにより、回転装置7は起歪体10bに固定される。
一実施形態では、起歪体10a及び起歪体10bの固定位置と、起歪体10b及び回転装置7の固定位置は、回転装置7の軸線方向に沿って配置されてもよいし、回転軸7aの径方向に沿って配置されてもよい。
【0017】
一実施形態に係るひずみゲージ20は複数設けられる。一実施形態では、これらのひずみゲージ20はいずれも、回転装置7の回転軸7aを基準とした径方向においてハウジング7bよりも平面視で外側に(図2においては矢印T側に)設けられる。なお、少なくとも一つのひずみゲージ20は平面視でハウジング7bと重なる位置に設けられてもよい。
一実施形態に係る少なくとも一つのひずみゲージ20は、ひずみゲージ20a、20b、20cを含む。例えば、ひずみゲージ20が設けられる起歪体10が4個である場合、ひずみゲージ20a、20b、20cは4セット(合計12個)設けられる。
一実施形態では、ひずみゲージ20a、20bは起歪体10aに設けられ、ひずみゲージ20cは起歪体10cに設けられる。より具体的には一例として、ひずみゲージ20a、20bは起歪体10aの中央部11cに設けられる。また、ひずみゲージ20cは水平方向に延在する起歪体10cの一端と他端の間に設けられる。
一実施形態では、各々の起歪体10aにおいて、ひずみゲージ20a、20bは起歪体10aの軸線回りに90度(あるいは270度)互いにずれた位置に設けられる。一実施形態では、ひずみゲージ20a、20bは互いに同じ高さに位置するが、互いに異なる高さに位置してもよい。
一実施形態では、ひずみゲージ20a、20bと、ひずみゲージ20cとは互いに交差する方向に延在する。より詳細には一例として、ひずみゲージ20a、20bは上下方向に延在し、ひずみゲージ20cは水平方向に延在する。
他の実施形態では、ひずみゲージ20cは、水平方向と上下方向とに対して傾斜して延在してもよい。この場合であっても、ひずみゲージ20cの延在方向は、ひずみゲージ20a、20bの延在方向と交差する。また、ひずみゲージ20a、20bの延在方向は互いに交差してもよい。
一実施形態では、ひずみゲージ20a、20b、20cの厚み方向は互いに交差する。即ち、ひずみゲージ20a、20b、20cのたわみ易い方向は互いに交差する。一実施形態では、上記3つの厚み方向は互いに直交する。
なお、他の実施形態では、各々の起歪体10aに、ひずみゲージ20a、20bのいずれかのみが設けられてもよい。あるいは、他の実施形態では、ひずみゲージ20は、ひずみゲージ20cを含まなくてもよい。
【0018】
以下の説明では、互いに直交するX方向、Y方向、及びZ方向を使用する場合がある。一実施形態では、X方向とY方向は水平な方向であり、Z方向は上下方向と平行な方向である。一実施形態では、Y方向は回転装置7の軸線方向と平行である。
一実施形態では、ひずみゲージ20a、20b、20cの厚み方向は、各々、X方向、Y方向、及びZ方向と平行である。
加振装置30が加振力を回転装置7に付与するとき、あるいは、回転装置7が動作するときにおいて、回転装置7では力とモーメントが生じる。これらの力とモーメントは各々、X方向、Y方向、又はZ方向の少なくともいずれかの方向のベクトル成分を有する。一実施形態に係る各々の起歪体10は、上記力と上記モーメントとの複合的な作用によって歪み、ひずみゲージ20の出力結果にはその複合的な作用が反映される。
【0019】
図3は、一実施形態に係る回転装置7において加振装置30から加振力が付与される作用点5を示す。図3は、回転軸7aを二点鎖線で図示する。また、図3では、起歪体10とひずみゲージ20を簡略化して図示している(図4図5も同様である)。
【0020】
一実施形態では、加振力が回転装置7に付与される作用点5は複数ある。
一実施形態の複数の作用点5は、複数の作用点5X、複数の作用点5Y、及び複数の作用点5Zを含む。一実施形態では、各々の作用点5XでX軸と平行な加振力が付与される。同様に、各々の作用点5YでY軸方向と平行な加振力が付与され、各々の作用点5ZでZ軸方向と平行な加振力が付与される。
一実施形態の作用点5の合計個数はひずみゲージ20の個数と同一である。一実施形態では、作用点5X、5Y、5Zの合計個数は、ひずみゲージ20a、20b、20cの合計個数と同じ12個である。
他の実施形態では、作用点5は、作用点5X、5Y、5Zの少なくとも1つを含んでいればよい。また、作用点5Xにおいて、X方向とZ方向とに傾斜する加振力、又は、X方向とY方向とに傾斜する加振力が付与されてもよい。また、作用点5の個数は、ひずみゲージ20の個数と異なってもよい。
なお、一実施形態では、作用点5の個数が、加振装置30が回転装置7に付与する加振力の個数となる。伝達関数取得部40は、加振力が付与される複数の作用点5の各々について、複数の伝達関数を取得する。
【0021】
一実施形態では、作用点5、フォースセンサ35、及び加振装置30連結構造は以下の通りである。各々の作用点5に対応するハウジング7bの部位にねじ穴が形成されており、棒状に形成されたフォースセンサ35の一端がこのねじ穴にねじ込まれる。また、加振装置30に設けられた棒状の作動部が、フォースセンサ35の他端に形成されたねじ穴にねじ込まれる。これにより、各々の作用点5において、棒状の作動部がフォースセンサ35と同軸で固定され、加振装置30はフォースセンサ35を介して回転装置7と連結する。この場合、フォースセンサ35はハウジング7bと回転装置7とに直接的に連結するので、加振装置30から回転装置7へと付与される加振力を直接的に測定できる。よって、加振力が精度良く測定される。
なお、「各々の作用点5」の個数は1個以上を意味するが、作用点5の個数は3個以上であることが好ましく、より好ましくは、作用点5X、5Y、5Zがそれぞれ少なくとも1つずつ作用点5に含まれることが好ましい。
一実施形態では、加振装置30は作動時において、別の部材によって支持される。
【0022】
図4は、各々の作用点5において加振力が付与される場合において、各々のひずみゲージ20から出力されるひずみ応答を示す。詳細な図示は省略するが、一実施形態に係るひずみ応答は、時間を横軸、ひずみ量を縦軸としたグラフによって表すことができる。
一実施形態において、ひずみゲージ20a、20b、20cが4セット(合計で12個)設けられる場合、複数ある作用点5のいずれかで加振力が付与されるたびに、計12個のひずみ応答が出力される。例えば作用点5の個数が12個(作用点5X、5Y、5Zが4個ずつ)である場合、合計で144個のひずみ応答が出力される。このとき、フォースセンサ35からの出力結果は、作用点5の個数と同じ12個である。上述の式(2)がこの一実施形態に適用される場合、作用点5X、5Y、5Zが4個ずつあるのでmは12となる。つまり、フォースセンサ35の出力結果を示すFX-1、FX-2、FX-3、FX-4、FY-1、・・・、FZ-4が式(2)の右辺第2項の行列成分となる。また、ひずみゲージ20a、20b、20cが4セット(合計で12個)ある場合、式(2)のnは12となる。つまり、ひずみゲージ20の出力結果を示すε1-1、ε1-2、ε1-3、ε2-1、・・・ε4-3が式(2)の左辺の行列成分となる。このとき、式(2)に基づき取得される伝達関数は144個となる。
【0023】
図5は、一実施形態に係る伝達関数取得部40によって取得される伝達関数のグラフを示す。図5の例示されるグラフでは、横軸が加振力の周波数を示し、縦軸がひずみゲージ20の単位力あたりのひずみ応答を示す。
図5の例示では、4個の作用点5Yの各々について、4セットのひずみゲージ20a、20b、20c(計12個)の各々に対応する伝達関数のグラフが取得されている。図5における”1-a”、”1-b”、”1-c”は、4セットあるひずみゲージ20a、20b、20cのいずれかに対応しており、各作用点5Yで取得される伝達関数の個数は12個である。
詳細な図示は省略するが、各々の作用点5X、5Yについて、同様に伝達関数が取得される。
【0024】
図6は、一実施形態において回転装置7が動作するときのひずみゲージ20のひずみ応答を示す。図6における”1-a”、”1-b”、”1-c”は、4セットあるひずみゲージ20a、20b、20cのいずれかに対応する。
一実施形態では、各々のひずみゲージ20から、時間とひずみ量とが対応付けられたデータが取得され、このデータがFFT処理(高速フーリエ変換処理)されることで、図6のひずみ応答スペクトルが取得される。図6における最前のグラフでは、一例として、ひずみ量が大きくなる共振周波数が2か所あることを示す。
【0025】
図7は、一実施形態における、回転装置7が動作するときのひずみゲージ20の出力結果に基づき加振力特定部50が特定した力をグラフで示す。一実施形態では、式(4)のF’(ω)の運転次数成分を抽出してプロットすることによりグラフを生成する。一実施形態では、X方向、Y方向、及びZ方向のそれぞれにおいて、回転1次成分と回転2次成分をそれぞれ抽出したグラフを示す。他の実施形態では、3次以上の回転成分を抽出したグラフを作成してもよい。
詳細な図示は省略するが、一実施形態では、特定したF’(ω)に基づき、回転装置7に作用するモーメントが特定されてもよい。一実施形態では、モーメントはX方向、Y方向及びZ方向において、回転1次成分と回転2次成分ごとに求められてもよい。モーメントは3次以上の回転成分ごとに求められてもよい。
【0026】
図8は、一実施形態に係る加振力特定システム1の機能を示すブロック図である。
一実施形態の加振力特定システム1は、制御部70と、制御部70からの指令に応じて作動する加振システム80と、計測対象システム90とを含む。
【0027】
一実施形態の制御部70は、プロセッサユニットを備える装置である。プロセッサユニットに含まれるプロセッサは、読み出したプログラムをメモリにロードし、ロードしたプログラムに含まれる命令を実行するように構成される。プロセッサは、例えば、CPU、GPU、MPU、DSP、これら以外の各種演算装置、又はこれらの組み合わせである。プロセッサは、PLD、ASIC、FPGA、及びMCU等の集積回路により実現されてもよい。
制御部70は、加振システム80に対して作動開始の指令を送る指令部71と、フォースセンサ35及び起歪体10の出力結果を記録するデータロガー75と、伝達関数取得部40と、加振力特定部50とを備える。
【0028】
一実施形態の加振システム80は、指令部71から指令を受信したことに応じて信号を発生させる信号発生器81と、信号発生器81で発生した信号を増幅させたサインスイープ信号34を加振装置30に入力するアンプ82と、加振装置30と、フォースセンサ35を備える。フォースセンサ35の出力結果はデータロガー75に出力される。
【0029】
計測対象システム90は、回転装置7と、少なくとも一つの起歪体10と、駆動モータ88とを備える。一実施形態の駆動モータ88は、回転装置7を動作させる際に回転装置7と連結する。駆動モータ88は、インバータ94から供給される電力により駆動する。駆動モータ88から駆動力を得た回転装置7は回転数を変更させながら動作する。一実施形態の回転装置7が圧縮機である場合、回転装置7の吸入口と吐出口とが開放された状態で回転装置7は動作する。これにより、回転装置7の内部にある気体の圧力がひずみゲージ20の出力結果に影響を及ぼすのを抑制できる。
【0030】
図9は、一実施形態に係る加振力特定システム1による加振力特定方法の工程図を示す。
はじめに、伝達関数取得工程(S11)では、フォースセンサ35からの出力結果と、加振装置30が加振力を回転装置7に付与するときの各々のひずみゲージ20からの出力結果とに基づき、伝達関数取得部40が伝達関数を取得する。一実施形態では、作用点5が複数ある場合、加振装置30は、各々の作用点5に順次、加振力を付与する。
続く加振力特定工程(S13)では、回転装置7が動作するときの各々のひずみゲージ20からの出力結果と、伝達関数取得部40によって取得された伝達関数とに基づき、動作中の前記回転装置で生じる力を加振力特定部50が特定する。
以上の工程によって、回転装置7で生じる力が特定される。
【0031】
以下、幾つかの実施形態に係る加振力特定システム1、加振力の特定方法について概要を説明する。
【0032】
(1)本発明の少なくとも一実施形態に係る加振力特定システム1は、
回転装置7と基礎6との間に設けられた少なくとも一つの起歪体10と、
各々の前記起歪体10に設けられた少なくとも一つのひずみゲージ20と、
入力されるサインスイープ信号34に基づき前記回転装置7に加振力を付与するための加振装置30と、
前記加振装置30から付与される前記加振力を測定するためのフォースセンサ35と、
前記フォースセンサ35からの出力結果と、前記加振装置30が前記加振力を付与するときの各々の前記ひずみゲージ20からの出力結果とに基づき、入力となる前記加振力と、各々の前記ひずみゲージ20のひずみ応答との関係を示す伝達関数を取得するための伝達関数取得部40と、
前記回転装置7が動作するときの各々の前記ひずみゲージ20からの出力結果と、前記伝達関数取得部40によって取得された前記伝達関数とに基づき、動作中の前記回転装置7で生じる力を特定するための加振力特定部50と
を備える。
なお、上記の「各々の起歪体10」と「各々のひずみゲージ20」の個数はいずれも1個以上を指す。
【0033】
上記(1)の構成によれば、各々のひずみゲージ20は回転装置7と基礎6との間にある起歪体10に設けられる。これにより、加振装置30によって付与される加振力の周波数帯が低いときであっても、起歪体10は感度良くひずむことができる。従って、ひずみゲージ20は感度良く反応でき、伝達関数取得部40は信頼度の高い伝達関数を取得できる。よって、回転装置7が低い回転数で動作するときであっても、動作中の回転装置7で生じる力を精度良く特定できる。
回転装置7が動作するときに生じる力が精度良く特定されることで、例えば回転装置7を設置するための基礎6の設計時において、回転装置7と基礎6を含む構造体で共振が生じないよう基礎6の形状及び材質などが採用でき、防振設計を施すことができる。
ここで、スイープ加振に代えてインパルス加振を行い、ひずみゲージ20に代えて加速度ピックアップの出力結果に基づき回転装置7での力を特定する方法が考えられる。より詳細には一例として、インパルスハンマを用いたインパクト加振を回転装置7に付与したときの応答を加速度ピックアップの出力結果に基づき特定し、該出力結果に基づき伝達関数を求める方法が考えられる。しかしながら、上記方法で取得される伝達関数は、周波数帯の比較的低い帯域において、コヒーレンス関数の値が1に近づかないことを発明者は実験により確認している。つまり、付与される力の周波数帯が低いほど、取得される伝達関数の信頼度が低くなり、加振力特定部50によって特定される力の精度が低くなってしまう。この問題は、市販の加速度ピックアップの計測特性及び取り付け方法などに制約があることが一因であると考えられる。この点、上記(1)の構成によれば、既述の理由によって、従来に比べて信頼度の高い伝達関数を取得することができ、各種の力を精度良く特定できる。なお、コヒーレンス関数は、伝達関数の信頼度を示す0以上1以下の変数であり、1に近い値であるほど、伝達関数の信頼度が高いことを示す。
また、一実施形態に係の起歪体10の形状は自在に設計可能であるので、必要な強度が確保されつつ感度良く歪みが生じるような起歪体10の形状、材質、及び配置位置などを採用できる。従って、加振力の周波数帯と回転装置7の回転数が低いときであっても、起歪体10は感度良く反応できるので、回転装置7で生じる各種の力を精度良く特定できる。
【0034】
(2)幾つかの実施形態では、上記(1)の構成において、
前記少なくとも一つのひずみゲージ20は、複数のひずみゲージ20を含み、
前記伝達関数取得部40は、前記複数のひずみゲージ20の各々に対応する複数の前記伝達関数を取得するように構成される。
【0035】
上記(2)の構成によれば、複数のひずみゲージ20に対応する複数の伝達関数に基づき、加振力特定部50は回転装置7で生じる力を特定する。よって、動作中の回転装置7で生じる力を精度良く特定できる。
【0036】
(3)幾つかの実施形態では、上記(2)の構成において、
前記少なくとも一つのひずみゲージ20は、互いに交差する方向に各々が延在する2つのひずみゲージ20a,20cを含む。
【0037】
上記(3)の構成によれば、回転装置7で生じる力が複数の方向の成分を有する場合であっても、この力に各々のひずみゲージ20a,20cの少なくともいずれかは感度良く反応できる。よって、加振力特定部50は動作中の回転装置7で生じる力を精度良く特定できる。
【0038】
(4)幾つかの実施形態では、上記(1)から(3)のいずれかの構成において、
各々の前記ひずみゲージ20は、前記回転装置7の回転軸7aを基準とした径方向において、前記回転装置7のハウジング7bよりも平面視で外側に設けられる。
【0039】
上記(4)の構成によれば、ひずみゲージ20が設けられる起歪体10が回転装置7の重心から離れる分、回転装置7で生じる各種の力に応じて起歪体10が感度良くひずむことができる。これにより、加振力特定部50は動作中の回転装置7で生じる力を精度良く特定できる。
【0040】
(5)幾つかの実施形態では、上記(1)から(4)のいずれかの構成において、
前記伝達関数取得部40は、前記回転装置7において前記加振力が付与される複数の作用点5の各々について、複数の前記伝達関数を取得するように構成される。
【0041】
上記(5)の構成によれば、加振力が付与される複数の作用点5の各々についての複数の伝達関数に基づき、加振力特定部50は回転装置7で生じる力を特定する。よって、動作中の回転装置7で生じる力を精度良く特定できる。
【0042】
(6)幾つかの実施形態では、上記(5)の構成において、
前記少なくとも一つのひずみゲージ20は、複数のひずみゲージ20を含み、
前記伝達関数取得部40は、前記回転装置7において前記加振力が付与される前記複数の作用点5の各々について、複数の前記伝達関数を取得するように構成され、
前記ひずみゲージ20の個数と前記作用点の個数が同一である。
【0043】
上記(6)の構成によれば、式(2)において、左辺第1項又は右辺第2項の行列にダミー成分を追加して演算処理を実行する必要がないので、演算処理の負荷が低減する。従って、伝達関数取得部40が伝達関数を取得する処理が高速化する。
【0044】
(7)幾つかの実施形態では、上記(1)から(6)いずれかの構成において、
前記起歪体10は、前記回転装置7であるレシプロ式圧縮機と前記基礎6との間に設けられる。
【0045】
上記(7)の構成によれば、回転数が比較的低くなる傾向があるレシプロ圧縮機の動作中に生じる力を、加振力特定部50は精度良く特定できる。
【0046】
(8)本発明の少なくとも一実施形態に係る加振力特定方法は、
加振力特定システムによる加振力特定方法であって、
回転装置7と基礎6との間に設けられた少なくとも一つの起歪体10と、各々の前記起歪体10に設けられた少なくとも一つのひずみゲージ20と、入力されるサインスイープ信号34に基づき前記回転装置7に加振力を付与するための加振装置30と、前記加振装置30から付与される前記加振力を測定するためのフォースセンサ35とを備える前記加振力特定システム1の前記フォースセンサ35からの出力結果と、前記加振装置30が前記加振力を付与するときの各々の前記ひずみゲージ20からの出力結果とに基づき、入力となる前記加振力と、各々の前記ひずみゲージ20のひずみ応答との関係を示す伝達関数を取得するための伝達関数取得工程(S11)と、
前記回転装置7が動作するときの各々の前記ひずみゲージ20からの出力結果と、前記伝達関数取得工程において取得された前記伝達関数とに基づき、動作中の前記回転装置7で生じる力を特定するための加振力特定工程と
を備える。
【0047】
上記(8)の構成によれば、上記(1)と同様の理由によって、回転装置7が低い回転数で動作するときであっても、動作中の回転装置7で生じる力を精度良く特定できる。
【符号の説明】
【0048】
1 :加振力特定システム
5、5X、5Y、5Z :作用点
6 :基礎
7 :回転装置
7a :回転軸
7b :ハウジング
10、10a、10b、10c :起歪体
20、20a、20b、20c :ゲージ
30 :加振装置
34 :サインスイープ信号
35 :フォースセンサ
40 :伝達関数取得部
50 :加振力特定部
図1
図2
図3
図4
図5
図6
図7
図8
図9