(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-18
(45)【発行日】2024-06-26
(54)【発明の名称】光源および光源を備える発光装置
(51)【国際特許分類】
H01L 33/54 20100101AFI20240619BHJP
H01L 33/58 20100101ALI20240619BHJP
H01L 33/50 20100101ALI20240619BHJP
【FI】
H01L33/54
H01L33/58
H01L33/50
(21)【出願番号】P 2022099362
(22)【出願日】2022-06-21
(62)【分割の表示】P 2021001772の分割
【原出願日】2015-06-26
【審査請求日】2022-07-19
(31)【優先権主張番号】P 2014266765
(32)【優先日】2014-12-26
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2015025503
(32)【優先日】2015-02-12
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000226057
【氏名又は名称】日亜化学工業株式会社
(72)【発明者】
【氏名】山田 元量
(72)【発明者】
【氏名】山田 有一
【審査官】東松 修太郎
(56)【参考文献】
【文献】特開2012-231036(JP,A)
【文献】特開2010-278246(JP,A)
【文献】特開2014-022581(JP,A)
【文献】特開2012-023189(JP,A)
【文献】特開2006-310568(JP,A)
【文献】特開2006-128719(JP,A)
【文献】特表2002-531956(JP,A)
【文献】特開2019-161239(JP,A)
【文献】特開2014-093311(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 33/00ー33/64
(57)【特許請求の範囲】
【請求項1】
発光素子と、
前記発光素子を被覆する封止部材と、を有する光源であって、
前記封止部材は、含有量が0.01~30wt%である光拡散材を含有し、
前記封止部材の形状は、底面を有し、
前記発光素子の中心を通る法線を光軸(L)としたときの前記光軸(L)方向の高さが、
前記光軸(L)方向から見たときの前記底面の最大幅となる位置の幅よりも長く、
前記発光素子の周囲に波長変換部材を有し、
前記波長変換部材は、前記発光素子から発した光が前記封止部材へ至るまでの間に波長変換が行われるように前記発光素子の表面が露出されている部分に接するように配置され、
バットウィング型の配光特性を有する、ことを特徴とする光源。
【請求項2】
前記波長変換部材の、前記光軸(L)方向の高さが、前記封止部材の、前記光軸(L)方向の高さの1/2以下である、請求項1に記載の光源。
【請求項3】
前記発光素子の下面にフィラーを含有するアンダーフィルを有する請求項1に記載の光源。
【請求項4】
前記フィラーの反射率は、前記発光素子の発光波長の光に対して50%以上である、請求項3に記載の光源。
【請求項5】
基体を有し、
前記基体上に、前記請求項1に記載の光源を複数有する発光装置。
【請求項6】
基体を有し、
前記基体上に、前記請求項2に記載の光源を複数備える発光装置。
【請求項7】
基体を有し、
前記基体上に、前記請求項3に記載の光源を複数備える発光装置。
【請求項8】
基体を有し、
前記基体上に、前記請求項4に記載の光源を複数備える発光装置。
【請求項9】
前記複数の光源は、それぞれの光源の前記発光素子において、隣接する前記発光素子の間隔が20mm以上である請求項5に記載の発光装置。
【請求項10】
前記複数の光源は、それぞれの光源の前記発光素子において、隣接する前記発光素子の間隔が20mm以上である請求項6に記載の発光装置。
【請求項11】
前記複数の光源は、それぞれの光源の前記発光素子において、隣接する前記発光素子の間隔が20mm以上である請求項7に記載の発光装置。
【請求項12】
前記複数の光源は、それぞれの光源の前記発光素子において、隣接する前記発光素子の間隔が20mm以上である請求項8に記載の発光装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、発光装置に関する。
【背景技術】
【0002】
近年、様々な電子部品が提案され、また実用化されており、これらに求められる性能も高くなっている。特に、電子部品には、厳しい使用環境下でも長時間性能を維持することが求められている。このような要求は、発光ダイオード(LED:Light Emitting Diode)をはじめとする半導体発光素子を利用した発光装置についても例外ではない。すなわち、一般照明分野や車載照明分野において、発光装置に要求される性能は日増しに高まっており、更なる高出力(高輝度)化や高信頼性が要求されている。さらに、これらの高い性能を維持しつつ、低価格で供給することも要求されている。
特に液晶テレビに使用されるバックライトや一般照明器具等では、デザイン製が重要視され、薄型化の要望が高い。
【0003】
例えば特許文献1には、二次光学レンズをLEDと組み合わせることでバットウイング型の配光特性を実現し、短い照射距離で光を均一に拡散させることが出来、結果として器具の薄型化が可能となることが開示されている。
また特許文献2には、モールド形状を工夫してバットウイング配光を実現することが開示されている。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2006-114863号公報
【文献】特開2012-231036号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献1に記載される二次レンズと組み合わせる方法では、二次レンズへの入射時および二次レンズからの出射時に表面反射によるフレネルロスが発生し、光利用効率が低下する。また、レンズ費用と、レンズの実装費用が発生しコストが上昇する。
特許文献2に記載の方式では、蛍光体含有層の厚みが角度により異なり、配光色ムラが生じるため、色ムラの改善が望まれていた。
【0006】
本発明に係る実施形態は、かかる事情に鑑みてなされたものであり、二次レンズを使用することなく、配光色ムラの改善されたバットウイング配光を可能とする発光装置を提供する。
【課題を解決するための手段】
【0007】
本実施形態に係る発光装置は、導体配線を有する基体と、前記基体上に載置され、前記導体配線と電気的に接続された発光素子と、前記発光素子を被覆する透光性の封止部材と、を備え、前記封止部材は凸形状であり、その光軸方向の高さが、前記封止部材の底面の幅よりも長く、かつ、光拡散材を含有する。
【発明の効果】
【0008】
本発明に係る実施形態によれば、二次レンズを使用することなく、配光色ムラの改善されたバットウイング配光を可能とする発光装置を提供することができる。
【図面の簡単な説明】
【0009】
【
図1】本実施形態の発光装置の一例を示す上面図及び断面図である。
【
図2】本実施形態の発光装置の配光特性を示す図である。
【
図3】本実施形態の発光装置の一例を示す断面図である。
【
図4】本実施形態の発光装置の一例を示す断面図である。
【
図5】本実施形態の発光装置の一例を示す断面図である。
【
図6】本実施形態の発光装置の一例を示す上面図である。
【
図7】実施例3~5の発光装置の封止部材の形状の例を示す図である。
【
図8】実施例3~5の発光装置の配光特性を示す図である。
【
図9】実施例3~5の発光装置の輝度分布を示す図である。
【発明を実施するための形態】
【0010】
以下、本発明の実施の形態について適宜図面を参照して説明する。ただし、以下に説明する発光装置は、技術思想を具体化するためのものであって、特定的な記載がない限り、本発明を以下のものに限定しない。また、一つの実施の形態、実施例において説明する内容は、他の実施の形態、実施例にも適用可能である。
さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細な説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。
【0011】
[第1実施形態]
図1(A)および
図1(B)は、第1実施形態の発光装置の一例を示す概略構造図であり、
図1(A)は上面図、
図1(B)は
図1(A)のI-I線における断面図である。
図1に示されるように、本実施形態における基体101は、基体の表面に設けられた一対の導体配線102に跨がるように、接続部材103を介してフリップチップ実装により発光素子105が実装されている。導体配線102の上面のうち、発光素子105との電気的に接続される領域は、絶縁部材104から露出されている。
【0012】
発光素子105の下部(すなわち発光素子105の下面と基体101の間)および発光素子105の側面には、アンダーフィル106が形成され、その上部に光拡散材を含有した封止部材108が形成されている。
【0013】
封止部材108は、凸形状(例えば略半長球状、略円錐状、略円柱状、きのこ型等)であり、その光軸(L)方向の高さAが封止部材108の底面の幅Cよりも長くなるよう形成されている。なお、本明細書中の説明において、発光素子105の中心を通る法線を光軸Lという。このような構成とすることで、発光素子105から発した光が光拡散材で散乱され、発光装置100から発せられる光強度は、封止部材108の見かけ面積比に略比例する。結果として、
図2に示すようなバットウイング型の配光特性を実現することができる。つまり、本実施形態の発光装置100は、発光素子105を点灯して光軸方向から観察したときに、中心部が外周部よりも暗くなるような配光特性を示す。
【0014】
封止部材108は、上面視においてその外形が円形もしくは楕円形となるように形成されており、楕円形の場合、底面の半径Bは長半径と短半径が存在するが、本明細書では短半径を半径Bと定義する。
【0015】
図2は、本実施形態に係る発光装置の配光特性を示した図である。
図2に示すように、本実施形態の発光装置は、配光角が0°のときよりも50~60°付近の相対光度が強くなり、配光が広くなる、いわゆるバットウイング型の配光特性を持つ。
図2では、光軸方向の封止部材の高さAを、封止部材の底面の半径Bで割ったアスペクト比(A/B)を、2.8、3.2、3.5とする場合をそれぞれ示している。アスペクト比が大きいほど0°付近の相対光度が低下し、配光が広がっていることがわかる。光を均一に拡散させるために、アスペクト比は2.0以上であることが好ましい。
【0016】
発光素子105は、直接封止部材108で被覆されているため、二次レンズを使用する場合に比べて、フレネルロスを低減し、光取り出し効率を向上することができる。
また、発光素子105は、基体の上面から0.5mm以内の高さに配置されることが好ましい。
【0017】
また、本実施形態の発光装置100は、光拡散材の濃度を増やしていくと、発光素子105を点灯して光軸方向から観察したときに、中心部が外周部よりも暗い輝度分布を示す。
これは発光素子105から観て光軸方向の光路長が光軸の垂直方向の光路長より長いため発光素子105からの光が散乱し減衰していくからである。
よって光拡散材の濃度を調整する事で、アスペクト比をそれほど大きくしなくても光軸方向の光量を下げてバットウイング配光にすることが可能となり、樹脂量も少なく済み生産性が向上する。
【0018】
以下、本実施の形態に係る発光装置100の好ましい形態について説明する。
(基体101)
基体101は、発光素子105を載置するための部材である。基体101はその表面に、発光素子105に電力を供給するための導体配線102を有している。
基体101の材料としては、例えば、セラミックス、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、BTレジン、ポリフタルアミド(PPA)、ポリエチレンテレフタレート(PET)等の樹脂が挙げられる。なかでも、低コストと、成型容易性の点から、樹脂を絶縁性材料に選択することが好ましい。あるいは、耐熱性及び耐光性に優れた発光装置とするためには、セラミックスを基体101の材料として選択することが好ましい。
【0019】
セラミックスとしては、例えば、アルミナ、ムライト、フォルステライト、ガラスセラミックス、窒化物系(例えば、AlN)、炭化物系(例えば、SiC)等が挙げられる。なかでも、アルミナからなる又はアルミナを主成分とするセラミックスが好ましい。
また、基体101を構成する材料に樹脂を用いる場合は、ガラス繊維や、SiO2、TiO2、Al2O3等の無機フィラーを樹脂に混合し、機械的強度の向上、熱膨張率の低減、光反射率の向上等を図ることもできる。また、基体101としては、一対の導体配線102を絶縁分離できるものであればよく、金属部材に絶縁層を形成している、いわゆる金属基板を用いてもよい。
【0020】
(導体配線102)
導体配線102は、発光素子105の電極と電気的に接続され、外部からの電流(電力)を供給するための部材である。すなわち、外部から通電させるための電極またはその一部としての役割を担うものである。通常、正と負の少なくとも2つに離間して形成される。
【0021】
導体配線102は、発光素子105の載置面となる基体の、少なくとも上面に形成される。導体配線102の材料は、基体101として用いられる材料や製造方法等によって適宜選択することができる。例えば、基体101の材料としてセラミックを用いる場合は、導体配線102の材料は、セラミックスシートの焼成温度にも耐え得る高融点を有する材料が好ましく、例えば、タングステン、モリブデンのような高融点の金属を用いるのが好ましい。さらに、その上に鍍金やスパッタリング、蒸着などにより、ニッケル、金、銀など他の金属材料にて被覆してもよい。
【0022】
また、基体101の材料としてガラスエポキシ樹脂を用いる場合は、導体配線102の材料は、加工し易い材料が好ましい。また、射出成型されたエポキシ樹脂を用いる場合には、導体配線102の材料は、打ち抜き加工、エッチング加工、屈曲加工などの加工がし易く、かつ、比較的大きい機械的強度を有する部材が好ましい。具体例としては、銅、アルミニウム、金、銀、タングステン、鉄、ニッケル等の金属、または、鉄-ニッケル合金、りん青銅、鉄入り銅、モリブデン等の金属層やリードフレーム等が挙げられる。また、その表面を、さらに金属材料で被覆してもよい。この材料は特に限定されないが、例えば、銀のみ、あるいは、銀と、銅、金、アルミニウム、ロジウム等との合金、または、これら、銀や各合金を用いた多層膜とすることができる。また、金属材料の配置方法は、鍍金法の他にスパッタ法や蒸着法などを用いることができる。
【0023】
(接続部材103)
接続部材103は、発光素子105を基体101または導体配線102に固定するための部材である。絶縁性の樹脂や導電性の部材が挙げられ、
図1Bに示すようなフリップチップ実装の場合は導電性の部材が用いられる。具体的にはAu含有合金、Ag含有合金、Pd含有合金、In含有合金、Pb-Pd含有合金、Au-Ga含有合金、Au-Sn含有合金、Sn含有合金、Sn-Cu含有合金、Sn-Cu-Ag含有合金、Au-Ge含有合金、Au-Si含有合金、Al含有合金、Cu-In含有合金、金属とフラックスの混合物等を挙げることができる。
【0024】
接続部材103としては、液状、ペースト状、固体状(シート状、ブロック状、粉末状、ワイヤー状)のものを用いることができ、組成や基体の形状等に応じて、適宜選択することができる。また、これらの接続部材103は、単一部材で形成してもよく、あるいは、数種のものを組み合わせて用いてもよい。
【0025】
(絶縁部材104)
導体配線102は、発光素子105や他材料と電気的に接続する部分以外は絶縁部材104で被覆されている事が好ましい。すなわち、各図に示されるように、基体上には、導体配線102を絶縁被覆するためのレジストが配置されていても良く、絶縁部材104はレジストとして機能させることができる。
【0026】
絶縁部材104を配置させる場合には、導体配線102の絶縁を行う目的だけでなく、以下に述べるアンダーフィル材料と同様な白色系のフィラーを含有させることにより、光の漏れや吸収を防いで、発光装置100の光取り出し効率を上げることもできる。
絶縁部材104の材料は、発光素子からの光の吸収が少ない材料であり、絶縁性であれば特に限定されない。例えば、エポキシ、シリコーン、変性シリコーン、ウレタン樹脂、オキセタン樹脂、アクリル、ポリカーボネイト、ポリイミド等を用いることができる。
【0027】
(発光素子105)
基体に搭載される発光素子105は、特に限定されず、公知のものを利用できるが、本形態においては、発光素子105として発光ダイオードを用いるのが好ましい。
発光素子105は、任意の波長のものを選択することができる。例えば、青色、緑色の
発光素子としては、ZnSeや窒化物系半導体(InxAlyGa1-x-yN、0≦X、0≦Y、X+Y≦1)、GaPを用いたものを用いることができる。また、赤色の発光素子としては、GaAlAs、AlInGaPなどを用いることができる。さらに、これ以外の材料からなる半導体発光素子を用いることもできる。用いる発光素子の組成や発光色、大きさや、個数などは目的に応じて適宜選択することができる。
【0028】
半導体層の材料やその混晶度によって発光波長を種々選択することができる。同一面側に正負の電極を有するものであってもよいし、異なる面に正負の電極を有するものであってもよい。
【0029】
本実施形態の発光素子105は、透光性の基板と、その基板の上に積層された半導体層を有する。この半導体層には、順にn型半導体層、活性層、p型半導体層が形成されており、n型半導体層にn型電極が形成されており、p型半導体層にp型電極が形成されている。
【0030】
発光素子105の電極は、
図1に示すように、接続部材103を介して基体101の表面の導体配線102にフリップチップ実装されており、電極の形成された面と対向する面、すなわち透光性基板の主面を光取り出し面としている。発光素子105は、正と負に絶縁分離された2つの導体配線102に跨るように配置されており、導電性の接続部材103によって電気的に接続され、機械的に固定されている。この発光素子105の実装方法は、半田ペーストを用いた実装方法の他、例えばバンプを用いた実装方法とすることができる。また、発光素子105としては発光素子が樹脂等で封止された小型のパッケージ品を用いることも可能であり、特に形状や構造を限定する物では無い。
【0031】
なお、後述するように、波長変換部材を備えた発光装置とする場合には、その波長変換部材109を効率良く励起できる短波長が発光可能な窒化物半導体(InxAlyGa1-x-yN、0≦X、0≦Y、X+Y≦1)が好適に挙げられる。
【0032】
(アンダーフィル106)
発光素子105をフリップチップ実装する場合には、発光素子105と基体101の間にアンダーフィル106が形成されていることが好ましい。アンダーフィル106は、発光素子105からの光を効率よく反射できるようにすることと、熱膨張率を発光素子105に近づけることを目的として、フィラーを含有している。
アンダーフィル106の材料は、発光素子からの光の吸収が少ない材料であれば、特に限定されない。例えば、エポキシ、シリコーン、変性シリコーン、ウレタン樹脂、オキセタン樹脂、アクリル、ポリカーボネイト、ポリイミド等を用いることができる。
【0033】
アンダーフィル106に含有するフィラーとしては、白色系のフィラーであれば、光がより反射され易くなり、光の取り出し効率の向上を図ることができる。また、フィラーとしては、無機化合物を用いるのが好ましい。ここでの白色とは、フィラー自体が透明であった場合でもフィラーの周りの材料と屈折率差がある場合に散乱で白色に見えるものも含む。
【0034】
ここで、フィラーの反射率は、発光波長の光に対して50%以上であることが好ましく、70%以上であることがより好ましい。このようにすれば、発光装置100の光の取り出し効率を向上させることができる。また、フィラーの粒径は、1nm以上10μm以下が好ましい。フィラーの粒径をこの範囲とすることで、アンダーフィルとしての樹脂流動性が良くなり、狭い隙間でも問題なく被覆することができる。なお、フィラーの粒径は、好ましくは、100nm以上5μm以下、さらに好ましくは200nm以上2μm以下である。また、フィラーの形状は、球形でも鱗片形状でもよい。
【0035】
なお、フィラーの粒径やアンダーフィルの材料を適宜選択および調整することにより、発光素子の側面が、アンダーフィルによって被覆されないようにすることが好ましい。発光素子の側面を光取り出し面として確保するためである。
【0036】
(封止部材108)
封止部材108は、発光素子105を外部環境から保護するとともに、発光素子から出力される光を光学的に制御するため、発光素子105を被覆するように基体上に配置させる部材である。本実施形態においては、発光素子105は封止部材108で直接被覆されている。
【0037】
封止部材108の材料としては、エポキシ樹脂やシリコーン樹脂あるいはそれらを混合させた樹脂や、ガラスなどの透光性材料を用いることができる。これらのうち、耐光性および成形のしやすさを考慮して、シリコーン樹脂を選択することが好ましい。
【0038】
封止部材108は、発光素子105からの光を拡散させるための光拡散材を含有する。光拡散材を有することで、発光素子105から光軸L方向に出射された光が光拡散材によって全包囲に拡散される。
【0039】
なお封止部材108には、光拡散材に加え、発光素子105からの光を吸収して発光素子からの出力光とは異なる波長の光を発する蛍光体等の波長変換部材や、発光素子の発光色に対応させて、着色剤を含有させることもできる。
【0040】
封止部材108は、発光素子105を被覆するように圧縮成型や射出成型によって形成することができる。その他、封止部材108の材料の粘度を最適化して、発光素子105の上に滴下もしくは描画して、材料自体の表面張力によって、各図に示されるような形状を形成することができる。
【0041】
後者の形成方法による場合には、金型を必要とすることなく、より簡便な方法で封止部材を形成することができる。また、このような形成方法による封止部材の材料の粘度を調整する手段として、その材料本来の粘度の他、上述したような光拡散材、波長変換部材、着色剤を利用して所望の粘度に調整することもできる。
【0042】
(光拡散材)
光拡散材としては、具体的には、SiO2、Al2O3、Al(OH)3、MgCO3、TiO2、ZrO2、ZnO、Nb2O5、MgO、Mg(OH)2、SrO、In2O3、TaO2、HfO、SeO、Y2O3、CaO、Na2O、B2O3などの酸化物、SiN、AlN、AlONなどの窒化物、MgF2のようなフッ化物などが挙げられる。これらは、単独で用いてもよいし、混合して用いてもよい。あるいは、複数の層に分けてこれらを積層させるようにしてもよい。
【0043】
また、光拡散材として有機フィラーを用いてもよい。例えば各種樹脂を粒子状としたものが挙げられる。この場合、各種樹脂としては例えば、シリコーン樹脂、ポリカーボネイト樹脂、ポリエーテルスルホン樹脂、ポリアリレート樹脂、ポリテトラフルオロエチレン樹脂、エポキシ樹脂、シアナート樹脂、フェノール樹脂、アクリル樹脂、ポリイミド樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、ポリビニルアセタール樹脂、ポリメタクリル酸メチル樹脂、ウレタン樹脂及びポリエステル樹脂などが挙げられる。
【0044】
光拡散材は、実質的に発光素子からの光を波長変換しない材料であることが好ましい。これにより、波長変換部材含有層の厚みが角度により異なることによる、配光色ムラを抑制することができる。
【0045】
光拡散材の含有量は、光が拡散される程度であればよく、例えば0.01~30wt%程度、好ましくは2~20wt%程度である。また、光拡散材のサイズも同様に光が拡散される程度であればよく、例えば0.01~30μm程度、好ましくは0.5~10μm程度である。形状は、球形でも鱗片形状でもよいが、均一に拡散させるために球状であることが好ましい。ただし光拡散材濃度は封止材との屈折率差や厚みにより相対的に変化する物であり、上述の数字はあくまでも目安である。
例えば、発光素子自体は、通常、光軸方向への光強度が最も強くなる。そのため拡散材の濃度が低すぎると、発光素子を点灯して光軸方向から観察したときに、中心部が外周部よりも暗い輝度分布にならない場合がある。よって、中心部が外周部よりも暗い輝度分布になるように、拡散材の濃度を調整することが好ましい。
【0046】
また、封止部材108中の光拡散材の濃度を制御することで、発光装置100を光軸上から観測して、中心部を暗くして外周を明るくすることが出来る。この様な構成とすることで、より光軸方向の光量を抑制しバットウイング型の配光特性を得ることができる。
【0047】
本実施形態の発光装置では、二次レンズを用いることなく広配光を実現することができるため、発光素子105が基体101上に複数載置されている場合に、隣接する発光素子の間隔が20mm以上であっても、短い照射距離で光を均一に拡散させることができる。これにより、複数の発光素子を用いて輝度ムラの抑制された面光源を実現することができる。ここで隣接する発光素子の間隔とは、
図6の距離Fで示すように、隣接する2つの発光素子105の最短距離のことをいうものとする。
【0048】
[第2実施形態]
図3は、第2実施形態の発光装置の一例を示す断面図である。
本実施形態では、発光素子105に接して波長変換部材109が配置されており、波長変換部材109を被覆するように光拡散材の含有された封止部材108が形成されている。
【0049】
上述したように、封止部材108の全部に波長変換部材を含有する場合には、波長変換部材含有層の厚みが角度により異なり、配光色ムラが生じる。そのため、本実施形態では、波長変換部材109を発光素子105の周囲に形成し、その上から光学性能を持たせた封止部材108を形成する。これにより、波長変換が行われる領域(波長変換部材109)と、光学性能が付与される領域(封止部材108)を分けて形成することができるため、所望の配光特性を実現させつつ、配光色ムラが抑制される。
【0050】
(波長変換部材109)
波長変換部材としては、例えば、窒化物系半導体を発光層とする発光素子からの光を吸収し、異なる波長の光に波長変換するものであればよい。蛍光物質は、例えば、Eu、Ce等のランタノイド系元素で主に賦活される、窒化物系蛍光体、酸窒化物系蛍光体を用いることができる。より具体的には、大別して下記(D1)~(D3)にそれぞれ記載された中から選ばれる少なくともいずれか1以上であることが好ましい。
(D1)Eu等のランタノイド系、Mn等の遷移金属系の元素により主に賦活される、アルカリ土類ハロゲンアパタイト、アルカリ土類金属ホウ酸ハロゲン、アルカリ土類金属アルミン酸塩、アルカリ土類金属硫化物、アルカリ土類金属チオガレート、アルカリ土類金属窒化ケイ素、ゲルマン酸塩等の蛍光体
(D2)Ce等のランタノイド系元素で主に賦活される、希土類アルミン酸塩、希土類ケイ酸塩、アルカリ土類金属希土類ケイ酸塩等の蛍光体
(D3)Eu等のランタノイド系元素で主に賦活される、有機または有機錯体等の蛍光体
【0051】
中でも、前記(D2)のCe等のランタノイド系元素で主に賦活される希土類アルミン酸塩蛍光体であるYAG(Yttrium Aluminum Garnet)系蛍光体が好ましい。YAG系蛍光体は、次の(D21)~(D24)などの組成式で表される。
(D21)Y3Al5O12:Ce
(D22)(Y0.8Gd0.2)3Al5O12:Ce
(D23)Y3(Al0.8Ga0.2)5O12:Ce
(D24)(Y,Gd)3(Al,Ga)5O12:Ce
【0052】
また、例えば、Yの一部または全部をTb、Lu等で置換してもよい。具体的には、Tb3Al5O12:Ce、Lu3Al5O12:Ce等でもよい。さらに、前記した蛍光体以外の蛍光体であって、同様の性能、作用、効果を有する蛍光体も使用することができる。
【0053】
このような蛍光体の粒径としては、例えば2.5~30μm程度とすることが好ましい。
なお、本明細書で「粒径」とする場合は、平均粒径のことを指すものとし、その値は、空気透過法又はF.S.S.S.No(Fisher-SubSieve-Sizers-No.)によるものとする(いわゆるDバー(Dの上にバー)で表される値)。
【0054】
波長変換部材は、例えば、いわゆるナノクリスタル、量子ドットと称される発光物質でもよい。このような材料としては、半導体材料、例えば、II-VI族、III-V族、IV-VI族、I-III-VI族の半導体、具体的には、CdSe、コアシェル型のCdSXSe1-X/ZnS、GaP、InAs、InP、GaN、PbS、PbSe、Cu(In,Ga)S2、Ag(In,Ga)S2等のナノサイズの高分散粒子を挙げることができる。このような量子ドットは、例えば、粒径1~100nm、好ましくは1~20nm程度(原子が10~50個程度)とすることができる。このような粒径の量子ドットを用いることにより、内部散乱を抑制することができ、波長変換領域での光の散乱を抑制することができる。
【0055】
図3に示す発光装置200は、発光素子105の周囲に波長変換部材109を有している以外は第1実施形態の発光装置100と同様の構成を有してよい。
本実施形態では、波長変換部材109は、封止部材108と同様に、光軸L方向に凸形状とされている。発光素子から封止部材108へ至るまでの間に波長変換が行われるように発光素子105の表面が露出されている部分に波長変換部材109が接するように配置されている。
図3に示す例では、波長変換部材109は発光素子105を被覆する略半球状に形成されている。
【0056】
波長変換部材109は、上面視においてその外形が円形もしくは楕円形となるよう形成されていることが好ましい。
【0057】
波長変換部材109の光軸(L)方向の高さ(D)は、封止部材108の光軸(L)方向の高さ(A)の1/2以下であることが好ましい。これにより封止部材108の厚みが確保でき色ムラの軽減が可能となる。
【0058】
また、波長変換部材109の幅(E)は、封止部材108の幅(C)の4/5以下であることが好ましい。これにより封止部材108の厚みが確保でき色ムラの軽減が可能となる。
【0059】
なお、第2実施形態の発光装置の封止部材108に、さらに蛍光体等の波長変換部材を含有させてもよい。この場合、波長変換部材109の発光波長は、封止部材108に含有される蛍光体等の波長変換部材の発光波長よりも長波であることが好ましい。これにより波長変換部材109で波長変換された光が、封止部材に含有された波長変換部材に再度波長変換されることを抑制することができる。
【0060】
[第2実施形態の変形例]
図4は、第2実施形態の発光装置200の変形例を示す断面図である。本変形例の発光装置300は、発光素子105として、発光素子に波長変換部材と反射部材203を備えた小型のLEDパッケージ品を用いたものである。具体的には、発光素子105の側面及び下面を反射部材203で被覆し、発光素子105の上面に波長変換部材109を備えたLEDパッケージ201を、基体101に載置している。LEDパッケージ201の端子204と、導体配線102が、接続部材103により電気的に接続されている。
【0061】
この変形例によっても、第2実施形態と同様に、波長変換が行われる領域と、光学性能が付与される領域を分けて形成することができるため、配光色ムラが抑制される。この様な構成とすることで予め色度を選別した光源を使用することができるため、製品の色度歩留まりを向上することが可能である。
【0062】
[第3実施形態]
図5は、第3実施形態の発光装置400の一例を示す断面図である。
本実施形態では、封止部材108と基体101とが接する領域(封止部材108の底面)の半径が、封止部材108の幅方向の最大半径よりも小さくなるよう形成されている。このように、封止部材108が基体101近傍において逆テーパー部205を有することにより、発光素子から光軸(L)に対して真横方向に出た光が、屈折により基体上面方向に向きが変わることで、基体に当たる事無く全面を照らす光量を増やすことができる。封止部材108が、基体101近傍において逆テーパー状となる以外は、第1実施形態の発光装置100または第2実施形態の発光装置200と同様の構成を有してよい。
【0063】
以下、実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[実施例1]
本実施例は、
図1Aおよび
図1Bに示すように、基体101としてガラスエポキシ基材を用い、導体配線として35μmのCu材を用いる。
発光素子は、平面視が1辺600μmの正方形で、厚みが150μmの窒化物系青色LEDを用い、絶縁部材104にはエポキシ系の白色ソルダーレジストを用いる。アンダーフィル106として、酸化チタンをフィラーとして30wt%含有したシリコーン樹脂を用い、発光素子105の下面及び側面をアンダーフィル106で被覆している。封止部材108は、光拡散材としてSiO
2フィラーを30wt%含有したシリコーン樹脂を用い、
図1Aおよび
図1Bに示すように、上面視の外形が円形である、略半長球状である。光軸方向の高さAが5.5mm、封止部材108の底面の半径Bは1.7mmとし、アスペクト比(A/B)が3.2である。
【0064】
この様な構成とすることで、発光素子105から発した光が光拡散材であるSiO
2フィラーで散乱することにより、発光装置100から発せられる光強度は封止部材108の見かけ面積比に略比例する。結果として
図2にアスペクト比3.2として示すような配光特性を実現することができる。この配光は、0°付近の相対光度よりも、50°~60°付近の相対光度が高くなっており、バットウイング配光として制御することが可能となる。
【0065】
[実施例2]
本実施例は、
図3に示すように、波長変換部材109を含有する封止部材108が発光素子105の周囲に形成されている以外は実施例1と同様である。
本実施例の波長変換部材109はYAG系蛍光体を含有するシリコーン樹脂を使用し、封止部材108は光拡散材としてSiO
2フィラーを含有するシリコーン樹脂を使用している。
この様な構成とすることで、発光素子105の青色光と波長変換部材109で波長変換された黄色光とで白色光が合成され、封止部材108内で更に拡散されることにより全方向に色ムラの少ないバットウイング配光が得られる。
【0066】
実施例3~5として、封止部材108の形状を変化させ、配光特性と輝度分布を確認した。実施例3の発光装置を
図7(A)に、実施例4の発光装置を
図7(B)に、実施例5の発光装置を
図7(C)に示す。
【0067】
実施例3~5の発光装置は、封止部材108が凸形状であり、その光軸方向の高さが、封止部材108の底面の幅よりも長く、かつ、光拡散材を含有している点、および封止部材108の上表面が曲率を有している点について共通している。
また、基体としてガラスエポキシ基材を用い、導体配線として35μmのCu材を用いる。発光素子は、平面視が1辺600μmの正方形で、厚みが150μmの窒化物系青色LEDを用い、絶縁部材にはエポキシ系の白色ソルダーレジストを用いる点が共通している。
【0068】
[実施例3]
実施例3の封止部材108は、
図7(A)に示すように、光軸近傍の曲率が、その他の部分の曲率よりも大きく、円錐型に近い形状とされている。封止部材の側面も曲率を有している。実施例3では、
図3で示したように、発光素子上に蛍光体を塗布する方式で蛍光体層を形成している。蛍光体はYAG系の蛍光体を用い、白色発光装置とされている。
【0069】
[実施例4]
実施例4の封止部材108は、
図7(B)に示すように、光軸近傍の曲率が、その他の部分の曲率よりも小さく、光軸近傍の表面が平坦に近い形状とされている。また、封止部材の側面に、基体の上面(発光素子の上面)に対して略垂直となる面を有しており、円柱状に近い形状とされている。
【0070】
このような形状は次のようにして形成することができる。
まず、ナノフィラーを添加して高チキソ化した樹脂に拡散材を分散させて調合した樹脂を用い、ディスペンサの上下方向(z方向)を制御して引き上げながら樹脂を塗布し、必要な高さまで引き上げたら引き上げを止めて、垂直断面が長方形に近い形になるまで樹脂を供給する。所望の形状になったら樹脂の供給を終了し、上面を擦りきるようにして樹脂の糸切りを行う。なお、ここでは、封止部材の上面が曲率を持った例を示したが、上面が平坦とされていてもよい。
実施例4では、実施例3と同様に発光素子上に蛍光体を塗布する方式で蛍光体層が形成されており、白色発光装置とされている。
【0071】
[実施例5]
実施例5の封止部材108は、
図7(C)に示すように、上部10と下部20とを有しており、上部10は、下部20の径Hよりも大きい径Gを有するきのこ型とされている。また、上部10において、実施例4と同様に光軸近傍の曲率がその他の部分の曲率よりも小さく、光軸近傍の表面が平坦に近い形状とされている。下部20の側面は、基体の上面(発光素子の上面)に対して略垂直となる面を有して略円柱状に形成されており、上部10は、略球状に形成されている。
また、封止部材の側面は、下方から上方にいくに従ってその径が大きくなり、径Gの点で最大となった後、さらに上方にいくに従って徐々に小さくなる。このように、発光装置を上面視したときに、上部10が下部20を包含するように重なることで、輝度が高くなる封止部材の底部の周囲が上面視した際に直接見えなくなるため、後述するように、均一性を向上させることができる。
実施例5では、
図4で示したようなLEDパッケージ201を用いて蛍光体層を形成することで白色発光装置とされている。
【0072】
(配向特性及び輝度分布)
図8に示すように、各発光装置の配光特性は、全てバットウイング配光となる。実施例5の発光装置は、実施例3及び実施例4の発光装置に比べて光軸近傍の明るさが平坦になっている以外は、略同じような配光特性を示す。
一方、
図9は実施例3~5の発光装置の封止部材108とその周囲の上面視の輝度分布を示すグラフであり、
図10は上面視での面内輝度分布である。
図10(A)は実施例3、
図10(B)は実施例4、
図10(C)は実施例5の輝度分布を示している。
図9及び
図10の輝度分布をみると、実施例5の発光装置が最も均一性が良い結果となる。ここで、均一性とは、光軸近傍の最も暗い部分(暗部)の輝度と最も明るい部分(明部)の輝度の明暗比(暗部/明部)のことをいう。この値が大きいほど、明部と暗部の差が小さいということであり、均一性がよいものとする。なお、実施例3の明暗比は0.157、実施例4の明暗比は0.557、実施例5の明暗比は0.717である。
照射面である光拡散板等が発光装置に対して非常に近い場合、
図8に示す配光特性には現れない発光装置自体の輝度分布の影響が現れるため、実施例3の発光装置では照射面に光軸上が暗く、その周囲が明るいドーナツ状の明暗形状が現れる。これに対し、実施例4および5では発光装置の輝度均一性が良いため、照射面光軸近傍の明暗形状の発生を抑制することが可能となるためである。
【0073】
実施例3及び4の結果から、封止部材108の光軸近傍の曲率がその他の部分の曲率よりも小さい場合には、光軸上とその周囲における封止部材内での光路長の差が小さくなるため光軸方向へ抜ける光量差が小さくなり、均一性が向上する。
また、実施例5の発光装置で均一性が最も良い理由は、実施例4において最も輝度の高い、封止部材底部周囲の白色ソルダーレジストからの反射光を、封止部材自体によって遮蔽、散乱させるためだと考えられる。
この時の上部10と下部20の直径の差は、例えば下部20の直径に対して上部10の直径が1.1~2.0倍程度、好ましくは1.2~1.5倍程度である。なお、この直径比は封止部材のアスペクト比や配光特性によって変化するため、前述の範囲に限定されるものではない。
【産業上の利用可能性】
【0074】
本発明の発光装置は、液晶ディスプレイのバックライト光源、各種照明器具などに利用することができる。
【符号の説明】
【0075】
100、200、300、400 発光装置
101 基体
102 導体配線
103 接続部材
104 絶縁部材
105 発光素子
106 アンダーフィル
108 封止部材
109 波長変換部材
L 光軸
201 LEDパッケージ
203 反射部材
204 端子
205 逆テーパー部