(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-26
(45)【発行日】2024-07-04
(54)【発明の名称】デジタルアナログ変換回路、データドライバ及び表示装置
(51)【国際特許分類】
G09G 3/20 20060101AFI20240627BHJP
G09G 3/36 20060101ALI20240627BHJP
H04N 5/66 20060101ALI20240627BHJP
H03M 1/78 20060101ALI20240627BHJP
【FI】
G09G3/20 623F
G09G3/20 612F
G09G3/20 623A
G09G3/20 641C
G09G3/20 641P
G09G3/20 642A
G09G3/36
H04N5/66 B
H03M1/78
(21)【出願番号】P 2020130512
(22)【出願日】2020-07-31
【審査請求日】2023-05-30
(73)【特許権者】
【識別番号】308033711
【氏名又は名称】ラピスセミコンダクタ株式会社
(74)【代理人】
【識別番号】110001025
【氏名又は名称】弁理士法人レクスト国際特許事務所
(72)【発明者】
【氏名】土 弘
【審査官】小野 博之
(56)【参考文献】
【文献】特開2002-043944(JP,A)
【文献】特開2006-310957(JP,A)
【文献】特開2007-208694(JP,A)
【文献】特開2005-160034(JP,A)
【文献】特開2007-259114(JP,A)
【文献】特開2008-067145(JP,A)
【文献】特開2008-122455(JP,A)
【文献】特開2007-089074(JP,A)
【文献】特開2007-158810(JP,A)
【文献】米国特許出願公開第2017/0032754(US,A1)
【文献】米国特許出願公開第2014/0002290(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G09G 3/00-3/38
H04N 5/66-5/74
H03M 1/00-1/88
(57)【特許請求の範囲】
【請求項1】
互いに異なる電圧値を有する参照電圧群を生成する参照電圧生成部と、
デジタルデータ信号を受け、前記デジタルデータ信号に基づき、前記参照電圧群中から重複を含む複数の参照電圧を選択して出力するデコーダと、
第1~第x(xは2以上の整数)の入力端子を有し、前記第1~第xの入力端子で夫々受けた前記複数の参照電圧を予め設定された重みづけ比で平均化して増幅した電圧を出力電圧として出力する増幅回路と、
第1選択状態又は第
2選択状態を指定する制御信号を受け、前記第1
選択状態又は前記第
2選択状態に応じて、前記増幅回路の前記第1~第xの入力端子のうちのm(mは1以上のx未満の整数)個の入力端子を除く(x-m)個の入力端子に供給する電圧を切り替えるセレクタと、
前記制御信号に応じて活性状態又は非活性状態に設定され、前記活性状態に設定された場合に前記増幅回路の駆動速度の制御を行う駆動速度制御回路と、を備え、
前記セレクタは、前記制御信号が前記第1選択状態を示す場合には、前記増幅回路の前記第1~第xの入力端子のうちの前記(x-m)個の入力端子に前記出力電圧を供給する一方、前記制御信号が前記第2選択状態を示す場合には、前記複数の参照電圧を前記(x-m)個の入力端子に供給
し、
前記駆動速度制御回路は、前記制御信号が前記第1選択状態を示す場合に活性状態となり、前記制御信号が前記第2選択状態を示す場合に非活性状態となることで、前記第1選択状態と前記第2選択状態とで前記増幅回路の駆動速度を等しくする、ことを特徴とするデジタルアナログ変換回路。
【請求項2】
前記増幅回路は、前記第1~第xの入力端子を非反転入力端子とし、前記出力電圧が自身の反転入力端子に供給されているオペアンプであることを特徴とする請求項1に記載のデジタルアナログ変換回路。
【請求項3】
前記増幅回路は、
同一導電型の第1~第xの差動対を含む差動段回路と、
前記複数の差動対の出力端に共通接続されたカレントミラー回路と、
前記出力電圧を出力端子を介して出力する出力回路と、を含み、
前記第1~第xの差動対の各々の一方の入力端が前記増幅回路の前記第1~第xの入力端子を構成し、前記第1~第xの差動対の各々の他方の入力端が前記出力端子に帰還接続され、
前記出力回路が、前記複数の差動対の出力端と前記カレントミラー回路の接続点対の少なくとも一方の電圧を受け、当該電圧に対応した前記出力電圧を生成することを特徴とする請求項1又は2に記載のデジタルアナログ変換回路。
【請求項4】
前記増幅回路は、制御信号に応じて、所定のデータ期間毎にそのデータ期間内の先頭の第1の期間に亘り前記第1選択状態に設定され、前記第1の期間に続く第2の期間に亘り前記第2選択状態に設定されることを特徴とする請求項1又は2に記載のデジタルアナログ変換回路。
【請求項5】
前記増幅回路において、前記m個の入力端子毎に設定された重み付け比の合計が、前記第1~第xの入力端子毎に設定された重み付け比の合計の2分の1以下となるように設定されていることを特徴とする請求項1~4のいずれか1に記載のデジタルアナログ変換回路。
【請求項6】
前記増幅回路において、前記mが前記xの2分の1以下の正数となるように設定されていることを特徴と請求項1~4のいずれか1に記載のデジタルアナログ変換回路。
【請求項7】
前記増幅回路は、入力端の一方が前記第1~第xの入力端子をなす第1~第xの差動対及び前記第1~第xの差動対の各々に流す電流を個別に生成する第1~第xの電流源を含み、
前記駆動速度制御回路は、入力端の一方が前記第1~第xの入力端子のうちの前記m個の入力端子をなす差動対の各々に流す電流を生成するm個の電流源のうちの少なくとも一つの電流源の電流値を増加させる電流増加手段を含み、前記制御信号が前記第1選択状態を示す場合には前記電流増加手段を活性化する一方、前記制御信号が前記第2選択状態を示す場合には、前記電流増加手段を非活性化することを特徴とする請求項
1~6のいずれか1に記載のデジタルアナログ変換回路。
【請求項8】
前記電流増加手段は、活性化時の前記第1選択状態における前記m個の電流源の電流値の合計が、前記第2選択状態の前記第1~第xの電流源の電流値の合計と同等程度となるように制御することを特徴とする請求項
7に記載のデジタルアナログ変換回路。
【請求項9】
映像データ信号にて表される輝度レベルに対応した電圧値を有する電圧を出力電圧として生成しこれを表示パネルに印加するデータドライバであって、
互いに異なる電圧値を有する参照電圧群を生成する参照電圧生成部と、
前記映像データ信号を受け、前記参照電圧群中から前記映像データ信号にて表される輝度レベルに対応した、重複を含む複数の参照電圧を選択して出力するデコーダと、
第1~第x(xは2以上の整数)の入力端子を有し、前記第1~第xの入力端子で夫々受けた前記複数の参照電圧を予め設定された重みづけ比で平均化して増幅した電圧を前記出力電圧として生成する増幅回路と、
第1選択状態又は第
2選択状態を指定する制御信号を受け、前記第1
選択状態又は前記第
2選択状態に応じて、前記増幅回路の前記第1~第xの入力端子のうちのm(mは1以上のx未満の整数)個の入力端子を除く(x-m)個の入力端子に供給する電圧を切り替えるセレクタと
、
前記制御信号に応じて活性状態又は非活性状態に設定され、前記活性状態に設定された場合に前記増幅回路の駆動速度の制御を行う駆動速度制御回路と、を備え、
前記セレクタは、前記制御信号が前記第1選択状態を示す場合には、前記増幅回路の前記第1~第xの入力端子のうちの前記(x-m)個の入力端子に前記出力電圧を供給する一方、前記制御信号が前記第2選択状態を示す場合には、前記複数の参照電圧を前記(x-m)個の入力端子に供給
し、
前記駆動速度制御回路は、前記制御信号が前記第1選択状態を示す場合に活性状態となり、前記制御信号が前記第2選択状態を示す場合に非活性状態となることで、前記第1選択状態と前記第2選択状態とで前記増幅回路の駆動速度を等しくする、ことを特徴とするデータドライバ。
【請求項10】
表示パネルと、
映像データ信号にて表される輝度レベルに対応した電圧値を有する電圧を出力電圧として生成しこれを前記表示パネルに印加するデータドライバと、を含み、
前記データドライバは、
互いに異なる電圧値を有する参照電圧群を生成する参照電圧生成部と、
前記映像データ信号を受け、前記参照電圧群中から前記映像データ信号にて表される輝度レベルに対応した、重複を含む複数の参照電圧を選択して出力するデコーダと、
第1~第x(xは2以上の整数)の入力端子を有し、前記第1~第xの入力端子で夫々受けた前記複数の参照電圧を予め設定された重みづけ比で平均化して増幅した電圧を前記出力電圧として生成する増幅回路と、
第1選択状態又は第
2選択状態を指定する制御信号を受け、前記第1
選択状態又は前記第
2選択状態に応じて、前記増幅回路の前記第1~第xの入力端子のうちのm(mは1以上のx未満の整数)個の入力端子を除く(x-m)個の入力端子に供給する電圧を切り替えるセレクタと
、
前記制御信号に応じて活性状態又は非活性状態に設定され、前記活性状態に設定された場合に前記増幅回路の駆動速度の制御を行う駆動速度制御回路と、を備え、
前記セレクタは、前記制御信号が前記第1選択状態を示す場合には、前記増幅回路の前記第1~第xの入力端子のうちの前記(x-m)個の入力端子に前記出力電圧を供給する一方、前記制御信号が前記第2選択状態を示す場合には、前記複数の参照電圧を前記(x-m)個の入力端子に供給
し、
前記駆動速度制御回路は、前記制御信号が前記第1選択状態を示す場合に活性状態となり、前記制御信号が前記第2選択状態を示す場合に非活性状態となることで、前記第1選択状態と前記第2選択状態とで前記増幅回路の駆動速度を等しくする、ことを特徴とする表示装置。
【請求項11】
互いに異なる電圧値を有する参照電圧群を生成する参照電圧生成部と、
デジタルデータ信号を受け、前記デジタルデータ信号に基づき、前記参照電圧群中から重複を含む複数の参照電圧を選択して出力するデコーダと、
第1~第x(xは2以上の整数)の入力端子を有し、前記第1~第xの入力端子で夫々受けた前記複数の参照電圧を予め設定された重みづけ比で平均化して増幅した電圧を出力電圧として出力する増幅回路と、
第1選択状態又は第2の選択状態を指定する制御信号を受け、前記第1又は前記第2の選択状態に応じて、前記増幅回路の前記第1~第xの入力端子のうちのm(mは1以上のx未満の整数)個の入力端子を除く(x-m)個の入力端子に供給する電圧を切り替えるセレクタと、
前記制御信号に応じて活性状態又は非活性状態に設定され、前記活性状態に設定された場合に前記増幅回路の駆動速度の制御を行う駆動速度制御回路と、を備え、
前記増幅回路は、入力端の一方が前記第1~第xの入力端子をなす第1~第xの差動対及び前記第1~第xの差動対の各々に流す電流を個別に生成する第1~第xの電流源を含み、
前記セレクタは、前記制御信号が前記第1選択状態を示す場合には、前記増幅回路の前記第1~第xの入力端子のうちの前記(x-m)個の入力端子に前記出力電圧を供給する一方、前記制御信号が前記第2選択状態を示す場合には、前記複数の参照電圧を前記(x-m)個の入力端子に供給し、
前記駆動速度制御回路は、入力端の一方が前記第1~第xの入力端子のうちの前記m個の入力端子をなす差動対の各々に流す電流を生成するm個の電流源のうちの少なくとも一つの電流源の電流値を増加させる電流増加手段を含み、前記制御信号が前記第1選択状態を示す場合には前記電流増加手段を活性化する、ことを特徴とするデジタルアナログ変換回路。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、デジタルアナログ変換回路、このデジタルアナログ変換回路を含むデータドライバ、及び表示装置に関する。
【背景技術】
【0002】
現在、アクティブマトリクス型の表示装置として、液晶表示装置、或いは有機EL表示装置等が主流となっている。このような表示装置には、複数のデータ線と複数の走査線が交差状に配線され、複数のデータ線に画素スイッチを介して接続されている表示セルがマトリクス状に配列された表示パネルと共に、表示パネルの複数のデータ線へ階調レベルに対応したアナログ電圧信号を供給するデータドライバと、表示パネルの複数の走査線へ各画素スイッチのオン、オフを制御する走査信号を供給する走査ドライバと、が搭載されている。データドライバには、映像デジタル信号を輝度レベルに対応したアナログの電圧に変換し、これを増幅した電圧信号を表示パネルの各データ線に供給するデジタルアナログ変換回路が含まれている。
【0003】
以下に、データドライバの概略構成について説明する。
【0004】
データドライバは、例えばシフトレジスタ、データレジスタラッチ、レベルシフタ、DA(digital to analog)変換部を含む。
【0005】
シフトレジスタは、表示コントローラから供給されたスタートパルスに応じて、クロック信号に同期してラッチの選択を行う為の複数のラッチタイミング信号を生成し、データレジスタラッチに供給する。データレジスタラッチは、シフトレジスタから供給されたラッチタイミング信号の各々に基づき、表示コントローラから供給された映像デジタルデータを例えば所定のn(nは2以上の整数)個毎に取り込み、各映像デジタルデータを表すn個の映像デジタルデータ信号をレベルシフタに供給する。レベルシフタは、データレジスタラッチから供給されたn個の映像デジタルデータ信号の各々に対して、その信号振幅を増加するレベルシフト処理を施して得たn個のレベルシフト後の映像デジタルデータ信号をDA変換部に供給する。
【0006】
DA変換部は、参照電圧生成回路、デコーダ部及び増幅部を含む。
【0007】
参照電圧生成回路は、互いに電圧値が異なる複数の参照電圧を生成してデコーダ部に供給する。例えば、参照電圧生成回路は、電源電圧及び基準電圧間をラダー抵抗で分圧した複数の分圧電圧を参照電圧群としてデコーダ部に供給する。尚、このようなラダー抵抗によって生成された複数の参照電圧を用いたデジタルアナログ変換をRDAC方式と称する。
【0008】
デコーダ部は、データドライバの各出力に夫々対応して設けられているn個のデコーダ回路を有する。デコーダ回路の各々は、レベルシフタから供給された映像デジタルデータ信号を受け、この映像デジタルデータ信号に対応した参照電圧を、複数の参照電圧のうちから選択し、選択した参照電圧を増幅部に供給する。
【0009】
増幅部は、デコーダ部の各デコーダで選択された参照電圧を個別に増幅して出力するn個の増幅回路を有する。
【0010】
ところで、上記したDA変換部では、参照電圧生成回路で生成する参照電圧の数を多くするほど、表現できる輝度レベルの階調数(色数)を増やすことができる。しかしながら、参照電圧生成回路で生成する参照電圧の数を増やすとその分だけデータドライバのチップサイズ(製造コスト)が増加する。
【0011】
そこで、上記した増幅回路として、複数の入力電圧を重み付けして平均化(加重平均とも称する)することで、互いに隣接する入力電圧同士の間の電圧を生成する、いわゆる内挿演算を行うオペアンプを採用したデジタルアナログ変換回路が提案されている(例えば、特許文献1~3参照)。
【0012】
このような内挿演算を行う増幅回路(内挿アンプとも称する)によれば、複数の入力電圧に基づく内挿演算により、当該複数の入力電圧で表現できる電圧値の数よりも多い階調数の電圧値を得ることができる。よって、参照電圧生成回路で生成する参照電圧の総数を減らしても、所望とする階調数分の電圧を生成することが可能となる。
【0013】
以下に、上記したデジタルアナログ変換回路に含まれる増幅回路について
図1A及び
図1Bを参照して説明する。
【0014】
図1Aは、当該増幅回路の構成の一例を示す回路図である。
図1Aに示す増幅回路は、x個(xは2以上の整数)の入力電圧V1~Vxを受け、当該入力電圧V1~Vxに対して内挿演算を施すことにより、入力電圧V1~Vxの加重平均電圧を生成して出力する。
【0015】
増幅回路は、入力電圧V1~Vxを受けるためのx個の非反転入力端子T1~Tx、単一の反転入力端子、出力端子Sk、同一導電型のx個の差動段回路29_1~29_x、カレントミラー回路28及び増幅段回路26を有する。
【0016】
差動段回路29_xは、Nチャネル型のトランジスタ21_x及び22_xからなる差動対と、差動対を駆動する電流源23_xを有する。電流源23_xは、差動対と電源端子VSSとの間に設けられている。他の差動段回路29_1~29_(x-1)各々の構成は、差動段回路29_xと同じである。各差動対の一方のトランジスタ21_1~21_xの各ゲートが、増幅回路の非反転入力端子T1~Txを構成する。各差動対の他方のトランジスタ22_1~22_xの各ゲートが共通接続されており、増幅回路の反転入力端子を構成する。
【0017】
増幅回路の反転入力端子は出力端子Skに接続され、ボルテージフォロワ型の帰還増幅回路を構成する。差動段回路29_1~29_x各々の差動対の一方の出力端がノードn21に共通に接続されており、差動段回路29_1~29_x各々の差動対の他方の出力端がノードn22に共通に接続されている。
【0018】
カレントミラー回路28は、Pチャネル型のトランジスタ24及び25を有し、電源端子VDDと、ノードn21及びn22との間に設けられている。増幅段回路26は、少なくともノードn21に生じる電圧を受けて増幅作用を生じ、出力電圧Voutを出力端子Skから増幅出力する。このときの出力電圧Voutの電圧値を電圧Vexpとする。
【0019】
以下に、増幅回路の非反転入力端子T1~Txに入力される信号電圧V1~Vxと、電圧Vexpとの関係について説明する。
【0020】
尚、信号電圧V1~Vxは、所定のデータ期間毎に上記したデコーダ回路で選択されたレベルの電圧を有する。信号電圧V1~Vxは、それぞれが1つ前のデータ期間の電圧からステップ状に電圧値が変化するステップ信号電圧であり、増幅回路の出力ダイナミックレンジに対して十分小さい電圧範囲内の同一電圧を含むx個の電圧群である。
【0021】
電圧Vexpは、増幅回路の増幅率が1のとき、入力される信号電圧V1~Vxの加重平均に相当する。
【0022】
以下に、差動段回路29_1~29_xにおける第j番目(jは1~xの整数)の回路の差動対を構成するトランジスタが、チャネル長Lとチャネル幅Wとの比に相当する基準サイズ比(W/L比)に対してAj倍、つまり重み付け比がAjとなる場合を一例にとって、増幅回路の動作を説明する。
【0023】
第j番目の差動対(21_j、22_j)のドレイン電流Ia_j、Ib_jは、下記の数式(5)及び数式(6)式で表される。
【0024】
Ia_j=(Aj・β/2)・(Vj-VTH)2 ・・・(5)
Ib_j=(Aj・β/2)・(Vexp-VTH)2 ・・・(6)
β:トランジスタが基準サイズ比1のときの利得係数
VTH:トランジスタの閾値電圧
差動段回路29_1~29_xの共通接続された出力端は、カレントミラー回路28の入力(ノードn22)及び出力(ノードn21)に接続され、差動段回路29_1~29_xの共通接続された出力端の出力電流が等しくなるように制御される。これにより、差動段回路29_1~29_xの出力電流について、以下の数式(7)が成立する。
【0025】
Ia_1+Ia_2+…+Ia_x=Ib_1+Ib_2+…+Ib_x・・・(7)
数式(5)、数式(6)において、jを1~xの範囲で展開して、数式(7)に代入する。ここで、閾値電圧VTHの一次項に関しては、両辺が等しいとすると、下記の数式(8)及び数式(9)が導かれる。
【0026】
A1・V1+A2・V2+…+Ax・Vx=(A1+A2+…+Ax)×Vexp ・・・(8)
Vexp=(A1・V1+…+Ax・Vx)/(A1+…+Ax) ・・・(9)
従って、増幅回路は、数式(9)で表されるように、各差動対に入力される信号電圧と重みづけ比との積の総和(A1・V1+…+Ax・Vx)を、重みづけ比の総和(A1+…+Ax)で割った値、すなわち信号電圧V1~Vxの加重平均に相当する電圧Vexpを、出力電圧Voutとして出力する。なお、
図1AはNチャネル型トランジスタの差動対を含む差動段回路とPチャネル型トランジスタのカレントミラー回路の構成を示すが、Pチャネル型トランジスタの差動対を含む差動段回路とNチャネル型トランジスタのカレントミラー回路の構成、あるいはNチャネル型及びPチャネル型の両導電型トランジスタの差動対を含む差動段回路とカレントミラー回路の構成を採用してもよい。いずれも数式(9)が成り立つ。
【0027】
次に、
図1Aの増幅回路を、前述したデータドライバに含まれるデコーダ回路の出力増幅回路に適用する場合について説明する。
【0028】
図1Bは、差動段回路29_1~29_xが同一構成、すなわち各差動段回路の重み付け比が同一に構成された場合のデコーダ回路各々のN個の出力端子T1~TNと、増幅回路の非反転入力端子T1~Txと、重み付け比との対応関係を示す図である。
【0029】
ここで、例えばデコーダ回路でデジタルデータに基づき選択する複数の電圧として、互いに異なる2つの電圧を増幅回路のx個の非反転入力端子に所定比で供給する場合を想定する。この際、
図1Aの増幅回路は、2つの電圧VA、VBに基づき、両電圧間をx個に分割した複数の電圧を出力することができる。
【0030】
具体的には、例えば「x」を2、つまり増幅回路の非反転入力端子がT1、T2の2個の場合、互いに異なる2つの電圧VA、VBの組合せを電圧V(T1)、電圧V(T2)として増幅回路の非反転入力端子T1及びT2へ選択入力すると、(V(T1)、V(T2))=(VA、VA)、(VB、VB)、(VA、VB)に応じて、電圧VA、VB、及び、電圧VA、VBを2個に分割した電圧を増幅回路から出力できる。
【0031】
また、例えば「x」を4、つまり増幅回路の非反転入力端子T1~T4とし、T3、T4に同じ電圧を供給する場合、2つの電圧VA、VBの組合せを電圧V(T1)~V(T4)として増幅回路の非反転入力端子T1~T4へ選択入力すると、(V(T1)、V(T2)、V(T3)、V(T4))=(VA、VA、VA、VA)、(VB、VB、VB、VB)、(VA、VB、VA、VA)、(VA、VA、VB、VB)、(VA、VB、VB、VB)、に応じて、電圧VA、VB、及び、電圧VA、VBを4個に分割した電圧((3VA+VB)/4)、((VA+VB)/2)、((VA+3VB)/4)を増幅回路から出力できる。なお、T3、T4に同じ電圧を供給するため、T4はT3に含まれるとして、3つの入力端子(T1、T2、T3)への重み付け比が(1:1:2)とみなすこともできる。
【0032】
以上のように、「x」を増やすことで、更なる拡張も容易に可能である。
【0033】
また、上記では、
図1Aの差動段回路29_1~29_xが同一構成の場合を説明したが、差動段回路ごとに所定の重み付け比になるように構成してもよい。
【先行技術文献】
【特許文献】
【0034】
【文献】特開2000-183747号公報
【文献】特開2002-43944号公報
【文献】特開2009-284310号公報
【発明の概要】
【発明が解決しようとする課題】
【0035】
近時、表示パネルの大画面化及び高解像度化に伴い、データドライバが駆動しなければならない表示パネルのデータ線の負荷容量が増加し、データドライバがデータ線を駆動する1画素(表示セル)あたりの駆動期間(1データ期間とも称する)が短くなる傾向にある。
【0036】
データ線の負荷容量が大きく且つ駆動期間が短くなると、データ線の全域に亘って所定値以上の充電率を確保するためには、データドライバは高速駆動が必要となる。尚、データ線の充電率が所定値より低下すると輝度むら等の画質劣化を生じる。
【0037】
例えばフレーム周波数120Hzの4K表示パネル(データ線数:3840x3、走査線数:2160)の1データ期間は約3.7usであり、解像度が4Kの4倍の8K表示パネルの1データ期間は1.85us程度である。増幅回路は、動作電流を増やして出力電圧のスルーレートを上げることで、ある程度は高速化を図ることができる。しかしながら表示パネルの高精細化に伴い1データ期間が短くなったことで、増幅回路の入力電圧の変化速度が無視できなくなってきている。増幅回路の入力電圧の変化速度は、増幅回路の出力電圧の変化速度に影響し、データ線の充電率(最終的には表示セル内電極の充電率)の低下がパネル表示品質の低下を招く。
【0038】
ここで、前述したように、内挿演算を行う増幅回路は複数の入力端子を有しており、複数の入力端子の寄生容量が増幅回路の入力電圧の変化速度に影響する場合がある。以下にこの点について説明する。
【0039】
尚、説明の便宜上、増幅回路の入力端子数xを「4」とし、各入力端子T1~T4毎の重み付け比を同一の1とする。また入力端子T3とT4は共通接続され同一電圧を受ける構成とする。この際、増幅回路の入力端子への供給電圧の変化速度の低下を招くワースト条件は、増幅回路の4つの入力端子に同じ参照電圧が入力される場合である。つまり、デコーダ回路で選択された1つの参照電圧が、増幅回路の4つの入力端子に夫々供給される場合である。
【0040】
例えば増幅回路の入力電圧が、1つ前のデータ期間では参照電圧VrMであり、次のデータ期間では、この電圧VrMからの電位差が大きい参照電圧Vr0へ変化する場合、その変化速度は以下の条件に依存する。つまり、デコーダ回路内における参照電圧Vr0を伝送する配線抵抗及び選択スイッチのオン抵抗と、この参照電圧Vr0を受ける増幅回路の4つの入力端子のゲート寄生容量(例えば
図1AのCp1~Cp4)に依存する。
【0041】
データドライバの全出力数に対応した複数の増幅回路、つまり出力増幅回路の全ての入力端子が参照電圧Vr0を受けるというワーストケースでは、参照電圧Vr0に各増幅回路の4つの入力端子のゲート寄生容量に全出力数を積算した合計の寄生容量が接続され、インピーダンスの時定数に従って各増幅回路の入力電圧がVrMからVr0へ変化する速度が遅くなる。よって、この際、増幅回路の出力電圧の変化も遅くなるという問題が生じる。なお、各増幅回路の入力端子数xが多いほど増幅回路の出力電圧変化の遅延は増加する。
【0042】
また、増幅回路の複数の入力端子に同一参照電圧を供給する場合と別に、増幅回路の複数の入力端子に異なる参照電圧を供給する場合もある。例えば、増幅回路が、参照電圧Vr0とその隣接参照電圧Vr1との間の階調レベルの電圧を出力する場合、増幅回路の4つの入力端子T1~T4にはVr0とVr1が振り分けられて供給される。この場合、1つの参照電圧に接続される入力端子数に対応した寄生容量はワーストケースより少なくなる。このため、階調レベルごとに増幅回路の出力電圧の変化速度が異なるという問題も生じる。これらの問題により輝度低下や表示むら等の表示品質の低下を招く。
【0043】
そこで、本発明では、高速処理及び出力電圧の変化速度を均等化することが可能な、内挿演算を行う増幅回路を含むデジタルアナログ変換回路、当該デジタルアナログ変換回路を含むデータドライバ及び表示装置を提供する。
【課題を解決するための手段】
【0044】
本発明に係るデジタルアナログ変換回路は、互いに異なる電圧値を有する参照電圧群を生成する参照電圧生成部と、デジタルデータ信号を受け、前記デジタルデータ信号に基づき、前記参照電圧群中から重複を含む複数の参照電圧を選択して出力するデコーダと、第1~第x(xは2以上の整数)の入力端子を有し、前記第1~第xの入力端子で夫々受けた前記複数の参照電圧を予め設定された重みづけ比で平均化して増幅した電圧を出力電圧として出力する増幅回路と、第1選択状態又は第2選択状態を指定する制御信号を受け、前記第1選択状態又は前記第2選択状態に応じて、前記増幅回路の前記第1~第xの入力端子のうちのm(mは1以上のx未満の整数)個の入力端子を除く(x-m)個の入力端子に供給する電圧を切り替えるセレクタと、前記制御信号に応じて活性状態又は非活性状態に設定され、前記活性状態に設定された場合に前記増幅回路の駆動速度の制御を行う駆動速度制御回路と、を備え、前記セレクタは、前記制御信号が前記第1選択状態を示す場合には、前記増幅回路の前記第1~第xの入力端子のうちの前記(x-m)個の入力端子に前記出力電圧を供給する一方、前記制御信号が前記第2選択状態を示す場合には、前記複数の参照電圧を前記(x-m)個の入力端子に供給し、前記駆動速度制御回路は、前記制御信号が前記第1選択状態を示す場合に活性状態となり、前記制御信号が前記第2選択状態を示す場合に非活性状態となることで、前記第1選択状態と前記第2選択状態とで前記増幅回路の駆動速度を等しくする。
また、本発明に係るデジタルアナログ変換回路は、互いに異なる電圧値を有する参照電圧群を生成する参照電圧生成部と、デジタルデータ信号を受け、前記デジタルデータ信号に基づき、前記参照電圧群中から重複を含む複数の参照電圧を選択して出力するデコーダと、第1~第x(xは2以上の整数)の入力端子を有し、前記第1~第xの入力端子で夫々受けた前記複数の参照電圧を予め設定された重みづけ比で平均化して増幅した電圧を出力電圧として出力する増幅回路と、第1選択状態又は第2の選択状態を指定する制御信号を受け、前記第1又は前記第2の選択状態に応じて、前記増幅回路の前記第1~第xの入力端子のうちのm(mは1以上のx未満の整数)個の入力端子を除く(x-m)個の入力端子に供給する電圧を切り替えるセレクタと、前記制御信号に応じて活性状態又は非活性状態に設定され、前記活性状態に設定された場合に前記増幅回路の駆動速度の制御を行う駆動速度制御回路と、を備え、前記増幅回路は、入力端の一方が前記第1~第xの入力端子をなす第1~第xの差動対及び前記第1~第xの差動対の各々に流す電流を個別に生成する第1~第xの電流源を含み、前記セレクタは、前記制御信号が前記第1選択状態を示す場合には、前記増幅回路の前記第1~第xの入力端子のうちの前記(x-m)個の入力端子に前記出力電圧を供給する一方、前記制御信号が前記第2選択状態を示す場合には、前記複数の参照電圧を前記(x-m)個の入力端子に供給し、前記駆動速度制御回路は、入力端の一方が前記第1~第xの入力端子のうちの前記m個の入力端子をなす差動対の各々に流す電流を生成するm個の電流源のうちの少なくとも一つの電流源の電流値を増加させる電流増加手段を含み、前記制御信号が前記第1選択状態を示す場合には前記電流増加手段を活性化する。
【0045】
また、本発明に係るデータドライバは、映像データ信号にて表される輝度レベルに対応した電圧値を有する電圧を出力電圧として生成しこれを表示パネルに印加するデータドライバであって、互いに異なる電圧値を有する参照電圧群を生成する参照電圧生成部と、前記映像データ信号を受け、前記参照電圧群中から前記映像データ信号にて表される輝度レベルに対応した、重複を含む複数の参照電圧を選択して出力するデコーダと、第1~第x(xは2以上の整数)の入力端子を有し、前記第1~第xの入力端子で夫々受けた前記複数の参照電圧を予め設定された重みづけ比で平均化して増幅した電圧を前記出力電圧として生成する増幅回路と、第1選択状態又は第2選択状態を指定する制御信号を受け、前記第1選択状態又は前記第2選択状態に応じて、前記増幅回路の前記第1~第xの入力端子のうちのm(mは1以上のx未満の整数)個の入力端子を除く(x-m)個の入力端子に供給する電圧を切り替えるセレクタと、前記制御信号に応じて活性状態又は非活性状態に設定され、前記活性状態に設定された場合に前記増幅回路の駆動速度の制御を行う駆動速度制御回路と、を備え、前記セレクタは、前記制御信号が前記第1選択状態を示す場合には、前記増幅回路の前記第1~第xの入力端子のうちの前記(x-m)個の入力端子に前記出力電圧を供給する一方、前記制御信号が前記第2選択状態を示す場合には、前記複数の参照電圧を前記(x-m)個の入力端子に供給し、前記駆動速度制御回路は、前記制御信号が前記第1選択状態を示す場合に活性状態となり、前記制御信号が前記第2選択状態を示す場合に非活性状態となることで、前記第1選択状態と前記第2選択状態とで前記増幅回路の駆動速度を等しくする。
【0046】
また、本発明に係る表示装置は、表示パネルと、映像データ信号にて表される輝度レベルに対応した電圧値を有する電圧を出力電圧として生成しこれを前記表示パネルに印加するデータドライバと、を含み、前記データドライバは、互いに異なる電圧値を有する参照電圧群を生成する参照電圧生成部と、前記映像データ信号を受け、前記参照電圧群中から前記映像データ信号にて表される輝度レベルに対応した、重複を含む複数の参照電圧を選択して出力するデコーダと、第1~第x(xは2以上の整数)の入力端子を有し、前記第1~第xの入力端子で夫々受けた前記複数の参照電圧を予め設定された重みづけ比で平均化して増幅した電圧を前記出力電圧として生成する増幅回路と、第1選択状態又は第2選択状態を指定する制御信号を受け、前記第1選択状態又は前記第2選択状態に応じて、前記増幅回路の前記第1~第xの入力端子のうちのm(mは1以上のx未満の整数)個の入力端子を除く(x-m)個の入力端子に供給する電圧を切り替えるセレクタと、前記制御信号に応じて活性状態又は非活性状態に設定され、前記活性状態に設定された場合に前記増幅回路の駆動速度の制御を行う駆動速度制御回路と、を備え、前記セレクタは、前記制御信号が前記第1選択状態を示す場合には、前記増幅回路の前記第1~第xの入力端子のうちの前記(x-m)個の入力端子に前記出力電圧を供給する一方、前記制御信号が前記第2選択状態を示す場合には、前記複数の参照電圧を前記(x-m)個の入力端子に供給し、前記駆動速度制御回路は、前記制御信号が前記第1選択状態を示す場合に活性状態となり、前記制御信号が前記第2選択状態を示す場合に非活性状態となることで、前記第1選択状態と前記第2選択状態とで前記増幅回路の駆動速度を等しくする。
【発明の効果】
【0047】
本発明では、複数の電圧を受けて当該複数の電圧に基づく内挿演算を行う増幅回路を含むデジタルアナログ変換回路の増幅回路として、制御信号に応じて第1選択状態及び第2選択状態のうちの一方に設定され、且つ、選択状態が切替可能とされる以下のような増幅回路を採用する。
【0048】
ここで、第1選択状態に設定されたときには、増幅回路は、第1~第x(xは2以上の整数)の入力端子のうちのm個(mは1以上x未満の整数)の入力端子で、デジタルデータ信号に基づきデコーダが選択した複数の参照電圧を、重複も含めて夫々受け、残り(x-m)個の入力端子で、自身の出力電圧を受ける。そして、増幅回路は、m個の入力端子で夫々受けた複数の参照電圧に対して、m個の入力端子毎に設定された重み付け比で平均化して増幅した電圧を出力電圧として出力する。
【0049】
一方、第2の選択状態に設定されたときには、当該増幅回路は、第1~第xの入力端子で、上記したデコーダで選択された複数の参照電圧を、重複も含めて夫々受ける。そして、増幅回路は、第1~第xの入力端子で夫々受けた複数の参照電圧に対して、第1~第xの入力端子毎に設定された重み付け比で平均化して増幅した電圧を出力電圧として出力する。
【0050】
これにより、第1選択状態では、1つの参照電圧の配線に接続される増幅回路の入力端子(寄生容量)数がワーストケースより削減される。この際、各増幅回路において、1つの参照電圧の配線に接続される入力端子数を最小1に設定することが可能である。また参照電圧の配線に接続されていない増幅回路の入力端子には、参照電圧の配線と接続されている入力端子の電圧に応じて当該増幅回路が出力した出力電圧が供給される。
【0051】
第2選択状態では、デジタルデータ信号に基づきデコーダで選択された複数の参照電圧が増幅回路の各入力端子へ振り分け供給される。このとき、第1選択状態において自身の出力電圧が供給された増幅回路の入力端子も、第2選択状態でデコーダの参照電圧の配線に夫々接続される。しかしながら、それらの入力端子に寄生する寄生容量は、第2選択状態で接続される参照電圧の配線の電圧に十分近い電圧に至るまで、自身の出力電圧によって充電又は放電されているため、速やかに所定の調レベルの電圧に到達し安定する。
【0052】
よって、本発明によれば、デジタルデータ信号の内容に拘らず、1つの選択電圧が増幅回路の全入力端子に供給される従来のデジタルアナログ変換回路に場合に比べて、増幅回路の入力部での寄生容量に伴い生じる遅延時間を短縮することができる。これにより、デジタルアナログ変換回路の処理時間の短縮を図ることが可能となる。更に、ワーストケースに於いて増幅回路の出力電圧の変化速度の遅延が改善され、階調レベルごとの増幅回路の出力電圧の変化速度の均一化も可能となる。従って、当該増幅回路を含むデジタルアナログ回路を搭載したデータドライバによれば、高精細な画像の表示品質を向上させることが可能となる。
【図面の簡単な説明】
【0053】
【
図1A】内挿演算を行う増幅回路の構成を示す回路図である。
【
図1B】デコーダ回路の出力端子と、増幅回路の入力端子と各入力端子の重み付け比の一例を示す図である。
【
図2】本発明に係るデジタルアナログ変換回路を含む表示装置200の概略構成を示すブロック図である。
【
図3】データドライバ103の内部構成を示すブロック図である。
【
図4】デジタルアナログ変換回路としての参照電圧生成回路10及び変換回路DC1の内部構成の一例を表すブロック図である。
【
図5】増幅回路30、セレクタ40、駆動速度制御回路50各々の第1選択状態及び第2選択状態での入出力状態の一例を表す図である。
【
図6】1データ期間内での増幅回路30の入力端子の入力電圧波形の一例を表す図である。
【
図7A】増幅回路30の入力端子数「x」を2個とした場合での好適な仕様の一例を表す図である。
【
図7B】増幅回路30の入力端子数「x」を4個とした場合での好適な仕様の一例を表す図である。
【
図8】増幅回路30、セレクタ40及び駆動速度制御回路50の内部構成の一例を示す回路図である。
【
図9A】
図8に示す増幅回路30及び駆動速度制御回路50における第1及び第2選択状態各々での入出力状態を表す図である。
【
図9B】
図8に示す増幅回路30及び駆動速度制御回路50における第1及び第2選択状態各々での入出力状態を表す図である。
【
図10】デコーダ20、増幅回路30及びセレクタ40における第1の期間Tc1での状態の一例を模式的に表す図である。
【
図11】増幅回路30、セレクタ40及び駆動速度制御回路50の内部構成の他の一例を示す回路図である。
【
図12A】
図11に示す増幅回路30及び駆動速度制御回路50における第1及び第2選択状態各々での入出力状態を表す図である。
【
図12B】
図11に示す増幅回路30及び駆動速度制御回路50における第1及び第2選択状態各々での入出力状態を表す図である。
【
図13】デコーダ20、増幅回路30及びセレクタ40における第1の期間Tc1での状態の他の一例を模式的に表す図である。
【発明を実施するための形態】
【0054】
図2は、本発明に係るデジタルアナログ変換回路、及びデータドライバを含む表示装置200の概略構成を示すブロック図である。
【0055】
図2に示すように、表示装置200は、表示パネル100、駆動制御部101、走査ドライバ102及びデータドライバ103を有する。
【0056】
表示パネル100は、例えば液晶又は有機ELパネル等からなり、2次元画面の水平方向に伸張するr個(rは2以上の自然数)の水平走査線S1~Srと、2次元画面の垂直方向に伸張するn個(nは2以上の自然数)のデータ線D1~Dnと、を含む。水平走査線及びデータ線の各交叉部には、画素を担う表示セルが形成されている。
【0057】
駆動制御部101は、各走査線に供給する水平走査パルスを生成する走査タイミング信号を走査ドライバ102に供給する。
【0058】
更に、駆動制御部101は、映像信号VDに基づき、スタートパルス信号STP、クロック信号CLK、制御信号CTL及びXCTLを含む各種の制御信号、及び映像デジタル信号DVSを生成し、データドライバ103に供給する。
【0059】
走査ドライバ102は、駆動制御部101から供給された走査タイミング信号に応じて、水平走査パルスを表示パネル100の水平走査線S1~Srの各々に順次印加する。
【0060】
データドライバ103は、駆動制御部101から供給された各種の制御信号(STP、CLK、CTL、XCTL)に応じて、映像デジタル信号DVSに含まれる、各画素の輝度レベルを例えば8ビットにて個別に表す映像データPDの系列を取り込む。尚、映像データPDのビット数は8ビットに限定されない。そして、データドライバ103は、取り込んだ映像データPDを1水平走査線分(n個)ずつ、各映像データPDが示す輝度レベルに対応した大きさの電圧値を有するn個の駆動電圧G1~Gnに変換し、夫々を表示パネル100のデータ線D1~Dnに供給する。
【0061】
図3は、データドライバ103の内部構成を示すブロック図である。
【0062】
図3に示すように、データドライバ103は、シフトレジスタ50、データレジスタラッチ60、レベルシフタ70、及びDA(digital to analog)変換部80を含む。
【0063】
シフトレジスタ50は、駆動制御部101から供給されたスタートパルスSTPに応じて、クロック信号CLKに同期してラッチの選択を行う為のラッチタイミング信号U1~Unを生成し、データレジスタラッチ60に供給する。
【0064】
データレジスタラッチ60は、ラッチタイミング信号U1~Unに基づき、駆動制御部101から供給された映像データPDを順次取り込み、1水平走査線分(n個)毎に、各映像データPDを表す映像データ信号R1~Rnをレベルシフタ70に供給する。
【0065】
レベルシフタ70は、映像データ信号R1~Rnの各々に対して、その信号レベルを増加するレベルシフト処理を施して得たn個の映像データ信号J1~JnをDA変換部80に供給する。
【0066】
DA変換部80は、デジタルデータ信号としての映像データ信号J1~Jnの各々を受け、制御信号CTL及びCTLXに基づき、夫々をアナログの電圧値を有する駆動電圧G1~Gnに変換して出力する。
【0067】
DA変換部80は、
図3に示すように、参照電圧生成回路10と、変換回路DC1~DCnと、を含む。
【0068】
参照電圧生成回路10は、夫々電圧値が異なる複数の参照電圧からなる参照電圧群VXを生成し、変換回路DC1~DCnの各々に供給する。
【0069】
変換回路DC1~DCnは、夫々が個別に映像データ信号J1~Jnを受け、制御信号CTL及びCTLXに基づき、映像データ信号J1~Jn毎に、その映像データ信号に対応した電圧値を有する参照電圧を、参照電圧群VX中から選択する。そして、変換回路DC1~DCnは、夫々が選択した参照電圧を駆動電圧G1~Gnとして出力する。尚、
図3に示すように、変換回路DC1~DCnは、映像データ信号J1~Jnに夫々対応して設けられており、互いに同一の内部構成を有する。
【実施例1】
【0070】
図4は、
図3に示す変換回路DC1~DCnのうちから任意の1個、例えばDC1を抜粋して、デジタルアナログ変換回路としての参照電圧生成回路10及び変換回路DC1の内部構成の一例を表すブロック図である。
【0071】
参照電圧生成回路10は、例えば、所定の電位VGH及びこの電位VGHより低い電位VGLを受け、電位VGH及びVGL間の電圧(VGH-VGL)を互いに電圧値が異なる複数の電圧に分圧するラダー抵抗LDRを含む。参照電圧生成回路10は、このラダー抵抗LDRによって分圧された複数の電圧を参照電圧群VXとして、変換回路DC1~DCnの各々に供給する。
【0072】
変換回路DC1は、デコーダ20、増幅回路30、セレクタ40、駆動速度制御回路50を含む。
【0073】
デコーダ20は、参照電圧群VXと、例えば8ビットからなる映像デジタルデータ信号J1を受け、参照電圧群から映像デジタルデータ信号J1に応じて重複を含む複数の参照電圧を最大でx(xは2以上の整数)個、選択出力する。尚、デコーダ20で選択される複数の参照電圧は、好ましくは参照電圧群VX中で、互いに隣接する参照電圧(以降、隣接参照電圧とも称する)、或いは電圧値の差が小さい参照電圧の組合せとする。
【0074】
増幅回路30は、非反転入力端子としての第1~第x(xは2以上の整数)の入力端子T1~Txと、反転入力端子FBを備えた差動増幅器、いわゆるオペアンプからなる。増幅回路30は、例えば
図1Aに示される増幅回路と同一回路で構成することができる。
【0075】
増幅回路30は、自身が出力する出力電圧VOを自身の反転入力端子FBに入力する帰還構成を有する。第1~第x入力端子(T1~Tx)は、m個(但し、mは1≦m<xの整数)の入力端子と、残りの(x-m)個の入力端子とに区分けされる。
【0076】
増幅回路30は、入力端子T1~Txで受けた重複を含む複数の参照電圧に対し、端子T1~Txの各々に予め設定されている重みづけ比で平均化し、増幅したものを出力電圧VOとして出力する。この際、変換回路DC1に含まれる増幅回路30は、当該出力電圧VOを出力端子Skを介して駆動電圧G1として出力する。
【0077】
セレクタ40及び駆動速度制御回路50は、それぞれ制御信号(CTL、XCTL)を受ける。制御信号(CTL、XCTL)は、第1選択状態及び第2選択状態のうちの一方の状態に設定することを指示する制御信号である。
【0078】
セレクタ40は、制御信号(CTL、XCTL)に基づき、増幅回路30の(x-m)個の入力端子、例えば入力端子Tm+1~Txに、デコーダ20で選択された複数の参照電圧を供給するか、又は出力電圧VOを供給するかを切り替える。すなわち、セレクタ40は、制御信号が第1選択状態を示す場合には、増幅回路30の第1~第xの入力端子のうちのm個の入力端子を除く(x-m)個の入力端子に、出力電圧VOを供給する。一方、制御信号が第2選択状態を示す場合には、セレクタ40は、デコーダ20で選択された複数の参照電圧を、(x-m)個の入力端子に供給する。
【0079】
駆動速度制御回路50は、制御信号(CTL、XCTL)に基づき、セレクタ40の状態と連携して、増幅回路30に対して駆動速度の制御を行う活性状態(動作状態)、又は非活性状態(停止状態)に設定される。駆動速度制御回路50は、増幅回路30の駆動速度を一定に保持する機能を有する。
【0080】
以下に、
図4に示す増幅回路30、セレクタ40、駆動速度制御回路50の動作について説明する。
【0081】
尚、増幅回路30の入力端子数を「x」で表す。また、上記した「m」については、1≦m<xとし且つx≧2とする。また、
図4に示すように、増幅回路30の反転入力端子FBには、第1、第2選択状態に拘らず自身の出力電圧VOが帰還入力される。
【0082】
図5は、制御信号(CTL,XCTL)により切替制御される第1選択状態と第2選択状態における、増幅回路30、セレクタ40、駆動速度制御回路50の入出力状態を表す図である。
【0083】
第1選択状態では、制御信号CTLを受けるセレクタ40内のスイッチ群がオン状態となり、制御信号XCTLを受けるセレクタ40内のスイッチ群がオフ状態となる。更に、当該第1選択状態では、駆動速度制御回路50が活性状態(動作状態)に設定される。
【0084】
一方、第2選択状態では、制御信号CTLを受けるセレクタ40のスイッチ群がオフ状態となり、制御信号XCTLを受けるセレクタ40内のスイッチ群がオン状態となる。更に、駆動速度制御回路50が非活性状態(停止状態)に設定される。
【0085】
これにより、
図5に示すように、第1選択状態では、増幅回路30のm個の入力端子(T1~Tm)にはデコーダ20が選択して出力した、重複も含む複数の参照電圧が供給され、残りの(x-m)個の入力端子(Tm+1~Tx)には増幅回路30の出力電圧VOが供給される。このとき増幅回路30は、m個の入力端子で受けた複数の参照電圧に対し、m個の入力端子毎に設定された重み付け比で平均化して増幅した電圧を出力電圧VOとして出力する。
【0086】
なお、第1選択状態で、(x-m)個の入力端子(Tm+1~Tx)を備える差動対は、非反転入力端子と反転入力端子の両方に出力電圧VOが供給されるため、増幅回路の駆動能力には寄与しなくなる。
【0087】
増幅回路30の駆動速度を、上記した第1又は第2の選択状態に拘わらず同等に保持するため、駆動速度制御回路50は、第1選択状態で駆動速度制御回路50を活性化し、複数の参照電圧を受けるm個の入力端子(T1~Tm)を備える差動対の駆動能力を引き上げる。駆動速度制御回路50は、例えば、m個の入力端子(T1~Tm)を備える差動対を駆動する電流源の一部又は全部に対し、第1選択状態の期間のみ駆動電流を増加させる電流増加手段を備えてもよい。なお、電流増加手段は、第1選択状態におけるm個の差動対を駆動するm個の電流源の電流値の合計が、第2選択状態のx個の差動対を駆動するx個の電流源の電流値の合計と同等程度に設定してもよい。
【0088】
一方、第2選択状態では、増幅回路30のm個の入力端子及び(x-m)個の入力端子共にデコーダ20が選択して出力した、重複も含む複数の参照電圧が供給される。更に、当該第2選択状態では、駆動速度制御回路50が非活性化される。このとき、増幅回路30は、第1~第xの入力端子T1~Txに供給される複数の参照電圧に対して、入力端子T1~Tx毎に設定された重み付け比で平均化して増幅した電圧を出力電圧VOとして出力する。すなわち、第2選択状態の増幅回路30の動作は従来と同様の動作となる。
【0089】
本実施例では、各出力ごとの増幅回路のx個の入力端子全てが1つの参照電圧配線と接続されるワーストケースにおいて、第1選択状態では、1つの参照電圧配線に接続される増幅回路30の入力端子の寄生容量が従来より少なくなるので、増幅回路の入力電圧の変化速度を従来より速めることができる。
【0090】
なお、第1選択状態において、m個の入力端子毎に設定された重み付け比の合計は、第1~第xの入力端子毎に設定された重み付け比の合計の2分の1以下となるように設定されるのが望ましい。あるいは、第1選択状態でデコーダ20が選択した信号を受ける入力端子数「m」が、第2選択状態でデコーダ20が選択した信号を受ける全入力端子数「x」の2分の1以下の正数となるように設定されてもよい。例えば、第1選択状態で、1つの参照電圧線に接続される増幅回路の入力端子数は最小で1に設定可能である。1つの参照電圧線に接続される増幅回路の入力端子数が一定の場合、第1選択状態での増幅回路30の入力電圧の変化速度は階調レベルに依存せず均一となる。
【0091】
また、増幅回路30の(x-m)個の入力端子(Tm+1~Tx)は、第1選択状態から第2選択状態への切替時に、出力電圧VOから、デコーダ20が選択した複数の参照電圧へ変化するが、この時の電圧変化は、隣接参照電圧の電圧範囲内、或いは電圧値の差が十分小さい電圧範囲内である。したがって、(x-m)個の入力端子の電圧は第2選択状態への切替り後、速やかに安定する。
【0092】
以上のように、
図5に示す第1選択状態及び第2選択状態の制御により、増幅回路30の各入力端子の電圧変化を速くし、且つ、選択された階調に依存しない電圧変化速度も実現できる。
【0093】
図6は、1データ期間内での増幅回路30の入力端子の入力電圧波形の一例を表す図である。尚、
図6では、デコーダ20が1画素分の映像データ信号を受けてから、次の1画素分の映像データ信号を受けるまでの期間を1データ期間として示している。
【0094】
図6に示すように、1データ期間は第1の期間Tc1と、第1の期間Tc1に続く第2の期間Tc2とを有する。第1の期間Tc1では、制御信号(CTL,XCTL)により、増幅回路30、セレクタ40及び駆動速度制御回路50が上記した第1選択状態に設定され、第2の期間Tc2では第2選択状態に設定される。
【0095】
図6において、期間Tc1の実線波形W1は、第1選択状態での増幅回路30のm個の入力端子に複数の参照電圧を受けるときの電圧波形である。破線波形W2は、従来の増幅回路のように、1データ期間に亘り上記した第2選択状態を維持した場合での増幅回路30のx個の入力端子に複数の参照電圧を受けるときの電圧波形である。また、
図6では、電位差の大きい参照電圧VrMから参照電圧Vr0にデコーダの選択電圧が切り替わる1データ期間において、データドライバのn個の全出力が同じ動作を行うというワーストケースを想定している。
【0096】
破線波形W2は、1データ期間内において、1つ前の1データ期間にデコーダ20で選択された選択電圧VrMから選択電圧Vr0に変化する。この際、従来では、デコーダ20で参照電圧Vr0が選択され、これが1データ期間に亘り、出力毎の増幅回路30のx個の全入力端子T1~Txへ供給される。
【0097】
破線波形W2の電圧変化の速さは、参照電圧Vr0の配線に対して、各出力毎の増幅回路30の入力端子T1~Txの寄生容量(差動対トランジスタのゲート寄生容量)の合計が負荷となり、当該選択電圧Vr0を伝送する配線の抵抗及び容量やデコーダ自体のインピーダンスも合せた時定数に依存する。
【0098】
一方、本実施例では、1データ期間の開始直後の第1の期間Tc1では第1選択状態に設定され、参照電圧Vr0は増幅回路30の入力端子T1~Txのうちのm個に供給される。参照電圧Vr0が供給される端子数mを少なく設定(最小設定は1)することにより、参照電圧Vr0の配線の負荷となる増幅回路30のm個の入力端子の寄生容量の合計が小さくなる。
【0099】
これにより、
図6に示すように、実線波形W1は、その電圧変化が破線波形W2よりも速くなる。また入力端子数「m」が一定の場合、第1選択状態でのm個の入力端子の電圧変化速度は階調レベルに依存せず均一となる。
【0100】
なお、増幅回路30の(x-m)個の入力端子には、第1の期間Tc1に亘り出力電圧VOが供給される。ここでの出力電圧VOは、m個の入力端子に供給される参照電圧Vr0に対応した電圧であり、参照電圧Vr0と同等又は十分近い電圧である。
【0101】
また、第1の期間Tc1では、駆動速度制御回路50を活性化することで、増幅回路30の駆動速度を1データ期間に亘り一定に保持するように制御する。
【0102】
第2の期間Tc2では第2選択状態に設定され、参照電圧Vr0は増幅回路30の入力端子T1~Txに供給される。この際、(x-m)個の入力端子には、第1の期間Tc1では出力電圧VO(≒Vr0)が供給され、第2の期間Tc2で参照電圧Vr0の供給に切り替わるが、その電位差が小さいため速やかに切り替わり、安定する。
【0103】
以上のように、本実施例では、増幅回路30の入力電圧の変化を加速させることができ、それに伴い増幅回路30の出力電圧の変化速度も速めることが可能となる。また本発明が適用可能な、全階調レベルに対して同様の制御を行うことにより、階調レベルごとの増幅回路30の出力電圧の変化速度を揃えることができる。
【0104】
次に、本実施例を適用可能なデコーダの仕様について、一例をもって説明する。
【0105】
図7A及び
図7Bは、本実施例によるDA変換回路(10、DC1)に好適な仕様として、デコーダ20の動作の一例を表す図である。
【0106】
尚、
図7Aは、増幅回路30の入力端子数「x」を2個、
図7Bは入力端子数「x」を4個とした場合での好適な仕様を表す図である。また、
図7A及び
図7Bは共に、出力電圧の電圧値を段階的に表す階調レベルに対応付けして、デコーダ20が選択する参照電圧Vrefと、データ信号のビットコード(ビットD3~D0及びD4~D0)と、増幅回路30の入力端子T1~Txへの供給電圧[V(T1)~V(Tx)]と、の関係を示している。電圧[V(T1)~V(Tx)]はデジタルデータに基づきデコーダ20で選択される参照電圧Vrefとの対応関係を示す。
【0107】
図7Aの仕様では、入力端子T1、T2に対し、参照電圧群として2レベル置きに参照電圧Vr0、Vr1、Vr2、・・・を設定する。デコーダ20は、1データ期間に増幅回路30の入力端子T1、T2に供給する選択電圧V(T1)、V(T2)として、例えば、偶数レベル(2k)(kは0以上の整数)に対しては、同一参照電圧(Vrk、Vrk)を選択し、奇数レベル(2k+1)に対しては隣接参照電圧(Vrk、Vr(k+1))を選択する。増幅回路30の入力端子T1、T2の重み付け比を1:1とすると、出力電圧VO=(V(T1)+V(T2))/2となる。隣接する2つの参照電圧(Vrk、Vr(k+1))間を2分割する各レベルが、増幅回路30の内挿演算により線形特性となる。
【0108】
なお
図7Aでは、図面の便宜上15レベルまでを示しているが、更に拡張可能である。レベル数の拡張により対応するデジタルデータ信号のビット数も増加する。
【0109】
図7Aの仕様に於いて、ワーストケースは偶数レベルのときで、1つの参照電圧Vrkの配線に対して、各出力毎の増幅回路の入力端子T1、T2の寄生容量の合計が負荷となる。
【0110】
一方、奇数レベルのときは、参照電圧Vrkの配線に対して、各出力毎の増幅回路の入力端子T1の寄生容量の合計が負荷となり、参照電圧Vr(k+1)の配線に対して、各出力毎の増幅回路の入力端子T2の寄生容量の合計が負荷となる。したがって、1つの参照電圧の配線に対する増幅回路の入力端子の寄生容量の合計値は、奇数レベルの場合は偶数レベルの場合の2分の1となる。この際、データドライバの出力数が多い場合には、寄生容量の合計値の差は増幅回路の入力端子の電圧変化の速さに影響する。
【0111】
本実施例を
図7Aの仕様に適用すると、1データ期間の開始直後の第1の期間Tc1では第1選択状態に設定され、例えば参照電圧Vrkは、階調レベルに依らず増幅回路30の入力端子T1~T2のうちの1個(T1)に供給される。参照電圧Vrkの配線の負荷となる増幅回路30の入力端子T1の寄生容量の合計は常にワーストケースの1/2となる。よって、増幅回路30の入力端子(T1)の電圧変化を速くし、且つ、階調レベルに依存しない電圧変化速度も実現できる。そして、第1の期間Tc1に続く第2期間Tc2では第2選択状態に設定され、参照電圧Vrk、Vr(k+1)は、階調レベルに応じて増幅回路30の入力端子T1~T2に振り分けられ、速やかに安定する。
【0112】
図7Bの仕様では、増幅回路30の入力端子T1~T4からなる4個の入力端子に対し、参照電圧群として4レベル置きに参照電圧Vr0、Vr1、Vr2、…を設定する。デコーダ20は、1データ期間に増幅回路30の入力端子T1~T4に供給する選択電圧V(T1)、V(T2)、V(T3)、V(T4)として、例えば、レベル(4k)に対しては同一参照電圧(Vrk、Vrk、Vrk、Vrk)を選択し、レベル(4k+1)に対しては隣接する2つの参照電圧(Vrk、Vr(k+1)、Vrk、Vrk)を選択し、レベル(4k+2)に対しては隣接する2つの参照電圧(Vr(k+1)、Vr(k+1)、Vrk、Vrk)を選択し、レベル(4k+1)に対しては隣接する2つの参照電圧(Vrk、Vr(k+1)、Vr(k+1)、Vr(k+1))を選択する。ここでkは0以上の整数とする。
【0113】
増幅回路の入力端子T1、T2、T3、T4の重み付け比を1:1:1:1とすると、出力電圧VO=(V(T1)+V(T2)+V(T3)+V(T4))/4となる。隣接する2つの参照電圧(Vrk、Vr(k+1))間を4分割する各レベルが、増幅回路の内挿演算により線形特性となる。なお
図7Bは図面の便宜上24レベルまでを示しているが、更に拡張可能である。レベル数の拡張により対応するデジタルデータ信号のビット数も増加する。
【0114】
図7Bの仕様に於いて、ワーストケースはレベル(4k)のときで、1つの参照電圧Vrk配線に対して、各出力毎の増幅回路の入力端子T1~T4の寄生容量の合計が負荷となる。一方、レベル(4k+1)のときは、参照電圧Vrk、Vr(k+1)のそれぞれの配線に対して、負荷となる増幅回路の入力端子数は「3」及び「1」、レベル(4k+2)のときは、参照電圧Vrk、Vr(k+1)のそれぞれの配線に対して、負荷となる増幅回路の入力端子数は「2」及び「2」、レベル(4k+3)のときは、参照電圧Vrk、Vr(k+1)のそれぞれの配線に対して、負荷となる増幅回路の入力端子数は「1」及び「3」となる。
【0115】
したがって、1つの参照電圧の配線に対する増幅回路30の入力端子の寄生容量の合計値は、ワーストケースのレベル(4k)に対し、最小では4分の1となる。データドライバの出力数が多い場合には、寄生容量の合計値の差は増幅回路30の入力端子の電圧変化の速さに影響する。
【0116】
本実施例を
図7Bの仕様に適用すると、1データ期間の開始直後の第1の期間Tc1では第1選択状態に設定され、例えば参照電圧Vrkは、階調レベルに依らず増幅回路30の入力端子T1~T4のうちの1個(T1)に供給される。この際、参照電圧Vrkの配線の負荷となる増幅回路30の入力端子T1の寄生容量の合計は常にワーストケースの1/4となる。これにより、増幅回路30の入力端子(T1)の電圧変化を速くし、且つ、階調レベルに依存しない電圧変化速度も実現できる。第1の期間Tc1に続く第2期間Tc2では第2選択状態に設定され、参照電圧Vrk、Vr(k+1)は、階調レベルに応じて増幅回路30の入力端子T1~T4に振り分けられ、速やかに安定する。
【0117】
以上のように、本実施例を
図7A、
図7Bの仕様に適用した場合も、増幅回路30の入力電圧の変化を加速させることができ、それに伴い増幅回路30の出力電圧の変化速度も速めることが可能となる。また階調レベルごとの増幅回路30の出力電圧の変化速度を揃えることができる。
【実施例2】
【0118】
図8は、
図4に示す増幅回路30の入力端子数「x」を4個、デコーダ20から出力された信号を常時受ける入力端子数「m」を1個としたときの増幅回路30、セレクタ40及び駆動速度制御回路50の内部構成の一例を示す回路図である。
【0119】
図8に示す増幅回路30は、NチャネルMOS型のトランジスタ31_1~31_4、32_1~32_4、電流源33_1~33_4、PチャネルMOS型のトランジスタ24及び25、及びバッファアンプ36を含む。セレクタ40は、スイッチ41_2~41_4及び42_2~42_4を含む。
【0120】
図8において、第1の差動対を為すトランジスタ31_1及び32_1各々のソースには、その一端に接地電位VSSが印加されている電流源33_1の他端が接続されている。電流源33_1は、当該第1の差動対に流す電流をバイアス電流として生成する。トランジスタ31_1のゲートにはノードn1を介して入力端子T1が接続されており、ドレインにはノードn11が接続されている。トランジスタ32_1のゲートには、当該増幅回路30の出力電圧VOが印加されており、そのドレインにはノードn12が接続されている。
【0121】
第2の差動対を為すトランジスタ31_2及び32_2各々のソースには、その一端に接地電位VSSが印加されている電流源33_2の他端が接続されている。電流源33_2は、当該第2の差動対に流す電流をバイアス電流として生成する。トランジスタ31_2のゲートには、ノードn2及びスイッチ41_2を介して出力電圧VOが印加されていると共に、当該ノードn2及びスイッチ42_2を介して入力端子T2が接続されている。また、トランジスタ31_2のドレインにはノードn11が接続されている。トランジスタ32_2のゲートには、出力電圧VOが印加されており、そのドレインにはノードn12が接続されている。スイッチ41_2及び42_2は、制御信号(CTL、XCTL)に応じて相補的にオン状態及びオフ状態のうちの一方に設定される。この際、スイッチ41_2がオン状態、スイッチ42_2がオフ状態となった場合には、出力電圧VOがトランジスタ31_2のゲートに供給される。一方、スイッチ41_2がオフ状態、スイッチ42_2がオン状態となった場合には、入力端子T2で受けた電圧V(T2)がトランジスタ31_2のゲートに供給される。
【0122】
第3の差動対を為すトランジスタ31_3及び32_3各々のソースには、その一端に接地電位VSSが印加されている電流源33_3の他端が接続されている。電流源33_3は、当該第3の差動対に流す電流をバイアス電流として生成する。トランジスタ31_3のゲートには、ノードn3及びスイッチ41_3を介して出力電圧VOが印加されていると共に、当該ノードn3及びスイッチ42_3を介して入力端子T3が接続されている。また、トランジスタ31_3のドレインにはノードn11が接続されている。トランジスタ32_3のゲートには、出力電圧VOが印加されており、そのドレインにはノードn12が接続されている。スイッチ41_3及び42_3は、制御信号(CTL、XCTL)に応じて相補的にオン状態及びオフ状態のうちの一方に設定される。この際、スイッチ41_3がオン状態、スイッチ42_3がオフ状態となった場合には、出力電圧VOがトランジスタ31_3のゲートに供給される。一方、スイッチ41_3がオフ状態、スイッチ42_3がオン状態となった場合には、入力端子T3で受けた電圧V(T3)がトランジスタ31_3のゲートに供給される。
【0123】
第4の差動対を為すトランジスタ31_4及び32_4各々のソースには、その一端に接地電位VSSが印加されている電流源33_4の他端が接続されている。電流源33_4は、当該第4の差動対に流す電流をバイアス電流として生成する。トランジスタ31_4のゲートには、ノードn4及びスイッチ41_4を介して出力電圧VOが印加されていると共に、当該ノードn4及びスイッチ42_4を介して入力端子T4が接続されている。また、トランジスタ31_4のドレインにはノードn11が接続されている。トランジスタ32_4のゲートには、出力電圧VOが印加されており、そのドレインにはノードn12が接続されている。スイッチ41_4及び42_4は、制御信号(CTL、XCTL)に応じて相補的にオン状態及びオフ状態のうちの一方に設定される。この際、スイッチ41_4がオン状態、スイッチ42_4がオフ状態となった場合には、出力電圧VOがトランジスタ31_4のゲートに供給される。一方、スイッチ41_4がオフ状態、スイッチ42_4がオン状態となった場合には、入力端子T4で受けた電圧V(T4)がトランジスタ31_4のゲートに供給される。
【0124】
トランジスタ24及び25はカレントミラー回路を構成する。当該カレントミラー回路の一次側のトランジスタ25のゲート及びドレインがノードn12に接続されており、二次側のトランジスタ24のドレインがノードn11に接続されている。トランジスタ24及び25のゲート同士が接続されており、夫々のソースには電源電位VDDが印加されている。
【0125】
バッファアンプ36は、ノードn11上の電圧に対応した増幅電流を出力端子Skに送出することで出力電圧VOを生成する、出力回路として機能する。当該出力回路としてのバッファアンプ36は、当該出力電圧VOを出力端子Skを介して出力すると共に、トランジスタ32_1~32_4各々のゲート、及びスイッチ41_2~41_4に供給する。
【0126】
更に、
図8に示す実施例では、駆動速度制御回路50は、第1の差動対、つまり第1の入力端子T1を備える差動対(31_1、32_1)に流すバイアス電流を生成する電流源33_1と並列に接続された電流源51_1及びスイッチ52を含む。電流源51_1の一端はスイッチ52に接続されており、他端が、第1の差動対を為すトランジスタ31_1及び32_1各々のソースに接続されている。スイッチ52は、制御信号CTLに応じてオン状態及びオフ状態に設定される。スイッチ52は、オン状態に設定された場合には、電流源51_1の一端に接地電位VSSを印加し、オフ状態に設定された場合には、電流源51_1の一端をオープン状態(ハイインピーダンス状態)にする。よって、制御信号CTLに応じてスイッチ52がオン状態となった場合に、電流源51_1が所定の定電流を、電流源33_1で生成されたバイアス電流に加えて、第1の差動対(31_1、32_1)に流す。
【0127】
尚、
図8に示す増幅回路30及び駆動速度制御回路50の構成は、
図7Bの仕様に基づくデコーダ20に対応したものである。なお、
図8に示す増幅回路30の入力端子T1、T2、T3、T4の重み付け比を1:1:1:1とする場合、例えば、差動対(31_1、32_1)、(31_2、32_2)、(31_3、32_3)、(31_4、32_4)をそれぞれ同一サイズのトランジスタで構成し、電流源33_1、33_2、33_3、33_4のそれぞれの電流値を同一としてもよい。
【0128】
図9A及び
図9Bは、
図8に示す構成において、
図5に示す「x」を4、「m」を1とした場合における、第1及び第2選択状態各々での増幅回路30及び駆動速度制御回路50の入出力状態を表す図である。尚、反転入力端子FBとセレクタ40の状態は
図5と同様であり記載を省略している。
【0129】
また、
図9A及び
図9Bでは、デコーダ20で選択する複数の参照電圧を、隣接する2つの参照電圧Vrk、Vr(k+1)として、第1選択状態(第1期間Tc1)及び第2選択状態(第2期間Tc2)での増幅回路30の入力端子への供給電圧と出力電圧を表す。
【0130】
【0131】
先ず、1データ期間の開始直後の第1期間Tc1において、
図8に示す増幅回路30及び駆動速度制御回路50が第1選択状態に設定される。すなわち、制御信号CTLを受けるスイッチ41_2、41_3及び41_4がオン状態、制御信号XCTLを受けるスイッチ42_2、42_3及び42_4がオフ状態に設定される。更に、駆動速度制御回路50のスイッチ52_1がオン状態となり、電流源51_1が活性化(動作)する。ここで、増幅回路30の第1~第4入力端子のうち第1入力端子T1には映像デジタルデータに基づき選択される参照電圧Vrkが入力され、第2~第4入力端子T2~T4には増幅回路の出力電圧VO(=Vrk)が供給される。
【0132】
これにより、第1期間Tc1では、データドライバの各出力毎の増幅回路30の全入力端子に同一参照電圧Vrkが選択される従来のワーストケースに対して、参照電圧Vrkの配線の負荷となる増幅回路30の入力端子の寄生容量は第1入力端子T1のみとなる。よって、増幅回路30の第1入力端子T1の電圧変化が加速される。なお、第2~第4入力端子T2~T4を備える差動対は差動増幅動作に寄与しないため、駆動速度制御回路50(電流源51_1、スイッチ52_1)を活性化(動作)させることで、第1入力端子T1備える差動対(31_1、32_1)の差動増幅動作を加速させる。これにより、増幅回路30の駆動速度の低下が抑えられ、所望の駆動速度に維持される。例えば、駆動速度制御回路50の電流源51_1の電流は、入力端子T2~T4を備える差動対を駆動する電流源33_2~33_4の合計と同じにしてもよい。また駆動速度制御回路50は、電流源51_1を追加する代わりに電流源33_1の電流値を設定するバイアス電圧を切り替えて電流を増加させる構成としてもよい。これにより、増幅回路30の入力端子(T1)の電圧変化を速くし、且つ、階調レベルに依存しない電圧変化速度も実現できる。
【0133】
そして、第1期間Tc1に続く第2期間Tc2において、
図8に示す増幅回路30及び駆動速度制御回路50が第2選択状態に設定される。すなわち、制御信号CTLを受けるスイッチ41_2、41_3及び41_4がオフ状態、制御信号XCTLを受けるスイッチ42_2、42_3及び42_4がオン状態に設定される。更に、駆動速度制御回路50のスイッチ52_1がオフ状態となり、電流源51_1が非活性化(停止)する。ここで、増幅回路30の第1入力端子T1には参照電圧Vrkが引き続き供給され、第2~第4入力端子T2~T4には、映像デジタルデータに基づき選択される参照電圧Vrk又はVr(k+1)が夫々供給される。
【0134】
これにより、増幅回路30は通常動作となり、出力電圧VOは速やかにターゲット電圧へ到達して安定する。
【0135】
なお、上記した第1選択状態では、デコーダ20が2つの参照電圧Vrk及びVr(k+1)のうちの一方の参照電圧Vrkを選択して出力するので、増幅回路30は、参照電圧Vrkと同電位の電圧VLzを有する出力電圧VOを出力する。
【0136】
一方、第2選択状態では、デコーダ20が重複を含む2つの参照電圧Vrk、Vr(k+1)を選択して出力するので、増幅回路30は、これら2つの参照電圧Vrk、Vr(k+1)を内分する4レベルの電圧VLz~VL(z+3)のいずれか1つを有する出力電圧VOを出力する。
【0137】
第1選択状態から第2選択状態への切替では、電圧変化は、2つの参照電圧Vrk,Vr(k+1)間のレベル数マイナス1の電位差以下となり、最大で出力電圧VLzからVL(z+3)の3階調レベルの差となる。しかしながら、2つの参照電圧Vrk,Vr(k+1)の電圧差は、
図3の参照電圧群VXの電圧範囲に対して十分小さいので、2つの参照電圧Vrk,Vr(k+1)間の3階調レベルの差に対して出力電圧VOは速やかにターゲット電圧に到達する。
【0138】
以下に、
図10を参照して、第1選択状態において為される増幅回路30の高速化について説明する。尚、
図10は、第1選択状態での
参照電圧生成回路10、デコーダ20、増幅回路30及びセレクタ40の等価回路を示している。
【0139】
図10に示すように、第1選択状態(第1期間Tc1)では、各増幅回路30の1つの入力端子(T1)のみが所定の参照電圧(Vr0)を供給する配線に接続される。この際、増幅回路30は、入力端子(T1)に供給された参照電圧(Vr0)を増幅したものを出力電圧VOとして出力する。
【0140】
よって、1つの参照電圧Vr0の配線に接続される増幅回路30の入力端子の寄生容量の合計は、従来のワーストケースのように全入力端子(T1~T4)の寄生容量の合計となる場合の1/4に削減される。これにより、増幅回路30の入力端子(T1)の電圧変化を大幅に速めることが可能になると共に、参照電圧発生回路10からの配線長の違いに伴う増幅回路30の入力端子の電圧変化速度の差も縮小できる。
【0141】
更に、第1選択状態では、階調レベルに関係なく、増幅回路30の1つの入力端子(T1)のみに参照電圧が供給されるので、増幅回路30の入力端子の電圧変化速度が階調レベルによらず均一化される。
【0142】
このように本実施例では、第1選択状態の増幅回路30の入力端子の電圧変化速度が向上し、且つ、変化速度のばらつきが抑えられる。よって、表示装置200のデータ線D1~Dnを駆動する増幅回路30の出力電圧VOの信号遅延や遅延ばらつきも小さくすることが可能となり、良好な表示品質を実現できる。
【実施例3】
【0143】
図11は、
図4に示す増幅回路30の入力端子数「x」を4個、デコーダ20が選択出力した信号を常時受ける入力端子数「m」を2個とした場合での増幅回路30、セレクタ40及び駆動速度制御回路50の内部構成の一例を示す回路図である。尚、
図11に示す構成では、
図8に示すセレクタ40からスイッチ41_3及び42_3を省き、且つ駆動速度制御回路50として電流源51_1及びスイッチ52_1の他に電流源51_3及びスイッチ52_3を新たに設けた点を除く他の構成は、
図8に示すものと同一である。また、デコーダ20は、
図7Bの仕様に対応しているものとする。
【0144】
すなわち、
図11に示す構成では、第3の差動対を為すトランジスタ31_3のゲートには、入力端子T3が接続されている。更に、当該第3の差動対を為すトランジスタ31_3及び32_3に流すバイアス電流を生成する電流源33_3と並列に、駆動速度制御回路50としての電流源51_3及びスイッチ52_3が接続されている。
【0145】
図12A及び
図12Bは、
図11に示す構成において、
図5に示す「x」を4、「m」を2とした場合における、第1及び第2選択状態各々での増幅回路30及び駆動速度制御回路50の入出力状態を表す図である。尚、反転入力端子FBとセレクタ40の状態は
図5と同様であり記載を省略している。
【0146】
また、
図12A及び
図12Bでは、デコーダ20で選択する複数の参照電圧を隣接する2つの参照電圧Vrk、Vr(k+1)として、第1選択状態(第1期間Tc1)及び第2選択状態(第2期間Tc2)での増幅回路30の入力端子への供給電圧と出力電圧を表す。
【0147】
【0148】
先ず、1データ期間の開始直後の第1期間Tc1において、
図11に示す増幅回路30及び駆動速度制御回路50が第1選択状態に設定される。すなわち、制御信号CTLを受けるスイッチ41_2、41_4がオン状態、制御信号XCTLを受けるスイッチ42_2、42_4がオフ状態に設定される。更に、駆動速度制御回路50のスイッチ52_1及び52_3がオン状態となり、電流源51_1及び51_3が活性化(動作)する。ここで、増幅回路30の第1~第4入力端子のうち第1、第3入力端子T1、T3には映像デジタルデータに基づき選択される参照電圧Vrk、及びVr(k+1)が夫々入力され、第2、第4入力端子T2、T4には増幅回路の出力電圧VOが供給される。この際、出力電圧VOは、入力端子T1、T3に設定される重み付け比が等しいとすると、参照電圧Vrk、Vr(k+1)の中間電圧(Vrk+Vr(k+1))/2となる。
【0149】
これにより、第1期間Tc1では、データドライバの各出力毎の増幅回路の全入力端子に同一参照電圧Vrkが選択される従来のワーストケースに対して、参照電圧Vrkの配線の負荷となる増幅回路30の入力端子の寄生容量は第1入力端子T1のみとなる。更に、参照電圧Vr(k+1)の配線の負荷となる増幅回路30の入力端子の寄生容量は第3入力端子T3のみとなる。よって、増幅回路30の第1入力端子T1及び第3入力端子T3それぞれの電圧変化が加速される。
【0150】
なお、第2、第4入力端子T2、T4を備える差動対は差動増幅動作に寄与しないため、駆動速度制御回路50(電流源51_1及び51_3、スイッチ52_1及び52_3)を活性化(動作)させることで、第1入力端子T1備える差動対(31_1、32_1)及び第3入力端子T3備える差動対(31_3、32_3)の差動増幅動作を加速させる。これにより、増幅回路30の駆動速度の低下が抑えられ、所望の駆動速度に維持される。例えば、駆動速度制御回路50の電流源51_1及び51_3の合計電流は、入力端子T2、T4を備える差動対を駆動する電流源33_2及び33_4の合計電流と同じにしてもよい。これにより、増幅回路30の入力端子(T1、T3)の電圧変化を速くし、且つ、階調レベルに依存しない電圧変化速度も実現できる。
【0151】
そして、第1期間Tc1に続く第2期間Tc2において、
図11に示す増幅回路30及び駆動速度制御回路50が第2選択状態に設定される。すなわち、制御信号CTLを受けるスイッチ41_2及び41_4がオフ状態、制御信号XCTLを受けるスイッチ42_2、42_4がオン状態に設定される。更に、駆動速度制御回路50のスイッチ52_1及び52_3がオフ状態となり、電流源51_1及び51_3が非活性化(停止)する。ここで、増幅回路30の第1~第4の入力端子T1~T4には映像デジタルデータに基づき選択される参照電圧Vrk又はVr(k+1)が重複を含めて夫々供給される。これにより増幅回路30は通常動作となり、出力電圧VOは速やかにターゲット電圧へ到達し安定となる。
【0152】
なお、第1選択状態では、デコーダ20が2つの参照電圧Vrk、Vr(k+1)を選択して出力するので、増幅回路30は、参照電圧Vrk,Vr(k+1)の中間電圧VL(z+2)を有する出力電圧VOを出力する。
【0153】
一方、第2選択状態では、デコーダ20が、重複を含む2つの参照電圧Vrk、Vr(k+1)を選択して出力するので、増幅回路30は2つの参照電圧Vrk、Vr(k+1)を内分する4レベルの電圧VLz~VL(z+3)のいずれか1つを有する出力電圧VOを出力する。
【0154】
第1選択状態から第2選択状態への切替では、電圧変化は2つの参照電圧Vrk,Vr(k+1)間の電位差の1/2以下で、最大でも出力電圧VL(z+2)からVLzの2階調レベル差となる。しかしながら、2つの参照電圧Vrk,Vr(k+1)の電圧差は、
図3の参照電圧群VXの電圧範囲に対して十分小さいので、2つの参照電圧Vrk,Vr(k+1)間の2階調レベルの差に対して出力電圧VOは速やかにターゲット電圧に到達する。
【0155】
以下に、
図13を参照して、第1選択状態において為される増幅回路30の高速化について説明する。尚、
図13は、第1選択状態での
参照電圧生成回路10、デコーダ20、増幅回路30及びセレクタ40の等価回路を示している。
【0156】
図13に示すように、第1選択状態(第1期間Tc1)では、各増幅回路30の2つの入力端子T1、T3が、夫々異なる参照電圧Vr0、Vr1各々の配線に接続される。このとき、増幅回路30は、入力端子T1、T3に供給される参照電圧Vr0、Vr1の中間電圧を有する出力電圧VOを出力する。
【0157】
よって、1つの参照電圧(Vr0又はVr1)の配線に接続される増幅回路30の入力端子の寄生容量の合計は、従来のワーストケースのように全入力端子(T1~T4)の寄生容量の合計となる場合の1/4に削減される。これにより、増幅回路30の入力端子(T1、T3)の電圧変化を大幅に速めることが可能になると共に、参照電圧発生回路10からの配線長の違いに伴う増幅回路30の入力端子の電圧変化速度の差も縮小できる。
【0158】
更に、第1選択状態では、階調レベルに関係なく、増幅回路30の2つの入力端子(T1、T3)に夫々異なる参照電圧が供給されるので、増幅回路30の入力端子の電圧変化速度が階調レベルによらず均一化される。
【0159】
したがって、本実施例によれば、第1選択状態の増幅回路30の入力端子の電圧変化速度が向上し、且つ、変化速度のばらつきが抑えられるため、表示装置のデータ線を駆動する増幅回路30の出力電圧VOの信号遅延や遅延ばらつきも小さくでき、良好な表示品質を実現できる。
【0160】
尚、
図4に示す一例では、デジタルアナログ回路としての変換回路DC1に、駆動速度制御回路50が含まれているが、第1選択状態での駆動速度の低下が僅かである場合には、これを含めなくても良い。
【0161】
要するに、デジタルアナログ回路としては、以下の参照電圧生成部、デコーダ、セレクタ及び増幅回路を含むものであれば良い。
【0162】
つまり、参照電圧生成部(10)は、互いに異なる電圧値を有する参照電圧群(VX)を生成する。デコーダ(20)は、デジタルデータ信号(例えばJ1)を受け、当該デジタルデータ信号に基づき、参照電圧群中から重複を含む複数の参照電圧を選択して出力する。増幅回路(30)は、第1~第xの入力端子(T1~Tx)を有し、第1~第xの入力端子で夫々受けた複数の参照電圧を予め設定された重みづけ比で平均化して増幅した電圧を出力電圧(VO)として出力する。セレクタ(40)は、第1選択状態又は第2の選択状態を指定する制御信号(CTL、XCTL)を受け、第1選択状態又は第2選択状態に応じて、増幅回路(30)の第1~第xの入力端子(T1~Tx)のうちのm個の入力端子(T1~Tm)を除く(x-m)個の入力端子(Tm+1~Tx)に供給する電圧を切り替える。セレクタ(40)は、制御信号が第1選択状態を示す場合には、増幅回路の第1~第xの入力端子のうちの(x-m)個の入力端子(Tm+1~Tx)に自身の出力電圧(VO)を供給する。一方、制御信号が第2選択状態を示す場合には、デコーダから出力された複数の参照電圧を上記した(x-m)個の入力端子に供給する。
【符号の説明】
【0163】
10 参照電圧生成回路
20 デコーダ
30 増幅回路
40 セレクタ
50 駆動速度制御回路
103 データドライバ
200 表示装置
DC1~DCn 変換回路