IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 独立行政法人産業技術総合研究所の特許一覧

特許7515840光波形歪み補正方法及び装置、並びに光信号受信装置
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-07-05
(45)【発行日】2024-07-16
(54)【発明の名称】光波形歪み補正方法及び装置、並びに光信号受信装置
(51)【国際特許分類】
   H04B 10/2507 20130101AFI20240708BHJP
   H04J 14/02 20060101ALI20240708BHJP
【FI】
H04B10/2507
H04J14/02
【請求項の数】 6
(21)【出願番号】P 2023508663
(86)(22)【出願日】2022-01-13
(86)【国際出願番号】 JP2022000917
(87)【国際公開番号】W WO2022201763
(87)【国際公開日】2022-09-29
【審査請求日】2023-10-25
(31)【優先権主張番号】P 2021052107
(32)【優先日】2021-03-25
(33)【優先権主張国・地域又は機関】JP
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成30年度、国立研究開発法人情報通信研究機構「超並列型光ネットワーク基盤技術の研究開発」委託研究、産業技術力強化法第17条の適用を受ける特許出願
(73)【特許権者】
【識別番号】301021533
【氏名又は名称】国立研究開発法人産業技術総合研究所
(74)【代理人】
【識別番号】100103528
【弁理士】
【氏名又は名称】原田 一男
(72)【発明者】
【氏名】井上 崇
【審査官】鴨川 学
(56)【参考文献】
【文献】特開2015-201726(JP,A)
【文献】国際公開第2018/215850(WO,A1)
【文献】特開2019-118018(JP,A)
【文献】米国特許出願公開第2019/0266480(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H04B 10/2507
H04J 14/02
(57)【特許請求の範囲】
【請求項1】
伝送路において波形の形状が変化した光信号を受信して波形を数値化した後、非線形シュレディンガー方程式の線形項と非線形項とを交互に演算することで送信時の波形を推定する逆伝搬処理であって、波長分割多重伝送時における前記伝送路内の複数のチャネルの各々について、当該チャネル内で生ずる自己位相変調に起因する波形歪みと、当該チャネル以外のチャネルとの間で生じる相互位相変調に起因する波形歪みとを補正する逆伝搬処理において用いられ且つ前記相互位相変調に関連する第1のパラメータと、前記逆伝搬処理において用いられ且つ前記自己位相変調及び前記相互位相変調に関連する第2のパラメータとを、勾配降下法によって最適化するステップと、
最適化された前記第1及び第2のパラメータを用いて、前記逆伝搬処理を実行するステップと、
を含む光波形歪み補正方法。
【請求項2】
前記相互位相変調に起因する波形歪みを、伝搬距離に依存せず強度について初期波形が維持されるが、伝搬距離に比例した遅延が時間軸上で発生するという近似の下、補正を行う
ことを特徴とする請求項1記載の波形歪み補正方法。
【請求項3】
前記第1のパラメータは、ウォークオフパラメータdを含み、
前記第2のパラメータは、群速度分散D及び非線形係数gを含む
請求項1又は2記載の波形歪み補正方法。
【請求項4】
伝送路において波形の形状が変化した光信号を受信して波形を数値化した後、非線形シュレディンガー方程式の線形項と非線形項とを交互に演算することで送信時の波形を推定する逆伝搬処理であって、波長分割多重伝送時における前記伝送路内の複数のチャネルの各々について、当該チャネル内で生ずる自己位相変調に起因する波形歪みと、当該チャネル以外のチャネルとの間で生じる相互位相変調に起因する波形歪みとを補正する逆伝搬処理において用いられ且つ前記相互位相変調に関連する第1のパラメータと、前記逆伝搬処理において用いられ且つ前記自己位相変調及び前記相互位相変調に関連する第2のパラメータとを、勾配降下法によって最適化する最適化部と、
最適化された前記第1及び第2のパラメータを用いて、前記逆伝搬処理を実行する逆伝搬処理部と、
を有する光波形歪み補正装置。
【請求項5】
伝送路において波形の形状が変化した光信号を受信して波形を数値化した後、非線形シュレディンガー方程式の線形項と非線形項とを交互に演算することで送信時の波形を推定する逆伝搬処理であって、波長分割多重伝送時における前記伝送路内の複数のチャネルの各々について、当該チャネル内で生ずる自己位相変調に起因する波形歪みと、当該チャネル以外のチャネルとの間で生じる相互位相変調に起因する波形歪みとを補正する逆伝搬処理において用いられ且つ前記相互位相変調に関連する第1のパラメータと、前記逆伝搬処理において用いられ且つ前記自己位相変調及び前記相互位相変調に関連する第2のパラメータとを、勾配降下法によって最適化する最適化部
を有する情報処理装置。
【請求項6】
請求項5記載の情報処理装置により最適化された前記第1及び第2のパラメータを用いて、前記逆伝搬処理を実行する光波形歪み補正装置を含む光信号受信装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光ファイバを用いた光信号伝送において、光ファイバの非線形性に起因する信号波形の歪みを補正する技術である。
【背景技術】
【0002】
光ファイバ伝送路には、信号の波形歪みを引き起こす様々な要因がある。このうち、群速度分散などの伝送路の線形周波数応答によって生じる波形歪みについては、線形の適応等化器(例えば非特許文献1を参照のこと)によって効果的に波形歪みを補正できることが知られている。一方で、光ファイバの性質として、屈折率が入射光の強度に比例して大きくなるという、カー効果と呼ばれる現象があって、この効果と群速度分散効果の組み合わせによって、光ファイバを伝搬する光信号の波形が歪む。以下ではこの歪みを非線形波形歪みという。波長分割多重(WDM:Wavelength-Division Multiplexing)によって周波数あるいは波長が異なる複数の光信号を多重して光ファイバを伝送する場合、伝搬中にカー効果が発生することによって、単一チャネルの波形内で生じる位相シフトを自己位相変調(SPM:Self-Phase Modulation)といい、異なるチャネルの波形同士の相互作用によって引き起こされる位相シフトを相互位相変調(XPM:Cross-Phase Modulation)という。これらの位相シフトと群速度分散の効果とが組み合わさって生じる非線形波形歪みを、線形の適応等化器で効果的に補正することはできない。
【0003】
非線形波形歪みを補正する手法として、デジタル逆伝搬法(DBP:Digital Back Propagation)が提案された(例えば非特許文献2を参照のこと)。この方法は、光ファイバ中の光波伝搬を記述する以下の非線形シュレディンガー方程式を用いる。
【数1】
そして、受信機内のデジタル信号処理プロセッサ(DSP:Digital Signal Processor)によって、光信号受信波形を伝送路の逆方向に伝搬させる計算を行うことで、送信時の波形を推定して波形歪みを補正するものである。ここでA(z,t)は、直交する二つの偏波成分(p=1,2)に対応する光信号波形の複素包絡線振幅であり、ファイバの長手方向についての距離zと、時間tの関数である。なお、式(1)の前提として、フーリエ変換は、以下のように定義している。
【数2】
【0004】
β及びβは、それぞれ光ファイバの二次及び三次の群速度分散、αは伝搬損失係数である。また、γは非線形係数、そしてδは偏波間位相変調の程度を表す係数で、通常はδ=1とおかれる。式(1)の逆伝搬計算を行う際には、伝送路の1スパン(光増幅による中継器に挟まれた区間を意味する)を有限のステップ(区間)に区切り、各ステップでは、式(1)で線形項のみとした場合の計算(線形ステップ)と、非線形項のみとした場合の計算(非線形ステップ)を交互に繰り返すことで、近似的に式(1)の解としてのA(z,t)を計算する。
【0005】
この計算方法はスプリットステップフーリエ法(例えば非特許文献3を参照のこと)と呼ばれ、ステップ数を増やせば計算の精度が高まって非線形波形歪みを補正する能力も向上するが、同時に計算量が増大する。このため、計算資源の限られたDSPに実装するにあたっては、計算量を低減しつつ、補正の性能を高める手法を見い出すことが好ましい。
【0006】
非特許文献2で提案されたDBPでは、通常、受信信号波形の単一チャネルのみをフィルタで切り出し、式(1)を用いてその波形だけを逆伝搬させるため、非線形波形歪みのうちのSPMに起因する歪みを補正することはできるが、WDM信号に対してXPMに起因する歪みを補正することはできない。一方、非特許文献4では、WDM信号を対象として、XPMによって生じる位相シフトの量を近似的に計算し、SPMだけでなくXPMによる歪みも補正するDBPが提案されている。しかしながら、この方法では、伝送路1スパンあたりのステップ数を2未満にすると、計算量は現実的なものとなるが、計算精度が落ちるため、補正能力が著しく劣化するという問題がある。
【0007】
一方で、DBPによる非線形波形歪み補正を実施するにあたっては、伝送路である光ファイバが有する物理パラメータであるβ、β、α、γの値を高い精度で推定し、計算に用いることが求められる。このうち、線形応答である群速度分散と伝搬損失を表すβ、β及びαについては、比較的精度よく値を知ることができる。特に、αの長手方向の分布を測定する方法として、OTDR(Optical Time-Domain Reflectometry)と呼ばれる手法が利用可能である。また、β及びβについては局所的な値を知ることは難しいものの、測定区間の積分値を高精度に測定することは可能である。ところが、非線形係数γの値を直接測定することは容易ではなく、光ファイバの実効コア断面積から推定するなどで間接的にしか値を知ることができない。ファイバのパラメータとして誤ったパラメータを用いてDBPによる非線形波形歪み補正を実施した場合、補正効果があがらないどころか、かえって波形歪みが増大することすらある。
【0008】
そこで非特許文献5では、ファイバパラメータの真値が不明な状況において、非線形波形歪みの補正結果が最良となるように、最急降下法を用いてDBPの試行を繰り返すことで、DBPで用いるファイバパラメータの最適値を学習する手法が提案されている。
【0009】
また非特許文献6では、ニューラルネットワークを用い、スプリットステップフーリエ法の線形ステップを時間領域の有限インパルス応答(FIR:Finite Impulse Response)フィルタに置き換えたうえでAffine変換に割り当て、さらに非線形ステップを活性化関数に割り当てることで、非線形シュレディンガー方程式を用いたDBPの構造をニューラルネットワークに適用している。伝送路の構成から推定されるファイバパラメータのうち、群速度分散から計算されるFIRタップ係数をAffine変換結合係数の初期値に用い、非線形波形歪み補正の性能が最大化されるようにニューラルネットワークを学習することで、光ファイバのパラメータが未知の状況で、群速度分散に限らない任意の線形応答が伝送路に含まれる場合においても、効果的な非線形波形歪み補正が可能となる。
【0010】
一般に画像認識等を目的として使用されるニューラルネットワークでは、Affine変換の係数は乱数で初期化され、さらに活性化関数には正規化線形関数(ReLU:Rectified Linear Unit)がよく用いられるのに対して、非特許文献6の方法では、物理的なパラメータを初期値として用い、さらに物理的な発展方程式に含まれる非線形項を活性化関数に適用しているため、言わば物理現象に特化したニューラルネットワークと言えるものである。この物理現象特化型ニューラルネットワークで得られる付加的な効果として、スパンあたりのステップ数を削減しても、非線形波形歪み補正の性能が劣化しないことが挙げられる。非特許文献6では具体的に、スパンあたりのステップ数が1及び2のニューラルネットワークが、それぞれステップ数が2及び3の従来型DBPの補正能力を上回るという結果が報告されている。
【0011】
このような結果を受けて、非特許文献7及び8でも、様々な条件で物理現象特化型ニューラルネットワークによる非線形波形歪み補正の結果が報告されている。しかしながら、物理現象特化型ニューラルネットワークを用いたいずれの手法もSPMによって生じる波形歪みの補正のみを対象としており、XPMによる歪みを考慮していないため、XPMによる歪みが主な波形劣化要因となるWDM伝送系においては、有効な補正性能を発揮することができていない。
【0012】
非特許文献2で提案されたDBPでは、SPMによる波形歪みのみを補正の対象としているため、XPMによる歪みの補正を行うことができない。非特許文献4ではSPMに加えてXPMによる歪みを補正する手法が提案されたが、1スパンを区切るステップ数を多くしないと性能が発揮できず、計算量が増大するという問題がある。また、これらの手法では、伝送路のパラメータを精度よく推定して入力しなければ、本来の性能が得られないという問題がある。
【0013】
さらに、非特許文献6で提案された物理現象特化型ニューラルネットワークでは、パラメータの学習を行うことで、SPMに起因する非線形波形歪みに対しては最適な補正性能を発揮できるが、XPMによる歪みに対しては有効性を見いだせない。
【先行技術文献】
【特許文献】
【0014】
【文献】特開2020-145561号公報
【非特許文献】
【0015】
【文献】S.Haykin, "Adaptive Filter Theory," Pearson (2013)
【文献】E. Ip and J. M. Kahn, "Compensation of Dispersion and Nonlinear Impairments Using Digital Backpropagation," J. Lightw. Technol., vol.26, no.20, pp.3416-3425 (2008)
【文献】G. P. Agrawal, "Nonlinear Fiber Optics," Academic Press (2001)
【文献】E. F. Mateo, F. Yaman, and G. Li, "Efficient compensation of inter-channel nonlinear effects via digital backward propagation in WDM optical transmission," Opt. Express, vol.18, no.14, pp.15144-15154 (2010)
【文献】T. Tanimura, T. Hoshida, T. Tanaka, L. Li, S. Oda, H. Nakashima, Z. Tao, and J. C. Rasmussen, "Semi-blind Nonlinear Equalization in Coherent Multi-Span Transmission System with Inhomogeneous Span Parameters," Proceedings of OFC/NFOEC2010, Paper OMR6
【文献】C. Hager and H. D. Pfister, "Nonlinear Interference Mitigation via Deep Neural Networks," Proceedings of OFC2018, Paper W3A.4
【文献】Q. Fan, G. Zhou, T. Gui, C. Lu, A. P. T. Lau, "Advancing theoretical understanding and practical performance of signal processing for nonlinear optical communications through machine learning," Nat. Commun, vol.11, 3694 (2020)
【文献】B. Bitachon, A. Ghazisaeidi, M. Eppenberger, B. Baeuerle, M. Ayata, and J. Leuthold, "Deep learning based digital backpropagation demonstrating SNR gain at low complexity in a 1200km transmission link," Opt. Express, vol.28, no.20, pp.29318-29334 (2020)
【文献】J. Zhuang, T. Tang, Y. Ding, S. Tatikonda, N. Dvornek, X. Papademetris, and J. S. Duncan, "AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients," arXiv, 2010.07468 (2020)
【発明の概要】
【発明が解決しようとする課題】
【0016】
従って、本発明の目的は、一側面によれば、伝送路のパラメータが未知であっても、SPM及びXPMの両方に起因する波形歪みを適切に補正するための計算量を抑制するための新たな技術を提供することである。
【課題を解決するための手段】
【0017】
本発明に係る光波形歪み補正方法は、(A)伝送路において波形の形状が変化した光信号を受信して波形を数値化した後、非線形シュレディンガー方程式の線形項と非線形項とを交互に演算することで送信時の波形を推定する逆伝搬処理であって、波長分割多重伝送時における上記伝送路内の複数のチャネルの各々について、当該チャネル内で生ずる自己位相変調に起因する波形歪みと、当該チャネル以外のチャネルとの間で生じる相互位相変調に起因する波形歪みとを補正する逆伝搬処理において用いられ且つ相互位相変調に関連する第1のパラメータと、上記逆伝搬処理において用いられ且つ自己位相変調及び相互位相変調に関連する第2のパラメータとを、勾配降下法によって最適化するステップと、(B)最適化された第1及び第2のパラメータを用いて、上記逆伝搬処理を実行するステップとを含む。
【図面の簡単な説明】
【0018】
図1図1は、WDM信号のスペクトルを模式的に示す図である。
図2図2は、スパンとステップとの関係を説明するための図である。
図3図3は、線形ステップ及び非線形ステップ、そして各チャネル信号成分の経路を示す模式図である。
図4A図4Aは、D (0)による勾配が線形ステップL1,0 (0)を発してから後段に波及する厳密な経路を示す図である。
図4B図4Bは、D (0)による勾配が線形ステップL1,0 (0)を発してから後段に波及する近似経路を示す図である。
図5A図5Aは、パラメータ最適化処理において、各伝送路パラメータによる波形の勾配を計算する処理のフローを示す図である。
図5B図5Bは、パラメータ最適処理において、各伝送路パラメータを更新する処理のフローを示す図である。
図5C図5Cは、本実施の形態に係る光伝送システムの模式図である。
図5D図5Dは、本実施の形態に係る処理フローを示す図である。
図6図6は、現実的な伝送路の各スパンにおける群速度分散値と非線形定数とを示すものである。
図7A図7Aは、理想的な6スパン伝送路で、スパン入射パワーが+2dBm/chの場合の学習過程において、繰り返し学習回数に対する2次の群速度分散パラメータD (j)を表す図である。
図7B図7Bは、理想的な6スパン伝送路で、スパン入射パワーが+2dBm/chの場合の学習過程において、繰り返し学習回数に対する非線形係数パラメータg(j)を表す図である。
図7C図7Cは、理想的な6スパン伝送路で、スパン入射パワーが+2dBm/chの場合の学習過程において、繰り返し学習回数に対するd-4 (j)を表す図である。
図7D図7Dは、理想的な6スパン伝送路で、スパン入射パワーが+2dBm/chの場合の学習過程において、繰り返し学習回数に対するd-1 (j)を表す図である。
図7E図7Eは、理想的な6スパン伝送路で、スパン入射パワーが+2dBm/chの場合の学習過程において、繰り返し学習回数に対する平均二乗誤差を表す図である。
図8A図8Aは、4スパン及び6スパンの理想的な伝送路で、SPMのみを考慮して非線形波形歪みを補正した場合に、信号入射パワーに対するQ値の結果を表す図である。
図8B図8Bは、8スパン及び10スパンの理想的な伝送路で、SPMのみを考慮して非線形波形歪みを補正した場合に、信号入射パワーに対するQ値の結果を表す図である。
図9A図9Aは、4スパン及び6スパンの理想的な伝送路で、XPMを含めて非線形波形歪みを補正した場合に、信号入射パワーに対するQ値の結果を表す図である。
図9B図9Bは、8スパン及び10スパンの理想的な伝送路で、XPMを含めて非線形波形歪みを補正した場合に、信号入射パワーに対するQ値の結果を表す図である。
図10図10は、理想的な伝送路において様々な方法で非線形波形歪み補正を適用した場合としない場合に、伝送スパン数に対するQ値の結果を表す図である。
図11A図11Aは、現実的な6スパン伝送路で、スパン入射パワーが+2dBm/chの場合の学習過程において、繰り返し学習回数に対する2次の群速度分散パラメータD (j)を表す図である。
図11B図11Bは、現実的な6スパン伝送路で、スパン入射パワーが+2dBm/chの場合の学習過程において、繰り返し学習回数に対す(j)を表す図である。
図11C図11Cは、現実的な6スパン伝送路で、スパン入射パワーが+2dBm/chの場合の学習過程において、繰り返し学習回数に対す-4 (j)を表す図である。
図11D図11Dは、現実的な6スパン伝送路で、スパン入射パワーが+2dBm/chの場合の学習過程において、繰り返し学習回数に対す-1 (j)を表す図である。
図11E図11Eは、現実的な6スパン伝送路で、スパン入射パワーが+2dBm/chの場合の学習過程において、繰り返し学習回数に対する平均二乗誤差を表す図である。
図12A図12Aは、4スパン及び6スパンの現実的な伝送路で、SPMのみを考慮して非線形波形歪みを補正した場合に、信号入射パワーに対するQ値の結果を表す図である。
図12B図12Bは、8スパン及び10スパンの現実的な伝送路で、SPMのみを考慮して非線形波形歪みを補正した場合に、信号入射パワーに対するQ値の結果を表す図である。
図13A図13Aは、4スパン及び6スパンの現実的な伝送路で、XPMを含めて非線形波形歪みを補正した場合に、信号入射パワーに対するQ値の結果を表す図である。
図13B図13Bは、8スパン及び10スパンの現実的な伝送路で、XPMを含めて非線形波形歪みを補正した場合に、信号入射パワーに対するQ値の結果を表す図である。
図14図14は、現実的な伝送路において様々な方法で非線形波形歪み補正を適用した場合としない場合に、伝送スパン数に対するQ値の結果を表す図である。
図15図15は、実験に用いた伝送系を示す模式図である。
図16A図16Aは、パラメータ更新回数に対する、2次の群速度分散パラメータD (j)の変化を表す図である。
図16B図16Bは、パラメータ更新回数に対する、非線形係数パラメータg(j)の変化を表す図である。
図16C図16Cは、パラメータ更新回数に対する、偏波間位相変調パラメータδ(j)の変化を表す図である。
図16D図16Dは、パラメータ更新回数に対する、ウォークオフパラメータd-5 (j)の変化を表す図である。
図16E図16Eは、パラメータ更新回数に対する、ウォークオフパラメータd-1 (j)の変化を表す図である。
図16F図16Fは、パラメータ更新回数に対する、ウォークオフパラメータd (j)の変化を表す図である。
図16G図16Gは、パラメータ更新回数に対する、Mean Square Error(MSE)とその移動平均の変化を表す図である。
図17図17は、6スパン伝送路における光ファイバ接続状況と、逆伝搬計算順序を示す模式図である。
図18A図18Aは、6スパン伝送路及び8スパン伝送路においてSPMのみを考慮して非線形波形歪み補正を実施した場合における入射パワーに対する信号品質を表す図である。
図18B図18Bは、10スパン伝送路及び12スパン伝送路においてSPMのみを考慮して非線形波形歪み補正を実施した場合における入射パワーに対する信号品質を表す図である。
図18C図18Cは、14スパン伝送路及び16スパン伝送路においてSPMのみを考慮して非線形波形歪み補正を実施した場合における入射パワーに対する信号品質を表す図である。
図19A図19Aは、6スパン伝送路及び8スパン伝送路においてSPM及びXPMを考慮して非線形波形歪み補正を実施した場合における入射パワーに対する信号品質を表す図である。
図19B図19Bは、10スパン伝送路及び12スパン伝送路においてSPM及びXPMを考慮して非線形波形歪み補正を実施した場合における入射パワーに対する信号品質を表す図である。
図19C図19Cは、14スパン伝送路及び16スパン伝送路においてSPM及びXPMを考慮して非線形波形歪み補正を実施した場合における入射パワーに対する信号品質を表す図である。
図20図20は、伝送スパンに対する信号品質の変化を表す図である。
図21図21は、5チャネル、11チャネル及び21チャネルの場合における、データ長Nに対する、積演算回数を示す図である。
【発明を実施するための形態】
【0019】
[本発明の実施の形態における基本的な考え方]
周波数間隔がΔωであるWDM信号を対象に、本実施の形態に係る非線形波形歪みの補正技術を説明する。図1にWDM信号のスペクトルの模式図を示す。ここで、補正対象の信号をチャネル番号0とし、この信号の中心周波数を基準値ω=0とし、その他のチャネル番号nの信号の中心周波数をω=nΔω (n=±1,±2,...)とする。このとき、式(1)の包絡線振幅は、チャネル毎の包絡線振幅の和として以下のように表される。
【数3】
但し、Ap,n(t)は、チャネルnの偏波成分pに関するベースバンド(中心周波数が0を意味する)の包絡線振幅である。
【0020】
また、式(1)の非線形シュレディンガー方程式の線形項のみを書き出すと以下のようになる。
【数4】
光ファイバの長手方向の座標z=0における波形Ap,n(z=0,t)を入力とし、距離h伝搬後の波形についての式(4)の解は、周波数領域でチャネル毎に分離することができて、以下のようになる。
【数5】
【0021】
ここで、D(h)=-βh/2及びD=-βh/6は、それぞれ2次及び3次の群速度分散の累積値である。また、T(h、ω)=(βω+βω /2)hは、チャネル番号nの信号に生ずる群遅延(ウォークオフ)を表している。式(5)の波形を、フーリエ変換を表す演算子Fを用いて時間領域で表すと、以下のようになる。
【数6】
【0022】
一方で、非線形シュレディンガー方程式(1)の非線形項のみを書き出すと以下のようになる。
【数7】
ここで、右辺の伝搬損失の項は本来線形項であるが、信号の強度が伝搬損失によって減衰することに伴う非線形性の変化を考慮するために含められている。包絡線振幅BをA=B(z)exp(-αz/2)と定義すると、Bは伝搬損失による減衰量を分離した振幅であり、式(7)はBに対して次のように表される。
【数8】
ここで、γ(z)=γexp(-αz)である。
【0023】
式(8)は、伝搬損失によって信号の振幅が減衰する際に、非線形シュレディンガー方程式における非線形効果は、元の非線形係数γが長手方向に減衰していく形で記述できることを表している。式(8)をチャネル毎に分解すると、チャネル番号0の振幅については以下のように表される。
【数9】
式(9)の右辺において、チャネル番号0の信号強度の時間波形である|Bp,0|(p=1,2)を含む項はSPM、そしてチャネル番号n≠0の信号強度の時間波形である|Bp,n|(p=1,2)を含む項はXPMを生じるものである。
【0024】
非特許文献4で提案されているように、式(9)において、伝搬時の波形変化に関する仮定を導入することで、近似解を得られる。第1の仮定は、チャネル番号0の信号の時間波形強度は距離zに対して不変であるとして、|Bp,0(z,t)|=|Bp,0(0,t)|とおくことであり、この仮定はスプリットステップフーリエ法の計算において通常用いられているものである。
【0025】
第2の仮定は、チャネル番号n≠0の信号強度の時間波形は距離zに対して形状が不変である一方、ウォークオフによる群遅延の発生を考慮して|Bp,n(z,t)|=|Bp,n(0,t-dz)|とおくことである。この式は、強度の形状が伝搬距離に依存せず初期波形のまま保たれる一方で、伝搬距離に比例した遅延dzが時間軸上で発生することを表している。ここで、以下で表すdは、ウォークオフを表すパラメータであり、群速度の逆数に相当する。
【数10】
この仮定を導入した結果、周波数領域において式(9)をzで積分することができて、距離h伝搬後の波形について以下の解が得られる。
【数11】
【数12】
【数13】
【0026】
但し、式(11)乃至(13)を導出するために距離zに対して長さhの積分を行う際、積分区間を[-h/2,h/2]とした。また、これらの式で用いられる記号は、以下のように定義される。
【数14】
【0027】
式(6)によりスプリットステップフーリエ法の線形ステップが記述され、式(11)によってチャネル番号0の信号波形に対して、SPMとXPMの両方の効果を考慮する非線形ステップが記述された。以下では、これらの式に基づいて、ある光ファイバ伝送路で受信した光信号波形を逆伝搬させる計算を行い、送信波形を推定する方法を述べる。
【0028】
逆伝搬計算の手順を説明するために、図2に、スパン数が2の伝送路で、スパンあたりのステップ数を2とした場合のステップの区割りと、線形ステップ及び非線形ステップの計算順序を表す模式図を示す。なお、異なるスパン数やステップ数の場合でも、図2を容易に一般化して考えることが可能である。図2において、左から右の向きを順伝搬方向とし、始点から終点にかけてスパン1及び2を定義する。逆に、右から左の向きを逆伝搬方向とし、各スパン内で逆伝搬方向にステップ1及び2を定義する。スパン内で各ステップの長さの比は等分配ではなく、ファイバの損失による信号パワーの減衰を考慮した非線形係数γ(z)=γexp(-αz)の積分値が等しくなるように設定する。例えば、ステップ数を2とした場合に、スパンの始点をz=0、終点をz=z、ステップの区切りをz=zとおいた場合に、以下の式が成立するようにzを定める。
【数15】
【0029】
なお、スパン内で各ステップの長さの比を等分配した場合でも、本実施の形態はそのまま適用可能である。さらに言えば、スパン内でステップを区割りするやり方の違いは、学習を行わない非特許文献2及び4に示された方法では波形歪み補正の結果に影響を与えるが、パラメータの学習を実施する非特許文献5乃至8及び本実施の形態においては、学習の初期値設定に影響を与えるにとどまり、学習が収束して最適化された後は、差が出なくなる。また、スパンあたりのステップ数を1とした場合は、1スパン全体を1ステップとして計算する。
【0030】
次に、各ステップの計算を行うにあたっては、「対称型」のスプリットステップフーリエ法(非特許文献3を参照のこと)に基づく計算を行う。すなわち、距離がhである一つのステップを前半と後半に等分割し、まずステップ前半の距離h/2に対して、線形ステップとして式(6)を用いた計算を行う。
【0031】
次に、線形ステップの出力として得られた波形を入力とし、ステップ全体の距離hに対して、非線形ステップとして式(11)の計算を行う。最後に、非線形ステップの出力として得られた波形を入力として、ステップ後半の距離h/2に対して、式(6)の線形ステップの計算を実施する。この操作をステップ毎に繰り返すが、あるステップの後半の線形ステップは、次のステップの前半の線形ステップと合わせて計算を実施する。
【0032】
図2の例では、スパン#2のステップ#1を2分割し、入力波形に対して前半の線形ステップL(0)の計算を実施した後、非線形ステップN(1)の計算を行い、続いてステップ#1後半の線形ステップとスパン#2のステップ#2前半の線形ステップを結合したL(1)の計算を行い、以下同様の計算を行う。スパン数がNspanで、スパンあたりのステップ数がNstepの伝送路では、m=Nspan×Nstepとおくと、合計で(m+1)回の線形ステップと、m回の非線形ステップが存在することになる。図2の例では、Nspan=2及びNstep=2であるから、m=4であり、線形ステップはL(0)からL(4)までのm+1=5回、非線形ステップはN(1)からN(4)までのm=4回となる。
【0033】
式(6)の線形ステップでは、各チャネルの信号波形が独立して発展するが、式(11)乃至(13)に示した非線形ステップでは、1つのチャネルの信号波形の発展を計算する際に、XPMを考慮した計算を行うために、他のチャネルの信号波形を取り入れている。図3に、この様子を表した逆伝搬計算手順を示す。上述のとおり、線形ステップと非線形ステップを交互に計算することになる。逆伝搬計算において、チャネル番号n、偏波成分pの入力波形をxp,nとし、出力波形をyp,nとする。ただし、xp,nは受信機で受信した伝送後の波形であり、またyp,nは送信波形の推定結果に相当する。
【0034】
一般に、j番目の線形ステップL(j)の入出力波形をそれぞれzp,n (j)及びyp,n (j)とすると、非線形ステップN(j)の入出力波形はyp,n (j-1)及びzp,n (j)である。また、図3に示すように、zp,n (0)=xp,n及びyp,n (m)=yp,nである。L(j)の出力波形yp,n (j)がN(j+1)に入力される際に、実線の矢印で示された経路は、式(12)で示されるチャネル内のSPMによる位相シフトを計算するための波形データの流れであり、点線の矢印で示された経路は、式(13)で示されるチャネル間のXPMによる位相シフトを計算するための波形データの流れである。
【0035】
次に、逆伝搬計算で用いるパラメータを勾配降下法によって最適化し、非線形波形歪み補正の性能を最大化する、本実施の形態における手法を説明する。以下では具体的な学習方法について示す。誤差関数J(θ)を次のように定義する。
【数16】
ここで、θは逆伝搬計算で用いるパラメータからなるベクトルであり、e(θ)=y(θ)ーdは時刻tにおける誤差である。y(θ)は逆伝搬計算後の信号波形の時刻tにおける値であって、パラメータθの関数であるとみなし、dは時刻tにおける所望信号の値である。ここでは所望信号として、送信信号の波形を用いる。
【0036】
ここで、式(16)の誤差関数の形は、平均二乗誤差(MSE:Mean Square Error)と呼ばれる。送信信号の波形dと、パラメータθの逆伝搬伝送路を計算後に得られた波形y(θ)との複数の組でデータセットを構成し、繰り返し計算に基づく確率的勾配降下法によって、誤差関数J(θ)を最小化するようにパラメータθを最適化する。非特許文献1に記載されているように、確率的勾配降下法に基づくパラメータθの更新式は次のように得られる。
【数17】
ただし、θはi回目の更新結果として得られたパラメータベクトルであり、ηは学習の速度を決定する微少な正の数、そして∇Jはパラメータに対する誤差関数の勾配を表し、次式のように計算される。
【数18】
【0037】
ここで、所望信号、すなわち送信信号はパラメータθに依存せず、
【数19】
であるから、結局パラメータの更新式は以下のように得られる。
【数20】
【0038】
式(20)を用いて、θの要素である逆伝搬計算中の全てのパラメータについての更新を行う際、出力信号yに対して、それぞれのパラメータに対する勾配である∂y/∂θを用いる。これを計算するための計算式を、微分連鎖規則により導出する。
【0039】
式(6)より、線形ステップLp,n (j)における入出力波形zp,n (j)及びyp,n (j)の関係は、以下のようになる。
【数21】
【0040】
式(21)を直接微分することで、以下の式が得られる。
【数22】
【数23】
【0041】
これにより、出力波形yp,n (j)のD (j)及びD (j)による勾配は、入力波形zp,n (j)を用いて計算できる。ここで得られた勾配は、微分連鎖規則によって次のステップに送られ、最終的には、出力波形yp,n=yp,n (m)に対する勾配の形に改められる。Lp,n (j)より前のステップに含まれる任意のパラメータεに対するyp,n (j)の勾配は、以下のように得られる。
【数24】
【0042】
これにより、出力波形yp,n (j)のパラメータεに対する勾配は、直前の非線形ステップより出力される勾配∂zp,n (j)/∂εを用いて計算できる。ただし、ウォークオフの値T (j)は、線形ステップLp,n (j)の前後の非線形ステップNp,n (j)及びNp,n (j+1)に含まれるウォークオフパラメータd (j)及びd (j+1)を用いて、以下のようにする。
【数25】
ここで、hは非線形ステップNp,n (j)の区間幅である。
【0043】
次に、チャネル0の信号波形についての非線形ステップNp,n (j)における入出力波形yp,n (j)及びzp,n (j)の関係は、式(11)より、以下のようになる。
【数26】
【数27】
【数28】
但し、Pp,n (j-1)=|yp,n (j-1)は、入力波形yp,0 (j-1)の強度であり、また、以下のような関係もある。
【数29】
【0044】
これから、非線形ステップNp,n (j)で用いられるパラメータg(j),δ(j),α (j),α (j)及びd (j)に対する出力波形zp,n (j)の勾配は、式(26)を直接微分することで以下のように得られる。
【数30】
【数31】
【数32】
【数33】
【数34】
このように、出力波形zp,n (j)と入力波形の強度Pp,n (j-1)とその周波数波形P~p,n (j-1)(P~はPの上に~)を用いて計算できる。
【0045】
また、Np,n (j)より前のステップに含まれる任意のパラメータεに対するzp,n (j)の勾配は、式(26)をεで微分することで以下の式が得られる。
【数35】
【数36】
【0046】
なお式(26)乃至(36)では、チャネル番号0の信号についての非線形ステップにおける計算式を記載したが、一般のチャネル番号の信号についても同様に記述することが可能である。
【0047】
まとめると、線形ステップでは式(22)及び(23)、そして非線形ステップでは式(30)乃至(34)を用いて、そのステップで用いられるパラメータによる、そのステップの出力波形の勾配をそれぞれ計算し、その結果を次のステップに渡す。また線形ステップでは式(24)、非線形ステップでは式(35)及び(36)を用いて、手前のステップより渡された勾配を、そのステップの出力についての勾配に更新して、さらに次のステップに渡す。入力側から出力側に向けてこのような計算を続けていくことで、逆伝搬計算で用いられるすべてのパラメータによる、最終的な出力波形yp,n=yp,n (m)の勾配を計算することができ、式(20)によってパラメータの更新が可能となる。
【0048】
なお、図3において、チャネル番号nの各直交偏波成分についての線形ステップL1,n (j)及びL2,n (j)では、分散パラメータD (j)及びD (j)を共有し、学習の際に勾配を計算する際も、両偏波成分の勾配を一括して平均をとる。また非線形ステップN1,n (j)及びN2,n (j)でも同様に、パラメータg(j),δ(j),α (j),α (j),d (j)を共通して利用するものとする。
【0049】
また、以下で述べる実施例では、チャネル番号n=0以外の信号については、非線形ステップの計算を実施せず、線形ステップにおける計算のみを実施する。非線形ステップにおける計算を無視した場合、XPMはおろかSPMも補正されないことになるが、チャネル番号n=0に対する、それ以外のチャネルによるXPMの影響を計算する上では、それ以外のチャネルの波形に生じる非線形波形歪みは無視することができることを確認済みである。
【0050】
以上に記した方法により、XPMを含めた非線形波形歪みを補正するための伝送路パラメータを勾配降下法によって最適化し、補正効果を最大化することができる。
【0051】
以下では、最適化するパラメータを取捨選択したうえで、さらに近似を適用することで計算量を削減する手法を示す。
【0052】
式(23)では伝送路の3次の群速度分散に対する勾配を計算する方法を示しているが、シンボルレートが数十Gbaud以下の信号に対しては、3次の群速度分散が単一チャネルの波形に及ぼす影響は無視できるほど小さいので、ある初期値に設定した後は学習を行わずに固定しておくか、あるいは3次の群速度分散効果そのものを無視することもできる。ここでは3次の群速度分散について、初期値を設定した後は学習を行わずに固定するものとする。ただし3次の群速度分散に起因して、チャネル間のウォークオフが、チャネル間の周波数差に対して2次で変化することになるが、この効果はウォークオフT (j)や、ウォークオフパラメータd (j)の初期値を設定する際に考慮することにする。
【0053】
式(32)及び(33)では、各チャネルの損失係数に関する勾配を計算する方法を示しているが、損失係数は容易に測定できるパラメータであるため、勾配を計算することなく初期値から固定したままとする。
【0054】
次に、勾配の伝播の仕方に制限を加える。図4A及び図4Bは、チャネル番号がn=0及び1である、2チャネルの偏波多重信号の入力波形xp,n(p=1,2;n=0,1)に対して、m=2の場合における線形ステップ及び非線形ステップの経路を示すものである。ここで、線形ステップL1,0 (0)で用いられる2次の群速度分散D (0)についての勾配が後段のステップに波及する経路について考える。
【0055】
線形ステップL1,0 (0)の出力波形y1,0 (0)は、非線形ステップNp,n (1)(p=1,2;n=0,1)に送られる。それぞれの非線形ステップでは、式(26)乃至(28)より出力波形zp,n (1)が計算されるとともに、式(35)及び(36)よりε=D (0)の場合における勾配∂zp,n (1)/∂εが計算されて、さらに後のステップに送られる。D (0)に対する勾配は、線形ステップLp,n (1)(p=1,2;n=0,1)を経て、非線形ステップN1,0 (2)に伝播する。
【0056】
図4Aの実線は、D (0)に対する勾配の伝播経路を示すものである。しかしながら、Lp,0 (0)(p=1,2)で共通して用いられるD (0)の値が変化した場合に、yp,0 (0)がXPMを通じてチャネル番号n=1の波形に影響し、さらにXPMを通じて非線形ステップNp,0 (2)でチャネル番号n=0の信号波形zp,0 (2)に及ぶ影響は、極めて小さいものであって、無視することが可能である。このように考えると、あるパラメータεによる勾配の伝播経路をチャネル内に限定することができ、図4Bに示した実線のような経路となる。このとき、式(36)においてH (j)(ω)を含む項を無視することになり、結果として次式のような形となる。
【数37】
【0057】
以上に示した近似による手法をまとめると、線形ステップでは、波形の発展として式(21)、そのステップで用いられる2次の群速度分散に関する勾配の計算式として式(22)、そして前のステップより伝播してきた任意のパラメータεに関する勾配の更新式として式(24)を用いて計算できる。また非線形ステップでは、波形の発展として式(26)乃至(28)、そのステップで用いられるパラメータg(j),δ(j),d (j)に関する勾配の計算式として式(30)、(31)及び(34)、そして前のステップより送られてきた任意のパラメータεに関する勾配の更新式として、式(35)及び(37)を用いることができる。
【0058】
図5Aに、パラメータ最適化処理において、各伝送路パラメータによる波形の勾配を計算する処理のフローを示す。線形ステップL(j)においては、式(21)でzp,n (j)からyp,n (j)への波形の発展がなされるが、式(22)及び(23)による演算によって、L(j)で用いられる各伝送パラメータ(D (j)及びD (j))に関する波形の勾配(∂yp,n (j)/∂D (j)及び∂yp,n (j)/∂D (j))が計算される。また式(24)による演算により、L(j)より前のステップに含まれる全ての伝送パラメータεに関する波形の勾配が計算され、∂zp,n (j)/∂εが∂yp,n (j)/∂εに更新される。∂yp,n (j)/∂D (j)及び∂yp,n (j)/∂D (j)は、∂yp,n (j)/∂εに含められ、まとめて次のステップであるN(j+1)に送られる。
【0059】
次に、非線形ステップN(j+1)においては、式(26)乃至(28)でyp,n (j)からzp,n (j+1)への波形の発展がなされるが、式(30)乃至(34)による演算によって、N(j+1)で用いられる各伝送パラメータ(g(j+1),δ(j+1),α (j+1),α (j+1),d (j+1))に関する、波形の勾配(∂zp,n (j+1)/∂g(j+1),∂zp,n (j+1)/∂δ(j+1),∂zp,n (j+1)/∂α (j+1),∂zp,n (j+1)/∂α (j+1),∂zp,n (j+1)/∂d (j+1))が計算される。また、式(35)及び(37)による演算により、N(j+1)より前のステップに含まれる全ての伝送パラメータεに関する波形の勾配が計算され、∂yp,n (j)/∂εが∂zp,n (j+1)/∂εに更新される。なお、式(37)の代わりに式(36)を用いても良い。∂zp,n (j+1)/∂g(j+1)、∂zp,n (j+1)/∂δ(j+1)、∂zp,n (j+1)/∂α (j+1)、∂zp,n (j+1)/∂α (j+1)、∂zp,n (j+1)/∂d (j+1)は、∂zp,n (j+1)/∂εに含められ、まとめて次のステップであるL(j+1)に送られる。
【0060】
このような計算をステップ毎に繰り返すことで、伝送路中のすべてのパラメータθに関する、最終的な出力yの勾配である、∂y/∂θが計算されるのである。
【0061】
さらに、図5Bに、パラメータ最適化処理において、各伝送路パラメータを更新する処理のフローを示す。すなわち、出力波形yと各伝送パラメータθによる勾配∂y/∂θと所望信号dとを用いて、i番目のステップにおける伝送路パラメータθを、式(20)を用いて更新するものである。図5Bに示すように、線形ステップにおいては、伝送路パラメータD及びDが更新され、非線形ステップにおいては、伝送路パラメータθとしてg、δ、α、α、dが更新される。
【0062】
なお、光ファイバの損失係数α及びαの値や、偏波間相互位相変調に対応する係数δの値が1であることが判明している場合は、これらの伝送路パラメータについての学習を省略しても良い。また、チャネル内の3次分散効果が無視できる場合には、Dの学習を省略しても良い。
【0063】
[実施の形態に係るシステム構成]
図5Cは、本実施の形態に係る光伝送システムの模式図を示している。送信機によって生成されたWDM信号は、光ファイバと光増幅器から構成される伝送路を伝搬し、受信機に到達する。受信機では、アレイ導波路格子などの分波装置を用いて、WDM信号をチャネル毎に分波する。分波された各チャネルの光信号波形は、コヒーレント受信機によって電気信号波形に変換された後、信号処理のためのデジタルシグナルプロセッサ(DSP:Digital Signal Processor)に入力される。DSPでは、電気信号波形がアナログデジタル(AD:Analog-to-Digital)変換によって数値データとなり、最終的に受信ビット列に変換して出力するための各種復調処理のための計算が実施される。復調処理としては、時間的なサンプリングのタイミング制御、サンプリングレートの変換、クロック同期、フィルタリング、偏波回転、搬送波再生、適応等化器などの線形波形歪み補正、本実施の形態に係る非線形波形歪み補正、シンボル判定、誤り訂正処理などが含まれる。なお、DSPには、上で述べたパラメータ最適化処理を実行する機能を搭載することが可能であるが、パラメータ最適化処理をDSPでは実施せずに外部の計算機で実施し、最適化されたパラメータをダウンロードして本実施の形態に係る非線形波形歪み補正に適用することも可能である。AD変換機能については、DSPから分離して、DSPとコヒーレント受信機の間に設置してもよい。従来の光伝送システムでは、DSPはチャネル毎に独立して設けられており、DSP同士が連係して動作することは基本的にないが、本実施の形態では、図5Cのように、単一のプロセッサで複数チャネルの波形データを一括して扱うか、独立した複数のプロセッサが相互にデータをやり取りすることで、上で述べたXPMによる位相シフトの計算を行う。
【0064】
図5Dに、DSPによって実行され、且つ本実施の形態に関係する処理フローを示す。まず、波形形状が既知である信号を伝送し、受信機でDSPが復調した受信信号波形をもとに、DSP内もしくは外部の計算機において伝送路パラメータを最適化するパラメータ最適化処理を実行する(工程S1)。これは、図5A及び図5Bに示したようなフローに従った演算を含む。パラメータ最適化処理は、DSP内に構成されるパラメータ最適化部もしくは外部の計算機により実行される。次に、DSP内に構成される波形歪み補正部は、最適化された伝送路パラメータを用いた逆伝搬処理を実行する(工程S3)。この逆伝搬処理では、図2及び図3で述べたように、波長分割多重伝送時における複数のチャネルの各々について、線形ステップと非線形ステップのそれぞれが最適化された伝送路パラメータを持ち、これらの計算を順番に行うことで、当該チャネル内で生ずる自己位相変調に起因する波形歪みと、当該チャネル以外のチャネルとの間で生じる相互位相変調に起因する波形歪みとを補正し、送信時の波形を推定する。この逆伝搬処理は、DSPにより実行される。このような処理を行うことで、計算量を抑えつつ、精度を向上させることが出来るようになる。
【0065】
[実施例]
数値計算を用いた光伝送シミュレーションに基づく具体的な事例を基に、本実施の形態において示した手法による、WDM光信号の非線形波形歪み補正の効果について説明する。
検討対象とする光信号は、シンボルレートが32Gbaudの偏波多重(DP:Dual-Polarization)64値直交振幅変調(QAM:Quadrature Amplitude Modulation)信号を、周波数間隔50GHzで9チャネル波長分割多重した信号であり、これにランダムな雑音を付与して、SN比を25dBに設定する。なお送信信号のスペクトルは、ロールオフ係数が0.05のルートナイキストフィルタが適用されたものとする。9チャネルのWDM信号について、周波数が低い側からチャネル番号を-4から+4まで割り振り、中心のチャネル番号0の信号品質に注目し、非線形波形歪み補正の動作を検証する。
【0066】
1スパンが長さ80kmの標準シングルモード光ファイバ(SSMF:Standard Single-Mode Fiber)と、その伝搬損失を増幅する光増幅器で構成され、4スパンから10スパンまでの伝送路を考え、これらの伝送路を用いて光信号を伝送する計算を行う。理想的な伝送路では、全スパンのSSMFが同じパラメータを持つものとして、2次および3次の群速度分散値をそれぞれ16.641ps/nm/kmおよび0.06ps/nm/kmとし、非線形係数を1.3W-1km-1、そして伝搬損失係数を0.192dB/kmとおく。一方、現実の伝送路では、様々なパラメータがスパンごと、あるいは地点ごとに異なっており、また光信号のパワーも理想的な状態から揺らいでおり、結果的に群速度分散の効果や非線形効果の大きさがばらつくことになる。この状況を考慮するために、理想的な伝送路とは別に、図6のように2次の群速度分散値と非線形係数をステップごとに変動させた伝送路を考え、以下ではこの伝送路を現実的な伝送路と呼ぶことにする。なお、図6において、灰色実線は、2次の群速度分散値(a)と非線形係数(b)のそれぞれについて、10スパンすべてのパラメータに対する平均値を示している。ただし、4乃至8スパンまでの短い伝送路を考える場合は、存在するスパン内での平均値を考えるものとする。
【0067】
光伝送シミュレーションを実施する数値計算では、時間軸でシンボルレートの32倍にサンプリングした波形データを扱う。スパン数を4,6,8,10のいずれかに設定し、各スパンで同じパラメータの理想的な伝送路又は図6に示したパラメータを有する伝送路において、1スパンあたりのステップ数を800とするスプリットステップフーリエ法を用いて、式(1)の非線形シュレディンガー方程式に従って光信号が伝送路を伝搬する様子を計算し、出力波形データを得る。式(1)で偏波間相互位相変調に対応する係数δの値を1と設定し、その他のパラメータについては、伝送路を構成する光ファイバのパラメータを規格化して得られた値を用いる。また光増幅器の雑音指数を6dBとし、利得と雑音指数によって定められる雑音電力を持つランダムなガウス分布雑音を、自然放出光雑音として増幅の際に信号に付加する。各スパンで伝搬開始時の光信号パワーを「スパン入射パワー」と呼び、いくつかのスパン入射パワーに対して伝送シミュレーションを実施する。スパン入射パワーが小さい場合は、顕著な非線形波形歪みは生じないものの、雑音によるSN比劣化が顕著になり、信号品質が低下する。スパン入射パワーを大きくしていくと、SN比は向上していくものの、非線形波形歪みが顕著になっていき、あるスパン入射パワーにおいて信号品質がピーク値を取った後、さらに大きなスパン入射パワーに対しては信号品質が劣化する。
【0068】
検討する伝送スパン数ならびに入射パワーそれぞれの条件に対して、シンボル数が16384の送信信号データをランダムビットパターンより生成し、伝送シミュレーションを実施し、出力波形を保存する。伝送路の入力波形と出力波形の組をデータセットとして、合計200のデータセットを用い、上記数式を用いた勾配降下法によって、非線形波形歪みの補正が最適化されるように、逆伝搬計算のパラメータを学習する。本実施例に係る、パラメータの学習を伴う逆伝搬計算においては、1スパンあたりのステップ数を1に設定する。これに対して、学習を伴わない逆伝搬計算においては、1スパンあたりのステップ数が1の場合と2の場合の両方を考え、学習を行わない場合との効果の比較を行う。
【0069】
各パラメータの学習にあたっては勾配降下法を用いるが、パラメータ更新の具体的な実装方法として、非特許文献9で提案されているAdaBeliefという手法を用いる。なお、AdaBelief以外の手法を用いても学習は可能である。AdaBeliefの更新式は、μ=0,ν=0とおいて以下のように得られる。
【数38】
【0070】
但し、∇Jはi回目の更新時におけるパラメータθに対する誤差関数の勾配であり、またb=0.9,b=0.999,e=10-8は定数である。式(38)のηは学習係数であり、パラメータ毎に適した値を設定する。本実施例においては、2次の分散値に対応するパラメータDに対する学習係数をη=1.0とおき、非線形係数に対応するパラメータgに対してはη=2.0×10-6、偏波間相互位相変調係数に対応するパラメータδに対してはη=2.0×10-5、そしてウォークオフに対応するパラメータdに対してはη=2.0×10-4を用い、式(38)による更新を3万回繰り返して学習を行う。なおデータセットの個数は200であるので、200回の更新ごとにデータセットの並び順をランダムに入れ替え、繰り返し学習を行う。なお、この操作によって過学習が発生することはない。また、信号の変調フォーマットやチャネル数などの条件を変更して同様の学習を実施する際に、必要に応じてパラメータが収束するまで3万回以上の学習を実施することもあり得る。式(20)のy及びdとしては、データセットを構成する16384シンボルのすべてを用いる。学習後の検証作業には、異なるビットパターンで、シンボル数が262144である別の波形を用い、非線形波形歪み補正後の信号品質を評価する。
【0071】
まず、パラメータが全スパンで同じ値を持つ理想的な伝送路において、非線形波形歪み補正の結果を示す。図7A乃至図7Eは、6スパンの理想的な伝送路で、スパン入射パワーが+2dBm/chの場合のデータセットに対して、XPMも考慮した逆伝搬計算において、パラメータの更新を3万回繰り返した際の、各種数値の変動を示している。図7Aでは、パラメータ更新の繰り返し回数に対して、線形ステップL(j)(0≦j≦6)における分散パラメータD (j)の変動の様子を示している。j=0および6の線形ステップでは、距離が他のステップの半分であるため、D (j)の初期値も半分である。学習を進めていくと、j=1,2,3,4,5のパラメータは同じ値に収束し、j=0のパラメータも近い値に収束する。これに対して、j=6の場合、すなわち最も送信機に近い線形ステップのみ、他とは異なる値に収束している。これらの結果は、いま検討の対象としている理想的な伝送路においてパラメータが全スパンで等しいという事実と必ずしも一致しないが、学習による性能の最適化が行われた結果として得られたものであり、後述するように学習を行わない場合よりも性能が向上している原因のひとつになっていると考えられる。
【0072】
図7Bでは、非線形ステップN(j)(1≦j≦6)の非線形パラメータg(j)の変動の様子を示している。j=6の場合、すなわち最も送信機に近い非線形ステップのみ他とはやや異なる値に収束しているが、その他のステップではほぼ同じ値に収束している。図7C及び図7Dでは、それぞれウォークオフパラメータd-4 (j)およびd-1 (j)の変化の様子を示している。すべてのステップにおける値がほぼ重なっており、また学習によるパラメータの変化もほぼ見られない。理想的な伝送路では、学習開始時に各スパンに共通な正しいパラメータを初期値として与えているため、学習によってウォークオフを調整する必要がなかったことによるものと考えられる。図には記載していないが、その他のウォークオフパラメータもd-4 (j)及びd-1 (j)と同様に収束している。
【0073】
図7Eでは、受信信号波形と、所望信号、すなわち送信信号波形から計算されるMSEの値をプロットしている。学習開始直後からMSEが急激に減少し、繰り返し回数が1000程度でほぼ収束し、その後は安定に推移していることがわかる。実際の伝送システムで本手法を用いる際には、MSEが最低値付近で振動するようになったときに、各種パラメータが収束していなくても更新を終了し、学習後の定常的な波形補正を開始してもよい。
【0074】
図8A及び図8Bは、伝送スパン数が4,6,8,10それぞれの場合で、逆伝搬計算による非線形波形歪み補正を行った場合と行わない場合について、各スパン入射パワーに対するQ値の計算結果を示している。ただし逆伝搬計算の条件としては、1step/spanおよび2steps/spanでパラメータを学習しない逆伝搬計算を行った場合と、1step/spanで本実施の形態に係るパラメータの学習を行ってから逆伝搬計算を実施した場合を考えていて、いずれもXPMによる非線形波形歪みを補正せずに、SPMによる歪みのみを補正したときの結果を示している。またQ値は、ビット誤り率(BER:Bit Error Rate)の値から以下の式に従って変換したものである。
【数39】
【0075】
図8A及び図8Bの結果は全体として、入射パワーが低い領域ではSN比の劣化が原因でQ値が劣化しており、逆に入射パワーが大きい領域では、非線形波形歪みによってQ値が劣化している。学習しない場合の逆伝搬計算の結果に注目すると、1step/spanの場合は補正の効果がわずかしかなく、2steps/spanではそれなりの補正効果が得られている。また本実施の形態に係る方法でパラメータを学習した逆伝搬計算の結果では、スパンあたりのステップ数が1であるにも関わらず、学習しない場合の2steps/spanの結果をやや上回る信号品質が得られている。このことは、学習を実施することで、波形補正に真に必要なパラメータが獲得でき、本質的には2steps/spanの計算が不要である可能性を示唆している。実際に、結果は記載しないが、2steps/spanで本実施の形態に係る方法でパラメータの学習を行うと、MSEが下がりきった条件における非線形波形歪み補正の性能は、1step/spanの場合と変わらないものが得られる。
【0076】
非特許文献8で報告されている、物理現象特化型ニューラルネットワークによる非線形波形歪み補正の場合についても、12スパンの伝送路に対して、1step/spanの結果が2steps/spanの結果とほぼ変わらない一方で、0.5step/spanの構成、すなわちステップ数が6の場合でも、性能は劣化しつつもそれなりの補正効果が得られたという結果が報告されている。このことから、本実施の形態に係る手法を用いた場合は、2steps/span未満のステップ数で十分な補正効果が得られ、さらに1step/span未満の構成でもそれなりの補正効果が得られるものと考えられる。
【0077】
図9A及び図9Bは、図8A及び図8Bと同様の結果であるが、SPMに加えて、XPMも考慮に入れた逆伝搬計算を実施した場合の結果を示している。XPMによる歪みの補正を行うことで信号品質が向上しており、その中でも、本実施の形態に係るパラメータの学習を実施した後の、1step/spanの逆伝搬計算によって波形補正された信号品質が、学習を行わない2steps/spanの逆伝搬計算の結果を上回り、この中では最良である。また非特許文献4の手法と比較すると、本実施の形態に係る手法は1step/spanで十分な効果が得られており、現実的な計算量で実現することが可能である。
【0078】
図10は、図8A及び図8B並びに図9A及び図9Bに示した非線形波形歪み補正の結果から、いくつかの条件で非線形波形歪み補正をする場合と、補正を行わない場合について、それぞれ最適な入射パワーの下での、スパン数に対するQ値の結果を示したものである。誤りなくデータを受信できるQ値の閾値を7.5dBに設定すると、補正しない場合の最大伝送距離は6スパンであるのに対して、本実施の形態に係る方式である、SPMとXPMの両方を考慮してパラメータの学習を実施する手法を用いることで、10スパン以上の伝送が可能となり、大幅に伝送距離を延伸可能であることがわかる。
【0079】
次に、図6にパラメータを示した現実的な伝送路についての結果を図11A乃至図14に示す。図11A乃至図11Eは、6スパンの現実的な伝送路で、スパン入射パワーが+2dBm/chの場合のデータセットに対して、XPMも考慮した逆伝搬計算において、パラメータの更新を3万回繰り返した際の、各種数値の変動を示している。ただし、学習を開始するにあたっての伝送路パラメータの初期値としては、図6に示した現実的な伝送路の真のパラメータが不明であるという状況を想定し、6スパンの平均値を与えている。図11Aでは2次の群速度分散パラメータD (j)図11Bでは非線形パラメータg(j)の変化の様子を示しており、それぞれスパンごとに異なる値に収束している。この結果は、元の伝送路のパラメータがスパン毎に変化している事実に定性的に一致するが、得られた値は非線形波形歪み補正を最大化する値であって、必ずしも図6で与えた伝送路パラメータに一致するわけではない。図11C及び図11Dでは、それぞれウォークオフパラメータd-4 (j)及びd-1 (j)が、各スパンの異なる分散値に対応して異なる値に収束していることがわかる。図には記載していないが、その他のウォークオフパラメータもd-4 (j)及びd-1 (j)と同様に収束している。図11Eでは図7Eと同様に、学習の回数に対するMSEの値を示しているが、図7Eに示した理想的な伝送路の場合と比較して、図11Eの現実的な伝送路に対する結果では、繰り返し回数が約10000で収束している。図7Eに示した結果と同様に、この場合もMSEが最低値付近で振動するようになったときに、各種パラメータが収束していなくても更新を終了し、学習後の定常的な波形補正を開始してもよい。
【0080】
図12A及び図12Bでは、図8A及び図8Bと同様に、伝送スパン数が4,6,8,10それぞれの場合で、逆伝搬計算による非線形波形歪み補正を行った場合と行わない場合について、各スパン入射パワーに対するQ値の計算結果を示している。但し、逆伝搬計算の条件としては、1step/span及び2steps/spanでパラメータを学習しない逆伝搬計算を行った場合と、1step/spanで本実施の形態に係るパラメータの学習を行ってから逆伝搬計算を実施した場合で、いずれもXPMによる非線形波形歪みを補正せずに、SPMによる歪みのみを補正したときの結果を示している。また学習しない逆伝搬計算については、計算に用いるパラメータとして、図6に示した真の値を与えた場合と、その平均値を与えた場合との両方の結果を示している。理想的な伝送路について得られた図8A及び図8Bの結果と同じく、現実的な伝送路に対しても、本実施の形態に係るパラメータの学習を実施する逆伝搬計算によって波形補正された信号品質がこの中では最良であることがわかる。学習を行わない逆伝搬計算においては、伝送路パラメータの真の値を与えた場合と、平均値を与えた場合で結果に大きな差がなく、SPMのみを補正する状況においては、補正の性能は伝送路のパラメータに大きく依存していないことがわかる。
【0081】
図13A及び図13Bは、SPMだけでなくXPMも考慮した非線形波形歪み補正を実施した場合について、図12A及び図12Bと同様の結果を示している。現実的な伝送路においても、XPMによる歪みの補正を行うことで信号品質が向上しており、その中でも、本実施の形態に係るパラメータの学習を実施する、1step/spanの逆伝搬計算によって波形補正された信号品質が、学習を行わず、真の伝送路パラメータを与えた2steps/spanの逆伝搬計算の結果を上回り、この中では最良である。図13A及び図13Bの結果において注目すべき点は、学習を行わない逆伝搬計算において、伝送路のパラメータとして真の値の平均値を与えた場合の結果が、真の値を与えた場合の結果と比較して、著しく劣化していることである。これは、XPMを補正するにあたって、異なるチャネル間の時間的な位置関係を表すウォークオフの値を正しく与えなければ、XPMによる位相シフトが正しく計算できずに補正性能が劣化することが原因である。ゆえに、伝送路のパラメータがスパンごとに揺らいでおり、かつ正しい値が未知の状況においては、本実施の形態で示した手法による、伝送路パラメータを学習することでウォークオフを最適値に設定し、効果的にXPMを補正できるという点が、極めて重要な意味を持つのである。
【0082】
図14図10と同様に、図12A及び図12B並びに図13A及び図13Bに示した非線形波形歪み補正の結果から、いくつかの条件で非線形波形歪み補正をする場合と、補正を行わない場合について、それぞれ最適な入射パワーの下での、スパン数に対するQ値の結果を示したものである。現実的な伝送路においても、理想的な伝送路の場合と同様の結果が得られており、本実施の形態に係るパラメータの学習を実施した後で逆伝搬計算を実施することで、伝送距離を大幅に延伸することが可能となる。
【0083】
上述のシミュレーション結果に加え、周回伝送実験によっても実施の形態の効果を検証した。図15は周回伝送実験系を示しており、以下ではこの系を用いた実験手順の詳細と、実験結果を示す。
【0084】
送信機(Tx:Transmitter)の構成として、波長可変光源より出力される波長の異なる11チャネルの連続光が、16×1偏波保持カプラで合波されてからリチウムニオブ酸(LN)偏波多重IQ変調器に入力され、変調器に印加される電気信号によって光信号波形に変調されて出力される。11チャネルの連続光が持つ周波数は、中心周波数を193.1THz(波長が1552.524nm)として、192.85THz乃至193.35THzまで50GHz間隔で設定されており、周波数の低い順からチャネル番号をn=-5,-4,・・・,4,5と定める。変調器に印加される4チャネルの電気信号は、サンプリングレートが64GSample/sの任意波形発生器より生成されたものであり、各チャネルは偏波多重IQ変調信号のX偏波Iチャネル成分、X偏波Qチャネル成分、Y偏波Iチャネル成分、そしてY偏波Qチャネル成分に相当する。この4チャネル電気信号は、それぞれドライバアンプによって増幅され、変調器に印加される。変調器から出力された光信号は、シンボルレートが32Gbaudであり、ロールオフ係数が0.1のルートナイキスト波形を持つ、偏波多重QAM信号である。変調フォーマットとしては、単一偏波単一シンボル当たりのビット数が4bitである均一分布16QAM信号と、単一偏波単一シンボル当たりのビット数が5bitである確率的分布(PS:Probabilistically Shaping)64QAM信号を用いる。16QAMおよびPS-64QAMの各変調フォーマットについて、ランダムビットパターンより変調される、単一偏波あたり65536シンボルで構成される信号波形を4パターンずつ生成する。4パターンのうちの一つを選択すると、Txからはそのパターンの波形が繰り返し送信される。なお変調によって得られる11チャネルのWDM信号は、すべてのチャネルで同じ波形に変調されているが、群速度分散が存在する伝送路を長距離伝送することで、ウォークオフ(チャネル間の群遅延)が生じるため、長距離伝送後にランダムな波形間のXPMが生じることになる。
【0085】
Txで生成された11チャネルのWDM信号は、光増幅器によって光パワーが増幅され、可変光減衰器(VOA:Variable Optical Attenuator)によって光パワーが調整された後、帯域通過フィルタ(BPF:Band-Pass Filter)によって信号帯域外の光雑音が除去され、周回伝送動作を切り替えるスイッチである音響光学変調器(AOM:Acoustic Optical Modulator)に入力される。周回伝送路に対する信号の入出力は、3dBカプラを通じて行われる。周回伝送路は入力側から順に、光増幅器、BPF、VOA、長さが84.1kmのSSMF、光増幅器、BPF、VOA、長さが80.5kmのSSMF、光増幅器、アイソレータ(右向き矢印)、偏波スクランブラ(Pol. Scrambler)、そしてAOMで構成され、一周あたり2スパンのSSMFを含む。実験では伝送距離を6,8,10,12,14,16スパンのいずれかに設定して、それぞれの距離に対して信号を伝送し、非線形波形歪み補正の効果を検証する。なお長さが84.1kmのSSMFと、80.5kmのSSMFはやや異なる分散特性を持っており、測定の結果、周波数193.1THzにおける群速度分散値と分散スロープの値は、前者がそれぞれ17.14ps/nm/kmおよび0.062ps/nm/km、後者がそれぞれ16.55ps/nm/kmおよび0.058ps/nm/kmであり、周回伝送路一周の平均特性としては群速度分散値が16.85ps/nm/km、分散スロープが0.060ps/nm/kmと見積もられた。
【0086】
周回伝送路より出力された信号は、通過帯域が50GHzのBPFによって11チャネルのうちのいずれか1チャネルのみが切り出され、光増幅器で増幅された後、受信機(Rx:Receiver)に入力される。Rxは、電気帯域が33GHzで80GSample/sの4チャネルリアルタイムオシロスコープと、局所発振光源(LO:Local Oscillator)および光フロントエンドからなるデジタルコヒーレント受信機であり、オシロスコープで取得したリアルタイム波形をオフラインデジタル信号処理によって復調した後、非線形波形歪み補正のための信号処理をやはりオフラインで実施する。ただし実験では、チャネル番号がn=0である中心のチャネルの信号品質にのみ着目し、これを最大化するように、実施の形態に係る非線形波形歪み補正のための学習を実施して、補正後の信号品質を評価する。
【0087】
WDM信号を受信した後に非線形波形歪み補正のための逆伝搬計算をオフラインで行うために、全11チャネルの波形をチャネルごとに受信する。逆伝搬計算を実施せずに、信号の品質評価まで行う通常の復調処理としては、分散補償、マッチドフィルタとして送信時に適用したものと同じルートナイキストフィルタの適用、偏波回転および偏波多重成分の分離、2サンプル/シンボルへのリサンプリング、リタイミング、搬送波周波数推定および補償、搬送波位相再生および3タップのフィードフォワード型線形適応等化処理、そしてシンボル判定およびビットパターンの取得を行う。ここで、3タップの適応等化処理は、偏波多重信号に対応したバタフライ型2×2MIMO処理となっていて、伝送路の複屈折やXPMなどに起因して発生する偏波クロストークを補償するうえで有効である。一方で、このように復調した信号波形は、ルートナイキストフィルタの適用によって、受信時の波形からは大きく変化しており、そのまま逆伝搬計算を適用することはできない。そこで、通常の復調処理の中で分散補償を適用後の波形に対して、ルートナイキストフィルタを適用せずに、以降の復調過程で実施された処理を同様に行って、受信直後の波形をできるだけ忠実に再現する。
【0088】
ところで、本来であれば、複数のトランシーバを用いて全チャネルの光信号を同時に受信し、すべてのチャネルの波形を使用して、それらを復調することなしに、本実施の形態に係る非線形波形歪み補正のための逆伝搬計算を行って、最後に復調を実施すべきである。しかしながら、ここで実施している実験では、1台のRxを用いて各チャネルを順に受信して復調していくため、測定された全チャネルの波形は、チャネル間の同期がとれたものではない。特に、長距離の光ファイバを伝送後のWDM信号には、群速度分散の効果によってチャネル内の線形波形歪みに加えて、チャネル間に群遅延(ウォークオフ)が生じており、逆伝搬計算を行う際には、受信時の正確な群遅延量を保ったまま計算を開始する必要があるが、非同期に受信した波形を復調せずにそのまま逆伝搬計算すると、その条件が満たされない。そこで、いったん全チャネルを独立に受信して、分散補償を含めた復調を実施し、得られた波形から既知のパイロットシンボルを検出し、全チャネルのタイミングを同期させてから、補償した群速度分散値を再度付与することで各チャネルにウォークオフを与え、一括受信時に得られるであろうWDM信号波形を再現し、逆伝搬計算を開始するという手順を採る。
【0089】
実験では、異なる伝送スパン数および入射パワーの各条件において、各変調フォーマットの信号をそれぞれ伝送、受信、且つ復調し、全チャネルに共通する送信波形と、上に述べた全チャネル一括受信波形を組み合わせて、データセットを生成する。各変調フォーマットについて、異なる4つの波形パターンに対応して4つのデータセットが生成される。なお逆伝搬計算を実施中に発生するウォークオフを正しく処理するために、受信時には送信波形の一周期を構成する65536シンボルよりも十分に多くのシンボルが含まれるように測定する。チャネル番号がn=0である中心の信号と、チャネル番号がn=±5である端のチャネルは周波数差が250GHzであり、最大伝送スパン数が16であることから、ウォークオフの最大値は約43500psと見積もられる。このウォークオフ値は、32Gbaud信号に対しては約1400シンボル分に相当するため、これより多くのシンボル数を含む条件で測定すれば、有限の時間幅を持つデータセットを用いて逆伝搬させる際にウォークオフの影響を正しく計算できる。そのため、一周期が65536シンボルである波形に対して、時間軸の両端にそれぞれ5000シンボルずつ付加した波形をもってデータセットを構成する。
【0090】
実験に先だって、シミュレーションに基づく事前の検討によって、以下の新たな事実を見出した。すなわち、一定の複雑さを持つ変調フォーマット(例えばDP-16QAM)の信号を用いて、一定値以上の大きな入射パワー(例えばチャネル当たりの入射パワーが+3dBm)について得られた波形に対してのみ伝送路パラメータの学習を行えば、そこで得られたパラメータは、入射パワーが学習の際に使用した値以下である任意の変調フォーマットの信号に対する非線形波形歪み補正に適用することが可能になるということである。この事実に基づいて、実験では、チャネル当たりの入射パワーが+3dBmであるDP-16QAM信号を伝送、受信、且つ復調してデータセットを構成し、逆伝搬計算に用いる伝送路パラメータの学習を行う。次に、チャネル当たりの入射パワーが-5dBm乃至+2dBmであるDP-PS-64QAM信号を伝送、受信、且つ復調してデータセットを構成し、先に得られた伝送路パラメータを用いた非線形波形歪み補正を実施して、信号品質の改善量を評価する。
【0091】
伝送路パラメータの学習に際しては、一回の学習ステップにおいて、DP-16QAM信号の4つのデータセットからいずれか一つをランダムで選び、逆伝搬計算を実施したうえで、65536シンボルの中の連続する1024シンボルをランダムで選んで、その振幅波形を式(20)の出力信号波形yとし、さらに対応する送信信号波形を所望信号dとして、誤差信号から各パラメータの勾配を計算することで、パラメータの更新を行う。このような学習を行うことで、限られた量のデータセットに対しても学習の過程がランダム化され、過学習を生じることなく学習を進めることが可能となる。なお学習に用いる勾配降下法のアルゴリズムとしては、上で述べたAdaBeliefを用いる。
【0092】
図16A乃至図16Gは、伝送スパン数が6の場合に、1step/spanの逆伝搬条件で、実施の形態に係るXPM補償を考慮した非線形波形歪み補正のための伝送路パラメータを学習するプロセスにおいて、各種パラメータが更新される様子を示している。また図17は、実験で用いた6スパン伝送路を構成する光ファイバの接続の様子と各スパンのファイバ長、そして逆伝搬計算における線形ステップL(j)(0≦j≦6)および非線形ステップN(j)(1≦j≦6)の計算順序を模式図として表したものである。図16A乃至図16Gの結果から、伝送路パラメータと信号品質は一定回数のパラメータ更新後に収束していることがわかる。図16D及び図16Eでは、それぞれウォークオフパラメータd(j) -5およびd(j) -1について、j=1,3,5の場合には初期値より小さいほぼ同じ値に収束し、j=2,4,6の場合は初期値より大きいほぼ同じ値に収束している。このことは、図15に示した長さ84.1kmのファイバと、長さ80.5kmのファイバがやや異なる分散特性を持つという事実を反映した結果である。つまり、非線形ステップN(j)(1≦j≦6)に含まれるウォークオフパラメータd(j) は、チャネル番号がnである信号の、中心チャネル(番号がn=0)の信号に対する、単位距離当たりの群遅延量に相当するパラメータであり、ファイバの分散スロープ値に比例する値であるが、j=1,3,5の場合は分散スロープ値の小さい長さ80.5kmのファイバのパラメータを、j=2,4,6の場合は分散スロープ値の大きい長さ84.1kmのファイバのパラメータをそれぞれ正しく学習できたことを意味している。このように、実験で用いた現実の環境においても、実施の形態で提案する学習方法によって、非線形波形歪み補正に有効なパラメータを正しく学習できていることが示唆される。
【0093】
学習が完了し、各伝送スパン数に対して、非線形波形歪み補正を実施する伝送路パラメータが得られた。このパラメータにもとづき、チャネル当たりの入射パワー範囲が-4dBmから+2dBmの範囲にある11チャネルPS-64QAM信号に対する非線形波形歪み補正の効果を検証した。図18A乃至図18C及び図19A乃至図19Cは、図8A図8B図9A及び図9Bと同様に、各伝送スパン数において、チャネル当たりの入射パワーに対する信号品質をプロットしたものである。前述のシミュレーション結果と同様に、実施の形態に係る非線形波形歪み補正の方法、すなわちチャネル内に生じるSPMに加えて、チャネル間に生ずるXPMによって発生する非線形シフトも考慮し、学習によるパラメータの最適化を行った1step/spanの逆伝搬計算を実施したときの信号品質が最良であることがわかる。図20図10と同様に、伝送スパン数に対する信号品質の結果を、非線形波形歪み補正の有無あるいは種別ごとにプロットしたもので、やはりシミュレーション結果と同様の実験結果が得られている。以上のように、実験結果においても、実施の形態の効果が得られていることが明らかになった。
【0094】
以下では、実施の形態に係る非線形波形歪み補正を実施する場合に要する計算量と、従来技術を用いた場合に要する計算量との比較を行い、一定のチャネル数以下という条件においては、実施の形態に係る手法に要する計算量が従来手法に要する計算量と同程度であることを示す。なお、実施の形態に係る非線形波形歪み補正とは、SPMとXPMによる歪みの両方を考慮し、1step/spanで逆伝搬計算を行う上で、勾配降下法を用いて伝送路パラメータの最適値を学習したうえで、逆伝搬計算によって波形補正するものであるが、ここでは、学習が終了して最適化されたパラメータを固定して逆伝搬計算する場合の計算量に注目する。このときの計算量は、1step/spanでXPMを考慮し、学習を行わない逆伝搬計算の場合と同じである。また従来技術とは、SPMによる歪みの補正のみを考慮し、XPMによる歪みの補正を実施せず、2steps/spanで逆伝搬計算を行うものとする。計算量を導出する際の前提として、入力波形とは無関係に固定することが可能な数値パラメータについては、事前に計算を行ったうえでルックアップテーブル(LUT:Look-Up Table)に結果を保存し、異なる波形入力のたびに読み出して使用することを想定し、それ自体の計算に必要な演算回数についてはこれを考慮しないものとする。
【0095】
スパン数をS、データ長をN、そしてXPM補正の計算で考慮するチャネル数をCとおき、チャネルあたり、そして偏波あたりの計算回数を求める。DSPの計算負荷としては、積演算が主たるものであるため、その回数を求める。なお複素数どうしの積a×b=Re[a]Re[b]-Im[a]Im[b]+i(Re[a]Im[b]+Re[b]Im[a])に要する実数の積演算回数を4回として、実数の積演算回数の合計値を求める。また一般に、サイズがN=2である複素数信号に対するFFTを実施する際の複素数の積算回数はN(logN-2)/2であるから、実数の積算回数はこの4倍の2N(logN-2)である。
【0096】
まず線形ステップである式(6)に要する計算量を見積もる。A~は、Aの上に~が載った記号であるとして、A~p,n(0,ω)=FAp,n(0,t)を計算する際の実数の積算回数は2N(logN-2)である。exp(-αh/2+i(Dω+Dω-Tω))の値は入力波形に無関係であるからLUTに格納されているとして、これをA~p,n(0,ω)に積算する際の実数の積演算回数は4Nである。最後に逆FFTに要する演算を考慮すると、線形ステップ全体で実数の総積算回数は4N+2×2N(logN-2)=4N(logN-1)となる。
【0097】
続いて、非線形ステップである式(11)乃至(13)の計算に要する計算量を見積もる。実数である非線形位相シフト量φが得られたとして、eiφの計算に必要な実数の積算回数は、以下の4次のTaylor展開において、φ/2の計算に2N回、φの結果を再利用することで(φ)/24の計算に2N回、そしてφ×φ/6の計算に2N回必要であることから、合計6N回となる。
【数40】
【0098】
また複素数同士の積であるBp,0(0,t)×eiφを計算する際の実数の積算回数は4N回である。次に、式(12)でSPMによる位相シフトφSPM(t)を計算する際に、Pp,0(t)=Re[Bp,0(t)]+Im[Bp,0(t)]であるから、実数の積算回数は2N回であり、さらに係数gHをかけることを考慮すると、実数の積算回数は合計3N回である。さらに、別途供給される直交偏波成分の強度P3-p,0(t)に係数gδHをかける際にもN回必要なので、結局φSPM(t)を計算する際の実数の積算回数は4N回である。
【0099】
次に、式(13)からXPMによる位相シフトφXPM(t)を計算する際に必要な計算量を見積もる。強度波形Pp,0(t)は、φSPM(t)を計算する際にすでに得られており、これにFFTを適用してP~p,0(ω)を計算するための実数の積算回数は2N(logN-2)である。P~p,0(ω)は式(13)には現れないが、他のチャネルの非線形波形歪み補正を実施するために供給する必要があるため、計算量を考慮に入れる。一方で、式(13)に現れるn≠0のP~p,n(ω)は、別途計算されて供給されるものとし、必要な計算量を考慮しない。P~p,n(ω)およびP~3-p,n(ω)にそれぞれ実数の係数である2gおよびδgをかける際に2N回ずつ、合計4N回の実数の積演算が必要である。式(14)のH(h,ω)はLUTに保存されているものとし、2gP~p,n(ω)+δgP~3-p,n(ω)の結果にH(h,ω)をかける際に必要な実数の積算回数は4Nであるため、H(h,ω){2gP~p,n(ω)+δP~3-p,n(ω)}を得るために必要な実数の積算回数は合計で8Nである。この演算がn≠0であるC-1チャネル分必要なので、実数の積算回数は8N(C-1)である。最後に逆FFTを適用する際の計算量を考慮すると、φXPM(t)を計算する際に必要な計算量は、2N(logN-2)+8N(C-1)+2N(logN-2)=4N(logN+2C-4)である。以上より、一つの非線形ステップにおいてφXPM(t)を考慮しない場合の計算量は6N+4N+4N=14Nであり、XPM補償を実施するためにφXPM(t)を考慮した場合の計算量は、14N+4N(log2N+2C-4)となる。
【0100】
スパン数Sの伝送路において、スパンあたりのステップ数をMとする逆伝搬計算では、線形ステップの数が合計MS+1、非線形ステップの数が合計MSである。上に示した結果から、XPM補償を行わない場合の実数積の回数は、以下のとおりである。
4N(logN-1)×(MS+1)+14N×MS
XPM補償を行う場合の実数の回数は、以下のとおりである。
4N(logN-1)×(MS+1)+{14N+4N(logN+2C-4)}×MS
【0101】
図21は、スパン数をS=10、チャネル数をC=5,11,21としたときに、本実施の形態としてM=1step/spanでXPM補償ありとする場合と、従来方式としてM=2steps/spanでXPM補償なしとする場合についての実数の積算回数を、データ長Nに対してプロットしたものである。チャネル数が5のとき、本実施の形態は従来方式とほぼ同じ計算量で実施可能である。チャネル数が11のときは、本実施の形態が従来方式よりやや大きくなって1.6倍となるが、オーダーとしてほぼ同じ計算量にとどまり、前に9チャネルの場合のシミュレーション結果と11チャネルの場合の実験結果を示したように、大きな非線形波形歪み補正効果が得られる。チャネル数が21のときは本実施の形態に必要な計算量が従来方式の約2.4倍に上昇するが、依然として同じオーダーに留まると言える。
【0102】
以上、本発明の実施の形態について説明したが、本発明はこれらに限定されるものではない。例えば、確率的勾配降下法を用いる例を示したが、勾配降下法の各種バリエーションを適用可能である。また、上でも述べたように、SPM及びXPMの影響を全てのステップにおいて考慮するのではなく、一部のステップにのみ両方の影響を考慮したとしても、十分な効果が得られる場合がある。
【0103】
なお、DSPは、演算器とメモリを含んだものである。また、上で述べた処理を実行するのはDSPに限らず、他のプロセッサであっても良い。さらに、上で述べた処理をプロセッサに実行させるプログラムは、不揮発性メモリに記録され、実行時には、当該プログラムに含まれる命令がプロセッサに読み出されて実行される。さらに、専用の回路又は専用の回路とDSP等との組み合わせにて、上で述べた処理を実行するようにしても良い。
【0104】
以上述べた実施の形態をまとめると以下のようになる。
【0105】
本実施の形態における第1の側面に係る光波形歪み補正方法は、伝送路である光ファイバの非線形光学効果と群速度分散効果によって波形の形状が変化した光信号を受信して波形を数値化した後、非線形シュレディンガー方程式の線形項と非線形項を交互に演算することで送信時の波形を推定することで光波形の歪みを補正する光波形歪み補正方法であって、チャネル内で生じる自己位相変調に起因する波形歪みのみならず、波長分割多重伝送時にチャネル間で生じる相互位相変調に起因する波形歪みも考慮に入れて計算し、さらに計算に用いるパラメータを勾配降下法によって最適化し、伝送路1スパンあたりのステップ数を2未満としたことを特徴とするものである。計算負荷を抑制しつつ、精度を向上させることが出来る。
【0106】
上で述べた伝送路1スパンあたりのステップ数が、1以下であってもよい。このようにステップ数を減らしても、精度を向上させることが出来る。
【0107】
さらに、上で述べたパラメータが、二次の群速度分散、非線形係数及びウォークオフを含むようにしてもよい。
【0108】
本実施の形態における第2の側面に係る光波形歪み補正方法は、(A)伝送路において波形の形状が変化した光信号を受信して波形を数値化した後、非線形シュレディンガー方程式の線形項と非線形項とを交互に演算することで送信時の波形を推定する逆伝搬処理であって、波長分割多重伝送時における上記伝送路内の複数のチャネルの各々について、当該チャネル内で生ずる自己位相変調(SPM)に起因する波形歪みと、当該チャネル以外のチャネルとの間で生じる相互位相変調(XPM)に起因する波形歪みとを補正する逆伝搬処理において用いられ且つ相互位相変調に関連する第1のパラメータと、上記逆伝搬処理において用いられ且つ自己位相変調及び相互位相変調に関連する第2のパラメータとを、勾配降下法によって最適化するステップと、(B)最適化された第1及び第2のパラメータを用いて、上記逆伝搬処理を実行するステップとを含む。
【0109】
このように、第2のパラメータ(例えば、D、D、g、δ、α)だけではなく、第1のパラメータ(例えば、α、d)についても最適化すると共に、最適化された第1及び第2のパラメータを用いてSPM及びXPMに起因する波形歪みを補正する逆伝搬処理を実行することで、伝送路1スパンあたりのステップ数を減少させて計算負荷を抑えても、十分な計算精度を得ることが出来るようになる。
【0110】
なお、相互位相変調に起因する上記波形歪みを、伝搬距離に依存せず強度について初期波形が維持されるが、伝搬距離に比例した遅延が時間軸上で発生するという近似の下、補正を行うようにしても良い。このような近似により補正(補償とも呼ぶ)の計算負荷がより抑制できる。
【0111】
さらに、上記第2のパラメータは、群速度分散D及び非線形係数gを含み、上記第1のパラメータは、ウォークオフパラメータdを含むようにしても良い。最適化するパラメータを絞り込こめば、さらに計算負荷をさらに抑制できる。
図1
図2
図3
図4A
図4B
図5A
図5B
図5C
図5D
図6
図7A
図7B
図7C
図7D
図7E
図8A
図8B
図9A
図9B
図10
図11A
図11B
図11C
図11D
図11E
図12A
図12B
図13A
図13B
図14
図15
図16A
図16B
図16C
図16D
図16E
図16F
図16G
図17
図18A
図18B
図18C
図19A
図19B
図19C
図20
図21