IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 古河電気工業株式会社の特許一覧

<>
  • 特許-レーザ装置およびその制御方法 図1
  • 特許-レーザ装置およびその制御方法 図2
  • 特許-レーザ装置およびその制御方法 図3
  • 特許-レーザ装置およびその制御方法 図4
  • 特許-レーザ装置およびその制御方法 図5
  • 特許-レーザ装置およびその制御方法 図6
  • 特許-レーザ装置およびその制御方法 図7
  • 特許-レーザ装置およびその制御方法 図8
  • 特許-レーザ装置およびその制御方法 図9
  • 特許-レーザ装置およびその制御方法 図10
  • 特許-レーザ装置およびその制御方法 図11
  • 特許-レーザ装置およびその制御方法 図12
  • 特許-レーザ装置およびその制御方法 図13
  • 特許-レーザ装置およびその制御方法 図14
  • 特許-レーザ装置およびその制御方法 図15
  • 特許-レーザ装置およびその制御方法 図16
  • 特許-レーザ装置およびその制御方法 図17
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-07-05
(45)【発行日】2024-07-16
(54)【発明の名称】レーザ装置およびその制御方法
(51)【国際特許分類】
   H01S 5/0687 20060101AFI20240708BHJP
   H01S 5/125 20060101ALI20240708BHJP
【FI】
H01S5/0687
H01S5/125
【請求項の数】 9
(21)【出願番号】P 2020021241
(22)【出願日】2020-02-12
(65)【公開番号】P2021128970
(43)【公開日】2021-09-02
【審査請求日】2022-12-22
(73)【特許権者】
【識別番号】000005290
【氏名又は名称】古河電気工業株式会社
(74)【代理人】
【識別番号】110002147
【氏名又は名称】弁理士法人酒井国際特許事務所
(72)【発明者】
【氏名】石川 慶
(72)【発明者】
【氏名】征矢 直記
(72)【発明者】
【氏名】上村 和孝
(72)【発明者】
【氏名】三浦 準
【審査官】高椋 健司
(56)【参考文献】
【文献】特開2019-140304(JP,A)
【文献】特開2020-004808(JP,A)
【文献】特開2009-026996(JP,A)
【文献】特開平07-270841(JP,A)
【文献】特開2015-060961(JP,A)
【文献】特開平11-345030(JP,A)
【文献】米国特許出願公開第2005/0046868(US,A1)
【文献】中国特許出願公開第102751656(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01S 5/00- 5/50
G05B 1/00- 7/04
G05B 11/00-13/04
G05B 17/00-17/02
G05B 21/00-21/02
(57)【特許請求の範囲】
【請求項1】
供給される電流または電力である制御量に応じて出力するレーザ光の周波数が変わる光源部と、前記レーザ光の周波数に相当する周波数相当量に対応する周波数モニタ値を取得するモニタ部と、を備えるレーザ部と、
目標周波数に応じた設定値である周波数設定値に応じて前記制御量を前記光源部に供給することによって前記レーザ光の周波数を制御する制御部と、
前記制御量の設定値もしくはモニタ値、または前記周波数設定値もしくは前記周波数モニタ値に応じて、前記制御量を決定するための制御定数を複数記憶する記憶部と、
を備え、
前記制御定数は、フィードバック制御における比例定数、積分定数または微分定数であり、
前記レーザ部は、前記レーザ光の周波数を制御する際に用いる前記制御量の設定値またはモニタ値に対して前記レーザ光の周波数が非線形に変化する特性を有し、
前記制御部は、
前記制御量の設定値またはモニタ値に応じて、前記記憶部を参照して所定の制御定数を設定し、
前記制御量の設定値またはモニタ値の変化に対する前記レーザ光の周波数または周波数相当量の変化の傾きに関して、前記制御量の設定値またはモニタ値が取り得る互いに異なる範囲である第1範囲と第2範囲において、前記傾きの絶対値が小さい方の範囲における前記制御定数を、前記傾きの絶対値が大きい方の範囲における前記制御定数よりも大きく設定する
レーザ装置。
【請求項2】
供給される電流または電力である制御量に応じて出力するレーザ光の周波数が変わる光源部と、前記レーザ光の周波数に相当する周波数相当量に対応する周波数モニタ値を取得するモニタ部と、を備えるレーザ部と、
目標周波数に応じた設定値である周波数設定値に応じて前記制御量を前記光源部に供給することによって前記レーザ光の周波数を制御する制御部と、
前記制御量の設定値もしくはモニタ値、または前記周波数設定値もしくは前記周波数モニタ値に応じて、前記制御量を決定するための制御定数を複数記憶する記憶部と、
を備え、
前記制御定数は、フィードバック制御における比例定数、積分定数または微分定数であり、
前記レーザ部は、前記レーザ光の周波数を制御する際に用いる前記周波数設定値または前記周波数モニタ値に対して前記レーザ光の周波数が非線形に変化する特性を有し、
前記制御部は、
前記周波数設定値または前記周波数モニタ値に応じて、前記記憶部を参照して所定の制御定数を設定し、
前記周波数設定値または前記周波数モニタ値の変化に対する前記レーザ光の周波数または周波数相当量の変化の傾きに関して、前記周波数設定値または前記周波数モニタ値が取り得る互いに異なる範囲である第1範囲と第2範囲において、前記傾きの絶対値が小さい方の範囲における前記制御定数を、前記傾きの絶対値が大きい方の範囲における前記制御定数よりも大きく設定する
レーザ装置。
【請求項3】
前記モニタ部は、入力する光の周波数に対して透過率が周期的に変化する周波数フィルタと、前記レーザ光が前記周波数フィルタを透過した後のレーザ光の強度に対応する第2強度を検出する第2検出部とを備え、
前記周波数設定値または前記周波数モニタ値は、前記第2強度に相当する値を含む、
請求項1または2に記載のレーザ装置。
【請求項4】
前記モニタ部は、前記レーザ光の強度に対応するレーザ光の第1強度を検出する第1検出部と、を有し、
前記設定値または前記モニタ値は、前記第1強度に対する前記第2強度の比に相当する値である
請求項3に記載のレーザ装置。
【請求項5】
前記制御部は、前記レーザ光の周波数または周波数相当量を第1設定値から第2設定値に変化させる変化制御を行う際に、前記変化制御の開始時刻からの経過時間、または前記第1設定値から前記第2設定値までの到達割合に応じて前記制御定数の設定値を変える
請求項1~4のいずれか一つに記載のレーザ装置。
【請求項6】
前記制御部は、前記レーザ光の周波数または周波数相当量を第1設定値から第2設定値に変化させる変化制御を行う際に、前記第1設定値から前記第2設定値に変化させる間に前記傾きの変化の符号が変化する場合には、前記符号の変化する点を含む所定範囲において、前記所定範囲の範囲外における前記制御定数よりも小さい前記制御定数を設定する
請求項1~5のいずれか一つに記載のレーザ装置。
【請求項7】
前記光源部は、バーニア効果を利用して前記レーザ光の周波数が可変とされている
請求項1~6のいずれか一つに記載のレーザ装置。
【請求項8】
供給される電流または電力である制御量に応じて出力するレーザ光の周波数が変わる光源部と、前記レーザ光の周波数に相当する周波数相当量に対応する周波数モニタ値を取得するためのモニタ部と、を有するレーザ部を備えるレーザ装置の制御方法であって、
目標周波数に応じた設定値である周波数設定値に応じて前記制御量を前記レーザ部に供給することによって前記レーザ光の周波数を制御する制御ステップを含み、
前記光源部は、前記レーザ光の周波数を制御する際に用いる前記制御量の設定値またはモニタ値に対して前記レーザ光の周波数が非線形に変化する特性を有し、
前記制御ステップは、
前記制御量の設定値またはモニタ値に応じて、前記制御量を決定するための制御定数を複数記憶する記憶部を参照して所定の制御定数を設定する設定ステップを含み、
前記設定ステップにおいて、前記制御量の設定値またはモニタ値の変化に対する前記レーザ光の周波数または周波数相当量の変化の傾きに関して、前記制御量の設定値またはモニタ値が取り得る互いに異なる範囲である第1範囲と第2範囲において、前記傾きの絶対値が小さい方の範囲における前記制御定数を、前記傾きの絶対値が大きい方の範囲における前記制御定数よりも大きく設定し、
前記制御定数は、フィードバック制御における比例定数、積分定数または微分定数である、
レーザ装置の制御方法。
【請求項9】
供給される電流または電力である制御量に応じて出力するレーザ光の周波数が変わる光源部と、前記レーザ光の周波数に相当する周波数相当量に対応する周波数モニタ値を取得するためのモニタ部と、を有するレーザ部を備えるレーザ装置の制御方法であって、
目標周波数に応じた設定値である周波数設定値に応じて制御量を前記レーザ部に供給することによって前記レーザ光の周波数を制御する制御ステップを含み、
前記光源部は、前記レーザ光の周波数を制御する際に用いる前記周波数設定値または前記周波数モニタ値に対して前記レーザ光の周波数が非線形に変化する特性を有し、
前記制御ステップは、
前記周波数設定値または前記周波数モニタ値に応じて、前記制御量を決定するための制御定数を複数記憶する記憶部を参照して所定の制御定数を設定する設定ステップを含み、
前記制御定数は、フィードバック制御における比例定数、積分定数または微分定数であり、
前記設定ステップにおいて、前記周波数設定値または前記周波数モニタ値の変化に対する前記レーザ光の周波数または周波数相当量の変化の傾きに関して、前記周波数設定値または前記周波数モニタ値が取り得る互いに異なる範囲である第1範囲と第2範囲において、前記傾きの絶対値が小さい方の範囲における前記制御定数を、前記傾きの絶対値が大きい方の範囲における前記制御定数よりも大きく設定する
レーザ装置の制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、レーザ装置およびその制御方法に関する。
【背景技術】
【0002】
バーニア効果を利用して、出力するレーザ光の周波数を可変とするレーザ装置が知られている(たとえば、特許文献1参照)。特許文献1に記載のレーザ装置は、バーニア効果を利用してレーザ光の周波数を可変とする光源部と、当該光源部から出力されるレーザ光の周波数に対して周期的な透過特性を有する光フィルタと、当該光フィルタを透過したレーザ光の強度を取得する受光素子と、当該光源部の動作を制御する制御装置とを備える。
【0003】
制御装置は、受光素子が取得したレーザ光の強度に基づいて、当該レーザ光の周波数に対応するモニタ値を算出する。そして、制御装置は、モニタ値が制御目標値に収束するように、光源部の動作を制御する。制御装置は、制御量に対応する電力を光源部に供給することによってレーザ光の周波数を制御する。制御量は、制御のために調整される量であり、たとえば電流である。電力は、光源部においてレーザ光の周波数を可変とするために設けられたヒータに供給される。
【先行技術文献】
【特許文献】
【0004】
【文献】特許第6241931号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ここで、レーザ光の周波数の制御に関連する構成が、レーザ光の周波数を制御する際に用いる設定値またはモニタ値に対してレーザ光の周波数が非線形に変化する特性を有する場合、収束時間の増大、発振、またはオーバーシュートやアンダーシュートなどが発生し、周波数の制御が不安定になってしまう場合があった。
【0006】
本発明は、上記に鑑みてなされたものであって、レーザ光の周波数を制御する際に、より好適な制御を実現することができるレーザ装置およびその制御方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
上述した課題を解決し、目的を達成するために、本発明の一態様は、出力するレーザ光の周波数を可変とする光源部と、前記レーザ光の周波数に相当する周波数相当量に対応するモニタ値を取得するモニタ部と、を備えるレーザ部と、設定値に応じて制御量を前記光源部に供給することによって前記レーザ光の周波数を制御する制御部と、前記設定値または前記モニタ値に応じて、前記制御量を決定するための制御定数を複数記憶する記憶部と、を備え、前記レーザ部は、前記レーザ光の周波数を制御する際に用いる前記設定値または前記モニタ値に対して前記レーザ光の周波数が非線形に変化する特性を有し、前記制御部は、前記設定値または前記モニタ値に応じて、前記記憶部を参照して所定の制御定数を設定し、前記設定値または前記モニタ値の変化に対する前記レーザ光の周波数または周波数相当量の変化の傾きに関して、前記設定値または前記モニタ値が取り得る互いに異なる範囲である第1範囲と第2範囲において、前記傾きの絶対値が小さい方の範囲における前記制御定数を、前記傾きの絶対値が大きい方の範囲における前記制御定数よりも大きく設定するレーザ装置である。
【0008】
前記設定値または前記モニタ値は、前記制光源部に供給される電流値でもよい。
【0009】
前記モニタ部は、入力する光の周波数に対して透過率が周期的に変化する周波数フィルタと、前記レーザ光の強度に対応するレーザ光の第1強度を検出する第1検出部と、前記レーザ光が前記周波数フィルタを透過した後のレーザ光の強度に対応する第2強度を検出する第2検出部とを備え、前記設定値または前記モニタ値は、に相当する値を含んでもよい。
【0010】
前記モニタ部は、前記レーザ光の強度に対応するレーザ光の第1強度を検出する第1検出部と、を有し、前記設定値または前記モニタ値は、前記第1強度に対する前記第2強度の比に相当する値でもよい。
【0011】
前記制御部は、前記レーザ光の周波数または周波数相当量を第1設定値から第2設定値に変化させる変化制御を行う際に、前記変化制御の開始時刻からの経過時間、または前記第1設定値から前記第2設定値までの到達割合に応じて前記制御定数を設定してもよい。
【0012】
前記制御部は、前記レーザ光の周波数または周波数相当量を第1設定値から第2設定値に変化させる変化制御を行う際に、前記第1設定値から前記第2設定値に変化させる間に前記傾きの変化の符号が変化する場合には、前記符号の変化する点を含む所定範囲において、前記所定範囲の範囲外における前記制御定数よりも小さい前記制御定数を設定してもよい。
【0013】
前記制御定数は、比例制御における比例定数でもよい。
【0014】
前記光源部は、バーニア効果を利用して前記レーザ光の周波数が可変とされていてもよい。
【0015】
本発明の一態様は、出力するレーザ光の周波数を可変とする光源部と、前記レーザ光の周波数に相当する周波数相当量に対応するモニタ値を取得するためのモニタ部と、を有するレーザ部を備えるレーザ装置の制御方法であって、設定値に応じて制御量を前記レーザ部に供給することによって前記レーザ光の周波数を制御する制御ステップを含み、前記光源部は、前記レーザ光の周波数を制御する際に用いる前記設定値または前記モニタ値に対して前記レーザ光の周波数が非線形に変化する特性を有し、前記制御ステップは、前記設定値または前記モニタ値に応じて、前記制御量を決定するための制御定数を複数記憶する記憶部を参照して所定の制御定数を設定する設定ステップを含み、前記設定ステップにおいて、前記設定値または前記モニタ値の変化に対する前記レーザ光の周波数または周波数相当量の変化の傾きに関して、前記設定値または前記モニタ値が取り得る互いに異なる範囲である第1範囲と第2範囲において、前記傾きの絶対値が小さい方の範囲における前記制御定数を、前記傾きの絶対値が大きい方の範囲における前記制御定数よりも大きく設定するレーザ装置の制御方法である。
【発明の効果】
【0016】
本発明によれば、レーザ光の周波数を制御する際に、より好適な制御を実現することができるという効果を奏する。
【図面の簡単な説明】
【0017】
図1図1は、実施形態1に係るレーザ装置の構成を示す図である。
図2図2は、レーザ部の構成を示す図である。
図3図3は、レーザ光の周波数の調整の説明図である。
図4図4は、実施形態1に係る制御部の構成を示すブロック図である。
図5図5は、周波数とPD比との関係に基づく弁別カーブの説明図である。
図6図6は、Phase電流とレーザ光の周波数との関係の一例を示す図である。
図7図7は、Phase電流の範囲に対する比例定数の設定の一例を示す図である。
図8図8は、PD比の変化制御の開始時刻からの経過時間に対する比例定数の設定の一例を示す図である。
図9図9は、実施形態1に係る制御部による制御方法を示すフローチャートである。
図10図10は、実施形態2に係る制御部の構成を示すブロック図である。
図11図11は、実施形態2に係る制御部による制御方法を示すフローチャートである。
図12図12は、実施形態3に係る制御部の構成を示すブロック図である。
図13図13は、PD比の目標PD比への到達割合に対する比例定数の設定の一例を示す図である。
図14図14は、実施形態3に係る制御部による制御方法を示すフローチャートである。
図15図15は、実施形態4に係る制御部の構成を示すブロック図である。
図16図16は、PD比の変化制御の開始の設定値と目標の設定値との間に傾きの符号が変わる箇所が有る場合の一例の説明図である。
図17図17は、実施形態4に係る制御部による制御方法を示すフローチャートである。
【発明を実施するための形態】
【0018】
以下に、図面を参照して、本発明を実施するための形態(以下、実施形態)について説明する。なお、以下に説明する実施形態によって本発明が限定されるものではない。さらに、図面の記載において、同一の部分には適宜同一の符号を付している。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率等は、現実と異なる場合がある。さらに、図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。また、図中で適宜xyz座標軸を示し、これにより方向を説明する。
【0019】
(実施形態1)
〔レーザ装置の概略構成〕
図1は、実施形態1に係るレーザ装置の構成を示す図である。
レーザ装置1は、モジュール化されたレーザ部2と、当該レーザ部2の動作を制御する制御ステップを実行する制御部3と、を備える。
なお、図1では、レーザ部2と制御部3とを別体で構成しているが、一体にモジュール化しても構わない。
【0020】
〔光源部の構成〕
レーザ部2は、制御部3による制御の下、出力するレーザ光の周波数を複数の周波数のうちいずれか周波数のレーザ光に可変とし、当該周波数のレーザ光を出力する。このレーザ部2は、光源部4と、半導体光増幅器(Semiconductor Optical Amplifier:SOA)5と、平面光波回路(Planar Lightwave Circuit:PLC)6と、光検出部7と、温度センサ8と、温度調節器9と、を備える。平面光波回路6と光検出部7とはモニタ部10を構成する。
【0021】
図2は、レーザ部の構成を示す図である。
光源部4は、たとえばバーニア効果を利用したレーザであり、制御部3による制御の下、レーザ光L1を出力する。この光源部4は、出力するレーザ光L1の周波数を可変とするレーザ本体部41と、変更部42と、を備える。変更部42は、制御部3から供給される電力に応じて発熱する3つのマイクロヒータを有し、レーザ本体部41を局所的に加熱することで、レーザ本体部41から出力されるレーザ光L1の周波数を変更する。
【0022】
レーザ本体部41は、共通の基部B1上にそれぞれ形成された第1,第2の導波路部43,44を備える。ここで、基部B1は、たとえばn型InPからなる。そして、基部B1の裏面には、たとえばAuGeNiを含んで構成され、当該基部B1とオーミック接触するn側電極45が形成されている。
【0023】
第1の導波路部43は、埋め込み導波路構造を有している。この第1の導波路部43は、導波路部431と、半導体積層部432と、p側電極433と、を備える。
導波路部431は、半導体積層部432内にz方向に延伸するように形成されている。
また、第1の導波路部43内には、利得部431aと、DBR(Distributed Bragg Reflector)型の回折格子層431bとが配置されている。
【0024】
ここで、利得部431aは、InGaAsPからなる多重量子井戸構造と光閉じ込め層とを有する活性層である。また、回折格子層431bは、InGaAsPとInPとからなる標本化回折格子で構成されている。
【0025】
半導体積層部432は、InP系半導体層が積層して構成されており、導波路部431に対してクラッド部の機能等を備える。
【0026】
p側電極433は、半導体積層部432上において、利得部431aに沿うように配置されている。なお、半導体積層部432上には、SiN保護膜(図示略)が形成されている。そして、p側電極433は、当該SiN保護膜に形成された開口部(図示略)を介して半導体積層部432に接触している。
【0027】
ここで、マイクロヒータであるDBRヒータ421は、半導体積層部432のSiN保護膜上において、回折格子層431bに沿うように配置されている。そして、DBRヒータ421は、制御部3から供給される電力に応じて発熱し、回折格子層431bを加熱する。また、制御部3がDBRヒータ421に供給する電力を制御することによって回折格子層431bの温度が変化し、その屈折率が変化する。
【0028】
第2の導波路部44は、2分岐部441と、2つのアーム部442,443と、リング状導波路444と、を備える。
【0029】
2分岐部441は、1×2型の多モード干渉型(MMI)導波路441aを含む1×2型の分岐型導波路で構成され、2ポート側が2つのアーム部442,443のそれぞれに接続されるとともに1ポート側が第1の導波路部43側に接続されている。すなわち、2分岐部441により、2つのアーム部442,443は、その一端が統合され、回折格子層431bと光学的に結合される。
【0030】
アーム部442,443は、いずれもz方向に延伸し、リング状導波路444を挟むように配置されている。これらアーム部442,443は、リング状導波路444といずれも同一の結合係数κでリング状導波路444と光学的に結合している。κの値は、たとえば0.2である。そして、アーム部442,443とリング状導波路444とは、リング共振器フィルタRF1を構成している。また、リング共振器フィルタRF1と2分岐部441とは、反射ミラーM1を構成している。
【0031】
ここで、マイクロヒータであるRINGヒータ422は、リング状であり、リング状導波路444を覆うように形成されたSiN保護膜(図示略)上に配置されている。そして、RINGヒータ422は、制御部3から供給される電力に応じて発熱し、リング状導波路444を加熱する。また、制御部3がRINGヒータ422に供給する電力を制御することによってリング状導波路444の温度が変化し、その屈折率が変化する。
【0032】
上述した2分岐部441、アーム部442,443、およびリング状導波路444は、いずれも、InGaAsPからなる光導波層44aがInPからなるクラッド層によって挟まれたハイメサ導波路構造を有している。
【0033】
ここで、マイクロヒータであるPhaseヒータ423は、アーム部443の一部のSiN保護膜(図示略)上に配置されている。当該アーム部443のうちPhaseヒータ423の下方の領域は、光の位相を変化させる位相調整部445として機能する。そして、Phaseヒータ423は、制御部3から供給される電力に応じて発熱し、位相調整部445を加熱する。また、制御部3がPhaseヒータ423に供給する電力を制御することによって位相調整部445の温度が変化し、その屈折率が変化する。
【0034】
以上説明した第1,第2の導波路部43,44は、互いに光学的に接続された回折格子層431bと反射ミラーM1とにより構成される光共振器C1を構成している。また、利得部431aと位相調整部445とは、光共振器C1内に配置される。
【0035】
回折格子層431bは、所定の周波数間隔で周期的な反射特性を有する第1の櫛状反射スペクトルを生成する。一方、リング共振器フィルタRF1は、所定の周波数間隔で周期的な反射特性を有する第2の櫛状反射スペクトルを生成する。
【0036】
ここで、第2の櫛状反射スペクトルは、第1の櫛状反射スペクトルのピークの半値全幅よりも狭い半値全幅のピークを有し、第1の櫛状反射スペクトルの周波数間隔とは異なる周波数間隔で周期的な反射特性を有する。
【0037】
各櫛状反射スペクトルの特性について例示すると、第1の櫛状反射スペクトルのピーク間の周波数間隔(自由スペクトル領域:FSR)は373GHzである。また、各ピークの半値全幅は43GHzである。一方、第2の櫛状反射スペクトルのピーク間の周波数間隔(FSR)は400GHzである。また、各ピークの半値全幅は25GHzである。すなわち、第2の櫛状反射スペクトルの各ピークの半値全幅(25GHz)は、第1の櫛状反射スペクトルの各ピークの半値全幅(43GHz)より狭い。
【0038】
光源部4では、レーザ発振を実現するために、第1の櫛状反射スペクトルのピークの一つと第2の櫛状反射スペクトルのピークの一つとを周波数軸上で重ね合わせ可能に構成されている。このような重ね合わせは、DBRヒータ421,RINGヒータ422の少なくとも一つを用いて、DBRヒータ421により回折格子層431bを加熱して熱光学効果によりその屈折率を変化させて第1の櫛状反射スペクトルを周波数軸上で全体的に移動させて変化させる、および、RINGヒータ422によりリング状導波路444を加熱してその屈折率を変化させて第2の櫛状反射スペクトルを周波数軸上で全体的に移動させて変化させる、の少なくともいずれか一つを行うことにより、実現することができる。
【0039】
一方、光源部4において、光共振器C1による共振器モードが存在する。そして、光源部4において、共振器モードの間隔(縦モード間隔)は、25GHz以下となるように光共振器C1の共振器長が設定されている。この設定の場合、光共振器C1の共振器長は、1800μm以上となり、発振するレーザ光の狭線幅化を期待することができる。なお、光共振器C1の共振器モードの周波数は、Phaseヒータ423を用いて位相調整部445を加熱してその屈折率を変化させて共振器モードの周波数を周波数軸上で全体的に移動させることにより微調整することができる。すなわち、位相調整部445は、光共振器C1の光路長を能動的に制御するための部分である。
【0040】
光源部4は、制御部3により、n側電極45およびp側電極433から利得部431aへ電流を注入し、利得部431aを発光させると、第1の櫛状反射スペクトルのスペクトル成分のピーク、第2の櫛状反射スペクトルのスペクトル成分のピーク、および光共振器C1の共振器モードの一つが一致した周波数、たとえば193.4THzでレーザ発振し、レーザ光L1を出力するように構成されている。
【0041】
光源部4では、バーニア効果を利用してレーザ光L1の周波数を変化させることができる。図3は、レーザ光の周波数の調整の説明図である。上段は、回折格子層431b(DBR)の第1の櫛状反射スペクトルを示し、中段は、反射ミラーM1(RING)の第2の櫛状反射スペクトルを示し、下段は、共振器モードのスペクトルを示す。
【0042】
供給する電力を調整してDBRヒータ421を制御すると、その櫛状反射スペクトルは、太矢線で示すように、実線で示す形状から破線で示す形状に周波数軸上でシフトする。同様に、RINGヒータ422を制御すると、その櫛状反射スペクトルは実線で示す形状から破線で示す形状に周波数軸上でシフトする。同様に、Phaseヒータ423を制御すると、そのスペクトルは実線で示す形状から破線で示す形状に周波数軸上でシフトする。
【0043】
実線に示す状態では、DBRの反射ピークと光共振器C1の共振器モードとRINGの反射ピークとが一致した周波数f1でレーザ発振している。この状態にするために、DBRヒータ421およびRINGヒータ422は、供給される電力に基づいて、DBR、RINGの反射スペクトルがピークとなる周波数位置を各々設定する。また、Phaseヒータ423は、供給される電力に基づいて、共振器モードがピークとなる周波数位置を設定する。各ヒータの制御によって破線に示す状態にすると、DBRの反射ピークと光共振器C1の共振器モードとRINGの反射ピークとが一致する周波数を周波数f2とできるので、レーザ光L1の周波数を周波数f2に調整できる。なお、各ヒータへ供給する電力は電流を制御量として制御することができる。すなわち、制御部3は、制御量である電流に対応する電力を光源部4に供給することによってレーザ光L1の周波数を制御する。電流または電力は制御量の一例である。
【0044】
レーザ光L1の周波数を第1周波数から第2周波数に変更する場合には、たとえば、まずDBRおよびRINGの櫛状反射スペクトルが第2周波数において重なり合うようにDBRヒータ421およびRINGヒータ422をフィードフォワード制御し、その後に共振器モードのいずれか一つが第2周波数と一致するようにPhaseヒータ423をフィードバック制御する。ただし制御の方法はこれに限られない。
【0045】
図1に戻って説明を続ける。半導体光増幅器5は、具体的な図示は省略したが、第1の導波路部43と同様の材料および構造からなる活性コア層を備える埋め込み導波路構造を有する。但し、回折格子層431bは設けられていない。この半導体光増幅器5は、空間結合光学系(図示略)により光源部4に対して光学的に結合している。そして、光源部4から出力されたレーザ光L1は、半導体光増幅器5に入力される。半導体光増幅器5は、レーザ光L1を増幅してレーザ光L2として出力する。なお、半導体光増幅器5は、基部B1上に、光源部4とモノリシックに構成されていてもよい。
【0046】
平面光波回路6は、空間結合光学系(図示略)によりアーム部442に光学的に結合している。そして、レーザ光L1と同様に光源部4におけるレーザ発振により発生したレーザ光L3の一部は、アーム部442を介して平面光波回路6に入力される。なお、レーザ光L3は、レーザ光L1の周波数と同一の周波数を有し、レーザ光L1の強度と対応する強度を有する。この平面光波回路6は、光分岐部61と、光導波路62と、リング共振器型光フィルタである周波数フィルタ63aを有する光導波路63と、を備える。
【0047】
光分岐部61は、入力したレーザ光L3を2つのレーザ光L4,L5に分岐する。
そして、光導波路62は、レーザ光L4を光検出部7における後述するPD(Photo Diode)71に導波する。また、光導波路63は、レーザ光L5を光検出部7における後述するPD72に導波する。
【0048】
ここで、周波数フィルタ63aは、入力する光の周波数に対して透過率が周期的に変化する特性を有し、レーザ光L5をレーザ光L5の周波数に応じた透過率で透過する。そして、周波数フィルタ63aを透過したレーザ光L5は、PD72に入力する。すなわち、周波数フィルタ63aは、導波路型の周波数フィルタである。なお、周波数フィルタ63aとして、入力する光の周波数に対して周期的な透過特性を有するエタロンフィルタやMZI(Mach-Zehnder Interferometer)フィルタを用いてもよい。
【0049】
光検出部7は、PD71,72を備える。PD71は、レーザ光L4(光源部4から出力されたレーザ光L1と同一の周波数を有し、レーザ光L1の強度と対応する強度を有する)を受光し、当該レーザ光L4の強度に応じた電気信号を制御部3に出力する。PD72は、周波数フィルタ63aを透過したレーザ光L5を受光し、当該レーザ光L5の強度に応じた電気信号を制御部3に出力する。そして、PD71,72からそれぞれ出力された電気信号は、制御部3による周波数ロック制御(光源部4から出力されるレーザ光L1の周波数を目標周波数にするための制御)に用いられる。
【0050】
PD71は、レーザ光L1の強度に対応するレーザ光L4の強度である第1強度を検出する第1検出部の一例である。PD72は、レーザ光L1が周波数フィルタ63aを透過した後の強度に相当するレーザ光L5の強度である第2強度を検出する第2検出部の一例である。
【0051】
温度センサ8は、たとえばサーミスタ等で構成され、光源部4および平面光波回路6の周囲温度を検出する。なお、温度センサ8としては、温度調節器9の外部に配置し、レーザ装置1が配置される環境の温度を周囲温度として検出しても構わない。温度センサ8は、検出した温度の情報を含む電気信号を制御部3に出力する。
【0052】
温度調節器9は、たとえばペルチェ素子を含むTEC(Thermo Electric Cooler)等で構成されている。この温度調節器9には、光源部4、半導体光増幅器5、平面光波回路6、光検出部7、および温度センサ8が載置される。そして、温度調節器9は、供給された電力に応じて光源部4、半導体光増幅器5、平面光波回路6、光検出部7、および温度センサ8の温度を調節する。この場合、制御部3は、温度センサ8が検出した温度の情報に基づいて、主に光源部4が一定の温度となるように、温度調節器9に供給する電力を制御する。主に光源部4が一定の温度となるよう制御を行った方が、レーザ光L1の周波数の、動作条件や外部環境温度に依存する変動を抑制する上で好ましい。
【0053】
なお、温度調節器9において、光源部4、半導体光増幅器5、平面光波回路6、光検出部7、および温度センサ8が載置される設置面91を、光源部4および半導体光増幅器5が載置される第1の領域Ar1と、平面光波回路6および光検出部7が載置される第2の領域Ar2の2つの領域に区画した場合には、温度センサ8は、第2の領域Ar2に載置される。すなわち、温度センサ8は、平面光波回路6に近接して配置されている。ただし、温度センサ8は、第1の領域Ar1に載置され、光源部4に近接して配置されていてもよい。
【0054】
〔制御部の構成〕
つぎに、制御部3の構成について説明する。図4は、制御部の構成を示すブロック図である。制御部3は、たとえばユーザインターフェースを備えた上位の制御装置(図示略)と接続されており、当該上位の制御装置を介したユーザからの指示にしたがって、レーザ部2の動作を制御する。
【0055】
なお、以下では、本発明の要部である制御部3による周波数ロック制御を主に説明する。また、図4では、説明の便宜上、制御部3の構成として、周波数ロック制御を実行する構成を主に図示している。
【0056】
制御部3は、アナログ-デジタルコンバータ(ADC)31、32と、演算部33と、記憶部34と、電流源35と、を備える。
【0057】
ADC31は、PD72から入力されたアナログの電気信号をデジタル信号に変換して演算部33に出力する。ADC32は、PD71から入力されたアナログの電気信号をデジタル信号に変換して演算部33に出力する。
【0058】
演算部33は、制御部3が実行する制御のための各種演算処理を行うものであり、たとえばCPU(Central Processing Unit)やFPGA(Field Programmable Gate Array)で構成される。記憶部34は、演算部33が演算処理を行うために使用する各種プログラムやデータ等が格納される、たとえばROM(Read Only Memory)で構成される部分と、演算部33が演算処理を行う際の作業スペースや演算部33の演算処理の結果等を記憶する等のために使用される、たとえばRAM(Random Access Memory)で構成される部分とを備えている。制御部3の制御機能は、演算部33と記憶部34との機能によりソフトウェア的に実現される。
【0059】
電流源35は、演算部33からの指示に基づいて、光源部4にレーザ光L1の周波数の制御のための電力を供給する。本実施形態では、演算部33は電流源35に制御量として電流値を指示する。電流源35は指示された電流値の電流を光源部4に供給する。
【0060】
つぎに、演算部33の構成について詳述する。演算部33は、機能部として、PD比算出部331と、目標周波数設定部332と、目標PD比設定部333と、差分取得部334と、電流取得部335と、制御定数決定部336と、PID制御部337と、DBR/RING電力設定部338と、を備えている。これらの機能部はソフトウェアとハードウェア資源とが協働することによって実現される。
【0061】
PD比算出部331は、ADC31,32から入力されたデジタル信号からPD比を算出する。PD比は、PD71が検出した第1強度に対するPD72が検出した第2強度の比である。このPD比はモニタ値であり、モニタPD比とも呼ばれる。
【0062】
PD比について説明する。図5は、周波数とPD比との関係に基づく弁別カーブの説明図である。PD比は、周波数フィルタ63aの透過特性に対応して、周波数に対して周期的に変化する。なお、図5に示す例では、PD比が0から1の間で変化するように規格化してあるが、PD比が-1から+1の間で変化するように規格化されていてもよい。さらには、PD72が検出した、周波数フィルタ63aを透過した第2強度のみからモニタ値を算出するようにしてもよい。尚この様な場合においても、当該モニタ値をPD比として以降の処理を実施することができる。加えて、各周波数におけるPD71でのモニタ値を事前に取得し記憶部34等に格納しておき、PD比算出の際に目標周波数の値または範囲等に応じて、事前に取得したPD71のモニタ値を用いてPD比を算出するようにしてもよい。このように、設定値またはモニタ値は、第2強度に相当する値を含んでもよい。
【0063】
図5において、黒丸で示す点P3のように、レーザ光L1の周波数がf3である場合に、PD比算出部331において算出されるPD比はR3であることを示している。このことは、PD比がR3になるように光源部4を制御すれば、レーザ光L1の周波数をf3にロックする周波数ロックが実現されることを意味する。PD比はレーザ光L1の周波数に相当する量であり、周波数相当量に対応するモニタ値の一例である。点P3はレーザ光L1の周波数をf3に制御する際の制御目標点であり、ロック点とも呼ばれる。
【0064】
なお、弁別カーブは周期的に変化するため、異なる周波数に対して同じPD比を取る場合がある。このレーザ装置1では、目標周波数が設定されると、その周波数に応じてDBRヒータ421およびRINGヒータ422のそれぞれにその目標周波数に対応した電力が供給される。その結果、目標周波数を含む周波数範囲で第1の櫛状反射スペクトルと第2の櫛状反射スペクトルとが重なり合い、レーザ発振が可能な周波数範囲が制限される。
【0065】
図4に戻って説明を続ける。目標周波数設定部332は、たとえば上位の制御装置からの指示により、レーザ光L1の周波数の目標値として目標周波数を設定する。レーザ光L1の周波数の目標値は設定値の一例である。設定値はそれに応じて制御量が決定されるものである。
【0066】
目標PD比設定部333は、目標周波数設定部332が設定した目標周波数をもとに、目標周波数相当量である目標PD比を設定する。目標PD比の設定は、記憶部34に記憶されている周波数とPD比との対応関係を示すテーブルデータや関係式などを用いて行われる。この対応関係は、周波数フィルタ63aが生成する弁別カーブに基づいて定められている。
【0067】
差分取得部334は、PD比算出部331が算出したモニタPD比と目標PD比設定部333が設定した目標PD比との差分を算出して取得する。
【0068】
電流取得部335は、後述するPID制御部337が設定した設定値としての電流値を取得し、または電流源35が流している電流値をモニタ値として取得し、取得した電流値を制御定数決定部336に出力する。
【0069】
制御定数決定部336は、電流値と目標周波数(または目標PD比)とに応じて、制御量を決定するための制御定数を設定する設定ステップを行う。本実施形態1では、光源部4に指示する制御量である電流値を決定するための比例制御における比例定数Kpを設定することとする。なお、記憶部34が、設定値またはモニタ値に応じて制御量を決定するための制御定数を複数記憶している。制御定数決定部336は記憶部34から適正な制御定数を読み出して参照し、設定を行う。
【0070】
PID制御部337は、モニタPD比と目標PD比との差分に対応した微分定数Kdおよび積分定数Kiと、制御定数決定部336が決定した比例定数Kpと、に基づいて電流値を設定し、その電流値の指示を電流源35に出力し、比例積分微分(PID)制御を行うことができる。ただし、本実施形態ではPI制御を行うものとする。
【0071】
DBR/RING電力設定部338は、目標周波数設定部332が設定した目標周波数をもとに、DBRヒータ421およびRINGヒータ422のそれぞれに供給する電力を設定する。DBR/RING電力設定部338は、設定した電力に基づいて電流値を設定し、その電流値の指示を電流源35に出力し、DBRヒータ421およびRINGヒータ422のフィードフォワード制御を行うことができる。
【0072】
〔制御方法〕
つぎに、レーザ装置1において実行される制御方法について説明する。レーザ部2は、レーザ光L1の周波数を制御する際に用いる設定値またはモニタ値に対してレーザ光L1の周波数が非線形に変化する特性を有している。
【0073】
図6は、設定値またはモニタ値の一例としてのPhase電流と、レーザ光L1の周波数との関係の一例を示す図である。ここでPhase電流とは、Phaseヒータ423に供給される電流である。図6に示すように、レーザ光L1の周波数はPhase電流に対して非線形に変化する特性を有する。その理由としては、たとえばPhaseヒータ423の電流値に対する発熱量、発熱量に対する共振器モードの周波数の変化量、またはこの発熱量と変化量との相関関係が非線形である可能性がある。
【0074】
ここで、制御定数、たとえば比例定数Kpについて、全ての電流値に対して1つの値を適用した場合、たとえば図6中、破線DLより左側である領域Aでは電流値の変化に対する周波数の変化の傾きの絶対値が小さいので、目標周波数に制御するための収束時間が増大する場合がある。また、図6中、破線DLより右側である領域Bでは、電流値の変化に対する周波数の変化の傾きの絶対値が大きいので、発振、またはオーバーシュートやアンダーシュートが発生する場合がある。
【0075】
そこで、本制御方法では、取り得る電流値の範囲に応じて異なる比例定数Kpを設定する。図7に示す例では、互いに異なる電流値の範囲I1、I2、I3、I4に対して、互いに異なる比例定数Kp1、Kp2、Kp3、Kp4を設定する。図7の場合は、範囲I1、I2、I3、I4は、いずれも周波数が1GHzだけ変化する範囲であるが、非線形性のために範囲I1、I2、I3、I4は互いに大きさが異なっている。
【0076】
このとき、範囲I1、I2、I3、I4では、曲線の傾きの絶対値がこの順番で徐々に大きくなっている。そこで、比例定数Kp1、Kp2、Kp3、Kp4については、Kp1>Kp2>Kp3>Kp4となるように値が設定される。
【0077】
すなわち、電流値が取り得る互いに異なる範囲である範囲I1、I2、I3、I4から任意に第1範囲と第2範囲とを選ぶと、傾きの絶対値が小さい方の範囲における制御定数が、傾きの絶対値が大きい方の範囲における制御定数よりも大きく設定されている。たとえば、第1範囲における傾きの絶対値が第2範囲における傾きの絶対値よりも小さい場合は、第1範囲における比例定数を第2範囲における比例定数よりも大きく設定されている。これにより、制御量である電流値の変化量に対する周波数の変化量の、電流値の範囲に対する依存性を低減することができるので、収束時間の増大、発振、またはオーバーシュートやアンダーシュートの発生が抑制される。その結果、レーザ光の周波数を制御する際に、より好適な制御が実現される。
【0078】
図7では、周波数の変化が等しく1GHzに対応する電流値の範囲としているが、周波数の変化は範囲毎に異なっていてもよい。また、電流値の範囲の幅が互いに等しくてもよい。
【0079】
さらに、本制御方法では、レーザ光L1の周波数または周波数相当量を第1設定値から第2設定値に変化させる変化制御を行う際に、変化制御の開始時刻からの経過時間に応じて比例定数を設定する。
【0080】
図8は、周波数相当量であるPD比の変化制御の開始時刻からの経過時間に対する比例定数の設定の一例を示す図である。本例では、PD比を第1設定値である現在のPD比から第2設定値である目標PD比まで変化させる際に、時間t1の経過までは比例定数としてKpt1を設定し、時間t1の経過後はKpt2を設定する。たとえば、Kpt1は現在のPhase電流値から決定でき、Kpt2は目標周波数または目標周波数相当量である第2設定値から決定できる。
【0081】
上述したように、弁別カーブは周期的に変化するため、急激にPD比を変化させるとロック点が弁別カーブ上で規定された周波数範囲を超えてオーバーシュートしてしまい、目標周波数とは異なる周波数でロックされる場合がある。そこで、Kpt2をKpt1よりも小さく設定すれば、PD比が目標PD比に近いときの急激なPD比の変化を抑制できるので、オーバーシュートの発生と異なる周波数での周波数ロックの発生とを抑制できる。なお、本例では時間t1の経過の前後で比例定数の設定値を変えているが、さらに比例定数の設定値を変える基準となる時間を時間t1の他にも設定して、より多数の段階で設定値を変えてもよい。
【0082】
〔フローチャート〕
図9は、上述した制御部3による、レーザ光L1の周波数または周波数相当量を第1設定値(現在の設定された周波数または現在のPD比)から第2設定値(目標周波数または目標PD比)に変化させる変化制御の制御方法を示すフローチャートである。
【0083】
はじめに、ステップS101において、目標周波数設定部332が、レーザ光L1の周波数の目標値として目標周波数を設定する。
【0084】
つづいて、ステップS102において、制御定数決定部336は、目標周波数設定部332が設定した目標周波数をもとに比例定数Kpt2を決定する。
【0085】
つづいて、ステップS103において、DBR/RING電力設定部338は、目標周波数設定部332が設定した目標周波数をもとに、DBRヒータ421およびRINGヒータ422のそれぞれに供給する電力を設定する。
【0086】
つづいて、ステップS104において、電流取得部335は、現在のPhase電流値(設定値またはモニタ値)を取得する。
【0087】
つづいて、ステップS105において、制御定数決定部336は、電流取得部335が取得した現在のPhase電流値をもとに、比例定数Kpt1を決定する。尚、Phase電流値を制御するために既に用いられている比例定数をKpt1として決定してもよい。このKpt1は、たとえばPhase電流が図7で示した範囲I1、I2、I3、I4のいずれの範囲に含まれるかに応じて、Kp1、Kp2、Kp3、Kp4のいずれかと等しくなるように決定される。
【0088】
つづいて、ステップS106において、目標PD比設定部333は、ステップS101において目標周波数設定部332が設定した目標周波数をもとに、目標周波数相当量である目標PD比を設定する。
【0089】
つづいて、ステップS107において、PD比算出部331は、モニタPD比を算出して取得する。
【0090】
つづいて、ステップS108において、差分取得部334は、目標PD比とモニタPD比との差分(目標PD比-モニタPD比)を取得する。
【0091】
つづいて、ステップS109において、PID制御部337は、変化制御の開始時刻からの経過時間がt1(例えば、1秒)以上であるか否かを判定する。t1未満であると判定した場合(ステップS109、No)、ステップS110において比例定数としてKpt1を設定する。t1以上であると判定した場合(ステップS109、Yes)、ステップS111において比例定数としてKpt2を設定する。
【0092】
つづいて、ステップS112において、PID制御部337は、Kpt1またはKpt2と、予め設定されていた積分定数Kiを用いて、差分の絶対値である|目標PD比-モニタPD比|が小さくなるように、Phase電流に関するPI制御を行う。
【0093】
つづいて、ステップS113において、PID制御部337は、|目標PD比-モニタPD比|が目標誤差内であるか否かを判定する。目標誤差内ではないと判定した場合(ステップS113、No)、制御はステップS107に戻る。目標誤差内であると判定した場合(ステップS113、Yes)、制御は終了する。
【0094】
(実施形態2)
つぎに、実施形態2に係るレーザ装置について説明する。実施形態2に係るレーザ装置は、実施形態1のレーザ装置1の制御部3を制御部3Aに置き換えた構成を有する。以下では制御部3Aについて詳述する。
【0095】
〔制御部の構成〕
図10は、実施形態2に係る制御部3Aの構成を示すブロック図である。制御部3Aは、たとえばユーザインターフェースを備えた上位の制御装置(図示略)と接続されており、当該上位の制御装置を介したユーザからの指示にしたがって、レーザ部2の動作を制御する。
【0096】
制御部3Aは、制御部3の演算部33を演算部33Aに置き換えた構成を有する。演算部33Aは、演算部33の構成から電流取得部335を削除した構成をする。
【0097】
上述したように、周波数とPD比との関係において、PD比は、周波数フィルタ63aの透過特性に対応して、周波数に対して周期的にかつ滑らかに変化する弁別カーブの特性を有する。このような弁別カーブは、周波数によって曲線の傾きが異なる。すなわち、レーザ光L1の周波数を制御する際に用いる設定値またはモニタ値であるPD比に対してレーザ光L1の周波数が非線形に変化する。
【0098】
そこで、制御部3Aにおける制御では、設定値である目標PD比またはモニタ値であるモニタPD比に応じて、対応する弁別カーブの傾きが異なることを利用して、目標PD比またはモニタPD比に応じて制御定数を設定する。
【0099】
たとえば、目標PD比またはモニタPD比が取り得る互いに異なる範囲である第1範囲と第2範囲において、傾きの絶対値が小さい方の範囲における制御定数を、傾きの絶対値が大きい方の範囲における制御定数よりも大きく設定する。たとえば、第1範囲における傾きの絶対値が第2範囲における傾きの絶対値よりも小さい場合は、第1範囲における制御定数を第2範囲における制御定数よりも大きく設定する。たとえば、図5において、PD比がたとえば0.7の場合は、弁別カーブの傾きの絶対値が、PD比が0.5の場合の傾きの絶対値よりも小さいので、比例定数を、PD比が0.5の場合の比例定数よりも大きく設定する。このようなPD比と比例定数の設定との関係は、テーブルデータや関係式として記憶部34に記憶されており、制御定数決定部336が適宜呼び出して使用する。
【0100】
これにより、PD比に対する周波数の変化量の、PD比に対する依存性を低減することができるので、収束時間の増大、発振、またはオーバーシュートやアンダーシュートの発生が抑制される。その結果、レーザ光の周波数を制御する際に、より好適な制御が実現される。
【0101】
〔フローチャート〕
図11は、上述した制御部3Aによる、レーザ光L1の周波数または周波数相当量を第1設定値(現在の設定された周波数または現在のPD比)から第2設定値(目標周波数または目標PD比)に変化させる変化制御の制御方法を示すフローチャートである。
【0102】
はじめに、ステップS201において、目標周波数設定部332が、レーザ光L1の周波数の目標値として目標周波数を設定する。
【0103】
つづいて、ステップS202において、目標PD比設定部333は、ステップS201において目標周波数設定部332が設定した目標周波数をもとに、目標周波数相当量である目標PD比を設定する。
【0104】
つづいて、ステップS203において、制御定数決定部336は、目標PD比設定部333が設定した目標PD比をもとに比例定数Kpt2を決定する。比例定数Kpt2は目標PD比における弁別カーブの傾きに基づいて設定された比例定数である。
【0105】
なお、ステップS201の実行後からステップS204の実行前のいずれかのタイミングにおいて、DBR/RING電力設定部338は、目標周波数設定部332が設定した目標周波数をもとに、DBRヒータ421およびRINGヒータ422のそれぞれに供給する電力を設定する。
【0106】
つづいて、ステップS204において、PD比算出部331は、現在のPD比としてモニタPD比を算出して取得する。
【0107】
つづいて、ステップS205において、制御定数決定部336は、PD比算出部331が取得したモニタPD比をもとに、比例定数Kpt1を決定する。尚、Phase電流値を制御するために既に用いられている比例定数をKpt1として決定してもよい。比例定数Kpt1はモニタPD比における弁別カーブの傾きに基づいて設定された比例定数である。
【0108】
つづいて、ステップS207において、差分取得部334は目標PD比とモニタPD比との差分(目標PD比-モニタPD比)を取得する。
【0109】
つづいて、ステップS208において、PID制御部337は、変化制御の開始時刻からの経過時間がt1(例えば、1秒)以上であるか否かを判定する。t1未満であると判定した場合(ステップS208、No)、ステップS209において比例定数としてKpt1を設定する。t1以上であると判定した場合(ステップS208、Yes)、ステップS210において比例定数としてKpt2を設定する。
【0110】
つづいて、ステップS211において、PID制御部337は、Kpt1またはKpt2と、予め設定されていた積分定数Kiを用いて、差分の絶対値である|目標PD比-モニタPD比|が小さくなるように、Phase電流に関するPI制御を行う。
【0111】
つづいて、ステップS212において、PID制御部337は、|目標PD比-モニタPD比|が目標誤差内であるか否かを判定する。目標誤差内ではないと判定した場合(ステップS212、No)、制御はステップS206に戻る。目標誤差内であると判定した場合(ステップS212、Yes)、制御は終了する。
【0112】
(実施形態3)
つぎに、実施形態3に係るレーザ装置について説明する。実施形態3に係るレーザ装置は、実施形態1のレーザ装置の制御部3を制御部3Bに置き換えた構成を有する。以下では制御部3Bについて詳述する。
【0113】
〔制御部の構成〕
図12は、実施形態3に係る制御部3Bの構成を示すブロック図である。制御部3Bは、たとえばユーザインターフェースを備えた上位の制御装置(図示略)と接続されており、当該上位の制御装置を介したユーザからの指示にしたがって、レーザ部2の動作を制御する。
【0114】
制御部3Bは、制御部3の演算部33を演算部33Bに置き換えた構成を有する。演算部33Bは、演算部33の構成に、機能部としての補償量決定部339を追加した構成を有する。
【0115】
実施形態2の説明で述べたように、レーザ光L1の周波数を制御する際に用いる設定値またはモニタ値であるPD比に対してレーザ光L1の周波数が非線形に変化する。
【0116】
制御部3Bにおける制御では、制御部3Aにおける制御と同様に、目標PD比またはモニタPD比に応じて、弁別カーブの傾きが異なることを利用して、目標PD比またはモニタPD比に応じて制御定数を設定する。たとえば、目標PD比またはモニタPD比が取り得る互いに異なる範囲である第1範囲と第2範囲において、傾きの絶対値が小さい方の範囲における制御定数を、傾きの絶対値が大きい方の範囲における制御定数よりも大きく設定する。たとえば、第1範囲における傾きの絶対値が第2範囲における傾きの絶対値よりも小さい場合は、第1範囲における制御定数を第2範囲における制御定数よりも大きく設定する。たとえば、図5において、PD比がたとえば0.7の場合は、弁別カーブの傾きの絶対値が、PD比が0.5の場合の傾きの絶対値よりも小さいので、比例定数を、PD比が0.5の場合の比例定数よりも大きく設定する。
【0117】
ただし、実施形態3の制御部3Bにおいては、比例定数の設定は、制御部3Aにおける制御とは異なる。たとえばPD比が0.5の場合の比例定数を基準比例定数としてのKpとすると、Kpに対して、補償量αを決定し、PD比の範囲に応じてαを加算、除算、乗算または減算をして、PD比がたとえば0.7の場合の比例定数を設定する。たとえば、αが正数である場合は、弁別カーブの傾きの絶対値が小さくなるにつれて、比例定数をKp、Kp+α、Kp+2α、・・・のように設定してもよい。このような、PD比と、決定すべきαやその加減乗除などの演算と、の関係は、テーブルデータや関係式として記憶部34に記憶されており、補償量決定部339や制御定数決定部336が適宜呼び出して使用する。
【0118】
これにより、PD比に対する周波数の変化量の、PD比に対する依存性を低減することができるので、収束時間の増大、発振、またはオーバーシュートやアンダーシュートの発生が抑制される。その結果、レーザ光の周波数を制御する際に、より好適な制御が実現される。なお、基準比例定数としてのKpを、実施形態1で示す制御方法により、現在のPhase電流または目標周波数に対応するPhase電流の設定値に応じて定めるようにしてもよい。
【0119】
さらに、本制御方法では、レーザ光L1の周波数または周波数相当量を第1設定値から第2設定値に変化させる変化制御を行う際に、第1設定値から第2設定値までの到達割合に応じて比例定数を設定する。
【0120】
図13は、周波数相当量であるPD比の変化制御の開始時刻からの経過時間に対する比例定数の設定の一例を示す図である。本例では、PD比を第1設定値である現在のPD比から第2設定値である目標PD比まで変化させる際に、PD比が目標PD比の50%に到達するまでは比例定数としてKp%1を設定し、50%の到達後はKp%2を設定する。なお、PD比が現在のPD比である場合は到達割合が0%であり、目標PD比である場合は到達割合が100%である。たとえば、Kp%1は現在のPhase電流値の値から決定でき、Kp%2は目標周波数または目標周波数相当量である第2設定値から決定できる。
【0121】
Kptの場合と同様に、Kp%2をKp%1よりも小さく設定すれば、PD比が目標PD比に近いときの急激なPD比の変化を抑制できるので、オーバーシュートの発生と異なる周波数での周波数ロックの発生とを抑制できる。なお、本制御では到達割合が50%の前後で比例定数の設定値を変えているが、さらに比例定数の設定値を変える基準となる到達割合を50%の他にも設定して、より多数の段階で設定値を変えてもよい。
【0122】
〔フローチャート〕
図14は、上述した制御部3Bによる、レーザ光L1の周波数または周波数相当量を第1設定値(現在の設定された周波数または現在のPD比)から第2設定値(目標周波数または目標PD比)に変化させる変化制御の制御方法を示すフローチャートである。
【0123】
はじめに、ステップS301において、目標周波数設定部332が、レーザ光L1の周波数の目標値として目標周波数を設定する。
【0124】
つづいて、ステップS302において、制御定数決定部336は、目標周波数設定部332が設定した目標周波数をもとに比例定数Kp%2を決定する。
【0125】
つづいて、ステップS303において、DBR/RING電力設定部338は目標周波数設定部332が設定した目標周波数をもとに、DBRヒータ421およびRINGヒータ422のそれぞれに供給する電力を設定する。
【0126】
つづいて、ステップS304において、電流取得部335は、現在のPhase電流値(設定値またはモニタ値)を取得する。
【0127】
つづいて、ステップS305において、制御定数決定部336は、電流取得部335が取得した現在のPhase電流値をもとに、比例定数Kp%1を決定する。尚、Phase電流値を制御するために既に用いられている比例定数をKp%1として決定してもよい。このKp%1は、たとえばPhase電流が図7で示した範囲I1、I2、I3、I4のいずれの範囲に含まれるかに応じて、Kp1、Kp2、Kp3、Kp4のいずれかと等しくなるように決定される。
【0128】
つづいて、ステップS306において、目標PD比設定部333は、ステップS301において目標周波数設定部332が設定した目標周波数をもとに、目標周波数相当量である目標PD比を設定する。
【0129】
つづいて、ステップS307において、PD比算出部331は、モニタPD比を算出して取得する。
【0130】
つづいて、ステップS308において、補償量決定部339は、目標PD比またはモニタPD比に応じて補償量αを設定する。
【0131】
つづいて、ステップS309において、制御定数決定部336は、補償量αを用いてKp%1、Kp%2を補償する。
【0132】
つづいて、ステップS310において、差分取得部334は目標PD比とモニタPD比との差分(目標PD比-モニタPD比)を取得する。
【0133】
つづいて、ステップS311において、PID制御部337は、到達割合が50%未満であるか否かを判定する。50%未満であると判定した場合(ステップS311、Yes)、ステップS312において比例定数としてKp%1を設定する。50%以上であると判定した場合(ステップS311、No)、ステップS312において比例定数としてKp%2を設定する。
【0134】
つづいて、ステップS314において、PID制御部337は、Kp%1またはK%2と、予め設定されていた積分定数Kiを用いて、差分の絶対値である|目標PD比-モニタPD比|が小さくなるように、Phase電流に関するPI制御を行う。
【0135】
つづいて、ステップS315において、PID制御部337は、|目標PD比-モニタPD比|が目標誤差内であるか否かを判定する。目標誤差内ではないと判定した場合(ステップS315、No)、制御はステップS307に戻る。目標誤差内であると判定した場合(ステップS315、Yes)、制御は終了する。
【0136】
(実施形態4)
つぎに、実施形態4に係るレーザ装置について説明する。実施形態4に係るレーザ装置は、実施形態3のレーザ装置の制御部3Bを制御部3Cに置き換えた構成を有する。以下では制御部3Cについて詳述する。
【0137】
〔制御部の構成〕
図15は、実施形態4に係る制御部3Cの構成を示すブロック図である。制御部3Cは、たとえばユーザインターフェースを備えた上位の制御装置(図示略)と接続されており、当該上位の制御装置を介したユーザからの指示にしたがって、レーザ部2の動作を制御する。制御部3Cは、制御部3Bの演算部33Bを演算部33Cに置き換えた構成を有する。演算部33Bと演算部33Cとは同様の構成を有するが、実行する制御方法が互いに異なる。
【0138】
実施形態2の説明で述べたように、レーザ光L1の周波数を制御する際に用いる設定値またはモニタ値であるPD比に対してレーザ光L1の周波数が非線形に変化し、目標PD比またはモニタPD比に応じて、対応する弁別カーブの傾きが異なる。
【0139】
図16は、PD比の変化制御の開始の設定値と目標の設定値との間に傾きの変化の符号が変わる箇所が有る場合の一例の説明図である。図16では、横軸を周波数とする弁別カーブにおいて、現在のPD比の値である現在値を示す点P5から、目標PD比の値である点P6まで、中間値のPD比である点P7を経由して変化制御が行われる場合を示している。また、このように周波数を変化させる変化制御は、太矢印で示すように横軸を時間tとして表すと、点P5から点P6まで、点P7を経由して変化制御が行われる場合に対応する。
【0140】
図16に示すように、点P5、P6での弁別カーブの傾きの絶対値は、点P7での弁別カーブの傾きの絶対値よりも小さい。このことは、第1設定値に相当する点P5から第2設定値に相当する点P6までPD比を変化させる間に、弁別カーブの傾きの変化の符号が変化することに相当する。図16に示す例では、点P5から周波数が高くなるにしたがって傾きは負値かつ絶対値が大きくなるように変化し、傾きの変化は負値であるが、点P7の付近から点P6までは、周波数が高くなるにしたがって傾きは負値かつ絶対値が小さくなるように変化し、傾きの変化は正値である。すなわち弁別カーブは点P5から点P6までの間に変曲点を有する。
【0141】
このように第1設定値から第2設定値に変化させる間に傾きの変化の符号が変化すると、以下の状況が生じる場合がある。すなわち、第1設定値および第2設定値では弁別カーブの傾きが比較的小さく、制御定数が比較的大きく設定される方がよい。しかしながら、変曲点の付近では弁別カーブの傾きが第1設定値および第2設定値における場合よりも大きく、制御定数が比較的小さく設定されることがよい。その結果、変曲点の付近において、第1設定値または第2設定値に対して適する制御定数をそのまま使用して制御すると、制御定数が適する値よりも大きくなり、オーバーシュートやアンダーシュートの発生などの、制御の不安定が生じる場合がある。
【0142】
そこで、本例方法では、変化制御において、第1設定値から第2設定値に変化させる間に、弁別カーブの傾きの変化の符号が変化する場合には、符号の変化する点を含む所定範囲において、所定範囲外における制御定数よりも小さい制御定数を設定する。所定範囲は、たとえば弁別カーブが正弦曲線であり、値が0から1まで変化するように規格化されている場合、たとえば0.4~0.6の範囲である。変曲点は0.5であるので、0.4~0.6は弁別カーブの振幅に対して変曲点から±10%の範囲である。
【0143】
なお、所定範囲において、範囲外における制御定数よりも小さい制御定数を設定する場合には、所定範囲内と範囲外とで別個に設定された制御定数を用いてもよいし、同一の制御定数に対して補償量を適用したものを用いてもよい。
【0144】
〔フローチャート〕
図17は、上述した制御部3Cによる、レーザ光L1の周波数または周波数相当量を第1設定値(現在の設定された周波数または現在のPD比)から第2設定値(目標周波数または目標PD比)に変化させる変化制御の制御方法を示すフローチャートである。
【0145】
はじめに、ステップS401において、目標周波数設定部332が、レーザ光L1の周波数の目標値として目標周波数を設定する。
【0146】
つづいて、ステップS402において、制御定数決定部336は、目標周波数設定部332が設定した目標周波数をもとに比例定数Kp%2を決定する。
【0147】
つづいて、ステップS403において、DBR/RING電力設定部338は目標周波数設定部332が設定した目標周波数をもとに、DBRヒータ421およびRINGヒータ422のそれぞれに供給する電力を設定する。
【0148】
つづいて、ステップS404において、電流取得部335は、現在のPhase電流値(設定値またはモニタ値)を取得する。
【0149】
つづいて、ステップS405において、制御定数決定部336は、電流取得部335が取得した現在のPhase電流値をもとに、比例定数Kp%1とKp%3を決定する。尚、Phase電流値を制御するために既に用いられている比例定数をKp%1、Kp%3として決定してもよい。このKp%1は、たとえばPhase電流が図7で示した範囲I1、I2、I3、I4のいずれの範囲に含まれるかに応じて、Kp1、Kp2、Kp3、Kp4のいずれかと等しくなるように決定される。また、Kp%3については、目標周波数と現在のPhase電流値とに基づいて決定することができる。
【0150】
つづいて、ステップS406において、目標PD比設定部333は、ステップS301において目標周波数設定部332が設定した目標周波数をもとに、目標周波数相当量である目標PD比を設定する。
【0151】
つづいて、ステップS407において、PD比算出部331は、モニタPD比を算出して取得する。
【0152】
つづいて、ステップS408において、補償量決定部339は、目標PD比またはモニタPD比に応じて補償量αを設定する。
【0153】
つづいて、ステップS409において、制御定数決定部336は、補償量αを用いてKp%1、Kp%2、Kp%3を補償する。
【0154】
つづいて、ステップS410において、差分取得部334は目標PD比とモニタPD比との差分(目標PD比-モニタPD比)を取得する。
【0155】
つづいて、ステップS411において、PID制御部337は、モニタPD比が0.4~0.6の範囲内であるか否かを判定する。0.4~0.6の範囲内であると判定した場合(ステップS411、Yes)、ステップS412において比例定数としてKp%3を設定する。0.4~0.6の範囲外であると判定した場合(ステップS411、No)、フローはステップS413に進む。
【0156】
ステップS413において、PID制御部337は、到達割合が50%未満であるか否かを判定する。50%未満であると判定した場合(ステップS413、Yes)、ステップS414において比例定数としてKp%1を設定する。50%以上であると判定した場合(ステップS413、No)、ステップS415において比例定数としてKp%2を設定する。
【0157】
つづいて、ステップS416において、PID制御部337は、Kp%1、K%2またはKp%3と、予め設定されていた積分定数Kiを用いて、差分の絶対値である|目標PD比-モニタPD比|が小さくなるように、Phase電流に関するPI制御を行う。
【0158】
つづいて、ステップS417において、PID制御部337は、|目標PD比-モニタPD比|が目標誤差内であるか否かを判定する。目標誤差内ではないと判定した場合(ステップS417、No)、制御はステップS407に戻る。目標誤差内であると判定した場合(ステップS417、Yes)、制御は終了する。
【0159】
なお、上記のいずれの実施形態においても、変化制御の場合の制御定数の設定においては、経過時間および到達割合のいずれか一方または両方に応じて設定してもよい。また、変化制御の場合の制御定数の設定においては、経過時間および到達割合ではなく、現在の周波数と目標周波数とに基づいて、多段階に制御定数を設定してもよい。また、上記の実施形態ではフィードバック制御がPI制御であり、制御定数が比例定数である場合について説明したが、フィードバック制御がPID制御でもよいし、積分定数や微分定数に対して上記の制御定数の設定を適用してもよい。
【0160】
また、上記実施形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施形態に限定されるものではなく、様々な変更が可能である。
【符号の説明】
【0161】
1 レーザ装置
2 レーザ部
3、3A、3B、3C 制御部
4 光源部
5 半導体光増幅器
6 平面光波回路
7 光検出部
8 温度センサ
9 温度調節器
10 モニタ部
33、33A、33B、33C 演算部
34 記憶部
35 電流源
41 レーザ本体部
42 変更部
43 第1の導波路部
44 第2の導波路部
44a 光導波層
45 n側電極
61 光分岐部
62、63 光導波路
63a 周波数フィルタ
91 設置面
331 PD比算出部
332 目標周波数設定部
333 目標PD比設定部
334 差分取得部
335 電流取得部
336 制御定数決定部
337 PID制御部
338 DBR/RING電力設定部
339 補償量決定部
421 DBRヒータ
422 RINGヒータ
423 Phaseヒータ
431 導波路部
431a 利得部
431b 回折格子層
432 半導体積層部
433 p側電極
441a 導波路
442、443 アーム部
444 リング状導波路
445 位相調整部
A、B 領域
Ar1 第1の領域
Ar2 第2の領域
B1 基部
C 光共振器
I1、I2、I3、I4 範囲
L1、L2、L3、L4、L5 レーザ光
M1 反射ミラー
RF1 リング共振器フィルタ
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17