(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-07-09
(45)【発行日】2024-07-18
(54)【発明の名称】移動装置
(51)【国際特許分類】
B62K 5/10 20130101AFI20240710BHJP
B62K 5/027 20130101ALI20240710BHJP
B60W 30/04 20060101ALI20240710BHJP
【FI】
B62K5/10
B62K5/027
B60W30/04
(21)【出願番号】P 2021054754
(22)【出願日】2021-03-29
【審査請求日】2023-09-27
(73)【特許権者】
【識別番号】504137912
【氏名又は名称】国立大学法人 東京大学
(73)【特許権者】
【識別番号】000000011
【氏名又は名称】株式会社アイシン
(74)【代理人】
【識別番号】110001058
【氏名又は名称】鳳国際弁理士法人
(72)【発明者】
【氏名】須田 義大
(72)【発明者】
【氏名】郭 鐘聲
(72)【発明者】
【氏名】荒木 敬造
【審査官】三宅 龍平
(56)【参考文献】
【文献】特開2020-104800(JP,A)
【文献】特開2016-222024(JP,A)
【文献】特開2018-083568(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B62K 5/10
B62K 5/027
B60W 30/04
(57)【特許請求の範囲】
【請求項1】
旋回時に旋回の内側に傾斜する移動装置であって、
ボディと、
1以上の前輪と1以上の後輪とを含む2以上の車輪であって、前記2以上の車輪は前記移動装置の幅方向に回動可能な1以上の回動輪を含む、前記2以上の車輪と、
前記1以上の回動輪を前記幅方向に回動可能に支持する回動輪支持装置と、
前記移動装置のヨー角速度を変化させる成分を含む第1力を前記移動装置に付与するように構成されている第1付与装置と、前記ボディのロール角速度を変化させる成分を含む第2力を前記ボディに付与するように構成されている第2付与装置と、を含む力付与装置と、
前記力付与装置を制御するように構成されている制御装置と、
を備え、
前記移動装置は、前記ボディを含む部分であって、前記ボディがロールする場合に動く部分の全体である対象部分を含み、
前記ボディが傾いている場合に前記対象部分に作用する重力によって生じるロールトルクの成分を、第1成分Tq1とし、
前記移動装置のヨー角速度の大きさがゼロよりも大きい場合に前記対象部分に作用する遠心力によって生じるロールトルクの成分を、第2成分Tq2とし、
前記移動装置のヨー角加速度と、前記対象部分の重心と前記移動装置の自転中心との間の前後方向の位置の差と、前記対象部分の前記重心と前記ロール軸との間の位置の差と、によって生じるロールトルクの成分を、第3成分Tq3とし、
前記対象部分の質量に、前記対象部分の重心と前記ロール軸との間の距離の2乗を乗じて得られる値を、第1慣性モーメント成分Ipとし、
前記ボディのロール運動に関する前記対象部分の慣性モーメントItから前記第1慣性モーメント成分Ipを除いた残りを、第2慣性モーメント成分Ixとし、
Ix/(2*Ix+Ip)の式によって算出される値を、基準係数KAiとし、
前記ボディのロール角加速度Ar’’に前記対象部分の前記慣性モーメントItを乗じて得られるロールトルク(Ar’’*It)を参照ロールトルクTqrfとし、
KAi*Tqrfを、第1候補トルクCV1とし、
KAi*TqrfからTq1とTq2とを除いた残りを、第2候補トルクCV2とし、
KAi*TqrfからTq1とTq2とTq3とを除いた残りを、第3候補トルクCV3とし、
人と物体を含む積載物が無い状態での3個の候補トルクCV1、CV2、CV3と、人または物体を含む積載物の位置と質量とが所定の許容範囲内で変化する場合に可能な前記3個の候補トルクCV1、CV2、CV3と、を含む前記3個の候補トルクCV1、CV2、CV3のそれぞれの可能範囲の全体のうち、右方向側の端のトルクを右端候補トルクCVRとし、左方向側の端のトルクを左端候補トルクCVLとし、
前記力付与装置によって形成されるロールトルクから、前記対象部分の機械的な抵抗力により打ち消されるロールトルクと、現行の速度での現行のロール角による定常円旋回の維持に必要なロールトルクと、を除いた残りのロールトルクを、有効ロールトルクTeとし、
前記制御装置は、前記移動装置の前記速度が、ゼロよりも大きい所定の第1速度範囲内であることを含む第1条件が満たされる場合に、前記力付与装置を第1制御モードで制御するように構成されており、
前記制御装置は、前記第1制御モードでは、前記有効ロールトルクTeが、前記左端候補トルクCVLから前記右端候補トルクCVRまでの範囲内であるように、前記力付与装置を制御するように構成されている、
移動装置。
【請求項2】
請求項1に記載の移動装置であって、
前記定常円旋回の維持に必要な前記ロールトルクは、前記移動装置が前記現行の速度での前記現行のロール角による前記定常円旋回を維持する場合に、前記力付与装置によって形成されるロールトルクである、
移動装置。
【請求項3】
請求項1または2に記載の移動装置であって、
旋回の目標方向と旋回の目標程度とを示す旋回目標データを取得するように構成されている旋回目標データ取得装置を備え、
前記旋回目標データを含む1以上のパラメータデータを用いて決定される目標ロール角と、現行のロール角と、の間の差を、ロール角差とし、
前記制御装置は、前記第1条件が満たされない場合に、前記ロール角差の大きさが大きいほど、前記参照ロールトルクTqrfに対する前記有効ロールトルクTeの割合が大きくなるように、前記力付与装置を制御するように構成されている、
移動装置。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書は、旋回時に旋回の内側に傾斜する移動装置に関する。
【背景技術】
【0002】
旋回時に旋回の内側に傾斜する種々の移動装置が利用されている。例えば、複数の車輪と車体と傾斜角変更部と傾斜制御部とを備える車両が提案されている。傾斜制御部は、傾斜角変更部に、車体の傾斜角を、車体が旋回方向に傾斜するような傾斜角に変更させる。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
移動装置のボディがロールする場合、人または物体の一方または両方を含む積載物には、ボディのロールに起因して水平方向の慣性力が作用し得る。このような慣性力は、積載物の状態の安定性を低下させ得る。
【0005】
本明細書は、ボディのロールに起因して積載物に作用する水平方向の慣性力を抑制する技術を開示する。
【課題を解決するための手段】
【0006】
本明細書に開示された技術は、以下の適用例として実現することが可能である。
【0007】
[適用例1]
旋回時に旋回の内側に傾斜する移動装置であって、
ボディと、
1以上の前輪と1以上の後輪とを含む2以上の車輪であって、前記2以上の車輪は前記移動装置の幅方向に回動可能な1以上の回動輪を含む、前記2以上の車輪と、
前記1以上の回動輪を前記幅方向に回動可能に支持する回動輪支持装置と、
前記移動装置のヨー角速度を変化させる成分を含む第1力を前記移動装置に付与するように構成されている第1付与装置と、前記ボディのロール角速度を変化させる成分を含む第2力を前記ボディに付与するように構成されている第2付与装置と、を含む力付与装置と、
前記力付与装置を制御するように構成されている制御装置と、
を備え、
前記移動装置は、前記ボディを含む部分であって、前記ボディがロールする場合に動く部分の全体である対象部分を含み、
前記ボディが傾いている場合に前記対象部分に作用する重力によって生じるロールトルクの成分を、第1成分Tq1とし、
前記移動装置のヨー角速度の大きさがゼロよりも大きい場合に前記対象部分に作用する遠心力によって生じるロールトルクの成分を、第2成分Tq2とし、
前記移動装置のヨー角加速度と、前記対象部分の重心と前記移動装置の自転中心との間の前後方向の位置の差と、前記対象部分の前記重心と前記ロール軸との間の位置の差と、によって生じるロールトルクの成分を、第3成分Tq3とし、
前記対象部分の質量に、前記対象部分の重心と前記ロール軸との間の距離の2乗を乗じて得られる値を、第1慣性モーメント成分Ipとし、
前記ボディのロール運動に関する前記対象部分の慣性モーメントItから前記第1慣性モーメント成分Ipを除いた残りを、第2慣性モーメント成分Ixとし、
Ix/(2*Ix+Ip)の式によって算出される値を、基準係数KAiとし、
前記ボディのロール角加速度Ar’’に前記対象部分の前記慣性モーメントItを乗じて得られるロールトルク(Ar’’*It)を参照ロールトルクTqrfとし、
KAi*Tqrfを、第1候補トルクCV1とし、
KAi*TqrfからTq1とTq2とを除いた残りを、第2候補トルクCV2とし、
KAi*TqrfからTq1とTq2とTq3とを除いた残りを、第3候補トルクCV3とし、
人と物体を含む積載物が無い状態での3個の候補トルクCV1、CV2、CV3と、人または物体を含む積載物の位置と質量とが所定の許容範囲内で変化する場合に可能な前記3個の候補トルクCV1、CV2、CV3と、を含む前記3個の候補トルクCV1、CV2、CV3のそれぞれの可能範囲の全体のうち、右方向側の端のトルクを右端候補トルクCVRとし、左方向側の端のトルクを左端候補トルクCVLとし、
前記力付与装置によって形成されるロールトルクから、前記対象部分の機械的な抵抗力により打ち消されるロールトルクと、現行の速度での現行のロール角による定常円旋回の維持に必要なロールトルクと、を除いた残りのロールトルクを、有効ロールトルクTeとし、
前記制御装置は、前記移動装置の前記速度が、ゼロよりも大きい所定の第1速度範囲内であることを含む第1条件が満たされる場合に、前記力付与装置を第1制御モードで制御するように構成されており、
前記制御装置は、前記第1制御モードでは、前記有効ロールトルクTeが、前記左端候補トルクCVLから前記右端候補トルクCVRまでの範囲内であるように、前記力付与装置を制御するように構成されている、
移動装置。
【0008】
この構成によれば、制御装置は、第1制御モードでは、有効ロールトルクが、最小候補値CVmin以上、最大候補値CVmax以下であるように、力付与装置を制御するように構成されているので、ボディのロールに起因して積載物に作用する水平方向の慣性力を抑制できる。
【0009】
[適用例2]
適用例1に記載の移動装置であって、
前記定常円旋回の維持に必要な前記ロールトルクは、前記移動装置が前記現行の速度での前記現行のロール角による前記定常円旋回を維持する場合に、前記力付与装置によって形成されるロールトルクである、
移動装置。
【0010】
この構成によれば、制御装置は、力付与装置を適切に制御できる。
【0011】
[適用例3]
適用例1または2に記載の移動装置であって、
旋回の目標方向と旋回の目標程度とを示す旋回目標データを取得するように構成されている旋回目標データ取得装置を備え、
前記旋回目標データを含む1以上のパラメータデータを用いて決定される目標ロール角と、現行のロール角と、の間の差を、ロール角差とし、
前記制御装置は、前記第1条件が満たされない場合に、前記ロール角差の大きさが大きいほど、前記参照ロールトルクTqrfに対する前記有効ロールトルクTeの割合が大きくなるように、前記力付与装置を制御するように構成されている、
移動装置。
【0012】
この構成によれば、ロール角差の大きさが大きい場合に、力付与装置によって、適切に、ロール角差を小さくできる。
【0013】
なお、本明細書に開示の技術は、種々の態様で実現することが可能であり、例えば、移動装置、車両、移動装置の制御装置、車両の制御装置、移動装置の制御方法、車両の制御方法、等の態様で実現することができる。
【図面の簡単な説明】
【0014】
【
図1】(A)-(C)は、移動装置の一実施例である車両10を示す説明図である。
【
図2】移動装置の一実施例である車両10を示す説明図である。
【
図3】(A)、(B)は、水平な地面GL上の車両10の状態を示す概略図である。(C)、(D)は、車両10の簡略化された背面図を示している。
【
図5】車輪角Awと旋回半径Rとの簡略化された関係を示す説明図である。
【
図6】車両10の制御に関する構成を示すブロック図である。
【
図8】(A)-(C)は、対象部分10tのロール運動の説明図である。(D)は、式B1-B4を示す説明図である。(E)は、式B5-B8を示す説明図である。
【
図9】(A)は、第1係数KAと速度Vとの対応関係を示すグラフである。(B)は、第2係数KBと速度Vとの対応関係を示すグラフである。(C)は、第1係数KAとロール角差dArとの対応関係を示すグラフである。(D)は、第1係数KAとロール角差dArの時間微分dAr’との対応関係を示すグラフである。(E)は、有効ロールトルクTeと速度Vとの対応関係の例を示すグラフである。
【
図10】リーンモータの制御処理の例を示すフローチャートである。
【
図11】(A)は、第1補正成分TqC1と速度Vとの対応関係を示すグラフである。(B)は、第2補正成分TqC2とロール角速度Ar’との対応関係を示すグラフである。
【
図12】操舵モータ550の制御処理の例を示すフローチャートである。
【
図13】(A)-(E)は、ロールトルクTq1-Tq3の説明図である。
【
図14】PゲインK2と速度Vとの対応関係の例を示すグラフである。
【発明を実施するための形態】
【0015】
A.第1実施例:
A1.車両10の構成:
図1(A)-
図1(C)、
図2は、移動装置の一実施例である車両10を示す説明図である。
図1(A)は、車両10の右側面図を示し、
図1(B)は、車両10の上面図を示し、
図1(C)は、車両10の下面図を示している。また、
図2は、車両10の背面図を示している。これらの図は、水平な地面GL(
図1(A))上に配置され、傾斜していない状態の車両10を、示している。各図には、6つの方向DF、DB、DU、DD、DR、DLが示されている。前方向DFは、車両10の前方向(すなわち、前進方向)であり、後方向DBは、前方向DFの反対方向である。上方向DUは、鉛直上方向であり、下方向DDは、鉛直下方向(すなわち、上方向DUの反対方向)である。鉛直下方向は、重力の方向である。右方向DRは、前方向DFに走行する車両10から見た右方向であり、左方向DLは、右方向DRの反対方向である。方向DF、DB、DR、DLは、いずれも、水平な方向である。右と左の方向DR、DLは、前方向DFに垂直である。
【0016】
本実施例では、車両10は、一人乗り用の小型車両である。車両10(
図1(A)、
図1(B))は、ボディ100と、前輪20と、一対の後輪30R、30Lと、を有する三輪車である。前輪20は、回動輪の例であり、車両10の幅方向の中心に配置されている。回動輪は、車両10の幅方向(すなわち、右方向と左方向)に回動可能な車輪である。回動輪の進行方向は、前方向DFから右と左とに回転可能である。左後輪30Lと右後輪30Rとは、駆動輪であり、車両10の幅方向の中心に対して対称に、幅方向に互いに離れて配置されている。車両10が走行する場合、車輪20、30R、30Lは、回転軸20x、30Rx、30Lxを中心に、それぞれ回転する。
【0017】
ボディ100(
図1)は、本体部110を有している。本体部110は、底部113と、底部113の前方向DF側に接続された前壁部112と、前壁部112の上端から前方向DFに向かって延びる前部111と、底部113の後方向DB側に接続された後壁部114と、後壁部114の上端から後方向DBに向かって延びる後部115と、を有している。本体部110は、例えば、金属製のフレームと、フレームに固定されたパネルと、を有している。
【0018】
ボディ100は、さらに、後部115上に形成された荷物室190を有している。ユーザは、荷物室190内に、荷物(例えば、荷物100x)を載せることができる。
【0019】
ボディ100は、さらに、底部113上に固定された座席120と、座席120の前方向DF側に配置されたアクセルペダル170とブレーキペダル180と、底部113に固定された制御装置900とバッテリ800と、前部111に取り付けられたハンドル160と、前部111に固定された前輪支持装置500と、前部111に取り付けられた操舵モータ550と、を有している。図示を省略するが、本体部110には、他の部材(例えば、屋根、前照灯など)が固定され得る。ボディ100は、本体部110に固定された部材を含んでいる。
【0020】
ハンドル160は、右方向と左方向とに回転可能な部材である。直進を示す所定の回転位置(直進回転位置と呼ぶ)に対するハンドル160の回転角度(入力角とも呼ぶ)は、旋回の目標方向と旋回の目標程度とを表す旋回目標情報の例である。本実施例では、「入力角=ゼロ」は、直進を示し、「入力角>ゼロ」は、右旋回を示し、「入力角<ゼロ」は、左旋回を示している。入力角の大きさ(すなわち、絶対値)は、旋回の目標程度を示している。運転者は、ハンドル160を操作することによって、旋回目標情報を入力できる。
【0021】
図1(B)には、前輪20の回転軸20xと方向D20が示されている。
図1(B)では、前輪20を示すために、前部111の一部の図示が省略されている。車両10が前進する場合、前輪20は、方向D20に向かって進行する(進行方向D20とも呼ぶ)。進行方向D20は、回転軸20xに垂直に前方向DF側に延びる方向である。
図1(A)には、前輪20の回動軸27が示されている。車両10の旋回時、方向D20は、回動軸27を中心に、旋回方向へ回動する。
【0022】
車輪角Aw(
図1(B))は、前方向DFを基準とする進行方向D20の角度である。車輪角Awは、ボディ100の上方向(ボディ100が鉛直上方向DUに対して傾斜していない場合には、鉛直上方向DUと同じ)に平行な軸まわりの角度を示している。本実施例では、「Aw=ゼロ」は、「D20=DF」を示している。「Aw>ゼロ」は、「旋回方向=右方向DR」を示し、「Aw<ゼロ」は、「旋回方向=左方向DL」を示している。車輪角Awは、前輪20の回動の角度を示している。前輪20が操舵される場合、車輪角Awは、いわゆる操舵角に対応する。
【0023】
図1(A)中の角度CAは、いわゆるキャスター角である。キャスター角CAは、ボディ100の上方向(ボディ100が鉛直上方向DUに対して傾斜していない場合には、鉛直上方向DUと同じ)と、回動軸27に沿って鉛直上方向DU側へ向かう方向と、のなす角度である。本実施例では、キャスター角CAがゼロよりも大きい。
【0024】
図1(A)、
図1(C)中の交点26は、回動軸27と地面GLとの交点である。交点26は、前輪20の地面GLとの接触中心29よりも、前方向DF側に位置している。交点26と接触中心29との間の後方向DBの距離Ltは、トレールと呼ばれる。正のトレールLtは、接触中心29が交点26よりも後方向DB側に位置していることを示している。なお、
図1(C)に示すように、前輪20の接触中心29は、前輪20と地面GLとの接触領域28の重心である。接触領域の重心は、接触領域内に質量が均等に分布していると仮定する場合の重心の位置である。他の車輪30R、30Lと地面GLとの接触領域38R、38Lと、接触中心39R、39Lとは、同様に決定される。
【0025】
図1(A)に示すように、車両10は、ボディ100の後壁部114の後方向DB側に配置された連結装置600を有している。
図2には、車両10のうちの連結装置600を含む一部分の簡略化された背面図が示されている。
図2に示すように、2つの後輪30L、30Rと、ボディ100とは、連結装置600によって連結されている。連結装置600は、リンク機構60と、リンク機構60に固定された駆動モータ660R、660Lと、リンク機構60に取り付けられたリーンモータ650と、リンク機構60の上側の部分である支持部69とボディ100の後部115とを接続するサスペンションシステム670と、リンク機構60(
図1(C))とボディ100の後壁部114とを接続する2本のアーム680と、を備えている。
【0026】
リンク機構60(
図2)は、いわゆる、平行リンクである。リンク機構60は、右方向DRに向かって順番に並ぶ3つの縦リンク部材61L、61C、61Rと、下方向DDに向かって順番に並ぶ2つの横リンク部材61U、61Dと、中縦リンク部材61Cの上部に固定された支持部69と、を有している。水平な地面GL(すなわち、鉛直上方向DUに垂直な地面GL)上でボディ100が傾斜せずに直立している場合、縦リンク部材61L、61C、61Rは、鉛直方向に平行であり、横リンク部材61U、61Dは、水平方向に平行である。2つの縦リンク部材61L、61Rと、2つの横リンク部材61U、61Dとは、平行四辺形リンク機構を形成している。中縦リンク部材61Cは、2つの横リンク部材61U、61Dの中央部分を連結している。リンク部材61L、61C、61R、61U、61Dと、支持部69とは、例えば、金属で形成されている。
【0027】
リンク機構60は、複数のリンク部材を回転可能に連結する軸受を有している。例えば、軸受68Dは、2個のリンク部材61D、61Cを回転可能に連結し、軸受68Uは、2個のリンク部材61U、61Cを回転可能に連結している。説明を省略するが、他の複数のリンク部材も、軸受によって連結されている。軸受の回転軸は、後方向DB側から前方向DF側に向かって延びている(本実施例では、回転軸は、前方向DFに平行である)。互いに連結された2個のリンク部材は、予め決められた角度範囲(例えば、180度未満の範囲)内で、回転軸を中心に相対的に回転可能であってよい。
【0028】
リーンモータ650は、リンク機構60を駆動するように構成されている駆動装置の例であり、本実施例では、電気モータである。リーンモータ650は、中縦リンク部材61Cと上横リンク部材61Uとに接続されている。リーンモータ650は、上横リンク部材61Uを、中縦リンク部材61Cに対して、回転させる。これにより、ボディ100は、幅方向(すなわち、右方向、または、左方向)に傾斜する(詳細は、後述)。このように傾斜する運動は、ロール運動とも呼ばれる。なお、リーンモータ650と中縦リンク部材61Cとは、ギヤを介して接続されてよい。また、リーンモータ650と上横リンク部材61Uとは、ギヤを介して接続されてよい。以下、リーンモータ650によって生成されるトルクを、リーンモータトルクとも呼ぶ。リーンモータトルクは、ボディ100をロールさせる。
【0029】
左縦リンク部材61Lには、左駆動モータ660Lが取り付けられている。左駆動モータ660Lには、左後輪30Lが取り付けられている。また、右縦リンク部材61Rには、右駆動モータ660Rが取り付けられている。660右駆動モータ660Rには、右後輪30Rが取り付けられている。
【0030】
図1(A)、
図1(C)、
図2に示すように、2本のアーム680は、車両10の幅方向に並んで配置されている。2本のアーム680は、前方向DFにおおよそ平行に延びている。アーム680の前方向DF側の端部は、後壁部114に、回転可能に接続されている。また、アーム680の後方向DB側の端部は、中縦リンク部材61Cに回転可能に接続されている。
【0031】
サスペンションシステム670(
図2)は、左サスペンション670Lと右サスペンション670Rと、を有している。本実施例では、サスペンション670L、670Rは、図示しないコイルスプリングとショックアブソーバとを内蔵している。サスペンション670L、670Rの上方向DU側の端部は、ボディ100の後部115に、回転可能に接続されている。また、サスペンション670L、670Rの下方向DD側の端部は、リンク機構60の支持部69に、回転可能に接続されている。
【0032】
2本のアーム680とサスペンションシステム670とは、ボディ100とリンク機構60との間の相対的な動きを許容する。
【0033】
前輪支持装置500(
図1(A))は、回動軸27を中心に回動可能に前輪20を支持する装置である。前輪支持装置500は、前フォーク517と、軸受568と、を有している。前フォーク517は、回転軸20xを中心に回転可能に前輪20を支持している。前フォーク517は、コイルスプリングとショックアブソーバとを有している。軸受568は、本体部110の前部111と、前フォーク517と、を連結している。軸受568は、回動軸27を中心に、前フォーク517(ひいては、前輪20)を、ボディ100に対して左右に回転可能に支持している。前フォーク517の回転可能範囲は、予め決められた角度範囲(例えば、180度未満の範囲)であってよい。
【0034】
操舵モータ550は、電気モータであり、本体部110の前部111と前フォーク517とに接続されている。操舵モータ550は、前フォーク517(ひいては、前輪20)を幅方向(すなわち、右方向と左方向)に回動させるトルクを生成する。以下、前輪20の幅方向の回動を制御するトルクを、回動トルクとも呼ぶ。回動トルクが前輪20を回動させる場合、車両10の旋回半径が変化するので、車両10のヨー角速度が変化する。このように、操舵モータ550は、車両10のヨー角速度を変化させる成分(ここでは、回動トルク)を含む第1力を車両10(本実施例では、前輪支持装置500の前フォーク517)に付与するように構成されている第1付与装置の例である。以下、操舵モータ550を、第1付与装置550、または、回動駆動装置550とも呼ぶ。
【0035】
なお、本実施例では、ハンドル160と前フォーク517とは、機械的には接続されていない。ただし、弾性体(例えば、コイルバネや板バネなどのバネ、ゴムやシリコンなどの樹脂)が、ハンドル160と前フォーク517とを接続してもよい。
【0036】
図3(A)、
図3(B)は、水平な地面GL上の車両10の状態を示す概略図である。図中には、車両10のうちの連結装置600を含む一部分の簡略化された背面図が示されている。
図3(A)は、車両10が直立している状態を示し、
図3(B)は、車両10が傾斜している状態を示している。
図3(A)に示すように、上横リンク部材61Uが中縦リンク部材61Cに対して直交する場合、後輪30L、30Rは、水平な地面GLに対して直立する。そして、ボディ100を含む車両10の全体は、地面GLに対して、直立する。図中のボディ上方向DVUは、ボディ100の上方向である。車両10が傾斜していない状態では、ボディ上方向DVUは、上方向DUと同じである。本実施例では、ボディ100に対して予め決められた上方向が、ボディ上方向DVUとして用いられる。
【0037】
図3(B)に示すように、背面図上で、中縦リンク部材61Cが上横リンク部材61Uに対して時計回り方向に回転することによって、ボディ100に対して相対的に、右後輪30Rがボディ上方向DVU側に移動し、左後輪30Lが反対側に移動する。従って、後輪30R、30Lが地面GLに接触した状態で、後輪30L、30R、ひいては、ボディ100は、地面GLに対して、右方向DR側に傾斜している。図示を省略するが、中縦リンク部材61Cが上横リンク部材61Uに対して反時計回り方向に回転することによって、ボディ100は、左方向DL側に傾斜する。
【0038】
図3(B)では、ボディ上方向DVUは、上方向DUに対して、右方向DR側に傾斜している。以下、前方向DFを向いて車両10を見る場合の、上方向DUとボディ上方向DVUとの間の角度を、ロール角Ar、または、傾斜角Arと呼ぶ。ここで、「Ar>ゼロ」は、右方向DR側への傾斜を示し、「Ar<ゼロ」は、左方向DL側への傾斜を示している。ボディ100のロール角Arは、ボディ100を有する車両10のロール角Arであるということができる。
【0039】
図3(B)には、リンク機構60の制御角ACrが示されている。制御角ACrは、上横リンク部材61Uの向きに対する中縦リンク部材61Cの向きの角度を示している。
図3(B)の背面図において、「ACr=ゼロ」は、上横リンク部材61Uに対して中縦リンク部材61Cが垂直であることを、示している。「ACr>ゼロ」は、中縦リンク部材61Cが、上横リンク部材61Uに対して、「ACr=ゼロ」の状態から時計回り方向に回転した状態を示している。図示を省略するが、「ACr<ゼロ」は、中縦リンク部材61Cが、上横リンク部材61Uに対して、「ACr=ゼロ」の状態から反時計回り方向に回転した状態を示している。図示するように、車両10が、水平な地面GL(すなわち、鉛直上方向DUに垂直な地面GL)上に位置している場合、制御角ACrは、ロール角Arと、おおよそ同じである。
【0040】
図3(C)、
図3(D)は、
図3(A)、
図3(B)と同様に、車両10の簡略化された背面図を示している。
図3(C)、
図3(D)では、地面GLxは、鉛直上方向DUに対して斜めに傾斜している(右側が高く、左側が低い)。
図3(C)は、制御角ACrがゼロである状態を示している。この状態では、後輪30R、30Lが、地面GLxに対して直立する。そして、ボディ上方向DVUは、地面GLxに対して垂直であり、また、鉛直上方向DUに対して左方向DL側に傾斜している。
【0041】
図3(D)は、ロール角Arがゼロである状態を示している。この状態では、上横リンク部材61Uは、地面GLxにおおよそ平行であり、中縦リンク部材61Cに対して反時計回りの方向に傾斜している。また、後輪30R、30Lは、地面GLxに対して傾斜している。
【0042】
このように、地面GLxが傾斜している場合、ボディ100のロール角Arは、リンク機構60の制御角ACrと、異なり得る。
【0043】
リンク機構60は、ボディ100を車両10の幅方向に傾斜させるように構成されている傾斜装置の例である(傾斜装置60とも呼ぶ)。リーンモータ650は、傾斜装置60を駆動する駆動力(すなわち、リーンモータトルク)を生成するように構成されている。また、リーンモータ650は、ボディ100のロール角速度を変化させる成分(本実施例では、リーンモータトルク)を含む第2力をボディ100に付与するように構成されている第2付与装置の例である。以下、リーンモータ650を、第2付与装置650、または、傾斜駆動装置650とも呼ぶ。本実施例では、リーンモータ650は、連結装置600(具体的には、傾斜装置60とサスペンションシステム670)を介して、ボディ100にロールトルクを作用させる。傾斜駆動装置650の駆動力は、一対の後輪30R、30Lに対してボディ100を幅方向にロールさせる。
【0044】
なお、連結装置600は、リンク機構60の動きを止める図示しないロック機構を有している。ロック機構を作動させることによって、制御角ACrが固定される。例えば、車両10の駐車時に、制御角ACrはゼロに固定される。
【0045】
図4は、旋回時の力のバランスの説明図である。図中には、旋回方向が右方向である場合の後輪30R、30Lの背面図が示されている。後述するように、旋回方向が右方向である場合、制御装置900(
図1(A))は、車輪20、30R、30L(ひいては、ボディ100)が地面GLに対して右方向DRに傾斜するように、リーンモータ650を制御する場合がある。このように、車両10は、旋回時に旋回の内側に傾斜する。
【0046】
以下、車両10のうち、ボディ100がロールする場合に動く部分の全体を、対象部分とも呼ぶ。動きは、回転、移動、回転と移動の組み合わせ、など、地面に対する相対的な任意の動きであってよい。ボディ100がロールする場合に動く部分が、対象部分に含まれる。対象部分に含まれる部分がボディ100のロールに伴って動くのは、ロール角Arの可能な範囲のうちの少なくとも一部の範囲であってよい。対象部分は、車両10が停止している状態で、ボディ100をロールさせることによって、決定され得る。本実施例では、車両10の全体が、対象部分に相当する(対象部分10tとも呼ぶ)。
【0047】
図4には、対象部分10tの重心10tcが示されている。重心10tcは、ボディ100が積載物を積んだ状態での重心である。なお、本実施例では、積載物は、人または物体の一方または両方を含んでいる。
【0048】
図中の第1力F1は、対象部分10tに作用する遠心力である。第2力F2は、対象部分10tに作用する重力である。以下、対象部分10tに作用する力は、対象部分10tの重心10tcに作用することとして、説明を行う。ここで、対象部分10tの質量をM(kg)とし、重力加速度をg(おおよそ、9.8m/s2)とし、鉛直方向に対する車両10のロール角をAr(度)とし、旋回時の車両10の速度(車速とも呼ばれる)をV(m/s)とし、旋回半径をR(m)とする。第1力F1と第2力F2とは、以下の式1、式2で表される。
(式1)F1=(M*V2)/R
(式2)F2=M*g
ここで、*は、乗算記号(以下、同じ)。
【0049】
また、図中の力F1bは、第1力F1の、ボディ上方向DVUに垂直な方向の成分である。力F2bは、第2力F2の、ボディ上方向DVUに垂直な方向の成分である。力F1bと力F2bとは、以下の式3、式4で表される。
(式3)F1b=F1*cos(Ar)
(式4)F2b=F2*sin(Ar)
ここで、「cos()」は、余弦関数であり、「sin()」は、正弦関数である(以下、同じ)。
【0050】
力F1bは、ボディ上方向DVUを左方向DL側に回転させる成分であり、力F2bは、ボディ上方向DVUを右方向DR側に回転させる成分である。車両10がロール角Ar(さらには、速度Vと旋回半径R)を保ちつつ旋回を続ける場合には、F1bとF2bとの関係は、以下の式5で表される
(式5)F1b=F2b
式5に上記の式1~式4を代入すると、旋回半径Rは、以下の式6で表される。
(式6)R=V2/(g*tan(Ar))
ここで、「tan()」は、正接関数である(以下、同じ)。
式6は、対象部分10tの質量Mに依存せずに、成立する。
【0051】
図5は、車輪角Awと旋回半径Rとの簡略化された関係を示す説明図である。図中には、下方向DDを向いて見た車輪20、30L、30Rが示されている。ここで、説明を簡略化するために、ロール角Arがゼロであることとする(すなわち、ボディ上方向DVUは、下方向DDに平行)。図中では、進行方向D20は、右方向DRに回動しており、車両10は、右方向DRに旋回する。図中の前中心Cfは、前輪20の接触中心29である。後中心Cbは、2つの後輪30R、30Lの接触中心39R、39Lの間の中心である。車両10の右方向DR側に位置する中心Crは、旋回の中心である。車両10の旋回運動は、車両10の公転運動と、車両10の自転運動と、を含んでいる。中心Crは、公転運動の中心である(公転中心Crとも呼ぶ)。なお、本実施例では、後輪30R、30Lは回動輪ではなく、前輪20が回動輪である。従って、自転中心は、後中心Cbとおおよそ同じである。ホイールベースLhは、前中心Cfと後中心Cbとの間の前方向DFの距離である。
図1(A)に示すように、ホイールベースLhは、前輪20の回転軸20xと、後輪30R、30Lの回転軸30Rx、30Lxとの間の前方向DFの距離と同じである。
【0052】
図5に示すように、前中心Cfと後中心Cbと公転中心Crとは、直角三角形を形成する。点Cbの内角は、90度である。点Crの内角は、車輪角Awと同じである。従って、車輪角Awと旋回半径Rとの関係は、以下の式7で表される。
(式7)Aw=arctan(Lh/R)
ここで「arctan()」は、正接関数の逆関数である(以下、同じ)。
【0053】
上記の式6、式7は、車両10が、速度Vと旋回半径Rとが変化しない状態で、旋回している場合に成立する関係式である。具体的には、式6、式7は、遠心力に起因する力F1b(
図4)と重力に起因する力F2bとが釣り合う静的な状態を示している。式7は、車輪角Awと旋回半径Rとの関係を示す良い近似式として、利用可能である。なお、現実の車両10の動きと、
図5の簡略化された動きと、の間には、種々の差異が存在する。例えば、車両に作用する現実の力は、動的に変化する。現実の車輪20、30R、30Lは、地面に対して滑り得る。現実の車輪20、30R、30Lは、地面に対して傾斜し得る。従って、現実の旋回半径は、式7の旋回半径Rと異なり得る。ただし、式7は、車輪角Awと旋回半径Rとの関係を示す良い近似式として、利用可能である。
【0054】
A2.車両10の制御に関する構成:
図6は、車両10の制御に関する構成を示すブロック図である。車両10は、速度センサ720と、車輪角センサ755と、入力角センサ760と、アクセルペダルセンサ770と、ブレーキペダルセンサ780と、方向センサ790と、制御装置900と、右駆動モータ660Rと、左駆動モータ660Lと、リーンモータ650と、操舵モータ550と、を有している。
【0055】
速度センサ720は、車両10の速度を検出するセンサである。本実施例では、速度センサ720は、前輪20(
図1(A))の中心部分に取り付けられている。速度センサ720は、前輪20の回転速度を検出する。回転速度は、車両10の速度(速度とも呼ぶ)と相関を有している。従って、回転速度を検出するセンサ720は、速度を検出しているということができる。なお、速度センサ720は、他の車輪に取り付けられてよい。速度センサ720は、速度を測定する速度測定装置の例である(速度測定装置720とも呼ぶ)。
【0056】
車輪角センサ755は、車輪角Aw(
図1(B))を検出するセンサである。本実施例では、車輪角センサ755は、本体部110の前部111と前フォーク517とに接続されている。車輪角センサ755は、前輪20の回動軸27に平行な軸まわりの車輪角を検出する(検出角Awxとも呼ぶ)。回動軸27は、ボディ100とともに、ロールする。また、回動軸27に平行な方向は、ボディ上方向DVUとは異なり得る。この場合、ボディ上方向DVUに平行な軸まわりの車輪角Awは、回動軸27に平行な方向とボディ上方向DVUとの間の差を用いて検出角Awxを補正することによって、算出される。例えば、ボディ上方向DVUに対するキャスター角CAがゼロではない場合、制御装置900は、近似式「Aw=cos(CA)*Awx」に従って、車輪角Awを算出してよい。
【0057】
入力角センサ760は、ハンドル160(
図1(A))の向き(すなわち、入力角)を検出するセンサであり、ハンドル160に取り付けられている。入力角センサ760は、入力角AIを示すデータ(旋回目標データの例)を取得するように構成されている旋回目標データ取得装置の例である。
【0058】
アクセルペダルセンサ770は、アクセルペダル170(
図1(A))に取り付けられており、アクセル操作量Paを検出する。アクセル操作量Paは、加速度の目標の大きさを示す加速目標情報の例である。アクセルペダルセンサ770は、加速目標情報を示すデータを取得する加速目標データ取得装置の例である。ブレーキペダルセンサ780は、ブレーキペダル180(
図1(A))に取り付けられており、ブレーキ操作量Pbを検出する。ブレーキ操作量Pbは、減速度の目標の大きさを示す減速目標情報の例である。ブレーキペダルセンサ780は、減速目標情報を示すデータを取得する減速目標データ取得装置の例である。
【0059】
各センサ720、755、760、770、780は、例えば、レゾルバ、または、エンコーダを用いて構成されている。
【0060】
方向センサ790は、ロール角Arとヨー角速度を測定するセンサである。本実施例では、方向センサ790は、ボディ100(
図1(A))に固定されている(具体的には、後壁部114)。また、本実施例では、方向センサ790は、加速度センサ792と、ジャイロセンサ793と、制御部791と、を含んでいる。加速度センサ792は、任意の方向の加速度を検出するセンサであり、例えば、3軸の加速度センサである。以下、加速度センサ792によって検出される加速度の方向を、検出方向と呼ぶ。車両10が停止している状態では、検出方向は、鉛直下方向DDと同じである。ジャイロセンサ793は、任意の方向の回転軸を中心とする角速度を検出するセンサであり、例えば、3軸の角速度センサである。制御部791は、加速度センサ792からの信号とジャイロセンサ793からの信号と速度センサ720からの信号とを用いて、ロール角Arを示すデータとヨー角速度を示すデータとを取得する。制御部791は、例えば、コンピュータを含むデータ処理装置である。
【0061】
制御部791は、速度センサ720によって測定される速度Vを用いることによって、車両10の加速度を算出する。そして、制御部791は、加速度を用いることによって、車両10の加速度に起因する現実の鉛直下方向DDに対する検出方向のずれを算出する(例えば、検出方向の前方向DFまたは後方向DBのずれが算出される)。また、制御部791は、ジャイロセンサ793によって測定される角速度を用いることによって、車両10の角速度に起因する現実の鉛直下方向DDに対する検出方向のずれを算出する(例えば、検出方向の右方向DRまたは左方向DLのずれが、算出される)。制御部791は、算出されたずれを用いて検出方向を修正することによって、鉛直下方向DDを決定する。このように方向センサ790は、車両10の種々の走行状態において、適切な鉛直下方向DDを決定できる。そして、制御部791は、鉛直下方向DDの反対の鉛直上方向DUと、予め決められたボディ上方向DVUと、の間のロール角Arを算出する。このように、方向センサ790と速度センサ720との全体は、重力方向を基準とするボディ100の幅方向のロール角Arを測定するように構成されたロール角センサの例である(以下、ロール角センサ730とも呼ぶ)。なお、ロール角センサの構成は、公知の他の種々の構成であってよい。また、制御部791は、ジャイロセンサ793によって測定される角速度からボディ上方向DVUに平行な軸を中心とする角速度の成分を算出し、算出した角速度をヨー角速度として採用する。
【0062】
本明細書では、変数の後ろに付された1個のクォーテーションマーク「’」は、時間に関する1階微分を示している。2個のクォーテーションマーク「’’」は、時間に関する2階微分を示している。例えば、Ay’は、ヨー角Ayの時間に関する一階微分、すなわち、ヨー角速度を示している。
【0063】
制御装置900は、主制御部910と、駆動装置制御部920と、リーンモータ制御部930と、操舵モータ制御部940と、を有している。制御装置900は、バッテリ800(
図1(A))からの電力を用いて動作する。本実施例では、制御部910、920、930、940は、それぞれ、コンピュータを有している。具体的には、制御部910、920、930、940は、プロセッサ910p、920p、930p、940p(例えば、CPU)と、揮発性記憶装置910v、920v、930v、940v(例えば、DRAM)と、不揮発性記憶装置910n、920n、930n、940n(例えば、フラッシュメモリ)と、を有している。不揮発性記憶装置910n、920n、930n、940nには、対応する制御部910、920、930、940の動作のためのプログラム910g、920g、930g、940gが、予め格納されている。プロセッサ910p、920p、930p、940pは、それぞれ、対応するプログラム910g、920g、930g、940gを実行することによって、種々の処理を実行する。また、主制御部910の不揮発性記憶装置910nには、マップデータMAr、MAK、MC1、MC2が、予め格納されている。
【0064】
制御装置900は、種々のセンサ(例えば、センサ720、755、760、770、780、790)からの信号を取得する。主制御部910のプロセッサ910pは、センサから取得された信号によって表される情報を用いて、駆動装置制御部920とリーンモータ制御部930と操舵モータ制御部940とに指示を出力する。
【0065】
本実施例では、主制御部910は、デジタル信号を処理する。図示を省略するが、制御装置900は、アナログ信号をデジタル信号に変換するコンバータを有している。センサがアナログ信号を出力する場合、センサからのアナログ信号は、コンバータによって、デジタル信号に変換される。
【0066】
また、制御装置900は、センサからの信号を処理するローパスフィルタを有してよい。ローパスフィルタは、信号に含まれる高周波成分を減衰させる。これにより、ノイズが低減される。
【0067】
駆動装置制御部920のプロセッサ920pは、主制御部910からの指示に従って、駆動モータ660R、660Lを制御する。駆動装置制御部920は、モータ660R、660Lにバッテリ800からの電力をそれぞれ供給する電力制御部920cR、920cLを有している。リーンモータ制御部930のプロセッサ930pは、主制御部910からの指示に従って、リーンモータ650を制御する。リーンモータ制御部930は、リーンモータ650にバッテリ800からの電力を供給する電力制御部930cを有している。操舵モータ制御部940のプロセッサ940pは、主制御部910からの指示に従って、操舵モータ550を制御する。操舵モータ制御部940は、操舵モータ550にバッテリ800からの電力を供給する電力制御部940cを有している。電力制御部920cR、920cL、930c、940cは、電気回路(例えば、インバータ回路)を用いて、構成されている。
【0068】
主制御部910と駆動装置制御部920とは、駆動モータ660R、660Lを制御する駆動制御装置990として機能する。駆動制御装置990は、アクセル操作量Paに適した加速と、ブレーキ操作量Pbに適した減速と、を行うように、駆動モータ660R、660Lを制御する。なお、車両10は、車輪(例えば、後輪30R、30L)の回転速度を減速させる摩擦ブレーキを備えてよい。摩擦ブレーキは、ブレーキペダル180の踏み込みによって、駆動されてよい。
【0069】
A3.車両10の制御:
車両10が前進する場合の制御について説明する。
図7は、制御処理の例を示すフローチャートである。S110では、主制御部910(
図6)は、センサ720-790から、信号を取得する。そして、主制御部910のプロセッサ910pは、取得した信号によって示される現行の情報を示すデータを取得する。現行の情報は、情報Ar、Ay’、V、Aw、AI、Pa、Pbを含む。
【0070】
S120では、主制御部910のプロセッサ910pは、速度Vと入力角AIを用いて、目標ロール角Artを決定する。速度Vと入力角AIとの組み合わせと目標ロール角Artとの対応関係は、マップデータMAr(
図6)によって、予め決められている。プロセッサ910pは、マップデータMArを参照して、速度Vと入力角AIとの組み合わせに対応付けられた目標ロール角Artを取得する。
【0071】
速度Vと入力角AIとの組み合わせと目標ロール角Artとの対応関係は、種々の対応関係であってよい。本実施例では、速度Vが一定である場合、入力角AIの大きさが大きいほど、目標ロール角Artの大きさが大きい。これにより、入力角AIの大きさが大きいほど、車両10は、小さい旋回半径Rで旋回できる。
【0072】
また、本実施例では、入力角AIが一定である場合については、以下の通りである。速度Vが予め決められた基準速度(例えば、時速10km以上、時速30km以下の速度)以上である場合、目標ロール角Artは一定である。速度Vが基準速度未満である場合、目標ロール角Artの大きさは、速度Vが小さいほど、小さい。そして、V=ゼロの場合、目標ロール角Artの大きさはゼロである。この理由は、以下の通りである。釣合状態(
図4)では、上記式6に示すように、速度Vの低減によって、旋回半径Rが低減し得る。減速時の旋回半径Rの急な低減を抑制するために、本実施例では、目標ロール角Artの大きさは、速度Vが小さいほど、小さい。目標ロール角Artの大きさが小さくなる場合、ロール角Arの大きさが小さくなるので、式6の分母のtan(Ar)が小さくなる。これにより、入力角AIが一定である場合に、速度Vの低減に起因する旋回半径Rの低減が抑制される。
【0073】
S130では、プロセッサ910pは、目標ロール角Artから現行のロール角Arを減算することによって、ロール角差dArを算出する。
【0074】
S140では、プロセッサ910pは、ロール角差dArを用いて目標ロールトルクTqrを決定する。目標ロールトルクTqrの大きさは、ロール角差dArの大きさが大きいほど、大きい。また、目標ロールトルクTqrの方向は、右方向と左方向とのうち、ロール角Arを目標ロール角Artに近づける方向である。すなわち、目標ロールトルクTqrの方向にボディ100がロールする場合に、ロール角差dArが小さくなるように、目標ロールトルクTqrの方向が決定される。本実施例では、プロセッサ910pは、ロール角差dArを用いるPD(Proportional Differential)制御によって、目標ロールトルクTqrを決定する。PD制御の方法は、公知の種々の方法であってよい。本実施例では、PDのそれぞれのゲインは、予め決められている。ただし、プロセッサ910pは、比例ゲインを、1以上のパラメータ(例えば、速度V)を用いて調整してよい。微分ゲインについても、同様である。なお、D制御は、省略されてよい。I(Integral)制御が追加されてよい。
【0075】
S150では、プロセッサ910pは、速度Vとロール角差dArとを用いて、係数KA、KBを決定する。係数KA、KBは、目標ロールトルクTqrをリーンモータ650と操舵モータ550とに配分するための係数である。以下に説明するように、リーンモータ650に加えて、操舵モータ550も、ボディ100(ひいては、対象部分10t)をロールさせ得る。制御装置900は、リーンモータ650と操舵モータ550との両方を用いて、対象部分10tのロールを制御する。本実施例では、制御装置900は、第1係数KAと目標ロールトルクTqrとの積を用いて、リーンモータ650を制御する。KA*Tqrの大きさが大きいほど、リーンモータ650による対象部分10tをロールさせるトルクの大きさは大きくなり得る。また、制御装置900は、第2係数KBと目標ロールトルクTqrとの積を用いて操舵モータ550を制御する。KB*Tqrの大きさが大きいほど、操舵モータ550による対象部分10tをロールさせるトルクの大きさは大きくなり得る。
【0076】
次に、リーンモータ650による対象部分10tのロール運動と、操舵モータ550による対象部分10tのロール運動と、について説明する。
図8(A)-
図8(C)は、対象部分10tのロール運動の説明図である。各図には、対象部分10tが簡略化して示されている。軸AxLは、ロール軸である。ボディ100(ひいては、対象部分10t)は、ロール軸AxLを中心に、ロールする。本実施例では、
図1(A)、
図1(C)に示すように、ロール軸AxLは、地面GL上に配置されており、前輪20の地面GLとの接触中心29を通り、前方向DFに平行な直線である。距離Zは、対象部分10tの重心10tcと、ロール軸AxLと、の間の距離である。
図8(A)に示すように、対象部分10tが傾斜せずに直立する場合、距離Zは、重心10tcの高さと同じである。なお、距離Zは、ゼロよりも大きい。
【0077】
図8(B)は、リーンモータ650によるロール運動の説明図である。
図8(B)では、リーンモータ650は、右方向DRのロールトルクRTLを、対象部分10tに作用させることとする。図中では、対象部分10tは、直立の状態から、右方向DR側へロールする。このロール運動は、ロール軸AxLまわりの重心10tcの回転RLaと、重心10tcの位置でのロール軸AxLに平行な軸まわりの対象部分10tの回転RLbと、を含んでいる。このロール運動により、対象部分10tの重心10tcは、地面GLに対して右方向DR側へ移動する。このように、リーンモータ650によるロールトルクRTLは、ロール軸AxLまわりにボディ100をロールさせる。
【0078】
図8(C)は、操舵モータ550によるロール運動の説明図である。
図8(C)では、操舵モータ550は、前輪20を左方向DL側に回動させることとする。この場合、前輪20の接触中心29は、左方向DL側へ移動する。従って、対象部分10tのうちの鉛直下方向DD側の部分が、左方向DL側へ移動する。この結果、重心10tcの位置でのロール軸AxLに平行な軸まわりの対象部分10tの回転RSbが生じる。この回転RSbは、対象部分10tの右方向DR側へのロールを示している。このように、前輪20を左方向DL側へ回動させる回動トルクは、重心10tcまわりに対象部分10t(ひいては、ボディ100)を右方向DR側へロールさせる。図示を省略するが、前輪20を右方向DR側へ回動させる回動トルクは、重心10tcまわりに対象部分10t(ひいては、ボディ100)を左方向DL側へロールさせる。
【0079】
本実施例では、目標ロールトルクTqrは、係数KA、KBに従って、リーンモータ650と操舵モータ550とに配分される。係数KA、KBは、水平方向の慣性力(横Gとも呼ばれる)が小さくなるように、決定される。以下、目標ロールトルクTqrの配分と係数KA、KBとについて、説明する。
図8(D)は、目標ロールトルクTqrと、配分目標ロールトルクTqrL、TqrSと、に関する式B1-B4を示している。
【0080】
目標ロールトルクTqrは、式B1に示すように、対象部分10tの慣性モーメントItと、ロール角加速度Ar’’と、の積で表される。慣性モーメントItは、2個の成分Ip、Ixの和で表される。
【0081】
第1慣性モーメント成分Ipは、式B2に示すように、対象部分10tの質量Mと、対象部分10tの重心10tcとロール軸AxLとの間の距離Zの2乗と、の積で表される。第1慣性モーメント成分Ipは、対象部分10tの重心10tcのロール運動に関する慣性モーメントである。質量Mと距離Zとは、実験的に測定可能である。質量Mは、体重計を用いて、測定可能である。重心10tcは、例えば、以下のように測定可能である。対象部分10tに1本のロープを固定し、ロープを用いて対象部分10tを宙吊りにする。ここで、鉛直下方向DDに平行な直線を、鉛直線と呼ぶ。ロープと対象部分10tとの固定位置を通る鉛直線は、対象部分10tの重心を通る。複数の固定位置に対応する複数の鉛直線を測定する。複数の鉛直線の交点が、重心10tcの位置である。直立状態での重心10tcの位置と地面GLとの間の距離が、距離Zに相当する。本実施例では、第1慣性モーメント成分Ipは、予め実験的に決められている。
【0082】
第2慣性モーメント成分Ixは、対象部分10tの重心10tcの位置でのロール軸AxLに平行な軸まわりの対象部分10tの回転運動の変化のしにくさを示している。この回転運動の変化のしにくさは、角加速度に対する、回転運動を変化させるトルクの比率「トルク/角加速度」によって、表される。対象部分10tが剛体である場合、第2慣性モーメント成分Ixは、対象部分10tの重心10tcの位置でのロール軸AxLに平行な軸まわりの対象部分10tの慣性モーメントである。なお、現実の対象部分10tは、単純な剛体ではなく、対象部分10tがロールする場合に動く複数の部材を含んでいる。これらの部材の動きは、対象部分10tの重心10tcの位置でのロール軸AxLに平行な軸まわりの対象部分10tの回転運動の変化のしにくさ、すなわち、第2慣性モーメント成分Ixに影響を与え得る。例えば、リーンモータ650(
図2)と中縦リンク部材61Cとがギヤを介して接続される場合、対象部分10tのロールに伴ってギヤが複数回にわたって回転し得る。このような部材の回転は、第2慣性モーメント成分Ixを増大させ得る。このように、対象部分10tに含まれる部材が、ロール角Arとは異なる角度で回転する場合、その部材は、第2慣性モーメント成分Ixを変化させ得る。第2慣性モーメント成分Ixは、ボディ100のロール運動に関する対象部分10tの慣性モーメントから第1慣性モーメント成分Ipを除くことによって、算出可能である。
【0083】
第1配分目標ロールトルクTqrL(式B3)は、リーンモータ650に配分される目標ロールトルクである。第1配分目標ロールトルクTqrLは、第1係数KAと目標ロールトルクTqrとの積で表される。第2配分目標ロールトルクTqrS(式B4)は、操舵モータ550に配分される目標ロールトルクである。第2配分目標ロールトルクTqrSは、第2係数KBと目標ロールトルクTqrとの積で表される。後述するように、リーンモータ650は、第1配分目標ロールトルクTqrLに相当する有効なロールトルクがリーンモータ650によってボディ100(ひいては、対象部分10t)に作用するように、制御される。また、操舵モータ550は、第2配分目標ロールトルクTqrSに相当する有効なロールトルクが操舵モータ550によってボディ100(ひいては、対象部分10t)に作用するように、制御される。
【0084】
図8(E)は、係数KA、KBの基準である基準係数KAi、KBiに関する式B5-B8を示している。対象部分10tにロールトルクが作用する場合、慣性モーメントItに起因して、対象部分10tの要素(例えば、ユーザや荷物100xなどの積載物)に、水平方向の慣性力が作用し得る。本実施例では、基準係数KAi、KBiは、水平方向の慣性力が小さくなるように、予め決定される。
【0085】
リーンモータ650によって対象部分10tがロールする場合(
図8(B))、対象部分10tの運動は、ロール方向側へ向かう水平な方向Daの加速度によって示される運動を含んでいる(
図8(B)では、方向Daは、右方向DRと同じ)。この運動は、対象部分10tの要素に、方向Daの反対方向の第1慣性力FLを作用させる。第1慣性力FLは、対象部分10tの慣性モーメントとロール角加速度Ar’’とによって引き起こされる。ロール軸AxLまわりの重心10tcの回転RLaに関しては、第1慣性モーメント成分Ipに関連する慣性力が生じ得る。重心10tcまわりの対象部分10tの回転RLbに関しては、第2慣性モーメント成分Ixに関連する慣性力が生じ得る。このように、2つの慣性モーメント成分Ip、Ixによって、第1慣性力FLが引き起こされる。
【0086】
操舵モータ550によって対象部分10tがロールする場合(
図8(C))、対象部分10tの運動は、前輪20の移動方向と同じ方向の動きを含んでいる。すなわち、対象部分10tの運動は、ロール方向側とは反対方向側へ向かう水平な方向Dbの加速度によって示される運動を含んでいる(
図8(C)では、方向Dbは、左方向DLと同じ)。この運動は、対象部分10tの要素に、方向Dbの反対方向の第2慣性力FSを作用させる。第2慣性力FSは、対象部分10tの慣性モーメントとロール角加速度Ar’’とによって引き起こされる。重心10tcまわりの対象部分10tの回転RSbに関し、第2慣性モーメント成分Ixに関連する慣性力が生じ得る。なお、
図8(C)では、
図8(B)とは異なり、対象部分10tの重心10tcの位置の変化(特に、水平な方向の位置の変化)は、小さい。従って、第1慣性モーメント成分Ipに関連する慣性力は、小さい。第2慣性力FSの大きさを検討する場合、第1慣性モーメント成分Ipに関連する慣性力は、省略可能である。
【0087】
図8(E)の式B5、B6は、水平方向の慣性力(ここでは、慣性力FL、FSの合力)を小さくする基準係数KAi、KBiを示す連立方程式を示している。式B5中の第1項TFLは、第1慣性力FLの大きさに関する項である。第1項TFLは、第1慣性力FLに対する大きい影響力を有する慣性モーメント(Ip+Ix)と、ロール角加速度Ar’’と、第1基準係数KAiと、の積で表される。式B5中の第2項TFSは、第2慣性力FSの大きさに関する項である。第2項TFSは、第2慣性力FSに対する大きい影響力を有する慣性モーメント(Ix)と、ロール角加速度Ar’’と、第2基準係数KBiと、の積で表される。式B5は、第1項TFLから第2項TFSを減算した差分がゼロであることを示している。式B5は、水平方向の慣性力の大きさがゼロに近いことを示している。
【0088】
式B6は、第1基準係数KAiと第2基準係数KBiとの和が1であることを示している。式B6は、係数KA、KBがそれぞれ基準係数KAi、KBiである場合に、第1配分目標ロールトルクTqrL(
図8(D))と第2配分目標ロールトルクTqrSとの和が、目標ロールトルクTqrと同じであることを示している。
【0089】
式B7、B8は、連立方程式B5、B6を解くことによって得られる第1基準係数KAiと第2基準係数KBiとをそれぞれ示している。
【0090】
次に、S150(
図7)で決定される係数KA、KBについて説明する。
図9(A)は、第1係数KAと速度Vとの対応関係を示すグラフである。横軸は速度Vを示し、縦軸は第1係数KAを示している。速度閾値V1、V2、V3は、予め決められた閾値である(ゼロ<V1<V2<V3)。速度Vmxは、車両10の予め決められた最高速度である。速度Vが第3速度閾値V3以上である場合、第1係数KAは、第1基準係数KAiと同じである。速度Vが第2速度閾値V2以下である場合、第1係数KAは、1.0である。第2速度閾値V2以上、第3速度閾値V3以下の範囲では、速度VがV2からV3まで変化する場合、第1係数KAは、1.0からKAiまで、速度Vの変化に対して直線的に変化する。
【0091】
図9(B)は、第2係数KBと速度Vとの対応関係を示すグラフである。横軸は速度Vを示し、縦軸は第2係数KBを示している。速度Vが第2速度閾値V2以上である場合、第2係数KBは、第2基準係数KBiと同じである。速度Vが第1速度閾値V1以下である場合、第2係数KBは、ゼロである。第1速度閾値V1以上、第2速度閾値V2以下の範囲では、速度VがV1からV2まで変化する場合に、第2係数KBは、ゼロから第2基準係数KBiまで、速度Vの変化に対して直線的に変化する。
【0092】
このように、高速時(V>V3)には、係数KA、KBは、基準係数KAi、KBiと、それぞれ同じである。
図8(E)で説明したように、基準係数KAi、KBiに基づく配分目標ロールトルクTqrL、TqrSに従ってリーンモータ650と操舵モータ550とが制御される場合、水平方向の慣性力は抑制され得る。また、低速時(V<V2)には、第1係数KAは、第1基準係数KAiよりも大きく、第2係数KBは、第2基準係数KBiよりも小さい。低速時には、操舵モータ550によるロール角Arの制御は、不安定になりやすい。本実施例では、低速時には、第1係数KA、ひいては、目標ロールトルクTqrに対するリーンモータ650によるロールトルクの割合が、高くなるので、ロール角Arの制御が安定化する。
【0093】
なお、速度閾値V1、V2、V3は、種々の速度Vでロール角Arが適切に制御されるように、予め実験的に決定される。V1は、例えば、時速1km以上時速10km以下の値に決定される。V2は、例えば、時速5km以上、時速20km以下の値に決定される。V3は、例えば、時速10km以上、時速30km以下の値に決定される。
【0094】
本実施例では、第1係数KAは、さらに、ロール角差dArに応じて変化する。
図9(C)は、第1係数KAとロール角差dArとの対応関係を示すグラフである。横軸は、ロール角差dArを示し、縦軸は第1係数KAを示している。このグラフは、速度Vが第3速度閾値V3以上である場合を示している。ロール角差dArの大きさ(すなわち、絶対値)が、予め決められた第1閾値dTH1以下である場合、第1係数KAは、
図9(A)に示されるように、第1基準係数KAiと同じである。ロール角差dArの大きさが第1閾値dTH1よりも大きい場合、第1係数KAは、ロール角差dArの大きさが大きいほど、大きい。ロール角差dArの大きさが大きいことは、ロールトルクが不足していることを示している。例えば、前輪20がスリップする場合に、操舵モータ550によるロールトルクが不足し得る。このような場合に、大きい第1係数KAは、リーンモータ650によるロールトルクを増大させることによって、ロール角差dArを抑制できる。
【0095】
図9(D)は、第1係数KAとロール角差dArの時間微分dAr’との対応関係を示すグラフである。横軸は、時間微分dAr’を示し、縦軸は第1係数KAを示している。このグラフは、速度Vが第3速度閾値V3以上である場合を示している。ロール角差dArの時間微分dAr’の大きさ(すなわち、絶対値)が、予め決められた第2閾値dTH2以下である場合、第1係数KAは、
図9(A)に示されるように、第1基準係数KAiと同じである。ロール角差dArの時間微分dAr’の大きさが第2閾値dTH2よりも大きい場合、第1係数KAは、ロール角差dArの時間微分dAr’の大きさが大きいほど、大きい。ロール角差dArの時間微分dAr’の大きさが大きいことは、ロール角差dArの急な変化、ひいては、ロール角Arの急な変化を示している。例えば、前輪20がスリップし始める時に、操舵モータ550によるロールトルクが急に変化し、ロール角Arが急に変化し得る。このような場合に、大きい第1係数KAは、リーンモータ650によるロールトルクを増大させることによって、ロール角差dArの急な変化を抑制できる。
【0096】
なお、本実施例では、dArの大きさが第1閾値dTH1以下であり、かつ、dAr’の大きさが第2閾値dTH2以下である場合に、第1係数KAは、
図9(A)に示される値と同じである。dArの大きさとdAr’の大きさとのうちの一方または両方が、対応する閾値dTH1、dTH2よりも大きい場合に、第1係数KAは、
図9(A)に示される値よりも大きくなる。V<V3の場合も、同様に、第1係数KAは、dArの大きさとdAr’の大きさとに応じて、変化する。V、dAr、dAr’の組み合わせとKAとの対応関係は、マップデータMAK(
図6)によって、予め決められている。S150(
図7)では、プロセッサ910pは、時間に応じて変化するロール角差dArを用いて、ロール角差dArの時間微分dAr’を算出する。そして、プロセッサ910pは、マップデータMAKを参照することによって、V、dAr、dAr’の組み合わせに対応付けられた第1係数KAを取得する。
【0097】
パラメータの時間微分値の算出方法は、種々の方法であってよい。本実施例では、プロセッサ910pは、現在から予め決められた時間差だけ過去の時点でのロール角差dArを現行のロール角差dArから減算して差分を算出する。そして、プロセッサ910pは、差分を時間差で除算することによって得られる値を、時間微分dAr’として採用する。
【0098】
なお、マップデータMAKは、速度Vと第2係数KBとの対応関係も、定めている。S150では、プロセッサ910pは、マップデータMAKを参照することによって、Vに対応付けられた第2係数KBを取得する。
【0099】
なお、閾値dTH1、dTH2は、車両10の種々の走行状態で、ロール角Arが適切に制御されるように、予め実験的に決定される。第1閾値dTH1は、固定値に代えて、1以上のパラメータ(例えば、速度V)に応じて変化する変数であってよい。第2閾値dTH2は、固定値に代えて、1以上のパラメータ(例えば、速度V)に応じて変化する変数であってよい。
【0100】
S160(
図7)では、プロセッサ910pは、式B3、B4(
図8(D))に従って、配分目標ロールトルクTqrL、TqrSを算出する。S170では、制御装置900は、第1配分目標ロールトルクTqrLを用いるリーンモータ650の制御処理を実行する(詳細は後述)。S180では、制御装置900は、第2配分目標ロールトルクTqrSを用いる操舵モータ550の制御処理を実行する(詳細は後述)。制御装置900は、S170とS180とを、並列に実行する。そして、
図7の処理が終了する。制御装置900は、
図7の処理を繰り返し実行する。これにより、制御装置900は、リーンモータ650と操舵モータ550とを、車両10の状態に適したトルクを出力するように、制御する。
【0101】
A4.リーンモータ650の制御:
図10は、リーンモータの制御処理の例を示すフローチャートである。S210では、主制御部910のプロセッサ910pは、第1配分目標ロールトルクTqrLを用いて、制御値CLを決定する。本実施例では、プロセッサ910pは、第1配分目標ロールトルクTqrLに、2個の補正成分TqC1、TqC2の補正を行うことによって、制御値CLを算出する。
【0102】
第1補正成分TqC1は、対象部分10tに作用するロールトルクを示している。
図11(A)は、第1補正成分TqC1と速度Vとの対応関係を示すグラフである。横軸は速度Vを示し、縦軸は第1補正成分TqC1を示している。このグラフは、車両10が、一定の速度Vでの一定のロール角Arによる定常円旋回を維持する場合の対応関係を示している(ロール角Arは、非ゼロ)。後述するように、傾斜した状態で旋回する車両10(ひいては、対象部分10t)には、遠心力によるロールトルクと、ジャイロモーメントによるロールトルクと、が作用し得る。第1補正成分TqC1は、これらのロールトルクを含んでいる(以下、第1補正成分TqC1を、第1補正ロールトルクTqC1とも呼ぶ)。グラフ中の「in」と「out」は、第1補正ロールトルクTqC1の方向を示している。「in」は、旋回の内側に向かって対象部分10tをロールさせる方向である。「out」は、旋回の外側に向かって対象部分10tをロールさせる方向である。
【0103】
現実の車輪20、30R、30L(
図1(C))は、ゼロよりも大きい幅を有している。以下に説明するように、車輪20、30R、30Lの幅は、
図4で説明した旋回時の力のバランスを、変更し得る。本実施例では、車両10の旋回時には、車輪20、30R、30L(
図1(C))が旋回内側に傾斜する。この傾斜により、車輪20、30R、30Lの外面のうちの旋回内側の部分が、地面と接触する。すなわち、接触中心29、39R、39Lは、Ar=ゼロの場合の接触中心29、39R、39Lよりも、旋回内側に移動する。この場合、接触中心29、39R、39Lに対する対象部分10tのロール角の大きさは、ボディ上方向DVUと鉛直上方向DUとから算出されるロール角Ar(
図4)の大きさよりも、小さくなる。例えば、前輪20の接触中心29の幅方向(右方向DRと同じ)の位置が、重心10tcの幅方向の位置と同じ位置まで移動したと仮定する。この場合、図示を省略するが、
図4のような背面図上では、接触中心29と重心10tcとを結ぶ直線は、鉛直上方向DUに平行である。すなわち、ロール角Arがゼロではない場合であっても、接触中心29に対する重心10tcのロール角は、おおよそゼロであり得る。そして、対象部分10tの質量Mに対応付けられた力F2b(式2、
図4)の実際の大きさは、ロール角Arに基づいて算出される力F2bの大きさよりも小さくなる。この場合、遠心力は、対象部分10tを旋回の外側に向かってロールさせるロールトルク(すなわち、ロール角Arの大きさを小さくするロールトルク)を、対象部分10tに作用させる。
【0104】
また、回転する車輪が右または左に回動する場合、車輪には、いわゆるジャイロモーメントと呼ばれる力が作用する。公知の通り、前進する車輪が右方向に回動する場合、ジャイロモーメントは、車輪を右方向にロールさせる。前進する車輪が左方向に回動する場合、ジャイロモーメントは、車輪を左方向にロールさせる。車両10が旋回する場合、各車輪20、30R、30Lにジャイロモーメントが作用し得る。ジャイロモーメントは、対象部分10tを旋回の内側に向かってロールさせるロールトルク(すなわち、ロール角Arの大きさを大きくするロールトルク)を、対象部分10tに作用させる。
【0105】
第1補正ロールトルクTqC1(
図11(A))は、車輪20、30R、30Lの幅と遠心力によるロールトルクと、ジャイロモーメントによるロールトルクと、を含んでいる。ジャイロモーメントは、車輪の回転速度が速いほど(すなわち、車両10の速度Vが速いほど)、大きい。低速時(V<Vz)、ジャイロモーメントの影響よりも遠心力の影響が強いので、第1補正ロールトルクTqC1は、「out」の方向のロールトルクを示している。逆に、高速時(Vz<V)、遠心力の影響よりもジャイロモーメントの影響が強いので、第1補正ロールトルクTqC1は、「in」の方向のロールトルクを示している。速度Vの変化に応じて、第1補正ロールトルクTqC1は、滑らかに変化する。TqC1=ゼロである基準速度Vzは、車両10の走行状態に応じて変化する変数である。
【0106】
本実施例では、マップデータMC1(
図6)は、速度Vとロール角Arとの組み合わせと、第1補正ロールトルクTqC1と、の対応関係を定めている。プロセッサ910pは、マップデータMC1を参照して、現行のVと現行のArの組み合わせに対応付けられた第1補正ロールトルクTqC1を取得する。V、Arの組み合わせと、TqC1と、の対応関係は、予め実験的に決定される。例えば、一定の速度Vでの一定のロール角Arによる定常円旋回を維持するために、リーンモータ650がロールトルクを生成し得る。この場合、定常円旋回を維持するためにリーンモータ650によって生成されるロールトルクが、V、Arの組み合わせに対応する第1補正ロールトルクTqC1として用いられる。
【0107】
第2補正成分TqC2は、対象部分10tの機械的な抵抗力によって打ち消されるロールトルクを示している。例えば、リンク機構60(
図2)の複数の軸受(例えば、軸受68U、68D)は、対象部分10tのロールに対する抵抗力を生成し得る。リーンモータ650も、対象部分10tのロールに対する抵抗力を生成し得る。このような抵抗力は、対象部分10tに作用するロールトルクの一部を打ち消し得る。第2補正成分TqC2は、対象部分10tの複数の部材のそれぞれの抵抗力によって打ち消されるロールトルクを示している(第2補正成分TqC2を、第2補正ロールトルクTqC2とも呼ぶ)。2つの部材の間の生じる抵抗力は、2つの部材の間の相対運動の速度に依存しない成分(摩擦とも呼ばれる)と、速度に依存する成分(ダンピング成分とも呼ばれる)と、を含み得る。ロールトルクが抵抗力によって打ち消される場合、打ち消されるロールトルクは、ロール角速度Ar’に依存しない成分と、ロール角速度Ar’に依存する成分を含み得る。
【0108】
図11(B)は、第2補正成分TqC2とロール角速度Ar’との対応関係を示すグラフである。横軸は、ロール角速度Ar’の絶対値を示し、縦軸は、第2補正成分TqC2の絶対値を示している。図示するように、|Ar’|>ゼロの場合には、第2補正成分TqC2は、|Ar’|に依存しない定数と、|Ar’|に比例する成分と、の和で表される。第2補正ロールトルクTqC2の方向は、目標ロールトルクTqrの方向とは反対方向である。|Ar’|=ゼロの場合、|TqC2|=ゼロである。
【0109】
本実施例では、マップデータMC2(
図6)は、ロール角速度Ar’と、第2補正ロールトルクTqC2と、の対応関係を定めている。プロセッサ910pは、マップデータMC2を参照して、Ar’に対応付けられた第2補正ロールトルクTqC2を取得する。Ar’とTqC1との対応関係は、予め実験的に決定される。例えば、対象部分10tの複数の部材のそれぞれを分析することによって、各部材の抵抗力とAr’との対応関係が算出される。そして、各部材の抵抗力を合成することによって、第2補正ロールトルクTqC2が算出される。
【0110】
S210(
図10)では、プロセッサ910pは、第1配分目標ロールトルクTqrLに、補正ロールトルクTqC1、TqC2を用いる補正を行うことによって、補正済ロールトルクを算出する。補正済ロールトルクは、リーンモータ650が対象部分10tに補正済ロールトルクを作用させる場合に、補正ロールトルクTqC1、TqC2の影響によって、対象部分10tに作用する実質的なロールトルクが第1配分目標ロールトルクTqrLとなるような、ロールトルクである。例えば、プロセッサ910pは、第1配分目標ロールトルクTqrLから、第1補正ロールトルクTqC1と、第2補正ロールトルクTqC2によって打ち消されるロールトルクと、を除いた残りのロールトルクを、補正済ロールトルクとして採用する。
【0111】
S210では、プロセッサ910pは、補正済ロールトルクを用いて、制御値CLを決定する。制御値CLは、リーンモータ650によって出力されるリーンモータトルクを制御するための値である。本実施例では、制御値CLは、リーンモータ650に供給すべき電流の向きと大きさとを示している。制御値CLの絶対値は、電流の大きさ(すなわち、トルクの大きさ)を示している。制御値の正負の符号は、電流の向き(すなわち、トルクの方向)を示している(例えば、正は右ロールを示し、負は左ロールを示す)。補正済ロールトルクと制御値CLとの対応関係は、制御値CLに従ってリーンモータ650によって出力されるリーンモータトルクが、対象部分10tに補正済ロールトルクを作用させるように、予め実験的に決められている。
【0112】
S220では、プロセッサ910p(
図6)は、制御値CLを示すデータを、リーンモータ制御部930に供給する。リーンモータ制御部930のプロセッサ930pは、制御値CLを示すデータを、電力制御部930cに供給する。電力制御部930cは、制御値CLに従って、リーンモータ650に供給される電力を制御する。リーンモータ650は、供給された電力に応じて、リーンモータトルクを出力する。S220の後、
図10の処理は終了する。
【0113】
A5.操舵モータ550の制御:
図12は、操舵モータ550の制御処理の例を示すフローチャートである。以下に説明するように、対象部分10tには、種々の原因に起因して、種々のロールトルクが作用し得る。本実施例では、制御装置900は、3種類のロールトルク成分Tq1-Tq3を考慮して、操舵モータ550を制御する(以下、ロールトルク成分Tq1-Tq3を、単に、ロールトルクTq1-Tq3、または、トルクTq1-Tq3とも呼ぶ)。
【0114】
図13(A)-
図13(E)は、ロールトルクTq1-Tq3の説明図である。
図13(A)、
図13(B)、
図13(C)、
図13(E)は、前方向DFを向いて見た後輪30R、30Lと重心10tcとを示している。ここで、車両10は、水平な地面GL上に位置している。
図13(A)は、直立状態を示している(Ar=ゼロ)。
図13(B)、
図13(C)、
図13(E)は、対象部分10tが右方向DRへ傾斜した状態を示している(Ar>ゼロ)。
図13(D)は、ボディ上方向DVUとは反対の方向を向いて見た車輪20、30R、30Lと重心10tcとを示している。
図13(D)には、参考のために、右方向DRと左方向DLとが示されている。ロール角Arがゼロとは異なる場合、これらの方向DR、DLは、ボディ上方向DVUに垂直ではなく斜めである。
【0115】
図13(B)は、第1ロールトルクTq1の説明図である。第1ロールトルクTq1は、対象部分10tに作用する重力に起因するロールトルクである。第1力F11は、対象部分10tに作用する重力である(F11=M*g)。第2力F12は、第1力F11の、ボディ上方向DVUに垂直な成分である(F12=M*g*sin(Ar))。第2力F12に起因するロールトルクが、第1ロールトルクTq1である。第1ロールトルクTq1の大きさは、ロール軸AxLと重心10tcとの間の距離Zに、第2力F12を乗じることによって算出される(Tq1=Z*F12=M*g*Z*sin(Ar))。第1ロールトルクTq1の方向は、ロール角Arの大きさを増大させる方向である。
【0116】
図13(C)は、第2ロールトルクTq2の説明図である。第2ロールトルクTq2は、車両10のヨー角速度(より具体的には、遠心力)に起因するロールトルクである。
図6で説明したように、本実施例では、ヨー角速度Ay’は、ボディ上方向DVUに平行な軸まわりのヨー角速度を示している。図中の力F22は、対象部分10tに作用する遠心力のボディ上方向DVUに垂直な成分である。この遠心力成分F22は、質量Mと速度Vとヨー角速度Ay’とを用いる計算式「F22=M*V*Ay’」によって、算出される。
図13(C)では、ヨー角速度Ay’は、右旋回を示している。従って、遠心力成分F22は、左方向DL側を向いている。遠心力成分F22に起因するロールトルクが、第2ロールトルクTq2である。第2ロールトルクTq2の大きさは、距離Zに、遠心力成分F22の大きさを乗じることによって算出される(Tq2=Z*F22=M*Z*V*Ay’)。第2ロールトルクTq2の方向は、ヨー角速度Ay’によって示される旋回方向とは反対の方向である。例えば、ヨー角速度Ay’が右旋回を示す場合、第2ロールトルクTq2の方向は、左方向である。
【0117】
図13(D)、
図13(E)は、第3ロールトルクTq3の説明図である。第3ロールトルクTq3は、車両10のヨー角加速度に起因するロールトルクである。
図13(D)中には、自転中心Rxが示されている。本実施例では、後輪30R、30Lは回動輪ではなく、前輪20が回動輪である。従って、自転中心Rxは、後輪30R、30Lの間の中心の近傍に位置する。例えば、自転中心Rxは、後輪30R、30Lの間の中心(具体的には、
図5の後中心Cb)に位置し得る。また、通常は、
図13(D)の上面図において、対象部分10tの重心10tcは、対象部分10tの中央部分に近い。従って、対象部分10tの重心10tcは、自転中心Rxから前方向DF側に離れた位置に配置される。図中の距離Xは、重心10tcと自転中心Rxとの間の前方向DFの位置の差(距離)である。
【0118】
図中の変数Ay’’は、車両10のヨー角加速度である。ヨー角加速度Ay’’は、ボディ上方向DVUに平行な軸まわりのヨー角加速度である。ヨー角加速度Ay’’は、自転中心Rxを中心とする車両10の自転の角加速度を示している。
図13(D)の上面図上で、ヨー角加速度Ay’’の方向が時計回り方向である場合、右旋回の程度が大きくなるように、ヨー角速度Ay’は変化する。以下、上面図上で、ヨー角加速度Ay’’の方向が時計回り方向である場合、ヨー角加速度Ay’’の方向を、右方向と呼ぶ。上面図上で、ヨー角加速度Ay’’の方向が反時計回り方向である場合、ヨー角加速度Ay’’の方向は左方向である。
【0119】
対象部分10tの重心10tcは、自転中心Rxから距離Xだけ前方向DF側に離れた位置に、配置されている。従って、対象部分10tには、ヨー角加速度Ay’’の方向とは反対の方向の慣性の力の成分F32が、作用する(慣性力成分F32と呼ぶ)。この慣性力成分F32の方向は、ボディ上方向DVUに垂直である。また、本実施例では、
図13(D)の上面図上で、自転中心Rxから重心10tcに向かう方向は、前方向DFにおおよそ平行である。従って、慣性力成分F32の方向は、前方向DFにおおよそ垂直である。慣性力成分F32の大きさは、質量Mと、ヨー角加速度Ay’’に起因する重心10tcの加速度A10tと、の積で表される。加速度A10tは、距離Xとヨー角加速度Ay’’との積で表される。従って、慣性力成分F32の大きさは、計算式「M*X*Ay’’」によって、算出される。
図13(D)の上面図においては、ヨー角加速度Ay’’の方向、すなわち、ヨー角速度Ay’の変化方向は、時計回り方向である。この場合、慣性力成分F32の方向は、左方向DL側を向いている。
【0120】
図13(E)には、慣性力成分F32が示されている。慣性力成分F32に起因するロールトルクが、第3ロールトルクTq3である。第3ロールトルクTq3の大きさは、距離Zに、慣性力成分F32の大きさを乗じることによって算出される(Tq3=Z*F32=M*X*Z*Ay’’)。第3ロールトルクTq3の方向は、ヨー角加速度Ay’’の方向とは反対の方向である。例えば、ヨー角加速度Ay’’の方向が右旋回の方向である場合、第3ロールトルクTq3の方向は、左方向である。
【0121】
S322(
図12)では、主制御部910のプロセッサ910pは、
図13(A)-
図13(E)で説明した計算式に従って、ロールトルク成分Tq1-Tq3のそれぞれを算出する。なお、質量M、重力加速度g、距離X、距離Zのそれぞれとしては、予め決められた値が用いられる。ヨー角加速度Ay’’に関しては、プロセッサ910pは、S150(
図7)で説明したパラメータの時間微分値の算出方法に従って、ヨー角速度Ay’からヨー角加速度Ay’’を算出する。
【0122】
S324(
図12)では、プロセッサ910pは、第2配分目標ロールトルクTqrSに、ロールトルク成分Tq1-Tq3を用いる補正を行うことによって、補正済ロールトルクTqcを算出する。補正済ロールトルクTqcは、操舵モータ550が対象部分10tに補正済ロールトルクTqcを作用させる場合に、ロールトルク成分Tq1-Tq3の影響によって、対象部分10tに作用する実質的なロールトルクが第2配分目標ロールトルクTqrSとなるような、ロールトルクである。例えば、プロセッサ910pは、第2配分目標ロールトルクTqrSとロールトルク成分Tq1-Tq3とを合成することにより、補正済ロールトルクTqcを算出する。複数のロールトルクの合成は、複数のロールトルクのそれぞれの向きを考慮して、行われる。例えば、右方向DRのロールトルクの大きさが、加算され、左方向DLのロールトルクの大きさが、減算されることとしてよい。
【0123】
S326では、プロセッサ910pは、補正済ロールトルクTqcを用いて、補正済ロールトルクTqcを実現するための車輪角Awの角速度を算出する(追加角速度Awd’とも呼ぶ)。追加角速度Awd’は、車輪角Awの現行の角速度Aw’に追加角速度Awd’が追加されることによって補正済ロールトルクTqcが生成されるような角速度を示している。
図8(C)で説明したように、前輪20の回動は、対象部分10tをロールさせる。以下、車輪角Awとヨー角加速度Ay’’との関係について、説明する。
【0124】
図5で説明したように、前中心Cfと後中心Cbと公転中心Crとは、直角三角形を形成する。ロール角Arがゼロである場合、ボディ上方向DVUは鉛直下方向DDと平行である。従って、
図5に示す点Cf、Cb、Crの配置は、ボディ上方向DVUに平行な方向を向いて点Cf、Cb、Crを見る場合の配置と、同じである。ここで、前輪20の進行方向D20は、ロール角Arに拘わらず、車輪角Awに対応付けられていると推定される。従って、ボディ上方向DVUに平行な方向を向いて点Cf、Cb、Crを見る場合、ロール角Arに拘わらずに、前中心Cfと後中心Cbと公転中心Crとは、直角三角形を形成する。この直角三角形の3個の辺のうち公転中心Crと後中心Cbとを結ぶ辺の長さをRxとする。この場合、式D1が成立する。
(式D1)tan(Aw)=Lh/Rx
式D1は、式D2に変形される。
(式D2)1/Rx=tan(Aw)/Lh
車両10がヨー角速度Ay’で旋回している場合、式D3が成立する。
(式D3)V=Rx*Ay’
式D3は、式D4に変形される。
(式D4)Ay’=V/Rx
式D4に式D2を代入することによって、式D5が導かれる。
(式D5)Ay’=(V*tan(Aw))/Lh
式D5の両辺を時間で微分することによって、式D6が導かれる。
(式D6)Ay’’=(V/Lh)*(1/cos
2(Aw))*Aw’
【0125】
図13(D)、
図13(E)で説明したように、ヨー角加速度Ay’’に起因して、ロールトルクが対象部分10tに作用する。以下、式D6のヨー角加速度Ay’’に起因して、補正済ロールトルクTqcが生成されることとする。補正済ロールトルクTqcの大きさは、
図13(E)の第3ロールトルクTq3の大きさの計算式のヨー角加速度Ay’’に、式D6を代入することによって導かれ、式D7で表される。
(式D7)Tqc=M*X*Z*Ay’’
=(M*X*Z*V*Aw’)/(Lh*cos
2(Aw))
以上のように、車輪角Awの角速度Aw’を用いて、対象部分10tに補正済ロールトルクTqcを作用させることができる。補正済ロールトルクTqcの方向は、車輪角Awの角速度Aw’の方向とは反対の方向である。例えば、車輪角Awが右方向DRに回動する場合(Aw’>ゼロ)、補正済ロールトルクTqcの方向は、左方向である。
【0126】
なお、式D7から式D8が導かれる。
(式D8)Aw’=(Tqc*Lh*cos2(Aw))/(M*X*Z*V)
式D8は、補正済ロールトルクTqcを生成するために必要な車輪角Awの角速度Aw’の大きさを示している。
【0127】
S326(
図12)では、プロセッサ910pは、上記の式D8に従って、補正済ロールトルクTqcを実現するための追加角速度Awd’を算出する(式D8の角速度Aw’が、追加角速度Awd’に相当する)。なお、ホイールベースLh、質量M、距離X、距離Zのそれぞれとしては、予め決められた値が用いられる。
【0128】
S328では、プロセッサ910pは、追加角速度Awd’を用いて、第1制御値Cw1を決定する。制御値Cw1は、操舵モータ550によって出力される回動トルクを制御するための値である。制御値Cw1は、操舵モータ550に供給すべき電流の向きと大きさとを示している。制御値Cw1の絶対値は、電流の大きさ(すなわち、トルクの大きさ)を示している。制御値Cw1の正負の符号は、電流の向き(すなわち、トルクの方向)を示している(例えば、正は右回動を示し、負は左回動を示す)。本実施例では、プロセッサ910pは、追加角速度Awd’を用いるPD制御によって、制御値Cw1を決定する。本実施例では、PDのそれぞれのゲインは、予め決められている。ただし、プロセッサ910pは、比例ゲインを、1以上のパラメータ(例えば、速度V)を用いて調整してよい。微分ゲインについても、同様である。なお、D制御は、省略されてよい。I制御が追加されてよい。
【0129】
S332では、プロセッサ910pは、目標車輪角Awtを決定する。目標車輪角Awtは、目標ロール角Art(
図7:S120)と速度Vとで車両10が安定して旋回する場合の車輪角Awである(
図5)。プロセッサ910pは、目標車輪角Awtを、上記の式7に式6を代入して得られる計算式に従って、算出する。これに代えて、プロセッサ910pは、入力角AIと速度Vと目標車輪角Awtとを対応付けるマップを参照してもよい。
【0130】
S334では、プロセッサ910pは、目標車輪角Awtから現行の車輪角Awを減算することによって、車輪角差dAwを算出する。
【0131】
S336では、プロセッサ910pは、車輪角差dAwを用いて、第2制御値Cw2を決定する。第2制御値Cw2は、第1制御値Cw1と同様に、操舵モータ550に供給すべき電流の向きと大きさとを示している。本実施例では、プロセッサ910pは、車輪角差dAwを用いるPD制御によって、制御値Cw2を決定する。本実施例では、Dゲインは、予め決められている。Pゲインは、速度Vに応じて変化する。
【0132】
図14は、PゲインK2と速度Vとの対応関係の例を示すグラフである。横軸は、速度Vを示し、縦軸は、PゲインK2を示している。速度Vが第2速度閾値V2以上である場合、PゲインK2はゼロである。第2速度閾値V2以下の範囲では、速度Vがゼロから第2速度閾値V2まで変化する場合、PゲインK2は予め決められた最大値K2mからゼロまで、速度Vの変化に対して直線的に変化する。プロセッサ910pは、PゲインK2と速度Vとの対応関係を示す関数を用いて、速度Vに対応付けられたPゲインK2を取得する。
【0133】
低速時にPゲインK2が大きく、高速時にPゲインK2が小さい理由は、以下の通りである。速度Vが速い場合には、速度Vが遅い場合と比べて、前輪20は、大きなジャイロモーメントによって、容易にロール角Arに適した方向に回動できる。例えば、ボディ100が右方向DR側へロールする場合、前輪支持装置500、ひいては、回動軸27が右方向DR側へロールする。従って、前輪20も、右方向DR側へロールする。回転する前輪20が右方向DR側へのロールする場合、前輪20には、回動軸27を中心に進行方向D20を右方向DRへ回動させるトルクが作用する(ジャイロモーメントとも呼ばれる)。ボディ100が左方向DL側へロールする場合、前輪20には、進行方向D20を左方向DLへ回動させるトルクが作用する。また、本実施例では、車両10(
図1)が正のトレールLtを有するので、前輪20の向き(すなわち、車輪角Aw)は、自然に、車両10の進行方向と同じになる。本実施例では、速度Vが大きい場合には、前輪20の自然な回動を許容するために、PゲインK2は小さくなる。PゲインK2が小さい場合、第2制御値Cw2の大きさが小さいので、第2制御値Cw2によって示される回動トルクの大きさも小さくなる。これにより、前輪20の自然な回動が、許容される。一方、速度Vが小さい場合には、PゲインK2が大きいので、第2制御値Cw2の大きさが大きくなり得る。すなわち、第2制御値Cw2によって示される回動トルクの大きさは、大きくなり得る。これにより、車輪角Awは、入力角AIに適した目標車輪角Awtに近づくように、制御される。第2制御値Cw2は、目標車輪角Awtと車輪角Awとのズレを抑制する回動トルクを示している。
【0134】
なお、速度VとPゲインK2との対応関係は、速度Vが大きいほどPゲインK2が小さくなるような種々の関係であってよい。例えば、V>V2の場合に、PゲインK2がゼロよりも大きくてよい。また、PゲインK2は、速度Vなどの他のパラメータに依存しない固定値であってもよい。プロセッサ910pは、微分ゲインを、1以上のパラメータ(例えば、速度V)を用いて調整してよい。なお、D制御は、省略されてよい。I制御が追加されてよい。
【0135】
なお、
図12の処理において、プロセッサ910pは、S322-S328の処理と、S332-S336の処理とを、並列に実行する。
【0136】
S322-S328の処理と、S332-S336の処理と、の後、S360で、プロセッサ910pは、制御値Cw1、Cw2の合計値である駆動制御値Cwを算出する。S370では、プロセッサ910pは、駆動制御値Cwを示すデータを、操舵モータ制御部940に供給する。操舵モータ制御部940のプロセッサ940pは、駆動制御値Cwを示すデータを、電力制御部940cに供給する。電力制御部940cは、駆動制御値Cwに従って、操舵モータ550に供給される電力を制御する。操舵モータ550は、供給された電力に応じて、回動トルクを出力する。S370の後、
図12の処理は終了する。
【0137】
以上のように、本実施例の車両10(
図1(A)-
図1(C)、
図2)は、旋回時に旋回の内側に傾斜する移動装置の例である。車両10は、ボディ100と、前輪20と、後輪30R、30Lと、前輪支持装置500と、第1付与装置550(操舵モータ550)と、第2付与装置650(リーンモータ650)と、制御装置900と、を備えている。前輪20は、車両10の幅方向に回動可能な回動輪の例である。前輪支持装置500は、回動輪である前輪20を幅方向に回動可能に支持する回動輪支持装置の例である。第1付与装置550は、車両10のヨー角速度を変化させる成分(本実施例では、回動トルク)を含む第1力を車両10(本実施例では、前輪支持装置500の前フォーク517)に付与するように構成されている。第2付与装置650は、ボディ100のロール角速度を変化させる成分(本実施例では、リーンモータトルク)を含む第2力をボディ100に付与するように構成されている。以下、第1付与装置550と第2付与装置650との全体を、力付与装置300とも呼ぶ。制御装置900は、第1付与装置550と第2付与装置650とを含む力付与装置300を制御するように構成されている。
【0138】
図1(A)-
図1(C)、
図2、
図4等で説明したように、車両10は、対象部分10tを含んでいる。対象部分10tは、ボディ100がロールする場合に動く部分の全体である。対象部分10tは、ボディ100を含んでいる。上述したように、本実施例では、車両10の全体が、対象部分10tを形成する。
【0139】
図8(D)で説明したように、制御装置900は、第1慣性モーメント成分Ipと第2慣性モーメント成分Ixとを用いて、力付与装置300(すなわち、リーンモータ650と操舵モータ550)を制御する。
図8(D)の式B2に示すように、第1慣性モーメント成分Ipは、対象部分10tの質量Mに、対象部分10tの重心10tcとロール軸AxLとの間の距離Zの2乗を乗じて得られる値である。
【0140】
第2慣性モーメント成分Ixは、対象部分10tの重心10tcの位置でのロール軸AxLに平行な軸まわりの対象部分10tの回転運動の変化のしにくさを示している。対象部分10tが剛体である場合、第2慣性モーメント成分Ixは、対象部分10tの重心10tcの位置でのロール軸AxLに平行な軸まわりの対象部分10tの慣性モーメントである。対象部分10tが剛体ではない場合、第2慣性モーメント成分Ixは、上述したように、対象部分10tがロールする場合に動く部材から影響を受け得る。第2慣性モーメント成分Ixは、ボディ100のロール運動に関する対象部分10tの慣性モーメントIt(総合慣性モーメントItとも呼ぶ)から第1慣性モーメント成分Ipを除くことによって、算出可能である。総合慣性モーメントItは、実験的に測定可能である。例えば、停止した状態の車両10のボディ100に、外部ロールトルクを付与する。回動輪(本実施例では、前輪20)は、車輪角Awがゼロに維持されるように、固定される。外部ロールトルクは、ボディ100(ひいては、対象部分10t)をロールさせる。ここで、外部ロールトルクから、第1成分Tq1(
図13(B))、第2補正成分TqC2(
図11(B))などの対象部分10tに作用する他のロールトルクを除いた残りのロールトルクを算出する。残りのロールトルクの大きさと、ロール角加速度Ar’’と、の比率は、総合慣性モーメントItの近似値として利用可能である。これに代えて、第2慣性モーメント成分Ixは、対象部分10tを構成する複数の部材のそれぞれの形状と材料と動きとを解析することによって、算出されてもよい。
【0141】
図8(A)-
図8(E)、
図9(A)、
図9(C)、
図9(D)で説明したように、制御装置900は、基準係数KAiを用いて、リーンモータ650と操舵モータ550とを含む力付与装置300を制御する。基準係数KAiは、
図8(E)の式B7によって表される。
図7のS150、S160、S170、
図9(A)、
図9(C)、
図9(D)で説明したように、リーンモータ650のための第1係数KAは、第1基準係数KAiに設定され得る。KAがKAiに設定されるための条件は、
図9(A)に示すように、速度Vが第3速度閾値V3以上、速度Vmx以下の第1速度範囲VR1内であることを含む第1条件が満たされることである。本実施例では、第1条件は、速度Vが第1速度範囲VR1内であることに加えて、ロール角差dArの大きさが第1閾値dTH1以下であること(
図9(C))と、時間微分dAr’の大きさが第2閾値dTH2以下であること(
図9(D))と、を含んでいる。以下、第1条件が満たされる場合の力付与装置300の制御モードを、第1制御モードCM1とも呼ぶ。第1条件が満たされない場合の力付与装置300の制御モードを、第2制御モードCM2とも呼ぶ。
【0142】
第1制御モードCM1では、制御装置900は、第1係数KA(=第1基準係数KAi)に基づいて配分された第1配分目標ロールトルクTqrLに従って、リーンモータ650を制御する(
図7:S150、S160、S170、
図10)。さらに、制御装置900は、第2係数KB(=第2基準係数KBi)に基づいて配分された第2配分目標ロールトルクTqrSに従って、操舵モータ550を制御する(
図7:S150、S160、S180、
図12)。従って、
図8(E)で説明したように、制御装置900は、水平方向の慣性力を抑制できる。
【0143】
第1制御モードCM1での制御は、例えば、以下のように行われる。ユーザがハンドル160(
図1(A))を回転させる場合、目標ロール角Artが変化するので、ロール角差dArの大きさが増大する。従って、目標ロールトルクTqrの大きさ、ひいては、配分目標ロールトルクTqrL、TqrSのそれぞれの大きさが増大する。制御装置900は、ロール角Arを目標ロール角Artに近づける大きいロールトルクに対応付けられたリーンモータトルクを、第1配分目標ロールトルクTqrLを用いて、リーンモータ650に生成させ得る。また、制御装置900は、ロール角Arを目標ロール角Artに近づける大きいロールトルクに対応付けられた回動トルクを、第2配分目標ロールトルクTqrSを用いて、操舵モータ550に生成させ得る。以上により、制御装置900は、水平方向の慣性力を抑制しつつ、ロール角Arを、適切に、目標ロール角Artに近づけることができる。
【0144】
第2制御モードCM2での力付与装置300の制御は、以下の通りである。
図9(A)、
図9(C)、
図9(D)に示すように、第2制御モードCM2では、第1制御モードCM1と比べて、第1係数KAが大きい。従って、ロール角差dArの大きさが増大する場合には、第1配分目標ロールトルクTqrLの大きさが増大する。制御装置900は、ロール角Arを目標ロール角Artに近づける大きいロールトルクに対応付けられたリーンモータトルクを、リーンモータ650に生成させる。これにより、ロール角差dArの増大は、抑制される。また、V<V2の場合、第2係数KB(
図9(B))、すなわち、目標ロールトルクTqrに対する第1制御値Cw1によって示されるロールトルクの大きさの割合が、低減する。従って、第1制御値Cw1に起因するロール角Arの意図しない変化(例えば、ロール角差dArの大きさを増大させるロール角Arの変化)は、抑制される。なお、V<V2の場合、第2制御値Cw2(
図14)が増大する。従って、第2制御値Cw2に対応する回動トルクは、車輪角Awを、適切に、目標車輪角Awtに近づけることができる。
【0145】
また、本実施例では、
図10のS210で説明したように、制御装置900は、制御値CLを決定するために、補正成分TqC1、TqC2を用いる補正を行う。第1補正成分TqC1は、定常円旋回の維持に必要なロールトルクである(
図11(A))。第2補正成分TqC2は、対象部分10tの機械的な抵抗力により打ち消されるロールトルクである(
図11(B))。
【0146】
さらに、
図12のS324で説明したように、制御装置900は、第1制御値Cw1を決定するために、ロールトルクTq1-Tq3を用いる補正を行う。
図13(A)-
図13(E)で説明したように、第1成分Tq1は、ボディ100が傾いている場合に対象部分10tに作用する重力によって生じるロールトルクの成分である。第2成分Tq2は、車両10のヨー角速度Ay’の大きさがゼロよりも大きい場合に対象部分10tに作用する遠心力によって生じるロールトルクの成分である。第3成分Tq3は、車両10のヨー角加速度Ay’’と、対象部分10tの重心10tcと車両10の自転中心Rxとの間の前後方向の位置の差(距離Xによって示される差)と、対象部分10tの重心10tcとロール軸AxLとの間の位置の差(距離Zによって示される差)と、によって生じるロールトルクの成分である。
【0147】
このように、制御装置900は、対象部分10tに作用する種々のロールトルクを用いる補正を行うことによって、リーンモータ650と操舵モータ550とを制御する。従って、制御装置900は、実際のロール角加速度Ar’’を、目標ロールトルクTqrに適した値、すなわち、入力角AIに適した値に近づけることができる。
【0148】
制御装置900は、ロールトルク成分Tq1、Tq2、Tq3から任意の選択された1以上の成分の補正を、操舵モータ550の制御処理(
図12:S324)に代えて、リーンモータ650の制御処理(
図10:S210)で行ってよい。例えば、制御装置900は、2個の成分Tq1、Tq2の補正、または、3個の成分Tq1、Tq2、Tq3の補正を、リーンモータ650の制御処理で行ってよい。また、ロールトルクTq1の一部の補正が、操舵モータ550の制御処理によって行われ、ロールトルクTq1の残りの部分の補正が、リーンモータ650の制御処理によって行われてよい。ロールトルクTq2、Tq3についても、同様である。また、ロールトルク成分Tq1、Tq2、Tq3から任意の選択された1以上の成分の補正が、省略されてよい。例えば、1個の成分Tq3の補正、または、3個の成分Tq1、Tq2、Tq3の補正が、省略されてよい。3個の成分Tq1、Tq2、Tq3のうち補正される成分の数が多いほど、制御装置900は、力付与装置300(本実施例では、操舵モータ550とリーンモータ650)を、より適切に制御できる。ただし、3個の成分Tq1、Tq2、Tq3のうちの1以上の成分の補正が省略される場合であっても、基準係数KAi、KBiを用いる力付与装置300の制御は、水平方向の慣性力を抑制できる。
【0149】
なお、
図8(A)の式B1に示すように、目標ロールトルクTqrは、ロール角加速度Ar’’に、総合慣性モーメントIt(本実施例では、第1慣性モーメント成分Ipと第2慣性モーメント成分Ixとの和)を乗じる式で表される。換言すれば、Ar’’にIt(=Ip+Ix)を乗じることによって算出されるロールトルクTqrfは、目標ロールトルクTqrの良い推定値である。以下、ロールトルクTqrfを、参照ロールトルクTqrfとも呼ぶ。
【0150】
ここで、KAi*Tqrfを、第1候補トルクCV1とする。第1候補トルクCV1は、第1制御モードにおいて(すなわち、KA=KAi)、第1配分目標ロールトルクTqrLの推定値を示している(第1制御モードでは、TqrL=KAi*Tqr)。KAi*TqrfからTq1とTq2とを除いた残りを、第2候補トルクCV2とする。第2候補トルクCV2は、第1配分目標ロールトルクTqrLの推定値に2個の成分Tq1、Tq2の補正を行って得られるトルクを示している。KAi*TqrfからTq1とTq2とTq3とを除いた残りを、第3候補トルクCV3とする。第3候補トルクCV3は、第1配分目標ロールトルクTqrLの推定値に3個の成分Tq1、Tq2、Tq3の補正を行って得られるトルクを示している。ここで、力付与装置300によって形成されるロールトルクから、2個の補正成分TqC1、TqC2を除いた残りのロールトルクを、有効ロールトルクTeと呼ぶ。上述したように、3個の成分Tq1、Tq2、Tq3のうちの1以上の成分の補正が省略される場合であっても、水平方向の慣性力は抑制され得る。候補トルクCV1、CV2、CV3は、いずれも、力付与装置300の制御であって水平方向の慣性力を抑制可能な制御による有効ロールトルクTeの例である。なお、力付与装置300によって形成されるロールトルクは、力付与装置300によって車両10に付与される力が車両10にロールトルクとして作用する成分を含む場合に、そのロールトルク(すなわち、ロールトルクとして作用する成分によって形成されるロールトルク)を示している。力がロールトルクとして作用する成分を含むか否かは、車両10のうちの力が付与される部分と、力の方向と、車両10の構造と、に基づいて決定される。例えば、ロール軸AxLから離れた位置で対象部分10tに付与される水平方向の力は、ロールトルクとして対象部分10tに作用する。なお、トルクは、回転力とも呼ばれる力の一種である。
【0151】
本実施例では、操舵モータ550によって前輪支持装置500に付与される力は、前輪支持装置500にロールトルクとして作用する成分を含んでいない。リーンモータ650によってボディ100に付与される力は、ボディ100にロールトルクとして作用する。従って、力付与装置300によって形成されるロールトルクは、リーンモータ650によってボディ100に付与される力によって形成されるロールトルクである。
【0152】
なお、基準係数KAi、KBiは、
図8(E)に示すように、慣性モーメント成分Ip、Ixを用いて算出される。実際の慣性モーメント成分Ip、Ixは、人または物体の一方または両方を含む積載物の状態に応じて、変化し得る。従って、基準係数KAi、KBi、ひいては、候補トルクCV1、CV2、CV3は、積載物の状態に応じて変化し得る。有効ロールトルクTeが、候補トルクCV1、CV2、CV3のそれぞれの可能範囲のいずれかに含まれる場合、積載物の種々の状態に関して、制御装置900は、水平方向の慣性力を抑制できる。なお、候補トルクCV1、CV2、CV3は、KAi、Tqrf、Tq1、Tq2、Tq3を用いて算出可能である。第1基準係数KAiは、
図8(E)で説明したように、慣性モーメント成分Ip、Ixを用いて算出される。第1慣性モーメント成分Ipは、上述したように、実験的に測定可能である。第2慣性モーメント成分Ixは、「It-Ip」で算出される。総合慣性モーメントItは、上述したように、実験的に測定可能である。参照ロールトルクTqrfは、「Ar’’*It」で算出される。ロール角加速度Ar’’は、ロール角Arを測定するセンサ(例えば、方向センサ790)を用いて、測定可能である。第1成分Tq1は、
図13(B)に示すように、M、Z、Arの測定値を用いて、算出可能である。第2成分Tq2は、
図13(C)に示すように、、M、Z、V、Ay’の測定値を用いて、算出可能である。第3成分Tq3は、
図13(E)に示すように、M、X、Z、Ay’’の測定値を用いて、算出可能である。
【0153】
候補トルクCV1、CV2、CV3のそれぞれの可能範囲は、積載物の位置と質量とが所定の許容範囲内で変化する場合に、候補トルクCV1、CV2、CV3のそれぞれが取り得るトルクの範囲である。車両10が物体の積載物を載せることができる場合、積載物の質量の許容範囲は、ゼロ以上最大積載量以下の範囲であり、積載物の位置の許容範囲は、物体を配置可能な領域(本実施例では、荷物室190(
図1))の範囲である。候補トルクCV1、CV2、CV3のそれぞれの可能範囲を測定する場合、物体としては、高密度の物体である鉛を用いることが好ましい。最大積載量は、車両10が適法に走行するための積載物の最大質量であり、車両10に予め対応付けられている。
【0154】
車両10が人の積載物を乗せることができる場合、人の質量の許容範囲は、最大定員以下の人数と、各人のゼロ以上体重制限以下の体重と、の組み合わせの可能な範囲であり、人の位置の許容範囲は、人を配置可能な領域(本実施例では、座席120(
図1))の範囲である。体重制限は、車両10が適法に走行するための人の最大質量であり、車両10に予め対応付けられている。このような体重制限の定めが無い場合、200kgを一人の体重制限として採用してよい。
【0155】
いずれの場合も、積載物の位置と質量との許容範囲は、車両10が適法に走行することが可能な範囲である。また、第1候補トルクCV1の可能範囲は、人と物体を含む積載物が無い状態での第1候補トルクCV1と、人または物体を含む積載物の位置と質量とが所定の許容範囲内で変化する場合に可能な第1候補トルクCV1と、を含む第1候補トルクCV1の可能範囲である。第2候補トルクCV2の可能範囲と、第3候補トルクCV3の可能範囲と、についても、第1候補トルクCV1の可能範囲と同様に決定される。
【0156】
図9(E)は、有効ロールトルクTeと速度Vとの対応関係の例を示すグラフである。横軸は、速度Vを示し、縦軸は、有効ロールトルクTeを示している。ゼロより大きい有効ロールトルクTeは、右方向DRのロールトルクを示し、ゼロより小さい有効ロールトルクTeは、左方向DLのロールトルクを示している。第1速度範囲VR1には、候補トルクCV1、CV2、CV3の例と、左端候補トルクCVLの例と、右端候補トルクCVRの例と、が示されている。右端候補トルクCVRは、候補トルクCV1、CV2、CV3のそれぞれの可能範囲の全体のうち、右方向側の端のトルクである。左端候補トルクCVLは、候補トルクCV1、CV2、CV3のそれぞれの可能範囲の全体うち、左方向側の端のトルクである。第1候補トルクCV1の可能範囲と、第2候補トルクCV2の可能範囲と、第3候補トルクCV3の可能範囲とは、左端候補トルクCVLから右端候補トルクCVRまでの範囲に含まれる。
【0157】
図9(E)では、候補トルクCV1、CV2、CV3の大きさの小さい順は、CV1、CV2、CV3の順である。ただし、参照ロールトルクTqrfの方向、すなわち、「KAi*Tqrf」によって示されるロールトルクの方向は、ハンドル160の回転方向に応じて変化する。また、車両10の運動状態は、種々に変化する。従って、「KAi*Tqrf」と「ロールトルクTq1、Tq2、Tq3」を用いて算出される候補トルクCV1、CV2、CV3の並び順(例えば、大きさの小さい順)は、他の順であり得る。
【0158】
図9(E)では、2つの端候補トルクCVL、CVRの方向が、同じ右方向である。ただし、左端候補トルクCVLの方向は、右端候補トルクCVRの方向とは反対方向であり得る。例えば、右端候補トルクCVRの方向が右方向である場合に、左端候補トルクCVLは、左方向であり得る。また、2つの候補トルクCVL、CVRの方向が、同じ左方向であり得る。また、候補トルクCVL、CVRと候補トルク値CV1、CV2、CV3とのそれぞれは、速度Vの変化に応じて変化し得る。
【0159】
制御装置900は、第1制御モードCM1では、有効ロールトルクTeが、左端候補トルクCVLから右端候補トルクCVRまでの範囲(CVL、CVRを含む)内であるように、力付与装置300(本実施例では、リーンモータ650と操舵モータ550)を制御することが好ましい。この構成によれば、制御装置900は、積載物の種々の状態に関して、水平方向の慣性力を抑制できる。
【0160】
また、本実施例では、一定の速度Vでの一定のロール角Arによる定常円旋回を車両10が維持する場合には、制御装置900は、以下のように、力付与装置300を制御する。定常円旋回が維持される場合、ロール角Arは目標ロール角Artとおおよそ同じ値に維持されるので、ロール角差dArは、おおよそゼロに維持される(
図7:S130)。従って、目標ロールトルクTqrは、おおよそゼロに維持され(S140)、配分目標ロールトルクTqrL、TqrSも、おおよそゼロに維持される(S160)。
【0161】
リーンモータ650の制御は、以下のように進行する。定常円旋回が維持される場合、ロール角速度Ar’がおおよそゼロに維持されるので、
図11(B)に示す第2補正成分TqC2は、おおよそゼロに維持される。リーンモータ650の制御処理(
図10)では、第1配分目標ロールトルクTqrLと第2補正成分TqC2とがおおよそゼロに維持されるので、制御値CLは、第1補正成分TqC1に対応するロールトルクを示す。このように、リーンモータ650は、第1補正成分TqC1に対応するロールトルクを、対象部分10tに作用させ続ける。
【0162】
操舵モータ550の制御は、以下のように進行する。定常円旋回が維持される場合、第1成分Tq1(
図13(B))と第2成分Tq2(
図13(C))とがおおよそ釣り合う。また、ヨー角速度Ay’がおおよそ一定に維持されるので、ヨー角加速度Ay’’は、おおよそゼロに維持される。従って、第3成分Tq3(
図13(D)、
図13(E))は、おおよそゼロに維持される。以上により、操舵モータ550の制御処理(
図12)のS324では、成分Tq1-Tq3の補正の影響は、おおよそゼロである。そして、第2配分目標ロールトルクTqrSがおおよそゼロに維持されるので、補正済ロールトルクTqcは、おおよそゼロに維持される。従って、追加角速度Awd’は、おおよそゼロに維持され(S326)、第1制御値Cw1(S328)は、おおよそゼロに維持される。また、定常円旋回が維持される場合、車輪角Awは、目標車輪角Awtとおおよそ同じ値に維持されるので、車輪角差dAw(S334)は、おおよそゼロに維持される。従って、第2制御値Cw2(S336)は、おおよそゼロに維持される。以上により、駆動制御値Cw(S360)は、おおよそゼロに維持される。このように、操舵モータ550の回動トルクは、おおよそゼロに維持される。
【0163】
以上のように、本実施例では、一定の速度Vでの一定のロール角Arによる定常円旋回を車両10が維持する場合には、制御装置900は、力付与装置300が第1補正ロールトルクTqC1を形成するように、力付与装置300を制御する。第1補正成分TqC1は、
図10のS210、
図11(A)で説明したように、現行の速度Vでの現行のロール角Arによる定常円旋回の維持に必要なロールトルクである。本実施例では、制御装置900は、定常円旋回を行うために、このような第1補正ロールトルクTqC1を、力付与装置300に形成させる。従って、制御装置900は、安定して、定常円旋回を維持できる。換言すれば、第1補正成分TqC1(すなわち、定常円旋回の維持に必要なロールトルク)としては、車両10が現行の速度Vでの現行のロール角Arによる定常円旋回を維持する場合に、力付与装置300によって形成されるロールトルクを採用可能である。
【0164】
また、
図6で説明したように、入力角センサ760は、入力角AIを示すデータ(旋回目標データの例)を取得するように構成されている旋回目標データ取得装置の例である。目標ロール角Art(
図7:S120)は、入力角AIを示すデータを含む1以上のパラメータデータ(本実施例では、入力角AIのデータと速度Vのデータ)を用いて決定される。ロール角差dAr(
図7:S130)は、目標ロール角Artと現行のロール角Arとの間の差である。
図9(C)に示すように、制御装置900は、第1条件が満たされない場合に、ロール角差dArの大きさが大きいほど、第1係数KAを大きくする。
図7のS140-S160で説明したように、第1係数KAが大きいほど、目標ロールトルクTqrに対する第1配分目標ロールトルクTqrLの割合が大きい。ここで、参照ロールトルクTqrfは、目標ロールトルクTqrの推定値である。従って、第1係数KAが大きいほど、参照ロールトルクTqrfに対する第1配分目標ロールトルクTqrLの割合が大きい。
図10で説明したように、第1配分目標ロールトルクTqrLの大きさが大きいほど、制御値CLによって示されるロールトルクの大きさ(すなわち、リーンモータ650によって形成されるロールトルクの大きさ)は、大きい。上述したように、本実施例では、力付与装置300によって形成されるロールトルクは、リーンモータ650によって形成される。そして、有効ロールトルクTeは、力付与装置300によって形成されるロールトルクから、2個の補正成分TqC1、TqC2を除いた残りのロールトルクである。従って、本実施例では、通常は、リーンモータ650によって形成されるロールトルクの大きさが大きいほど、有効ロールトルクTeの大きさが大きい。これは、第1配分目標ロールトルクTqrLの大きさが大きいほど、有効ロールトルクTeの大きさが大きいことを示している。以上により、本実施例では、制御装置900は、ロール角差dArの大きさが大きいほど、参照ロールトルクTqrfに対する有効ロールトルクTeの割合が大きくなるように、力付与装置300(本実施例では、リーンモータ650と操舵モータ550)を制御する。この構成によれば、制御装置900は、ロール角差dArの大きさが大きい場合に、力付与装置300によって形成されるロールトルク(本実施例では、リーンモータ650によって形成されるロールトルク)によって、適切に、ロール角差dArを小さくできる。
【0165】
B.変形例:
(1)目標ロール角Artは、車両10の走行状態から推定することができる。具体的には、一定の入力角AIと一定の速度Vとで車両10が定常円旋回を維持する場合、ロール角Arは、入力角AIと速度Vとの組み合わせに対応付けられた目標ロール角Artの良い推定値である。
【0166】
(2)リーンモータ650の制御処理は、
図7、
図10の処理に代えて、他の種々の処理であってよい。例えば、プロセッサ910pは、制御値CLと、ロール角速度Ar’の大きさを小さくする制御値CLrと、の和を、リーンモータ650を駆動するための駆動制御値として算出してよい。プロセッサ910pは、ロール角速度Ar’を用いるP制御、または、PD制御によって、制御値CLrを算出してよい。
図9(D)の実施例において、第1係数KAは、ロール角差dArの時間微分dAr’の変化に対して曲線を描くように変化してよい。また、
図9(D)の実施例とは異なり、制御装置900は、ロール角差dArの時間微分dAr’の大きさを用いずに第1係数KAを決定してよい。
図9(C)の実施例において、第1係数KAは、ロール角差dArの変化に対して曲線を描くように変化してよい。また、
図9(C)の実施例とは異なり、制御装置900は、ロール角差dArの大きさを用いずに、第1係数KAを決定してよい。
【0167】
(3)第1条件は、、
図9(A)、
図9(C)、
図9(D)で説明した条件に限らず、速度Vがゼロよりも大きい所定の第1速度範囲内であることを含む種々の条件であってよい。例えば、第1条件は、ロール角差dArの大きさとロール角差dArの時間微分dAr’の大きさとに依存せずに、速度Vが第1速度範囲VR1内であることであってよい。また、第1速度範囲の上限は、最大候補値CVmaxよりも低くてもよい。
【0168】
(4)操舵モータ550の制御処理は、
図7、
図12の処理に代えて、他の種々の処理であってよい。例えば、プロセッサ910pは、制御値Cw1、Cw2と、ロール角速度Ar’の大きさを小さくする制御値Cw3と、の和を、駆動制御値Cwとして算出してよい。プロセッサ910pは、ロール角速度Ar’を用いるP制御、または、PD制御によって、制御値Cw3を算出してよい。また、
図8(C)のように対象部分10tがロールする場合、重心10tcは、少しだけ、低い位置に移動する。プロセッサ910pは、重心10tcの高さの変化に起因するロールトルクを用いる補正を行ってよい。ただし、このロールトルクの大きさは小さいので、この補正は省略されてよい。
【0169】
(5)幅方向に互いに離れて配置された一対の車輪(例えば、一対の後輪30R、30L)と、ボディ100と、を連結する連結装置の構成は、連結装置600(
図1(A)-
図1(C)、
図2)の構成に代えて、他の種々の構成であってよい。例えば、連結装置600のリンク機構60が台に置換されてよい。台には、駆動モータ660R、660Lが固定される。そして、支持部69は、軸受によって、幅方向に回転可能に台に連結される。リーンモータ650は、台に対して、支持部69を、幅方向に回転させる。これにより、ボディ100は、幅方向にロール可能である。また、この場合には、台と駆動モータ660R、660Lと後輪30R、30Lとは、ボディ100がロールする場合に動かない。従って、対象部分からは、台と駆動モータ660R、660Lと後輪30R、30Lとは、除かれる。また、図示を省略するが、左スライド装置が、左後輪30Lとボディ100とを接続し、右スライド装置が、右後輪30Rとボディ100とを接続してもよい。各スライド装置は、ボディ100に対する車輪のボディ上方向DVUの相対位置を変化させることができる。傾斜装置は、このような2個のスライド装置を含んでよい。
【0170】
一般的には、傾斜装置は、「幅方向に互いに離れて配置された一対の車輪のうちの1つの車輪または2つの車輪に直接的または間接的に接続された第1部材」と、「ボディに直接的または間接的に接続された第2部材」と、「第1部材を第2部材に可動(例えば、回転可能、スライド可能など)に接続する接続装置」を含んでよい。
図2の傾斜装置60に関しては、上横リンク部材61Uは、縦リンク部材61R、61Lとモータ660R、660Lを介して車輪30R、30Lに接続された第1部材の例である。中縦リンク部材61Cは、支持部69とサスペンションシステム670とを介してボディ100に接続された第2部材の例である。軸受68Uは、第1部材を第2部材に可動に接続する接続装置の例である。
【0171】
(6)幅方向に回動可能に回動輪(例えば、前輪20(
図1(B)))を支持する回動輪支持装置の構成は、前輪支持装置500(
図1(A))の構成に代えて、他の種々の構成であってよい。例えば、ハンドル160と前フォーク517とは、機械的に接続されてよい。例えば、ハンドル160と前フォーク517とは、バネやゴムなどの弾性体によって、接続されてよい。運転者は、ハンドル160を回転させることによって、直接的に、前輪20を操舵できる。操舵モータ550による回動トルクは、操舵を補助するために、利用される。
【0172】
また、回動輪を回転可能に支持する支持部材は、前フォーク517に代えて、片持ちの部材であってよい。また、支持部材をボディに対して幅方向に回動可能に支持する回動装置は、軸受568に代えて、他の種々の装置であってよい。例えば、回動装置は、ボディと支持部材とを連結するリンク機構であってよい。
【0173】
一般的には、回動輪支持装置は、ボディに固定されていることが好ましい。この構成によれば、回動輪の回動軸(例えば、回動軸27(
図1(A)))は、ボディとともにロールする。従って、回動輪の方向(例えば、進行方向D20(
図1(B)))は、ジャイロモーメントにより、ボディのロール角Arの変化に追随して変化できる。ここで、回動輪支持装置は、K個(Kは1以上の整数)の支持部材を備えてよい。各支持部材は、1以上の回動輪を回転可能に支持してよい。そして、回動輪支持装置は、ボディに固定されたK個の回動装置を備えてよい。K個の回動装置は、K個の支持部材を、それぞれ幅方向に回動可能に支持してよい。
【0174】
(7)1以上の回動輪を回動させる駆動力を回動輪支持装置に付与するように構成されている回動駆動装置の構成は、操舵モータ550の構成に代えて、他の種々の構成であってよい。例えば、回動駆動装置は、ポンプを含み、ポンプからの液圧(例えば、油圧)を用いて回動トルクを生成してよい。
【0175】
また、車両10などの移動装置は、回動駆動装置に限らず、車両10のヨー角速度Ay’を変化させる成分を含む第1力を車両10に付与するように構成されている種々の第1付与装置を備えてよい。例えば、制御装置900は、右駆動モータ660Rと左駆動モータ660Lとの間のトルクの比率を変化させてよい。右駆動モータ660Rのトルクが左駆動モータ660Lのトルクよりも大きい場合、車両10は、左方向DLへ旋回する。右駆動モータ660Rのトルクが左駆動モータ660Lのトルクよりも小さい場合、車両10は、右方向DRへ旋回する。制御装置900は、駆動モータ660R、660Lの間のトルクの比率を制御することによって、ヨー角速度Ay’を制御できる。駆動モータ660R、660Lのこのような制御は、トルクベクタリングとも呼ばれる。トルクベクタリングによってヨー角速度Ay’が変化する場合も、
図8(C)の例と同様に、前輪20の接触中心29は、左方向DL側、または、右方向DR側へ移動する。そして、ロール角Arが変化する。
【0176】
また、車両10は、前輪支持装置500に固定された第1ファンを備えてよい。第1ファンは、幅方向(右方向DR、または、左方向DL)の気流を生成するように構成される。第1ファンは、気流の反作用によって、前輪支持装置500に幅方向の力を付与する。この力は、前輪支持装置500、ひいては、回動軸27を、右方向DR側、または、左方向DL側へ、移動させる。本実施例では、車両10は、正のトレールLtを有している。従って、回動軸27の移動により、前輪20は、右方向DR側、または、左方向DL側へ、回動する。このように、第1ファンによって前輪支持装置500に付与される力は、回動トルクとして、前輪20に作用する。
図8(C)の例と同様に、前輪20の回動によって、ヨー角速度Ay’が変化し、そして、ロール角Arが変化する。
【0177】
一般的に、ヨー角速度Ay’を変化させる成分を含む第1力を車両10に付与する制御は、前輪20を回動させる。前輪20の回動によって、前輪20の接触中心29は、左方向DL側、または、右方向DR側へ移動する。そして、
図8(C)の例と同様に、ロール角Arが変化する。第1力を車両10に付与する制御は、
図8(C)の例と同様に、第1慣性モーメント成分Ipに関連する慣性力を抑制しつつ、第2慣性モーメント成分Ixに関連する慣性力を引き起こし得る。従って、種々の第1付与装置は、水平方向の慣性力を抑制するために、操舵モータ550の代わりに利用できる。なお、上記のトルクベクタリングが行われる場合、駆動モータ660R、660Lの全体660Sは、第1付与装置の例である。上記の第1ファンが用いられる場合、第1ファンは、第1付与装置の例である。
【0178】
(8)傾斜駆動装置は、リーンモータ650(
図2)に代えて、傾斜装置を駆動する駆動力を生成するように構成されている種々の装置であってよい。例えば、傾斜駆動装置は、傾斜装置を駆動する油圧シリンダと、油圧シリンダに油圧を供給するポンプと、を含んでよい。また、ボディ100と後輪30R、30Lを接続する上記の右スライド装置と左スライド装置とが油圧シリンダを用いて構成されている場合、傾斜駆動装置は、スライド装置に油圧を供給するポンプを含んでよい。
【0179】
このように、傾斜装置を駆動する傾斜駆動装置は、一対の車輪とボディとに、直接的、または、間接的に、力を伝達する装置である。車両10などの移動装置は、傾斜駆動装置に限らず、ボディ100のロール角速度Ar’を変化させる成分を含む第2力をボディ100に付与するように構成されている種々の第2付与装置を備えてよい。例えば、車両10は、ボディに固定された第2ファンを備えてよい。第2ファンは、幅方向(右方向DR、または、左方向DL)の気流を生成するように構成される。第2ファンは、気流の反作用によって、ボディに幅方向の力を付与する。第2ファンによって付与される力は、ボディ100にロールトルクとして作用する。第2ファンによってロール角速度Ar’が変化する場合も、
図8(B)の例と同様に、対象部分10tは、ロール軸AxLまわりにロールする。一般的に、ロール角速度Ar’を変化させる成分を含む第2力をボディ100に付与する制御は、
図8(B)の例と同様に、2つの慣性モーメント成分Ip、Ixに関連する慣性力を引き起こし得る。従って、種々の第2付与装置は、水平方向の慣性力を抑制するために、リーンモータ650の代わりに利用できる。なお、上記の第2ファンが用いられる場合、第2ファンは、第2付与装置の例である。
【0180】
(9)車両10などの移動装置は、第1付与装置と、第1付与装置とは異なる別の装置である第2付与装置と、を備えることが好ましい。ここで、第1付与装置によって移動装置に付与される第1力は、ヨー角速度Ay’を変化させる成分に加えて、ロール角速度Ar’を変化させる成分を含み得る。例えば、前輪支持装置500に固定された上記の第1ファンは、ロール角速度Ar’を変化させる成分を含み得る。第1力が幅方向の力の成分を含み、その力の成分の作用点が地面よりも高い位置に配置されている場合、その成分は、ロール角速度Ar’を変化させる。また、第2付与装置によってボディ100に付与される第2力は、ロール角速度Ar’を変化させる成分に加えて、ヨー角速度Ay’を変化させる成分を含み得る。例えば、ボディに固定された上記の第2ファンは、ヨー角速度Ay’を変化させる成分を含み得る。第2力が幅方向の力の成分を含み、その力の成分の作用点の前方向DFの位置が自転中心の前方向DFの位置と異なる場合、その成分は、ヨー角速度Ay’を変化させる。
【0181】
いずれの場合も、制御装置900は、力付与装置によって形成されるロールトルクを、上記実施例のリーンモータ650によって形成されるロールトルクと同様に(例えば、
図7、
図10の処理に従って)、制御してよい。ここで、制御装置900は、第1条件が満たされる場合には(すなわち、第1制御モードCM1では)、力付与装置によって形成されるロールトルクから得られる有効ロールトルクが、上記の左端候補トルクCVLから右端候補トルクCVRまでの範囲内であるように、力付与装置を制御することが好ましい。これにより、制御装置900は、上記実施例と同様に、水平方向の慣性力を抑制できる。例えば、制御装置900は、力付与装置によって形成されるロールトルクが、上記実施例のリーンモータ650によって形成されるロールトルクと同じとなるように、第1付与装置と第2付与装置とを制御してよい。なお、有効トールトルクの算出に用いられる第1補正成分TqC1(すなわち、定常円旋回の維持に必要なロールトルク)としては、移動装置が現行の速度Vでの現行のロール角Arによる定常円旋回を維持する場合に、力付与装置によって形成されるロールトルクを採用可能である。
【0182】
また、制御装置900は、第1条件が満たされない場合には(例えば、第2制御モードCM2では)、ロール角差dArの大きさが大きいほど、参照ロールトルクTqrfに対する有効ロールトルクの割合が大きくなるように、力付与装置を制御することが好ましい。ただし、第1条件が満たされない場合の力付与装置の制御は、他の種々の制御であってよい。例えば、参照ロールトルクTqrfに対する有効ロールトルクの割合は、ロール角差dArの大きさから独立してよい。
【0183】
なお、力付与装置によって形成されるロールトルクとしては、第1付与装置によって形成されるロールトルクと、第2付与装置によって形成されるロールトルクと、を合成して得られるロールトルクが、採用される。第1付与装置によって形成されるロールトルクは、第1付与装置によって車両10に付与される第1力が車両10にロールトルクとして作用する成分を含む場合に、そのロールトルクを示している。第2付与装置によって形成されるロールトルクは、第2付与装置によってボディ100に付与される第2力が車両10にロールトルクとして作用する成分を含む場合に、そのロールトルクを示している。なお、第1付与装置によって形成されるロールトルクは、ゼロであり得る。
【0184】
さらに、車両10が適切なロール角Arで走行する場合、制御装置900は、力付与装置によって形成される回動トルクがロール角Arに適した値になるように、力付与装置を制御している。従って、水平方向の慣性力は、適切に、抑制される。ここで、制御装置900は、力付与装置によって形成される回動トルクを、上記実施例の操舵モータ550によって形成される回動トルクと同様に(例えば、
図7、
図12の処理に従って)、制御してよい。例えば、制御装置900は、力付与装置によって形成される回動トルクが、上記実施例の操舵モータ550によって形成される回動トルクと同じとなるように、第1付与装置と第2付与装置とを制御してよい。
【0185】
力付与装置によって形成される回動トルクとしては、第1付与装置によって形成される回動トルクと、第2付与装置によって形成される回動トルクと、を合成して得られる回動トルクが、採用される。第1付与装置によって形成される回動トルクは、第1付与装置によって車両10に付与される第1力が回動輪(例えば、前輪20)に回動トルクとして作用する成分を含む場合に、その回動トルクを示している。第2付与装置によって形成される回動トルクは、第2付与装置によってボディ100に付与される第2力が回動輪(例えば、前輪20)に回動トルクとして作用する成分を含む場合に、その回動トルクを示している。なお、第2付与装置によって形成される回動トルクは、ゼロであり得る。
【0186】
制御装置900は、力付与装置によって形成されるロールトルクと回動トルクとを、本変形例で説明したように制御することによって、水平方向の慣性力を、適切に、抑制できる。なお、トルク(例えば、リーンモータ650(
図2)によって生成されるトルク)は、回転力とも呼ばれる力の一種である。第1付与装置と第2付与装置とは、トルクを含む種々の力を生成してよい。
【0187】
(10)複数の車輪の総数と配置としては、種々の構成を採用可能である。例えば、前輪の総数が2であり、後輪の総数が1であってもよい。前輪の総数が2であり、後輪の総数が2であってもよい。前輪の総数が1であり、後輪の総数が1であってもよい。前輪が駆動輪であってよい。回動輪の総数は、1以上の任意の数であってよい。後輪が、回動輪であってよい。この場合、第3成分Tq3(
図13(D)、
図13(E))に関しては、自転中心は、前中心Cfとおおよそ同じである。慣性力成分F32の方向は、ヨー角加速度Ay’’の方向と同じである。
【0188】
(11)制御装置の構成は、
図6の制御装置900の構成に代えて、他の種々の構成であってよい。例えば、制御装置は、1つのコンピュータを用いて構成されてもよい。制御装置は、種々の電気回路であってよく、例えば、コンピュータを含む電気回路であってよく、コンピュータを含まない電気回路であってもよい。
【0189】
(12)上記各実施例の制御処理は、車両10(
図1(A))に代えて、ボディと車輪とを備える種々の移動装置に適用されてよい。例えば、最大定員数は、1人に代えて、2人以上であってよい。移動装置は、人を乗せずに荷物を載せて移動する無人車両であってよい。また、移動装置は、人も荷物も載せずに移動する無人車両であってよい。また、移動装置は、小型の模型自動車であってよい。また、ロール軸AxLは、地面GLから離れた位置に配置されてよい。いずれの場合も、ロール軸AxLは、対象部分10tの重心10tcよりも低い位置に配置されていることが好ましい。
【0190】
また、上記実施例では、運転者が、車両10(
図6)を制御するための種々の指示情報(例えば、入力角AI、アクセル操作量Pa、ブレーキ操作量Pb)を制御装置900に入力する。これに代えて、制御装置は、無線通信によって外部装置から指示情報を取得するように構成された無線装置を含んでよい。このように、移動装置は、遠隔操作される車両であってよい。また、制御装置は、自動操縦を行うように構成されてよい。例えば、制御装置は、図示しないGPS(Global Positioning System)を用いて取得される移動装置の位置を参照して、予め決められた経路に沿って走行する処理を実行してよい。この場合、制御装置は、移動装置の位置と経路とを用いて、移動装置の制御に用いられる種々の情報(例えば、入力角AI、アクセル操作量Pa、ブレーキ操作量Pb)を決定する。いずれの場合も、制御装置のうちの入力角AIを示すデータを取得するように構成されている部分(例えば、無線装置を含む部分)は、旋回目標データ取得装置の例である。
【0191】
上記各実施例において、ハードウェアによって実現されていた構成の一部をソフトウェアに置き換えるようにしてもよく、逆に、ソフトウェアによって実現されていた構成の一部あるいは全部をハードウェアに置き換えるようにしてもよい。例えば、
図6の制御装置900の機能を、専用のハードウェア回路によって実現してもよい。
【0192】
また、本発明の機能の一部または全部がコンピュータプログラムで実現される場合には、そのプログラムは、コンピュータ読み取り可能な記録媒体(例えば、一時的ではない記録媒体)に格納された形で提供することができる。プログラムは、提供時と同一または異なる記録媒体(コンピュータ読み取り可能な記録媒体)に格納された状態で、使用され得る。「コンピュータ読み取り可能な記録媒体」は、メモリーカードやCD-ROMのような携帯型の記録媒体に限らず、各種ROM等のコンピュータ内の内部記憶装置や、ハードディスクドライブ等のコンピュータに接続されている外部記憶装置も含み得る。
【0193】
以上、実施例、変形例に基づき本発明について説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれる。
【符号の説明】
【0194】
10…車両、10t…対象部分、10tc…重心、20…前輪、20x…回転軸、26…交点、27…回動軸、28…接触領域、29…接触中心、30L…左後輪、30Lx…回転軸、38L…接触領域、39L…接触中心、30R…右後輪、30Rx…回転軸、38R…接触領域、39R…接触中心、60…リンク機構(傾斜装置)、61L…左縦リンク部材、61C…中縦リンク部材、61R…右縦リンク部材、61U…上横リンク部材、61D…横リンク部材、68D…軸受、68U…軸受、69…支持部、100…ボディ、100x…荷物、110…本体部、111…前部、112…前壁部、113…底部、114…後壁部、115…後部、120…座席、160…ハンドル、170…アクセルペダル、180…ブレーキペダル、190…荷物室、500…前輪支持装置、517…前フォーク、550…操舵モータ、550…回動駆動装置、568…軸受、600…連結装置、650…傾斜駆動装置、650…リーンモータ、660L…左駆動モータ、660R…右駆動モータ、670…サスペンションシステム、670L…左サスペンション、670R…右サスペンション、680…アーム、720…センサ、720…速度測定装置(速度センサ)、730…ロール角センサ、755…車輪角センサ、760…入力角センサ、770…アクセルペダルセンサ、780…ブレーキペダルセンサ、790…方向センサ、791…制御部、792…加速度センサ、793…ジャイロセンサ、800…バッテリ、900…制御装置、910-940p…プロセッサ、910-940v…揮発性記憶装置、910-940n…不揮発性記憶装置、910-940g…プログラム、910…主制御部、920…駆動装置制御部、920cR、920cL…電力制御部、930…リーンモータ制御部、930c…電力制御部、940…操舵モータ制御部、940c…電力制御部、990…駆動制御装置、CA…キャスター角、Lh…ホイールベース、MArMAK、MC1、MC2…マップデータ