(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-07-09
(45)【発行日】2024-07-18
(54)【発明の名称】新規イノン化合物及びその用途
(51)【国際特許分類】
C07D 313/00 20060101AFI20240710BHJP
C07D 317/26 20060101ALI20240710BHJP
A61K 31/335 20060101ALI20240710BHJP
A61K 31/357 20060101ALI20240710BHJP
A61P 1/00 20060101ALI20240710BHJP
A61P 3/10 20060101ALI20240710BHJP
A61P 7/00 20060101ALI20240710BHJP
A61P 19/08 20060101ALI20240710BHJP
A61P 25/14 20060101ALI20240710BHJP
A61P 25/16 20060101ALI20240710BHJP
A61P 25/28 20060101ALI20240710BHJP
A61P 29/00 20060101ALI20240710BHJP
A61P 35/00 20060101ALI20240710BHJP
A61P 43/00 20060101ALI20240710BHJP
【FI】
C07D313/00 CSP
C07D317/26
A61K31/335
A61K31/357
A61P1/00
A61P3/10
A61P7/00
A61P19/08
A61P25/14
A61P25/16
A61P25/28
A61P29/00
A61P29/00 101
A61P35/00
A61P43/00 111
(21)【出願番号】P 2020553870
(86)(22)【出願日】2019-10-28
(86)【国際出願番号】 JP2019042086
(87)【国際公開番号】W WO2020090700
(87)【国際公開日】2020-05-07
【審査請求日】2022-10-13
(31)【優先権主張番号】P 2018203219
(32)【優先日】2018-10-29
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】519135633
【氏名又は名称】公立大学法人大阪
(74)【代理人】
【識別番号】110000796
【氏名又は名称】弁理士法人三枝国際特許事務所
(72)【発明者】
【氏名】中山 淳
(72)【発明者】
【氏名】寺町 順平
(72)【発明者】
【氏名】安倍 正博
(72)【発明者】
【氏名】難波 康祐
(72)【発明者】
【氏名】伊藤 孝司
(72)【発明者】
【氏名】辻 大輔
【審査官】神谷 昌克
(56)【参考文献】
【文献】特開平01-268684(JP,A)
【文献】国際公開第03/076424(WO,A1)
【文献】Database REGISTRY,2014年10月21日,RN 1629365-10-1, Retrieved from STN international [online] ;retrieved on 16 Dec 2019
【文献】KLEIN,M. et al.,Tetrahydroxy 10-Membered Cyclic Enediynes,Journal of Organic Chemistry,2003年,Vol.68, No.24,pp.9379-9383,ISSN 0022-3263
【文献】BALI,A.K. et al.,Enantiospecific synthesis of functionalized polyols from tartaric acid using Ley's dithiaketalizatio,Tetrahedron,2016年,Vol.72, No.52,pp.8623-8636,ISSN 0040-4020
【文献】SAITO,T. et al.,An improved synthesis of the C42-C52 segment of ciguatoxin 3C,Tetrahedron Letters,2018年02月21日,Vol.59, No.14,pp.1372-1376,ISSN 0040-4039
【文献】LIN,A. et al.,An enantioselective synthesis of the resorcylic acid lactone L-783,277 via addition of an acetylide,Heterocycles,2010年,Vol.82, No.1,pp.313-318,ISSN 0385-5414
【文献】KROHN,K. et al.,Synthesis of the aliphatic subunit of the macrolide LL-Z 1640-2 via Vasella ring opening of a 6-iodo,Journal of Carbohydrate Chemistry,2007年,Vol.26, No.8-9,pp.419-427,ISSN 0732-8303
【文献】GANGADHAR,P. et al.,A facile approach for the total synthesis of neurotrophic diyne tetraol petrosiol A and petrosiol E,Tetrahedron,2016年,Vol.72, No.38,pp.5807-5817,ISSN 0040-4020
【文献】ISAKA,M. et al.,Aigialomycins A-E, new resorcylic macrolides from the marine mangrove fungus Aigialus parvus,Journal of Organic Chemistry,2002年,Vol.67, No.5,pp.1561-1566,ISSN 0022-3263
【文献】HEARN,B.R. et al.,Semisynthesis and cytotoxicity of hypothemycin analogues,ChemMedChem,2007年,Vol.2, No.11,pp.1598-1600,ISSN 1860-7179
(58)【調査した分野】(Int.Cl.,DB名)
C07D
A61K
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
下記式(1A)で表される化合物又はその塩:
【化1】
[式中、
A
1は、下記式
【化2】
(式中、
R
5は、-OR
5a又は-NR
5bR
5cであり、
R
5aは、水素原子、アルキル基、アシル基、アルコキシアルキル基、又はアルコキシアルコキシアルキル基であり、
R
5b及びR
5cは、それぞれ独立して、水素原子、アルキル基、又はアリール基であり、
nは、0~4の整数であり、
nが2以上の整数である場合、複数のR
5は、互いに同一であっても異なっていてもよい。)
で表される環であり、
X
1は、酸素原子であり、
X
2は、二重結合であり、
R
1
は、C
1-4
アルキル基であり、
R
2
は、水素原子であり、
R
3及びR
4は、同一又は異なって、水素原子、アルキル基、アシル基、アルコキシアルキル基、又はアルコキシアルコキシアルキル基である、或いは
R
3O及びR
4Oは、隣接する2つの炭素原子と共に環を形成していてもよい。]
【請求項2】
A
1が、下記式で表される環である、請求項1に記載の化合物又はその塩:
【化3】
(式中、
R
51及びR
52は、同一又は異なって、水素原子、アルキル基、アルコキシアルキル基、又はアルコキシアルコキシアルキル基であり、
R
53は、水素原子、アルキル基、アルコキシアルキル基、又はアルコキシアルコキシアルキル基であり、
R
54及びR
55は、同一又は異なって、水素原子、アルキル基、又はアリール基である。)
【請求項3】
R
3及びR
4が、同一又は異なって、水素原子、アルキル基、又はアルコキシアルキル基である、請求項1
又は2に記載の化合物又はその塩。
【請求項4】
請求項1に記載の式(1A)で表される化合物又はその塩の製造方法であって、
(1)下記式(1-5):
【化4】
(式中、A
1、X
1、R
1、R
2、R
3、及びR
4は前記と同じである)
で表される化合物を、三重結合の保護化剤と反応させる工程、
(2)前記工程(1)で得られる生成物を環化する工程、及び
(3)前記工程(2)で得られる生成物から三重結合の保護基を除去する工程
を含む、方法。
【請求項5】
下記式(2A)で表される化合物又はその塩:
【化5】
[式中、
X
3は、単結合、二重結合、又は三重結合であり、
R
6は、
下記式:
【化6】
で表される基であり、
X
4
は、ヒドロキシル基であり、
R
61
は、C
1-4
アルキル基であり、
R
62
は、水素原子であり、
R
7O及びR
8Oは、隣接する2つの炭素原子と共に、下記式:
【化7】
(式中、R
7a及びR
8aは、同一又は異なって、水素原子、アルキル基、又はアリール基であり、*は、カルボニル炭素との結合位置を示す)
で表される環を形成しており、
R
9は、水素原子、アルキル基、又はアリール基である。
但し、下記式:
【化8】
で表される化合物で表される化合物を除く。]
【請求項6】
R
9が、水素原子である、請求項
5に記載の化合物又はその塩。
【請求項7】
請求項
5に記載の式(2A)で表される化合物又はその塩の製造方法であって、
塩基の存在下、下記式(2-6):
【化9】
(式中、R
10及びR
11は、同一又は異なって、アルキル基、アルコキシ基、又はアリール基であり、X
3、R
7、R
8、及びR
9は前記と同じである)
で表される化合物を、下記式(9):
【化10】
(式中、R
6は、前記と同じである)
で表される化合物と反応させる工程を含む、方法。
【請求項8】
下記式(1)で表される化合物又はその塩:
【化11】
[式中、
A
1は、下記式
【化12】
(式中、
R
5は、-OR
5a又は-NR
5bR
5cであり、
R
5aは、水素原子、アルキル基、アシル基、アルコキシアルキル基、又はアルコキシアルコキシアルキル基であり、
R
5b及びR
5cは、それぞれ独立して、水素原子、アルキル基、又はアリール基であり、
nは、0~4の整数であり、
nが2以上の整数である場合、複数のR
5は、互いに同一であっても異なっていてもよい。)
で表される環であり、
X
1は、酸素原子であり、
X
2は、二重結合であり、
R
1
は、C
1-4
アルキル基であり、
R
2
は、水素原子であり、
R
3及びR
4は、同一又は異なって、水素原子、アルキル基、アシル基、アルコキシアルキル基、又はアルコキシアルコキシアルキル基である、或いは
R
3O及びR
4Oは、隣接する2つの炭素原子と共に環を形成していてもよい。]
及び下記式(2)で表される化合物又はその塩:
【化13】
[式中、
X
3は、単結合、二重結合、又は三重結合であり、
R
6は、
下記式:
【化14】
で表される基であり、
X
4
は、ヒドロキシル基であり、
R
61
は、C
1-4
アルキル基であり、
R
62
は、水素原子であり、
R
7O及びR
8Oは、隣接する2つの炭素原子と共に、下記式:
【化15】
(式中、R
7a及びR
8aは、同一又は異なって、水素原子、アルキル基、又はアリール基であり、*は、カルボニル炭素との結合位置を示す)
で表される環を形成しており、
R
9は、水素原子、アルキル基、又はアリール基である。]
から選択される少なくとも一種を含む、医薬組成物。
【請求項9】
小胞体ストレス応答誘起剤である、請求項
8に記載の医薬組成物。
【請求項10】
プロテインジスルフィドイソメラーゼ阻害剤である、請求項
8又は
9に記載の医薬組成物。
【請求項11】
癌、骨疾患、及びリウマチから選択される少なくとも一種の予防又は治療剤である、請求項
8~
10のいずれか一項に記載の医薬組成物。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、新規イノン化合物及びその用途に関する。
【背景技術】
【0002】
真菌のカーブラリア・ベルクロサ(Curvularia verruculosa)の発酵ブロスから得られる、下記式:
【化1】
で表されるエノン化合物が、強力な抗炎症作用を有することが知られている(非特許文献1)。
【先行技術文献】
【非特許文献】
【0003】
【文献】H. Duら、Bioorg. Med. Chem. Lett. 19(2009)、6196~6199頁
【発明の概要】
【発明が解決しようとする課題】
【0004】
本発明の目的は、小胞体ストレス応答の誘起等に有用な新規イノン化合物を提供することにある。
【課題を解決するための手段】
【0005】
本発明者らは、前記課題を達成するため鋭意検討した結果、イノン骨格を有する化合物が、小胞体ストレス応答を誘起することを見出した。本発明者らは、かかる知見に基づいて更に検討を重ねて本発明を完成した。
本発明は、以下の態様を包含する。
項1.
下記式(1A)で表される化合物又はその塩:
【化2】
[式中、
A
1は、置換基を有していてもよい芳香環であり、
X
1は、酸素原子、硫黄原子、又は式:-N(R
X1)-(式中、R
X1は、水素原子又はアルキル基である)で表される基であり、
X
2は、単結合又は二重結合であり、
R
1及びR
2は、同一又は異なって、水素原子、又はアルキル基であり、
R
3及びR
4は、同一又は異なって、水素原子、アルキル基、アシル基、アルコキシアルキル基、又はアルコキシアルコキシアルキル基である、或いは
R
3O及びR
4Oは、隣接する2つの炭素原子と共に環を形成していてもよい。
但し、下記式:
【化3】
で表される化合物を除く。]
項2.
A
1が、置換基を有していてもよいC
6-10芳香族炭化水素環、又は置換基を有していてもよい5~10員芳香族複素環である、項1に記載の化合物又はその塩。
項3.
A
1が、下記式で表される環である、項1又は2に記載の化合物又はその塩:
【化4】
(式中、
R
5は、-OR
5a又は-NR
5bR
5cであり、
R
5aは、水素原子、アルキル基、アシル基、アルコキシアルキル基、又はアルコキシアルコキシアルキル基であり、
R
5b及びR
5cは、それぞれ独立して、水素原子、アルキル基、又はアリール基であり、
nは、0~4の整数であり、
nが2以上の整数である場合、複数のR
5は、互いに同一であっても異なっていてもよい。)
項4.
A
1が、下記式で表される環である、項1~3のいずれか一項に記載の化合物又はその塩:
【化5】
(式中、
R
51及びR
52は、同一又は異なって、水素原子、アルキル基、アルコキシアルキル基、又はアルコキシアルコキシアルキル基であり、
R
53は、水素原子、アルキル基、アルコキシアルキル基、又はアルコキシアルコキシアルキル基であり、
R
54及びR
55は、同一又は異なって、水素原子、アルキル基、又はアリール基である。)
項5.
X
1が、酸素原子である、項1~4のいずれか一項に記載の化合物又はその塩。
項6.
X
2が、二重結合である、項1~5のいずれか一項に記載の化合物又はその塩。
項7.
R
1がアルキル基であり、R
2が水素原子である、項1~6のいずれか一項に記載の化合物又はその塩。
項8.
R
3及びR
4が、同一又は異なって、水素原子、アルキル基、又はアルコキシアルキル基である、項1~7のいずれか一項に記載の化合物又はその塩。
項9.
項1に記載の式(1A)で表される化合物又はその塩の製造方法であって、
(1)下記式(1-5):
【化6】
(式中、A
1、X
1、R
1、R
2、R
3、及びR
4は前記と同じである)
で表される化合物を、三重結合の保護化剤と反応させる工程、
(2)前記工程(1)で得られる生成物を環化し、必要に応じて二重結合を還元する工程、及び
(3)前記工程(2)で得られる生成物から三重結合の保護基を除去する工程
を含む、方法。
項10.
下記式(2A)で表される化合物又はその塩:
【化7】
[式中、
X
3は、単結合、二重結合、又は三重結合であり、
R
6は、水素原子、置換基を有していてもよいアルキル基、又は置換基を有していてもよい芳香環基であり、
R
7及びR
8は、同一又は異なって、水素原子、アルキル基、アシル基、アルコキシアルキル基、又はアリール基である、或いは、
R
7O及びR
8Oは、隣接する2つの炭素原子と共に環を形成していてもよく、
R
9は、水素原子、アルキル基、又はアリール基である。
但し、下記式:
【化8】
で表される化合物を除く。]
項11.
R
6が、置換基としてヒドロキシル基を有していてもよいC
1-4アルキル基である、項10に記載の化合物又はその塩。
項12.
R
7O及びR
8Oが、隣接する2つの炭素原子と共に、下記式:
【化9】
(式中、R
7a及びR
8aは、同一又は異なって、水素原子、アルキル基、又はアリール基であり、*は、カルボニル炭素との結合位置を示す)
で表される環を形成している、項10又は11に記載の化合物又はその塩。
項13.
R
9が、水素原子である、項10~12のいずれか一項に記載の化合物又はその塩。
項14.
項10に記載の式(2A)で表される化合物又はその塩の製造方法であって、
塩基の存在下、下記式(2-6):
【化10】
(式中、R
10及びR
11は、同一又は異なって、アルキル基、アルコキシ基、又はアリール基であり、X
3、R
7、R
8、及びR
9は前記と同じである)
で表される化合物を、下記式(9):
【化11】
(式中、R
6は、前記と同じである)
で表される化合物と反応させる工程を含む、方法。
項15.
下記式(1)で表される化合物又はその塩:
【化12】
[式中、
A
1は、置換基を有していてもよい芳香環であり、
X
1は、酸素原子、硫黄原子、又は式:-N(R
X1)-(式中、R
X1は、水素原子又はアルキル基である)で表される基であり、
X
2は、単結合又は二重結合であり、
R
1及びR
2は、同一又は異なって、水素原子、又はアルキル基であり、
R
3及びR
4は、同一又は異なって、水素原子、アルキル基、アシル基、アルコキシアルキル基、又はアルコキシアルコキシアルキル基である、或いは
R
3O及びR
4Oは、隣接する2つの炭素原子と共に環を形成していてもよい。]及び下記式(2)で表される化合物又はその塩:
【化13】
[式中、
X
3は、単結合、二重結合、又は三重結合であり、
R
6は、水素原子、置換基を有していてもよいアルキル基、又は置換基を有していてもよい芳香環基であり、
R
7及びR
8は、同一又は異なって、水素原子、アルキル基、アシル基、アルコキシアルキル基、又はアリール基である、或いは、
R
7O及びR
8Oは、隣接する2つの炭素原子と共に環を形成していてもよく、
R
9は、水素原子、アルキル基、又はアリール基である。]
から選択される少なくとも一種を含む、医薬組成物。
項16.
小胞体ストレス応答誘起剤である、項15に記載の医薬組成物。
項17.
プロテインジスルフィドイソメラーゼ阻害剤である、項15又は16に記載の医薬組成物。
項18.
癌、骨疾患、及びリウマチから選択される少なくとも一種の予防又は治療剤である、項15~17のいずれか一項に記載の医薬組成物。
【発明の効果】
【0006】
本発明の化合物は、例えば、小胞体ストレス応答を誘起することができ、小胞体ストレスが関与する疾患の予防又は治療に有用である。また、本発明の化合物は、プロテインジスルフィドイソメラーゼ(PDI)の活性を阻害することができ、PDIが関与する疾患の予防又は治療に有用である。さらに、本発明の化合物は、癌、骨疾患、及びリウマチから選択される少なくとも一種の疾患の予防又は治療に有用である。また、本発明の化合物は、正常造血を阻害しないため、副作用が少ない。
【図面の簡単な説明】
【0007】
【
図1】
図1は、実施例2、8、及び9の小胞体ストレス応答に関するCHOPの発現量を示す図である。
【
図2】
図2は、骨髄腫モデルマウスにおける実施例2の化合物の腫瘍進展抑制を示す図である。
【
図3】
図3は、骨髄腫モデルマウスにおける実施例8の化合物の腫瘍進展抑制を示す図である。
【
図4】
図4は、実施例2の化合物の造血幹細胞への細胞障害活性への影響を示す図である。
【
図5】
図5は、実施例8の化合物の造血幹細胞への細胞障害活性への影響を示す図である。
【
図6】
図6は、実施例8の化合物の破骨細胞形成抑制を示す図である。
【
図7】
図7は、実施例2の化合物の破骨細胞形成抑制を示す図である。
【
図8】
図8は、実施例8の化合物のがん骨病変形成抑制を示す図である。
【
図9】
図9は、実施例2の化合物の抗リウマチ効果を示す図である。
【発明を実施するための形態】
【0008】
<用語の定義>
本明細書において、「Ca-b」とは、対象の炭素数がa以上b以下の整数であることを意味する。
本明細書において、「芳香環」とは、芳香族炭化水素環及び芳香族複素環を包含する概念である。
芳香族炭化水素環とは、環の構成原子が炭素原子のみからなる芳香環をいう。
芳香族炭化水素環の構成原子の数は、特に限定されるものではないが、例えば、6~20であることができる。
芳香族炭化水素環は、単環式又は縮合多環式であることができる。
単環式芳香族炭化水素環としては、例えば、ベンゼンが挙げられる。
縮合多環式芳香族炭化水素環としては、例えば、2環(例:インデン、ナフタレン)、3環(例:フルオレン、アントラセン、フェナントレン)、4環(例:ピレン)が挙げられる。
芳香族複素環とは、環の構成原子として、炭素原子、及び、酸素原子、硫黄原子、窒素原子等から選択されるヘテロ原子を含む芳香環をいう。
芳香族複素環の構成原子の数は、特に限定されるものではないが、例えば、5~20であることができる。また、芳香族複素環の構成原子のうち、ヘテロ原子の数は、特に限定されるものではないが、例えば、1~4であることができる。
芳香族複素環は、単環式又は縮合多環式であることができる。
単環式芳香族複素環としては、例えば、5員環(例:フラン、イソオキサゾール、オキサゾール、チオフェン、イソチアゾール、チアゾール、ピロール、ピラゾール、イミダゾール、トリアゾール)、6員環(例:ピリジン、ピリダジン、ピリミジン、ピラジン、トリアジン)が挙げられる。
縮合環式芳香族複素環としては、例えば、2環(例:ベンゾフラン、ベンゾチオフェン、インドール、インダゾール、ベンゾイミダゾール、プリン、キノリン、イソキノリン、シノリン、キノキサリン、フタラジン、1,8-ナフチリジン、プテジリン)、3環(例:カルバゾール、アクリジン、フェナジン、フェナントリジン、フェナントロリン、フェノキサジン、フェノチアジン)が挙げられる。
本明細書において、「芳香環基」とは、前記芳香環から1個の水素原子を除去した基をいう。芳香環基としては、例えば、フェニル基、ナフチル基などのアリール基;フラニル基、チエニル基、ピリジル基などのヘテロアリール基が挙げられる。
【0009】
本明細書において、「ハロゲン原子」としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
【0010】
本明細書において、「アルキル基」とは、直鎖状アルキル基及び分岐鎖状アルキル基を包含する概念である。
直鎖状アルキル基としては、例えば、メチル、エチル、n-プロピル、n-ブチル、n-ペンチル、s-ペンチル、n-ヘキシル、n-ヘプチル、n-オクチル、n-ノニル、n-デシル等の直鎖状C1-10アルキル基が挙げられる。
分岐鎖状アルキル基としては、例えば、イソプロピル、イソブチル、s-ブチル、t-ブチル、イソペンチル、ネオペンチル、イソヘキシル、イソヘプチル、イソオクチル、2-エチルヘキシル等の分岐鎖状C3-10アルキル基が挙げられる。
【0011】
本明細書において、「シクロアルキル基」としては、シクロプロピル、シクロペンチル、シクロヘキシル等のC3-10シクロアルキル基が挙げられる。
【0012】
本明細書において、「アリール基」とは、芳香族炭化水素環に由来する一価の基をいう。アリール基としては、例えば、フェニル、ナフチル等のC6-10アリール基が挙げられる。
【0013】
本明細書において、「アラルキル基」としては、例えば、ベンジル、フェネチル等のC6-10アリールC1-4アルキル基が挙げられる。
【0014】
本明細書において、「アルコキシ基」とは、式:RAO-(式中、RAは、アルキル基である)で表される基をいう。アルコキシ基としては、例えば、メトキシ、エトキシ、プロポキシ(n-プロポキシ、イソプロポキシ)、ブトキシ(n-ブトキシ、イソブトキシ、s-ブトキシ、t-ブトキシ)等のC1-4アルコキシ基が挙げられる。
【0015】
本明細書において、「アルコキシアルキル基」としては、例えば、式:(C1-4アルキル)-O-(C1-4アルキレン)-O-で表される基が挙げられる。当該式で表される基としては、例えば、メトキシメチル、メトキシエチル、エトキシメチル、エトキシエチル等のC1-3アルコキシC1-3アルキル基が挙げられる。
【0016】
本明細書において、「アルコキシアルコキシ基」としては、例えば、式:式:(C1-4アルキル)-O-(C1-4アルキレン)-で表される基が挙げられる。当該式で表される基としては、例えば、メトキシメトキシ、メトキシエトキシ、エトキシメトキシ、エトキシエトキシ等のC1-3アルコキシC1-3アルキル基が挙げられる。
【0017】
本明細書において、「アルコキシアルコキシアルキル基」としては、例えば、式:(C1-6アルキル)-O-(C1-4アルキレン)-O-(C1-4アルキレン)-で表される基が挙げられる。当該式で表される基としては、例えば、メトキシメトキシエチル、メトキシエトキシメチル、エトキシメトキシメチル、エトキシメトキシエチル、エトキシエトキシメチル、エトキシエトキシエチル等のC1-3アルコキシC1-3アルコキシC1-3アルキル基が挙げられる。
【0018】
本明細書において、「アルコキシアルコキシアルコキシ基」としては、例えば、式:(C1-6アルキル)-O-(C1-4アルキレン)-O-(C1-4アルキレン)-O-で表される基が挙げられる。当該式で表される基としては、例えば、メトキシメトキシエトキシ、メトキシエトキシメトキシ、エトキシメトキシメトキシ、エトキシメトキシエトキシ、エトキシエトキシメトキシ、エトキシエトキシエトキシ等のC1-3アルコキシC1-3アルコキシC1-3アルコキシ基が挙げられる。
【0019】
本明細書において、「アシル基」とは、式:-C(=O)-RB1(式中、RB1は、炭化水素基である)で表される基、及び-C(=O)-O-RB2(式中、RB2は、炭化水素基である)で表される基を包含する。RB1及びRB2で示される炭化水素基は、鎖状炭化水素基(例:アルキル)であってもよく、飽和又は不飽和環状炭化水素基(例:シクロアルキル、アリール)、これらの組合せ(例:アラルキル)であってもよい。
アシル基は、アルキルカルボニル、アリールカルボニル、及びアラルキルカルボニル基を包含する。
アルキルカルボニル基としては、例えば、アセチル、プロピオニル、ブチリル、イソブチリル、ペンタノイル、ピバロイル、バレリル、イソバレリル、オクタノイル、ノナノイル、デカノイル等の(C1-10アルキル)カルボニル基が挙げられる。
アリールカルボニル基としては、例えば、ベンゾイル、又はナフトイル(即ち、α-ナフトイル又はβ-ナフトイル)等の(C6-14アリール)カルボニル基が挙げられる。 アラルキルカルボニル基としては、例えば、ベンジルカルボニル等の(C6-14アリールC1-4アルキル)カルボニル基が挙げられる。
【0020】
本明細書において、「アルキルチオ基」とは、式:RC-S-(式中、RCは、アルキル基である)で表される基をいう。アルキルチオ基としては、例えば、メチルチオ、エチルチオ、プロピルチオ(n-プロピルチオ、イソプロピルチオ)、ブチルチオ(n-ブチルチオ、イソブチルチオ、s-ブチルチオ、t-ブチルチオ)等のC1-4アルキルチオ基が挙げられる。
【0021】
本明細書において、「モノアルキルアミノ基」とは、式:RD1-NH-(式中、RD1は、アルキル基である)で表される基をいう。モノアルキルアミノ基としては、例えば、モノメチルアミノ、モノエチルアミノ、モノプロピルアミノ(モノn-プロピルアミノ、モノイソプロピルアミノ)等のモノC1-4アルキルアミノ基が挙げられる。
【0022】
本明細書において、「ジアルキルアミノ基」とは、式:RD2RD3N-(式中、RD1及びRD3は、同一又は異なって、アルキル基である)で表される基をいう。ジアルキルアミノ基としては、例えば、ジメチルアミノ、エチルメチルアミノ、ジエチルアミノ、プロピルメチルアミノ等のジC1-4アルキルアミノ基が挙げられる。
【0023】
<化合物(1)>
本発明の化合物又はその塩は、一実施態様において、式(1)で表される化合物又はその塩である(以下、「化合物(1)」と称する):
【化14】
(式中、A
1、X
1、X
2、R
1、R
2、R
3、及びR
4は、前記と同じである。)
【0024】
A1は、好ましくは、置換基を有していてもよいC6-10芳香族炭化水素環、又は置換基を有していてもよい5~10員芳香族複素環であり、より好ましくは、置換基を有していてもよいC6-10芳香族炭化水素環、置換基を有していてもよい5~10員含窒素芳香族複素環、置換基を有していてもよい5~10員含酸素芳香族複素環、又は置換基を有していてもよい5~10員含硫黄芳香族複素環であり、さらに好ましくはC6-10芳香族炭化水素環であり、特に好ましくは置換基を有していてもよいベンゼン環である。
【0025】
前記置換基としては、例えば、ハロゲン原子、ヒドロキシル基、メルカプト基、アミノ基、アルキル基、アルコキシ基、アルコキシアルコキシ基、アルコキシアルコキシアルコキシ基、アシル基、アルキルチオ基、モノアルキルアミノ基、ジアルキルアミノ基が挙げられる。置換基の数は、特に限定されないが、例えば、0~4の整数であり、好ましくは1~4の整数であり、さらに好ましくは1~3の整数である。
【0026】
また、A
1は、下記式:
【化15】
(式中、R
5及びnは、前記と同じである。)
で表される環が好ましい。-OR
5a又は-NR
5bR
5cであり、
R
5が-OR
5aである場合、R
5aは、好ましくは、水素原子、アルキル基、アルコキシアルキル基、又はアルコキシアルコキシアルキル基であり、さらに好ましくは、水素原子、C
1-4アルキル基、C
1-4アルコキシC
1-4アルキル基、又はC
1-4アルコキシC
1-4アルコキシC
1-4アルキル基であり、特に好ましくは、水素原子、C
1-2アルキル基、C
1-2アルコキシC
1-2アルキル基、又はC
1-2アルコキシC
1-2アルコキシC
1-2アルキル基である。
R
5が-NR
5bR
5cである場合、R
5b及びR
5cは、好ましくは、水素原子、C
1-4アルキル基、又はC
6-12アリール基である。R
5b及びR
5cの組合せとしては、R
5b及びR
5cが水素原子である組合せ、R
5b及びR
5cの一方が水素原子であり、他方がアルキル基である組合せ、R
5b及びR
5cがアルキル基である組合せ、R
5b及びR
5cの一方が水素原子であり、他方がアリール基である組合せ、R
5b及びR
5cがアリール基である組合せなどが好ましい。
nは、好ましくは1~4の整数であり、さらに好ましくは1~3の整数である。
nが2以上の整数である場合、複数のR
5は、互いに同一であっても異なっていてもよく、例えば、複数のR
5は、すべて-OR
5aであってもよく、-OR
5a及び-NR
5bR
5cの組合せであってもよい。
【0027】
さらに、A
1は、下記式:
【化16】
(式中、R
51、R
52、R
53、R
54、及びR
55は、前記と同じである。)
で表される環が好ましい。
R
51及びR
52の好適な組合せとしては、R
51が水素原子であり、且つ、R
52がアルキル基である組合せ、R
51がアルキル基、アルコキシアルキル基、又はアルコキシアルコキシアルキル基であり、且つ、R
52がアルキル基である組合せが挙げられる。
R
53、R
54、及びR
55の好適な組合せとしては、R
51が水素原子であり、R
54が水素原子であり、且つ、R
55がアルキル基である組合せが挙げられる。
【0028】
X1は、好ましくは、酸素原子、硫黄原子、又は式:-N(RX11)-(式中、RX11は、水素原子又はC1-4アルキル基)であり、さらに好ましくは酸素原子又は硫黄原子であり、特に好ましくは酸素原子である。
【0029】
X
2は、前記のとおり、単結合又は二重結合である。具体的には、以下のとおりである。
【化17】
(式中、*は、A
1との結合位置を示す)
X
2が二重結合である場合、化合物(1)は、シス体又はトランス体であることができる。X
2は、好ましくは、二重結合である。
【0030】
R1は、好ましくはアルキル基であり、さらに好ましくはC1-4アルキル基であり、特に好ましくはC1-2アルキル基である。
なお、R1がアルキル基である場合、R1が結合する炭素原子は、不斉炭素原子である。この不斉炭素原子の立体配置は、R配置又はS配置のいずれであってもよいが、S配置であるのが好ましい。
【0031】
R2は、好ましくは水素原子又はC1-4アルキル基であり、さらに好ましくは水素原子又はC1-2アルキル基であり、特に好ましくは水素原子である。
なお、R2がアルキル基である場合、R2が結合する炭素原子は、不斉炭素原子である。この不斉炭素原子の立体配置は、R配置又はS配置のいずれであってもよいが、R配置であるのが好ましい。
【0032】
R3及びR4は、それぞれ、好ましくは、水素原子、アルキル基、アルコキシアルキル基、又はアルコキシアルコキシアルキル基であり、さらに好ましくは、水素原子、C1-4アルキル基、C1-4アルコキシC1-4アルキル基、又はC1-4アルコキシC1-4アルコキシC1-4アルキル基であり、特に好ましくは、水素原子、C1-2アルキル基、C1-2アルコキシC1-2アルキル基、又はC1-2アルコキシC1-2アルコキシC1-2アルキル基である。
R3及びR4の好適な組合せとしては、R3及びR4が共に水素原子である組合せ、R3及びR4が共にアルキル基である組合せ、R3及びR4が共にアルコキシアルキル基である組合せが挙げられる。
【0033】
R
3O及びR
4Oは、隣接する2つの炭素原子と共に環を形成していてもよく、当該環は、下記式:
【化18】
(式中、R
3a及びR
4aは、同一又は異なって、水素原子、アルキル基、又はアリール基である。)
で表される環であってもよい。
R
3a及びR
4aは、それぞれ、好ましくは、水素原子、C
1-4アルキル基、又はC
6-10アリール基である。
R
3a及びR
4aの好適な組合せとしては、R
3a及びR
4aが共にアルキル基である組合せ、R
3aが水素原子であり、且つ、R
4aがアリール基である組合せが挙げられる。
【0034】
なお、R3O及びR4Oが結合する炭素原子は、不斉炭素原子である。R3O及びR4Oが結合する不斉炭素原子の立体配置は、それぞれ、R配置又はS配置のいずれであってもよいが、共にS配置であることが好ましい。
【0035】
R
1、R
2、R
3O、及びR
4Oを含む構造部分は、好ましくは、下記式:
【化19】
(式中、R
11は、アルキル基であり、R
31及びR
41は、同一又は異なって、水素原子、アルキル基、又はアルコキシアルキル基である)
で表される構造部分である。
R
11は、好ましくはC
1-4アルキル基であり、さらに好ましくはC
1-2アルキル基である。
R
31及びR
41は、それぞれ、好ましくは、水素原子、C
1-4アルキル基、又はC
1-4アルコキシC
1-4アルキル基であり、さらに好ましくは、水素原子、C
1-2アルキル基、又はC
1-2アルコキシC
1-2アルキル基である。
【0036】
化合物(1)は、少なくとも2つの不斉炭素原子(R3O及びR4Oが結合する炭素原子)を有しており、エナンチオマー及びジアステレオマーのいずれも含む。化合物(1)は、2種類のエナンチオマーを含む混合物であってもよい。当該混合物は、一方のエナンチオマーが過剰量含まれる混合物であってもよく、2種類のエナンチオマーの当量混合物(ラセミ体)であってもよい。
【0037】
化合物(1)は、好ましくは、下記式(1A)で表される化合物又はその塩である。
【化20】
(式中、A
1、X
1、X
2、R
1、R
2、R
3、及びR
4は前記と同じである。
但し、下記式:
【化21】
で表される化合物を除く。)
【0038】
化合物(1)は、好ましくは、下記群から選択される化合物又はその塩である:
【化22】
なお、上記において、ベンゼン環に結合するメトキシ基が、モノメチルアミノ基などのモノアルキルアミノ基に変更された化合物又はその塩も好ましい。
【0039】
化合物(1)が塩の形態である場合、当該塩は、好ましくは薬学上許容される塩である。
当該塩は、無機塩又は有機塩であることができる。
当該塩としては、例えば、無機酸塩(例:フッ化水素酸塩、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩、硝酸塩、過塩素酸塩、硫酸塩、リン酸塩)、有機酸塩(例:メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、エタンスルホン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩、酢酸塩、リンゴ酸塩、フマル酸塩、コハク酸塩、クエン酸塩、酒石酸塩、シュウ酸塩、マレイン酸塩)、アミノ酸塩(例:グリシン塩、リジン塩、アルギニン塩、オルニチン塩、グルタミン酸塩、アスパラギン酸塩)が挙げられる。
【0040】
<化合物(1)の製造方法>
化合物は、例えば、以下の反応スキームに従って製造することができる。
【化23】
[式中、
Z
1は、脱離基であり、
Z
2は、水素原子、アルキル基、又はアシル基である、或いは、式:Z
2OC(=O)-で表される基及びそのオルト位に置換し得るヒドロキシル基は、隣接するA
1の構成原子と共に環を形成していてもよく、
Z
3は、シリル基であり、
Mは、アルカリ金属であり、
Lは、脱離基であり、
A
1、X
1、X
2、及びR
1~R
4は、前記と同じである。]
【0041】
<工程(A)>
工程(A)は、式(1-1)で表される化合物を、式(3)で表される化合物と反応させて、式(1-2)で表される化合物を得る工程である。
式(1-1)において、Z
1で示される脱離基としては、例えば、ハロゲン原子(例:塩素原子、臭素原子、ヨウ素原子)、アルキルスルホニルオキシ(例:メシルオキシ等のC
1-4アルキルスルホニルオキシ)、ハロアルキルスルホニルオキシ(例:トリフルオロメチルスルホニルオキシ等のパーフルオロC
1-4アルキルスルホニルオキシ)、アリールスルホニルオキシ(例:トシルオキシ等のC
6-10アリールスルホニルオキシ)が挙げられる。
Z
2は、好ましくは、水素原子、C
1-4アルキル基、又はC
1-4アルキルカルボニル基である。
式:Z
2OC(=O)-で表される基及びそのオルト位に置換し得るヒドロキシル基が、隣接するA
1の構成原子と共に環を形成する場合、式(1-1)で表される化合物は、好ましくは、下記式(1-1-1)で表される化合物である:
【化24】
(式中、Z
21及びZ
22は、同一又は異なって、水素原子、アルキル基、又はアリール基であり、A
1及びZ
1は、前記と同じである。)
Z
21及びZ
22は、それぞれ、好ましくは、水素原子、C
1-4アルキル基、又はC
6-10アリール基である。
Z
21及びZ
22の好適な組合せとしては、Z
21及びZ
22が共に水素原子である組合せ、Z
21及びZ
22が共にアルキル基である組合せ、Z
21が水素原子であり、且つ、Z
22がアリール基である組合せが挙げられる。
式(3)において、Mで示されるアルカリ金属としては、例えば、リチウム、ナトリウム、カリウムが挙げられる。
式(3)で表される化合物の使用量は、式(1-1)で表される化合物1モルに対して、通常、1~5モル、好ましくは1.5~3.0モル、さらに好ましくは1.5~2.0モルである。
工程(A)の反応は、塩基の存在下で行うことが好ましい。
当該塩基としては、例えば、トリアルキルアミン(例:トリエチルアミン等のトリC
1-4アルキルアミン)、炭酸塩(例:Na
2CO
3、K
2CO
3等のアルカリ金属炭酸塩)が挙げられる。これらの塩基は単独で又は二種以上組み合わせて使用することができる。これらのうち、トリアルキルアミンが好ましい。
当該塩基の使用量は、式(1-1)で表される化合物1モルに対して、通常、1~5モル、好ましくは1.5~3.0モル、さらに好ましくは1.5~2.0モルである。
工程(A)の反応は、触媒の存在下で行うことが好ましい。
当該触媒としては、例えば、パラジウム触媒[例:テトラキス(トリフェニルホスフィン)パラジウム(0)、トリス(ジベンジリデンアセトン)ジパラジウム(0)、パラジウム炭素、ジクロロ[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)、トランス-ジクロロビス(トリシクロヘキシルホスフィン)パラジウム(II)、ジクロロビス(トリ-o-トリルホスフィン)パラジウム(II)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)、酢酸パラジウム(II)]、ニッケル触媒[例:ジクロロ[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ニッケル(II)、ジクロロビス(トリフェニルホスフィン)ニッケル(II)]、ルテニウム触媒が挙げられる。これらの触媒は単独で又は二種以上組み合わせて使用することができる。これらのうち、パラジウム触媒が好ましい。
触媒の使用量は、式(1-1)で表される化合物1モルに対して、通常、0.1~1.0モル、好ましくは0.1~0.5モル、さらに好ましくは0.1~0.2モルである。 工程(A)の反応は、溶媒の存在下で行うことが好ましい。
溶媒としては、例えば、水、アルコール系溶媒(例:メタノール、エタノール)、エーテル系溶媒(例:ジエチルエーテル等の鎖状エーテル、テトラヒドロフラン、ジオキサン等の環状エーテル)が挙げられる。これらの溶媒は単独で又は二種以上組み合わせて使用することができる。これらのうち、アルコール系溶媒が好ましい。
工程(A)の反応において、反応温度及び反応時間は、反応が進行する限り特に制限されるものではない。反応温度は、例えば、20~200℃、好ましくは30~150℃である。反応時間は、例えば、12~24時間、好ましくは12~14時間である。
【0042】
<工程(B)>
工程(B)は、式(1-2)で表される化合物を、式(4)で表される化合物と反応させて、式(1-3)で表される化合物を得る工程である。
式(4)に
おいて、Z3で示されるシリル基としては、特に制限されず、例えば、トリアルキルシリル(例:トリメチルシリル、トリエチルシリル、トリイソプロピルシリル、t-ブチルジメチルシリル等のトリC1-4アルキルシリル)、アルキルジアリールシリル(例:t-ブチルジフェニルシリル等のC1-4アルキルジC6-10アリールシリル)が挙げられる。
式(4)で表される化合物の使用量は、式(1-2)で表される化合物1モルに対して、通常、1.0~1.5モル、好ましくは1.0~1.2モル、さらに好ましくは1.0~1.1モルである。
工程(B)の反応は、塩基の存在下で行うことが好ましい。
塩基としては、アルカリ金属アミド、例えば、リチウムジイソプロピルアミド(LDA)、リチウムヘキサメチルジシラジド(LHMDS)、ナトリウムヘキサメチルジシラジド(NaHMDS)、カリウムヘキサメチルジシラジド(KHMDS)等が挙げられる。これらの塩基は単独で又は二種以上組み合わせて使用することができる。
塩基の使用量は、式(1-2)で表される化合物1モルに対して、通常、1~3モル、好ましくは1.5~2.5モル、さらに好ましくは2.0~2.5モルである。
工程(B)の反応は、溶媒の存在下で行うことが好ましい。
溶媒としては、例えば、エーテル系溶媒(例:ジエチルエーテル等の鎖状エーテル、テトラヒドロフラン、ジオキサン等の環状エーテル)が挙げられる。これらの溶媒は単独で又は二種以上組み合わせて使用することができる。
工程(B)の反応において、反応温度及び反応時間は、反応が進行する限り特に制限されるものではない。反応温度は、例えば、-10℃~10℃、好ましくは-5℃~5℃である。反応時間は、例えば、0.2~2.0時間、好ましくは0.5~1.0時間である。
【0043】
<工程(C)>
工程(C)は、式(1-3)で表される化合物からシリル基Z3を除去し、式(1-4)で表される化合物を得る工程である。
シリル基Z3の除去は、慣用の方法により行うことができる。例えば、式(1-3)で表される化合物をフッ素化合物と反応させる方法が挙げられる。
フッ素化合物としては、例えば、フッ化水素のアミン錯体、金属フッ化物(例:フッ化カリウム)、フッ化アンモニウム、テトラブチルアンモニウムフロリド(TBAF)が挙げられる。これらのフッ素化合物は単独で又は二種以上組み合わせて使用することができる。これらのうち、TBAFが好ましい。
工程(C)の反応は、溶媒の存在下で行うことが好ましい。
溶媒としては、例えば、カルボン酸系溶媒(例:酢酸)、エーテル系溶媒(例:ジエチルエーテル等の鎖状エーテル、テトラヒドロフラン、ジオキサン等の環状エーテル)が挙げられる。これらの溶媒は単独で又は二種以上組み合わせて使用することができる。これらのうち、カルボン酸系溶媒が好ましい。
工程(C)の反応において、反応温度及び反応時間は、反応が進行する限り特に制限されるものではない。反応温度は、例えば-5℃~40℃、好ましくは0~30℃である。反応時間は、例えば、6~24時間、好ましくは12~15時間である。
【0044】
<工程(D)>
工程(D)は、式(1-4)で表される化合物を、式(5)で表される化合物と反応させて、式(1-5)で表される化合物を得る工程である。
式(5)において、Lで示される脱離基としては、例えば、ハロゲン原子(例:塩素原子、臭素原子、ヨウ素原子)、アルキルスルホニルオキシ(例:メシルオキシ等のC1-4アルキルスルホニルオキシ)、ハロアルキルスルホニルオキシ(例:トリフルオロメチルスルホニルオキシ等のパーフルオロC1-4アルキルスルホニルオキシ)、アリールスルホニルオキシ(例:トシルオキシ等のC6-10アリールスルホニルオキシ)、式:N(RL1)(RL2)-(式中、RL1及びRL2は、同一又は異なって、アルキル基又はアルコキシ基である)で表される基が挙げられる。
これらのうち、式:N(RL1)(RL2)-で表される基が好ましい。RL1及びRL2は、それぞれ、好ましくはC1-4アルキル基又はC1-4アルコキシ基である。RL1及びRL2の好適な組合せとしては、RL1がアルキル基であり、且つ、RL2がアルコキシ基である組合せが挙げられる。
式(5)で表される化合物の使用量は、式(1-4)で表される化合物1モルに対して、通常、1.0~1.5モル、好ましくは1.0~1.2モル、さらに好ましくは1.0~1.1モルである。
工程(D)の反応は、塩基の存在下で行うことが好ましい。
塩基としては、例えば、アルキルアルカリ金属塩(例:ブチルリチウム)、アルカリ金属アミド(例:LDA、LHMDS、NaHMDS、KHMDS)が挙げられる。これらの塩基は単独で又は二種以上組み合わせて使用することができる。これらの塩基のうち、アルキルアルカリ金属塩が好ましい。
塩基の使用量は、式(1-3)で表される化合物1モルに対して、通常、1.0~1.5モル、好ましくは1.0~1.2モル、さらに好ましくは1.0~1.1モルである。 工程(D)の反応は、溶媒の存在下で行うことが好ましい。
溶媒としては、例えば、エーテル系溶媒(例:ジエチルエーテル等の鎖状エーテル、テトラヒドロフラン、ジオキサン等の環状エーテル)が挙げられる。これらの溶媒は単独で又は二種以上組み合わせて使用することができる。
工程(D)の反応において、反応温度及び反応時間は、反応が進行する限り特に制限されるものではない。反応温度は、例えば、-10℃~10℃、好ましくは-5℃~5℃である。反応時間は、例えば、0.2~1.0時間、好ましくは0.3~0.5時間である。
【0045】
<工程(E)>
工程(E)は、式(1-5)で表される化合物を三重結合の保護化剤と反応させて、式(1-6)で表される化合物を得る工程である。
三重結合の保護化剤としては、例えば、Co2CO8が挙げられる。
三重結合の保護化剤の使用量は、式(1-5)で表される化合物1モルに対して、通常、2~10モル、好ましくは3~6モル、さらに好ましくは4~5モルである。
工程(E)の反応は、溶媒の存在下で行うことが好ましい。
溶媒としては、例えば、ハロゲン系溶媒(例:ジクロロメタン)が挙げられる。これらの溶媒は単独で又は二種以上組み合わせて使用することができる。
工程(E)の反応において、反応温度及び反応時間は、反応が進行する限り特に制限されるものではない。反応温度は、例えば、-10℃~10℃、好ましくは-5℃~5℃である。反応時間は、例えば、6~24時間、好ましくは12~15時間である。
【0046】
<工程(F)>
工程(F)は、式(1-6)で表される化合物を環化し、必要により水素添加することにより、式(1-7)で表される化合物を得る工程である。
環化は、慣用の方法により行うことができる。例えば、式(1-6)で表される化合物を、触媒の存在下、メタセシス反応により環化することができる。
触媒としては、例えば、下記式で表される触媒(第2世代ピアース-グラブス触媒)等が挙げられる。
【化25】
触媒の使用量は、式(1-6)で表される化合物1モルに対して、通常、0.1~1.0モル、好ましくは0.2~1.0モル、さらに好ましくは0.4~1.0モルである。 工程(F)の反応は、溶媒の存在下で行うことが好ましい。
溶媒としては、例えば、ハロゲン系溶媒(例:ジクロロメタン)が挙げられる。これらの溶媒は単独で又は二種以上組み合わせて使用することができる。
工程(F)の反応において、反応温度及び反応時間は、反応が進行する限り特に制限されるものではない。反応温度は、例えば、-10℃~10℃、好ましくは-5℃~5℃である。反応時間は、例えば、96~144時間、好ましくは96~120時間である。
【0047】
<工程(G)>
工程(G)は、式(1-7)で表される化合物から三重結合の保護基を除去することにより、式(1)で表される化合物を得る工程である。
脱保護は、慣用の方法により行うことができる。例えば、式(1-7)で表される化合物を脱保護剤[例:ヘキサニトラトセリウム(IV)酸アンモニウム(CAN)、2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン(DDQ)、N-メチルモルホリンN-オキシド、これらの組合せ]と反応させることにより、三重結合の保護基を除去することができる。
脱保護剤の使用量は、式(1-7)で表される化合物1モルに対して、通常、4~10モル、好ましくは4~8モル、さらに好ましくは4~6モルである。
工程(G)の反応は、溶媒の存在下で行うことが好ましい。
溶媒としては、例えば、ハロゲン系溶媒(例:ジクロロメタン)、エーテル系溶媒(例:ジエチルエーテル等の鎖状エーテル、テトラヒドロフラン、ジオキサン等の環状エーテル)、ケトン系溶媒(例:アセトン、メチルエチルケトン)が挙げられる。これらの溶媒は単独で又は二種以上組み合わせて使用することができる。これらのうち、ケトン系溶媒が好ましい。
工程(G)の反応において、反応温度及び反応時間は、反応が進行する限り特に制限されるものではない。反応温度は、例えば、-10℃~10℃、好ましくは-5℃~5℃である。反応時間は、例えば、1~8時間、好ましくは1~2時間である。
【0048】
化合物(1)の製造方法は、必要に応じて中間性生物及び/又は最終生成物を精製する工程を含んでいてもよい。精製は、慣用の方法、例えば、濾過、クロマトグラフィーにより行うことができる。
また、反応の前に適当な保護基を導入し、反応の後に保護基を除去してもよい。保護及び脱保護は、慣用の方法により行うことができる。
【0049】
化合物(1)の製造方法は、必要に応じて異性体を分離する工程を含んでいてもよい。異性体の分離は、慣用の方法により行うことができる。
【0050】
<化合物(2)>
本発明の化合物又はその塩は、他の実施態様において、式(2)で表される化合物又はその塩である(以下、「化合物(2)」と称する):
【化26】
(式中、X
3及びR
6~R
9は、前記と同じである。)
【0051】
X
3は、前記のとおり、単結合、二重結合、又は三重結合である。具体的には、以下のとおりである。
【化27】
(式中、*は、R
9との結合位置を示す)
X
3が二重結合であり、且つ、R
9がアルキル基又はアリール基である場合、化合物(2)は、シス体又はトランス体であることができる。
【0052】
R
6は、好ましくは水素原子、置換基を有していてもよいアルキル基、又は置換基を有していてもよいヘテロアリール基(例:フラニル基、チエニル基、ピリジル基)であり、より好ましくは置換基を有していてもよいアルキル基であり、さらに好ましくは置換基を有していてもよいC
1-6アルキル基であり、特に好ましくは置換基を有していてもよいC
1-4アルキル基である。
前記置換基としては、例えば、ヒドロキシル基、メルカプト基、アミノ基、アルコキシ基、アルコキシアルコキシ基、アルコキシアルコキシアルコキシ基が挙げられる。これらのうち、ヒドロキシル基、メルカプト基、又はアミノ基が好ましい。
前記置換基の数は、好ましくは1~3の整数であり、さらに好ましくは1又は2である。
R
6は、好ましくは、下記式:
【化28】
(式中、X
4は、ヒドロキシル基、メルカプト基、又はアミノ基であり、R
61及びR
62は、同一又は異なって、水素原子又はアルキル基である)
で表される基である。
X
4は、好ましくはヒドロキシル基である。
R
61は、好ましくはアルキル基であり、さらに好ましくはC
1-4アルキル基であり、特に好ましくはC
1-2アルキル基である。
なお、R
61がアルキル基である場合、R
61が結合する炭素原子は、不斉炭素原子である。この不斉炭素原子の立体配置は、R配置又はS配置のいずれであってもよいが、S配置であるのが好ましい。
【0053】
R62は、好ましくは水素原子又はC1-4アルキル基であり、さらに好ましくは水素原子又はC1-2アルキル基であり、特に好ましくは水素原子である。
なお、R62がアルキル基である場合、R62が結合する炭素原子は、不斉炭素原子である。この不斉炭素原子の立体配置は、R配置又はS配置のいずれであってもよいが、R配置であるのが好ましい。
【0054】
R7及びR8は、それぞれ、好ましくは、水素原子、アルキル基、アルコキシアルキル基、又はアリール基であり、より好ましくは、水素原子、アルキル基、又はアルコキシアルキル基であり、さらに好ましくは、水素原子、C1-4アルキル基、又はC1-4アルコキシC1-4アルキル基であり、特に好ましくは、水素原子、C1-2アルキル基、又はC1-2アルコキシC1-2アルキル基である。
【0055】
R
7O及びR
8Oは、隣接する2つの炭素原子と共に環を形成しているのが好ましく、当該環は、下記式:
【化29】
(式中、R
7a及びR
8aは、前記と同じであり、*は、カルボニル炭素との結合位置を示す)
で表される環が好ましい。
R
7a及びR
8aは、それぞれ、好ましくは、水素原子、C
1-4アルキル基、又はC
6-10アリール基である。
R
7a及びR
8aの好適な組合せとしては、R
7a及びR
8aが共に水素原子である組合せ、R
7a及びR
8aが共にアルキル基である組合せ、R
7aが水素原子であり、且つ、R
8aがアリール基である組合せが挙げられる。
なお、R
7O及びR
8Oが結合する炭素原子は、不斉炭素原子である。R
7O及びR
8Oが結合する不斉炭素原子の立体配置は、それぞれ、R配置又はS配置のいずれであってもよいが、共にS配置であることが好ましい。
【0056】
R9は、好ましくは水素原子又はアルキル基であり、さらに好ましくは水素原子又はC1-4アルキル基であり、特に好ましくは水素原子又はC1-2アルキル基であり、最も好ましくは水素原子である。
【0057】
化合物(2)は、少なくとも2つの不斉炭素原子(R7O及びR8Oが結合する炭素原子)を有しており、エナンチオマー及びジアステレオマーのいずれも含む。化合物(2)は、2種類のエナンチオマーを含む混合物であってもよい。当該混合物は、一方のエナンチオマーが過剰量含まれる混合物であってもよく、2種類のエナンチオマーの当量混合物(ラセミ体)であってもよい。
【0058】
化合物(2)は、好適な一実施態様において、下記式(2A)で表される化合物又はその塩である:
【化30】
(式中、X
3、R
6、R
7、R
8、及びR
9は、前記と同じである。但し、下記式:
【化31】
で表される化合物を除く。)
【0059】
化合物(2)は、好適な別の実施態様において、下記群から選択される化合物又はその塩である:
【化32】
【0060】
化合物(2)が塩の形態である場合、当該塩は、好ましくは薬学上許容される塩である。
当該塩は、無機塩又は有機塩であることができる。
当該塩としては、例えば、無機酸塩(例:フッ化水素酸塩、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩、硝酸塩、過塩素酸塩、硫酸塩、リン酸塩)、有機酸塩(例:メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、エタンスルホン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩、酢酸塩、リンゴ酸塩、フマル酸塩、コハク酸塩、クエン酸塩、酒石酸塩、シュウ酸塩、マレイン酸塩)、アミノ酸塩(例:グリシン塩、リジン塩、アルギニン塩、オルニチン塩、グルタミン酸塩、アスパラギン酸塩)が挙げられる。
【0061】
<化合物(2)の製造方法>
式(2)のうち、R
7及びR
8が、同一又は異なって、アルキル基、アシル基、アルコキシアルキル基、又はアリール基(ヒドロキシル基の保護基に相当する)である化合物又はその塩、或いはR
7O及びR
8Oが、隣接する2つの炭素原子と共に環(ヒドロキシル基の保護基に相当する)を形成する化合物又はその塩は、例えば、以下の反応スキームに従って製造することができる。
【化33】
[式中、
Q
1~Q
3は、同一又は異なって、アルキル基又はアリール基であり、
Q
4は、ハロゲン化物イオンであり、
Q
5は、トリアルキルシリル基又はアルキルジアリールシリル基であり、
R
10及びR
11は、同一又は異なって、アルキル基、アルコキシ基、又はアリール基であり、
R
6~R
9は、前記と同じである。]
【0062】
<工程(a)>
工程(a)は、式(2-1)で表される化合物を、式(6)で表される化合物と反応させて、式(2-2)で表される化合物を得る工程である。
式(6)において、Q1~Q3は、それぞれ、好ましくはアリール基であり、さらに好ましくはC6-10アリール基である。
Q4は、好ましくは臭化物イオン又は塩化物イオンである。
式(6)で表される化合物としては、例えば、メチルトリフェニルホスホニウムブロミド、エチルトリフェニルホスホニウムブロミド、プロピルトリフェニルホスホニウムブロミド、ブチルトリフェニルホスホニウムブロミド、ペンチルトリフェニルホスホニウムブロミド、ヘキシルトリフェニルホスホニウムブロミド、ヘプチルトリフェニルホスホニウムブロミド、ベンジルトリフェニルホスホニウムブロミド、(1-ナフチルメチル)トリフェニルホスホニウムブロミド、これらに相応するクロリドが挙げられる。これらの化合物は単独で又は二種以上組み合わせて使用することができる。
式(6)で表される化合物の使用量は、式(2-1)で表される化合物1モルに対して、通常、1~5モル、好ましくは2~4モル、さらに好ましくは3~4モルである。
工程(a)の反応は、塩基の存在下で行うことが好ましい。
塩基としては、例えば、アルキルアルカリ金属(例:n-ブチルリチウム)、アルカリ金属アミド(例:LDA、LHMDS、NaHMDS、KHMDS)が挙げられる。
塩基の使用量は、式(2-1)で表される化合物1モルに対して、通常、1~5モル、好ましくは2~4モル、さらに好ましくは3~4モルである。
工程(a)の反応は、溶媒の存在下で行うことが好ましい。
溶媒としては、例えば、エーテル系溶媒(例:ジエチルエーテル等の鎖状エーテル、テトラヒドロフラン、ジオキサン等の環状エーテル)が挙げられる。これらの溶媒は単独で又は二種以上組み合わせて使用することができる。
工程(a)の反応において、反応温度及び反応時間は、反応が進行する限り特に制限されるものではない。反応温度は、例えば、-100~10℃、好ましくは-80℃~0℃である。反応時間は、例えば、1~24時間、好ましくは4~12時間である。
【0063】
<工程(b)>
工程(b)は、式(2-2)で表される化合物に水素添加し、式(2-3)で表される化合物を得る工程である。
水素の使用量は、式(2-2)で表される化合物1モルに対して、通常、1~50モル、好ましくは2~40モル、さらに好ましくは10~20モルである。
工程(b)の反応は、触媒の存在下で行うことが好ましい。
触媒としては、水素添加で慣用的に用いられる触媒が挙げられ、例えば、パラジウム炭素、白金炭素が挙げられる。
触媒の使用量は、式(2-2)で表される化合物1モルに対して、通常、0.01~1モル、好ましくは0.1~0.5モル、さらに好ましくは0.2~0.3モルである。 工程(b)の反応は、溶媒の存在下で行うことが好ましい。
溶媒としては、例えば、アルコール系溶媒(例:メタノール、エタノール)、エーテル系溶媒(例:ジエチルエーテル等の鎖状エーテル、テトラヒドロフラン、ジオキサン等の環状エーテル)が挙げられる。これらの溶媒は単独で又は二種以上組み合わせて使用することができる。これらのうち、アルコール系溶媒が好ましい。
工程(b)の反応において、反応温度及び反応時間は、反応が進行する限り特に制限されるものではない。反応温度は、例えば、0~50℃、好ましくは5℃~35℃である。反応時間は、例えば、1~24時間、好ましくは10~12時間である。
なお、工程(b)を省略し、工程(e)の前に、式(2-5)のうち、X3が二重結合である化合物を、工程(b)と同様に水素添加し、式(2-5)のうち、X3が単結合である化合物を得てもよい。
【0064】
<工程(c)>
工程(c)は、式(2-1)で表される化合物を、式(7)で表される化合物と反応させて、式(2-4)で表される化合物を得る工程である。
式(7)において、Q5で示されるトリアルキルシリル基としては、例えば、トリメチルシリル、トリエチルシリル、トリイソプロピルシリル、t-ブチルジメチルシリル等のトリC1-4アルキルシリルが挙げられる。Q5で示されるアルキルジアリールシリル基としては、例えば、t-ブチルジフェニルシリル等のC1-4アルキルジC6-10アリールシリルが挙げられる。
式(7)で表される化合物の使用量は、式(2-1)で表される化合物1モルに対して、通常、1~5モル、好ましくは2~4モル、さらに好ましくは3~4モルである。
工程(c)の反応は、塩基の存在下で行うことが好ましい。
塩基としては、例えば、アルカリ金属アミド(例:LDA、リチウム 2,2,6,6-テトラメチルピペラジン、LHMDS、NaHMDS、KHMDS)が挙げられる。 塩基の使用量は、式(2-1)で表される化合物1モルに対して、通常、0.8~1.2モル、好ましくは0.9~1.1モル、さらに好ましくは1.0~1.1モルである。 工程(c)の反応は、溶媒の存在下で行うことが好ましい。
溶媒としては、例えば、エーテル系溶媒(例:ジエチルエーテル等の鎖状エーテル、テトラヒドロフラン、ジオキサン等の環状エーテル)が挙げられる。これらの溶媒は単独で又は二種以上組み合わせて使用することができる。
工程(c)の反応において、反応温度及び反応時間は、反応が進行する限り特に制限されるものではない。反応温度は、例えば、-100~10℃、好ましくは-80℃~0℃である。反応時間は、例えば、1~24時間、好ましくは10~12時間である。
【0065】
<工程(d)>
工程(d)は、式(2-2)、(2-3)、又は(2-4)で表される化合物を酸化剤と反応させて、式(2-5)で表される化合物を得る工程である。
酸化剤としては、ニトロキシラジカル系酸化剤、例えば、2,2,6,6-テトラメチルピペリジン-1-オキシル(TEMPO)、2-アザアダマンタン-N-オキシル(AZADO)等が挙げられる。
酸化剤の使用量は、式(2-2)、(2-3)、又は(2-4)で表される化合物1モルに対して、通常、0.1~1.0モル、好ましくは0.1~0.5モル、さらに好ましくは0.2~0.3モルである。
酸化剤は、再酸化剤と共に使用することができる。
再酸化剤としては、例えば、次亜塩素酸ナトリウム、ヨードベンゼンジアセタートが挙げられる。これらの再酸化剤は単独で又は二種以上組み合わせて使用することができる。 再酸化剤の使用量は、式(2-2)、(2-3)、又は(2-4)で表される化合物1モルに対して、通常、1~3モル、好ましくは1.0~2.5モル、さらに好ましくは2.0~2.5モルである。
工程(d)の反応は、塩基の存在下で行ってもよい。
工程(d)の反応は、溶媒の存在下で行うことが好ましい。
溶媒としては、例えば、水、ニトリル系溶媒(例:アセトニトリル)、ハロゲン系溶媒(例:ジクロロメタン)が挙げられる。これらの溶媒は単独で又は二種以上組み合わせて使用することができる。
工程(d)の反応において、反応温度及び反応時間は、反応が進行する限り特に制限されるものではない。反応温度は、例えば、-20~15℃、好ましくは-10℃~10℃である。反応時間は、例えば、1~5時間、好ましくは3~4時間である。
【0066】
<工程(e)>
工程(e)は、式(2-5)で表される化合物を、式(8)で表される化合物と反応させて、式(2-6)で表される化合物を得る工程である。
式(8)において、R10及びR11は、好ましくはC1-4アルキル基、C1-4アルコキシ基、又はC6-12アリール基であり、好ましくはC1-4アルキル基又はC1-4アルコキシ基であり、さらに好ましくはC1-2アルキル基又はC1-2アルコキシ基である。
R10及びR11の好適な組合せとしては、R10がアルキル基であり、且つ、R11がアルコキシ基である組合せが挙げられる。
式(8)で表される化合物の使用量は、式(2-5)で表される化合物1モルに対して、通常、1~2モル、好ましくは1.1~1.5モル、さらに好ましくは1.2~1.4モルである。
工程(e)の反応は、縮合剤の存在下で行うことが好ましい。
縮合剤としては、例えば、N,N’-ジシクロヘキシルカルボジイミド(DCC)、1-エチル-3-(ジメチルアミノプロピル)カルボジイミド(EDC)、1-[ビス(ジメチルアミノ)メチレン]-1H-1,2,3-トリアゾロ[4,5-b]ピリジニウム3-オキシドヘキサフルオロホスファート(HATU)、1-[ビス(ジメチルアミノ)メチレン]-1H-ベンゾトリアゾリウム3-オキシドヘキサフルオロホスファート(HBTU)、1-[ビス(ジメチルアミノ)メチレン]-1H-1,2,3-トリアゾロ[4,5-b]ピリジニウム3-オキシドテトラフルオロボラート(TATU)、1-[ビス(ジメチルアミノ)メチレン]-1H-ベンゾトリアゾリウム3-オキシドテトラフルオロボラート(TBTU)、ジフェニルホスホリルアジド(DPPA)が挙げられる。これらの縮合剤は、単独で又は二種以上組み合わせて使用することができる。
縮合剤の使用量は、式(2-5)で表される化合物1モルに対して、通常、1~3モル、好ましくは1.2~2.5モル、さらに好ましくは1.2~1.5モルである。
工程(e)の反応は、塩基の存在下で行うことが好ましい。
塩基としては、トリアルキルアミン(例:トリエチルアミン等のトリC1-4アルキルアミン)、N-メチルモルホリン、N,N-ジメチルアミノピリジンが挙げられる。これらの塩基は、単独で又は二種以上組み合わせて使用することができる。
塩基の使用量は、式(2-5)で表される化合物1モルに対して、通常、1~5モル、好ましくは1.1~2.0モル、さらに好ましくは1.2~1.5モルである。
工程(e)の反応は、溶媒の存在下で行うことが好ましい。
溶媒としては、例えば、ハロゲン系溶媒(例:ジクロロメタン)、エーテル系溶媒(例:ジエチルエーテル等の鎖状エーテル、テトラヒドロフラン、ジオキサン等の環状エーテル)が挙げられる。これらの溶媒は単独で又は二種以上組み合わせて使用することができる。
工程(e)の反応において、反応温度及び反応時間は、反応が進行する限り特に制限されるものではない。反応温度は、例えば、-20~15℃、好ましくは-10℃~10℃である。反応時間は、例えば、12~24時間、好ましくは12~20時間である。
【0067】
<工程(f)>
工程(f)は、式(2-6)で表される化合物を、式(9)で表される化合物と反応させて、式(2)で表される化合物を得る工程である。
式(9)で表される化合物の使用量は、式(2-6)で表される化合物1モルに対して、通常、1.0~1.5モル、好ましくは1.0~1.3モル、さらに好ましくは1.0~1.1モルである。
工程(f)の反応は、塩基の存在下で行うことが好ましい。
塩基としては、例えば、アルキルアルカリ金属塩(例:ブチルリチウム)、アルカリ金属アミド(例:LDA、LHMDS、NaHMDS、KHMDS)が挙げられる。これらの塩基は単独で又は二種以上組み合わせて使用することができる。これらの塩基のうち、アルキルアルカリ金属塩が好ましい。
塩基の使用量は、式(2-6)で表される化合物1モルに対して、通常、1.0~1.5モル、好ましくは1.0~1.3モル、さらに好ましくは1.0~1.1モルである。 工程(f)の反応は、溶媒の存在下で行うことが好ましい。
溶媒としては、例えば、エーテル系溶媒(例:ジエチルエーテル等の鎖状エーテル、テトラヒドロフラン、ジオキサン等の環状エーテル)が挙げられる。これらの溶媒は単独で又は二種以上組み合わせて使用することができる。
工程(f)の反応において、反応温度及び反応時間は、反応が進行する限り特に制限されるものではない。反応温度は、例えば、-10℃~10℃、好ましくは-5℃~5℃である。反応時間は、例えば、1~5時間、好ましくは2~3時間である。
【0068】
式(2)のうち、R7及びR8が水素原子である化合物は、上記反応スキームに従って得られた、R7及びR8がヒドロキシル基の保護基である化合物を、慣用の方法により脱保護することにより、製造することができる。
【0069】
化合物(2)の製造方法は、必要に応じて中間性生物及び/又は最終生成物を精製する工程を含んでいてもよい。精製は、慣用の方法、例えば、濾過、クロマトグラフィーにより行うことができる。
また、反応の前に適当な保護基を導入し、反応の後に保護基を除去してもよい。保護及び脱保護は、慣用の方法により行うことができる。
【0070】
化合物(2)の製造方法は、必要に応じて異性体を分離する工程を含んでいてもよい。異性体の分離も、慣用の方法により行うことができる。
【0071】
<医薬組成物>
医薬組成物は、化合物(1)及び(2)から選択される少なくとも一種(以下、「有効成分」と称する)を含有する。
有効成分の含有量の下限値は、活性の点から、医薬組成物の全質量に対して、例えば、0.001質量%、好ましくは0.01質量%、さらに好ましくは0.05質量%である。有効成分の含有量の上限値は、特に限定されないが、医薬組成物の全質量に対して、例えば、99質量%、95質量%、又は90質量%である。有効成分の含有量は、前記下限値及び上限値を任意に選択した範囲内、例えば、0.001~99質量%、好ましくは0.01~95質量%、さらに好ましくは0.05~90質量%である。
【0072】
医薬組成物は、さらに、添加剤、好ましくは、薬学的に許容される添加剤を含有することができる。
医薬組成物の形態としては、固形製剤(例:顆粒剤、散剤、錠剤、カプセル剤、ドライシロップ剤)、半固形製剤(例:クリーム剤、軟膏剤、ゲル剤)、及び液体製剤(例:注射剤)が挙げられる。
前記固形製剤は、例えば、有効成分及び添加剤(例:賦形剤、結合剤、崩壊剤、滑沢剤、着色剤)を混合し、及び所望により、造粒、整粒、圧縮、及び/又はコーティングすることにより製造することができる。
前記半固形製剤は、例えば、有効成分、半固形担体、及び所望による他の添加剤を混合することにより製造することができる。
前記液体製剤は、例えば、有効成分、液状担体[例:水性担体(例:精製水)、油性担体]、及び所望による他の添加剤(例:乳化剤、分散剤、懸濁剤、緩衝剤、抗酸化剤、界面活性剤、浸透圧調節剤、キレート剤、抗菌剤)を混合し、及び必要により滅菌することにより、製造できる。
【0073】
医薬組成物の投与方法は、経口投与又は非経口投与(例:静脈投与、筋肉投与、皮下投与)のいずれであってもよい。医薬組成物の投与方法は、局所投与であってもよい。
医薬組成物の投与対象は、ヒト、非ヒト哺乳動物(例:サル、ヒツジ、イヌ、マウス、ラット)、及び非哺乳動物のいずれであってもよい。
【0074】
<小胞体ストレス応答誘起剤>
小胞体ストレス応答誘起剤は、化合物(1)及び(2)から選択される少なくとも一種(有効成分)を含有する。小胞体ストレス応答誘起剤における、有効成分の含有量、任意の添加剤の種類、剤形、及び投与形態は、前記医薬組成物について記載されたものと同様のものを採用することができる。
【0075】
<プロテインジスルフィドイソメラーゼ阻害剤>
プロテインジスルフィドイソメラーゼ阻害剤(PDI阻害剤)は、化合物(1)及び(2)から選択される少なくとも一種(有効成分)を含有する。PDI阻害剤における、有効成分の含有量、任意の添加剤の種類、剤形、及び投与形態は、前記医薬組成物について記載されたものと同様のものを採用することができる。
【0076】
<疾患の予防又は治療剤>
疾患の予防又は治療剤は、化合物(1)及び(2)から選択される少なくとも一種(有効成分)を含有する。
本発明の化合物は、小胞体ストレス応答を誘起することができるため、前記疾患は、小胞体ストレスが関与する疾患であってもよい。また、本発明の化合物は、PDIの活性を阻害することができるため、前記疾患は、PDIが関与する疾患であってもよい。
前記疾患としては、例えば、癌(例:多発性骨髄腫等の血液癌)、糖尿病(例:1型糖尿病、2型糖尿病)、炎症性疾患(例:炎症性腸疾患、リウマチ)、神経変性疾患(例:パーキンソン病、ハンチントン病、アルツハイマー病)、これらの疾患と関連する疾患(例:多発性骨髄腫に関連する骨疾患)が挙げられる。
前記疾患は、好ましくは、癌、骨疾患、及びリウマチから選択される少なくとも一種である。
疾患の予防又は治療剤における、有効成分の含有量、任意の添加剤の種類、剤形、及び投与形態は、前記医薬組成物について記載されたものと同様のものを採用することができる。
【実施例】
【0077】
以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0078】
下記実施例において、反応の進行は薄層クロマトグラフィーにて確認し、化合物の同定には1H-NMRを使用した。
【0079】
実施例1 11E-イノンマクロライドA
(1-1)(2S,3S)-N-メトキシ-2,3-ビス (メトキシメトキシ)-N-メチルヘキセ-5-エナミドを次のようにして合成した。
【化34】
既知化合物((4R,5R)-5-アリル-2,2-ジメチル-1,3-ジオキソラン-4-イル)メタノール 4.07 g (23.6 mmo)にアセトニトリル 80 mLと精製水 40 mLに溶解させた後、ヨードベンゼンジアセテート 17.0 g (52.0 mmol)と2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル 734 mg (4.70 mmol)を室温で加えた。室温で2時間撹拌した後、精製水を加え、酢酸で反応液を酸性にしてから、酢酸エチルで分液を5回行った。得られた有機層に硫酸ナトリウムを加え水の除去を行った。溶媒を減圧留去して(4S,5R)-5-アリル-2,2-ジメチル-1,3-ジオキソラン-4-カルボン酸の粗生成物を得た。
この粗生成物をジクロロメタン 118 mLに溶解させた後、0度に冷却し、N-メチルモルホリン 2.9 mL (26.0 mmol)、N,O-ジメチルヒドロキシアミン塩酸塩 2.50 g (26.0 mmol)と1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド 5.00 g (26.0 mmol)を加えた。0度で1時間撹拌した後、精製水を加え、ジクロロメタンで分液を3回行った。得られた有機層を飽和食塩水で洗浄した後、有機層に硫酸ナトリウムを加え水の除去を行い、溶媒を減圧留去した。得られた粗生成物を酢酸 192 mLと精製水 48 mLに溶解させた後、60度で12時間撹拌した。溶媒を減圧留去した後、トルエンを加えた共沸操作により酢酸を除去した。
得られた組成生物をジクロロメタン118 mLに溶解した後、0度に冷却した。ここにN,N-ジイソプロピルエチルアミン 611 mL (354 mmol)とクロロメチルメチルエーテル 18.8 mL (236 mmol)、テトラブチルアンモニウムヨージド 26.0 g (71.0 mmol)を0度で加えた。30度で20時間撹拌した後、0度に冷却し、飽和塩化アンモニウム水溶液を加え、ジクロロメタンで分液を3回行った。得られた有機層を飽和食塩水で洗浄した後、有機層に硫酸ナトリウムを加え水の除去を行い、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン= 4 : 6 から 2 : 8)にて精製し、(2S,3S)-N-メトキシ-2,3-ビス (メトキシメトキシ)-N-メチルヘキセ-5-エナミドを得た (5.20 g、収率79%)。
1H-NMR (CDCl
3, 400 MHz) δppm: 5.90 (m, 1H), 5.13 (d, J = 17.6 Hz, 1H), 5.10 (d, J = 9.2 Hz, 1H), 4.69-4.61 (overlapped, 5H), 3.96 (m, 1H), 3.75 (s, 3H), 3.37 (s, 3H), 3.36 (s, 3H), 3.22 (s, 3H), 2.52-2.42 (overlapped, 2H)
【0080】
(1-2)(S)-ペント-4-イン-2-イル4-メトキシ-2-((2-メトキシエトキシ)メトキシ)-6-ビニルベンゾエートを次のようにして合成した。
【化35】
既知化合物(S)-5-(トリメチルシリル)ペント-4-イン-2-オール1.26 g (8.08 mmol)をテトラヒドロフラン108 mLに溶解した後、ナトリウムビス(トリメチルシリル)アミド溶液16.2 mL (16.2 mmol)を0度で加えた。0度で15分間撹拌した後、既知化合物7-メトキシ-2,2-ジメチル-5-ビニル-4H-ベンゾ[d][1,3]ジオキシン-4-オン 1.26 g (5.39 mmol)をテトラヒドロフランに溶解させて反応液に加えた。0度で20分間撹拌した後、酢酸 0.97 mL (16.2 mmol)とテトラブチルアンモニウムフルオリド 8.08 mL (8.08 mmol)を加え、室温で12時間撹拌した。0度に冷却後、飽和塩化アンモニウム水溶液を加え、酢酸エチルで分液を3回行った。得られた有機層を飽和食塩水で洗浄した後、有機層に硫酸ナトリウムを加え水の除去を行い、溶媒を減圧留去した。
得られた粗生成物をジクロロメタン 53.9 mLに溶解させた後、N,N-ジイソプロピルエチルアミン 9.4 mL (53.9 mmol)と2-メトキシエトキシメチルクロリド 3.07 mL (26.9 mmol)、テトラブチルアンモニウムヨージド 6.0 g (16.2 mmol)を加えた。40度で5時間撹拌した後、0度に冷却し、飽和塩化アンモニウム水溶液を加え、ジクロロメタンで分液を3回行った。得られた有機層を飽和食塩水で洗浄した後、有機層に硫酸ナトリウムを加え水の除去を行い、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン= 4 : 6 から 2 : 8)にて精製し、(S)-ペント-4-イン-2-イル4-メトキシ-2-((2-メトキシエトキシ)メトキシ)-6-ビニルベンゾエートを得た (563 mg、収率30%)。
1H-NMR (CDCl
3, 400 MHz) δppm: 6.41 (dd, J = 17.6, 10.8 Hz, 1H), 6.72 (d, J = 2.4 Hz, 1H), 6.70 (d, J = 2.4 Hz, 1H), 5.70 (dd, J = 17.2, 1.2 Hz), 5.33-5.23 (overlapped, 4H), 3.83-3.81 (overlapped, 5H), 3.55 (m, 2H), 3.37 (s, 3H), 2.60 (ddd, J = 16.8, 5.6, 2.8 Hz, 1H), 2.54 (ddd, J = 16.8, 5.6, 2.8 Hz, 1H), 2.02 (t, J = 2.8 Hz, 1H), 1.44 (d, J = 6.4 Hz, 3H)
【0081】
(1-3)(2S,7S,8S)-7,8-ビス(メトキシメトキシ)-6-オシソウンデク-10-エン-4-イン-2-イル 4-メトキシ-2-((2-メトキシエトキシ)メトキシ)-6-ビニルベンゾエートを次のようにして合成した。
【化36】
(1-2)で製造した(S)-ペント-4-イン-2-イル4-メトキシ-2-((2-メトキシエトキシ)メトキシ)-6-ビニルベンゾエート106 mg (0.23 mmol)をテトラヒドロフラン4.7 mLに溶解した後、-78度に冷却し、ノルマルブチルリチウム0.17 mL (0.260 mmol)を滴下した。-78度で15分間撹拌した後、(1-1)で製造した(2S,3S)-N-メトキシ-2,3-ビス (メトキシメトキシ)-N-メチルヘキサ-5-エナミド 71.0 mg (0.260 mmol)をテトラヒドロフラン 1.0 mLに溶解させ、反応液に加えた。-78度で10分間撹拌した後、飽和塩化アンモニウム水溶液を加えて0度に昇温し、酢酸エチルで分液を3回行った。得られた有機層を飽和食塩水で洗浄した後、有機層に硫酸ナトリウムを加え水の除去を行い、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン= 4 : 6 から 1 : 1)にて精製し、(2S,7S,8S)-7,8-ビス(メトキシメトキシ)-6-オシソウンデク-10-エン-4-イン-2-イル 4-メトキシ-2-((2-メトキシエトキシ)メトキシ)-6-ビニルベンゾエートを透明の液体として得た (86 mg、収率55%)。
1H-NMR (CDCl
3, 400 MHz) δppm: 6.76-6.69 (overlapped, 3H), 5.82 (m, 1H), 5.69 (dd, J = 17.2, 0.8 Hz, 1H), 5.36-5.28 (overlapped, 2H), 5.25 (s, 2H), 5.10 (m, 1H), 4.71-4.65 (overlapped, 4H), 4.21 (d, J = 4.8 Hz, 1H), 4.08 (m, 1H), 3.82-3.79 (overlapped, 5H), 3.55 (m, 2H), 3.37 (s, 6H), 3.33 (s, 3H), 2.81 (m, 2H), 2.43 (m, 2H), 1.47 (d, J = 6.4 Hz, 3H)
【0082】
(1-4)環化前駆体[(2S,7S,8S)-7,8-ビス(メトキシメトキシ)-6-オシソウンデク-10-エン-4-イン-2-イル 4-メトキシ-2-((2-メトキシエトキシ)メトキシ)-6-ビニルベンゾエート] ジコバルトヘキサカルボニルを次のようにして合成した。
【化37】
(1-3)で製造した(2S,7S,8S)-7,8-ビス(メトキシメトキシ)-6-オシソウンデク-10-エン-4-イン-2-イル 4-メトキシ-2-((2-メトキシエトキシ)メトキシ)-6-ビニルベンゾエート 283 mg (0.50 mmol)をジクロロメタン10 mLに溶解した後、ジコバルトオクタカルボニル1.80 g (5.00 mmol)を0度で加えた。4度で12時間撹拌した後、反応溶液を減圧留去し、粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン= 1 : 4から2 : 3)にて精製を行い、環化前駆体[(2S,7S,8S)-7,8-ビス(メトキシメトキシ)-6-オシソウンデク-10-エン-4-イン-2-イル 4-メトキシ-2-((2-メトキシエトキシ)メトキシ)-6-ビニルベンゾエート] ジコバルトヘキサカルボニルを褐色の液体として得た (355 mg、収率82%)。
1H-NMR (CDCl
3, 400 MHz) δppm: 6.78 (dd, J = 17.3, 10.8 Hz, 1H), 6.72 (s, 2H), 5.87 (m, 1H), 5.69 (d J = 17.3 Hz, 1H), 5.32-5.21 (overlapped, 4H), 5.14 (m, 1H), 5.11 (m, 1H), 4.67 (overlapped, 3H), 4.57 (d, J = 6.8 Hz, 1H), 4.21 (d, J = 7.6 Hz, 1H), 4.04 (m, 1H), 3.82-3.79 (overlapped, 5H), 3.54 (m, 2H), 3.37 (s, 3H), 3.30 (s, 6H), 3.05 (dd, J = 16.2, 7.0 Hz, 1H), 3.05 (dd, J = 16.2, 7.0 Hz, 1H), 2.59 (m, 1H), 2.47 (m, 1H), 1.55 (d, J = 6.4 Hz, 3H)
【0083】
(1-5)11E-環化体ジコバルトヘキサカルボニルと11Z-環化体ジコバルトヘキサカルボニルを次のようにして合成した。
【化38】
(1-4)で製造した環化前駆体[(2S,7S,8S)-7,8-ビス(メトキシメトキシ)-6-オシソウンデク-10-エン-4-イン-2-イル 4-メトキシ-2-((2-メトキシエトキシ)メトキシ)-6-ビニルベンゾエート] ジコバルトヘキサカルボニル551 mg (0.640 mmol)をジクロロメタン127mLに溶解した後、第2世代ピアース-グラブス触媒219 mg (0.246 mmol)をジクロロメタン5.0 mLに溶解させ反応液に0度で加えた。4度で7日間撹拌した後、反応溶液の溶媒を減圧留去し、粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン= 3 : 7から1 : 1)にて精製を行い、11E-環化体ジコバルトヘキサカルボニル (163 mg、収率31%)と11Z-環化体ジコバルトヘキサカルボニル (312 mg、収率58%)で、それぞれ褐色の液体として得た。
11E-環化体ジコバルトヘキサカルボニル,
1H-NMR (CDCl
3, 400 MHz) δ ppm: 6.64 (d, J = 2.4 Hz, 1H), 6.59 (d, J = 16.0 Hz, 1H), 6.39 (d, J = 2.0 Hz, 1H), 5.91 (m, 1H), 5.37 (sext, J = 5.6 Hz, 1H), 5.26 (m, 2H), 5.01 (d, J = 7.2 Hz, 1H), 4.71-4.66 (overlapped, 2H), 4.33 (d, J = 7.2 Hz, 1H), 4.27 (d, J = 8.4 Hz, 4.11 (m, 1H), 3.83 (m, 2H), 3.79 (s, 3H), 3.62 (dd, J = 16.0, 6.0 Hz, 1H), 3.56 (m, 2H), 3.38 (s, 3H), 3.30 (s, 3H), 3.27 (s, 3H), 3.23 (dd, J = 16.2, 6.0 Hz, 1H)2.77 (m, 1H), 2.54 (m, 1H), 1.56 (d, J = 6.0 Hz, 3H)11Z-環化体ジコバルトヘキサカルボニル,
1H-NMR (CDCl
3, 400 MHz) δ ppm: 6.75 (br-s, 1H), 6.63 (d, J = 11.6 Hz, 1H), 6.44 (br-s, 1H), 5.79 (m, 1H), 5.19 (q, J = 7.2 Hz, 2H), 4.93 (m, 1H), 4.72 (d, J = 6.8 Hz, 1H), 4.49 (d, J = 7.2 Hz, 1H), 4.39 (d, J = 8.8 Hz, 1H), 3.98-3.93 (overlapped, 2H), 3.83-3.73 (overlapped, 4H), 3.80 (s, 3H), 3.62 (dd, J = 14.8, 10.8 Hz, 1H), 3.53 (m, 2H), 3.37 (s, 3H), 3.31 (s, 3H), 3.11 (s, 3H), 3.05 (m, 1H), 2.37 (m, 1H), 1.66 (d, J = 6.0 Hz, 1H)
【0084】
(1-6)11E-イノンマクロライドAを次のようにして合成した。
【化39】
(1-5)で製造した11E-環化体ジコバルトヘキサカルボニル86.0 mg (0.105 mmol)をアセトン2.0 mLに溶解し、セリウムアンモニウムナイトレート57 mg (0.105 mmol)を0度で加えた。0度で15分間撹拌した後、同量のセリアムアンモニウムナイトレートを加え、0度で15分間攪拌した。同じ作業を3回繰り返し行なった。薄層クロマトグラフィーにて原料の消失を確認後、精製水を1.0 mL加え、ジクロロメタンで分液を3回行った。得られた有機層を飽和食塩水で洗浄した後、有機層に硫酸ナトリウムを加え水の除去を行い、溶媒を減圧留去した。粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン= 1 : 1)にて精製し、11E-イノンマクロライドAを透明の液体として得た(41 mg、収率74%)。
1H-NMR (CDCl
3, 400 MHz) δppm: 6.78 (d, J = 16.0 Hz, 1H), 6.67 (d, J = 2.4 Hz, 1H), 6.60 (d, J = 2.0 Hz, 1H), 6.15 (m, 1H), 5.32-5.25 (overlapped, 3H), 4.80 (d, J = 7.2Hz, 1H), 4.74-4.65 (overlapped, 3H), 4.47 (d, J = 2.8 Hz, 1H), 4.37 (m, 1H), 3.83-3.80 (overlapped, 2H), 3.81 (s, 3H), 3.56 (m, 2H), 3.40 (s, 3H), 3.35 (s, 6H), 2.88 (dd, J = 17.4, 3.2 Hz, 1H), 2.74-2.61 (overlapped, 2H), 2.29 (m, 1H), 1.45 (d, J = 6.4 Hz, 3H)
【0085】
実施例2 11E-イノンマクロライドA’
11E-イノンマクロライドA’を次のようにして合成した。
【化40】
(1-6)で製造した11E-イノンマクロライドA 4.04 mg (0.00753 mmol)に47%フッ化水素水溶液とアセトニトリルの混合液(1 : 10)を1.9mL (4.14 mmol)加えた。室温で5時間撹拌した後、炭酸水素ナトリウム水溶液を0度で加え、酢酸エチルで分液を3回行った。得られた有機層を飽和食塩水で洗浄した後、有機層に硫酸ナトリウムを加え水の除去を行い、溶媒を減圧留去した。粗生成物をプレパラティブTLCで精製を行い、Compound #13を白色の固体として得た (1.10 mg、収率40%)。
1H-NMR (CDCl
3, 500 MHz) δppm: 11.5 (s, 1H), 7.27 (d, J = 13.9 Hz, 1H), 6.50 (d, J = 2.5 Hz, 1H), 6.41 (d, J = 2.5 Hz, 1H), 6.07 (ddd, J = 14.7, 9.9, 4.4 Hz, 1H), 5.41 (m, 1H), 4.44 (d, J = 2.9 Hz, 1H), 4.32 (td, J = 8.4, 2.9 Hz, 1H), 2.94 (dd, J = 17.4, 3.5 Hz, 1H), 2.80 (dd, J = 17.4, 5.6 Hz, 1H), 2.56-2.50 (overlapped, 2H), 1.54 (d, J = 6.3 Hz, 1H)
【0086】
実施例3 11Z-イノンマクロライドB
11Z-イノンマクロライドBを次のようにして合成した。
【化41】
(1-6)で製造した11E-環化体ジコバルトヘキサカルボニル87.0 mg (0.106 mmol)をアセトン2.0 mLに溶解し、セリウムアンモニウムナイトレート57.7 mg (0.106 mmol)を0度で加えた。0度で15分間撹拌した後、同量のセリアムアンモニウムナイトレートを加え、0度で15分間攪拌した。同じ作業を3回繰り返し行なった。薄層クロマトグラフィーにて原料の消失を確認後、精製水を1.0 mL加え、ジクロロメタンで分液を3回行った。得られた有機層を飽和食塩水で洗浄した後、有機層に硫酸ナトリウムを加え水の除去を行い、溶媒を減圧留去した。粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン= 1 : 1)にて精製し、11Z-イノンマクロライドBを透明の液体として得た(45 mg、収率81%)。
1H-NMR (CDCl
3, 400 MHz) δppm: 6.67 (d, J = 2.4 Hz, 1H), 6.55 (d, J = 11.6 Hz, 1H), 6.39 (d, J = 1.6 Hz, 1H), 5.53 (m, 1H), 5.30-5.17 (overlapped, 3H), 4.69-4.64 (overlapped, 3H), 4.60 (d, J = 6.8 Hz, 1H), 4.30 (d, J = 2.4 Hz, 1H), 4.20 (m, 1H), 3.84-3.79 (overlapped, 2H), 3.80 (s, 3H), 3.57 (m, 2H), 3.38 (s, 3H), 3.35 (s, 3H), 3.34 (s, 3H), 2.88-2.80 (overlapped, 2H), 2.61 (dd, J = 17.4, 8.4 Hz, 1H), 2.50 (m, 1H), 1.42 (d, J = 6.4 Hz, 3H)
【0087】
実施例4 11Z-イノンマクロライドC
11Z-イノンマクロライドCを次のように合成した。
【化42】
実施例3で製造した11Z-イノンマクロライドB 4.8 mg (0.00975 mmol)に47%フッ化水素水溶液とアセトニトリルの混合液(1 : 10)を2.3 mL (4.92 mmol)加えた。室温で1時間撹拌した後、炭酸水素ナトリウム水溶液を0度で加え、酢酸エチルで分液を3回行った。得られた有機層を飽和食塩水で洗浄した後、有機層に硫酸ナトリウムを加え水の除去を行い、溶媒を減圧留去した。粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン= 2 : 8から1 : 1)にて精製し、11Z-イノンマクロライドCを得た(1.6 mg、収率50%)。
1H-NMR (CDCl
3, 500 MHz) δppm: 11.70 (s, 1H), 6.73 (d, J = 11.6 Hz, 1H), 6.41 (d, J = 2.4 Hz, 1H), 6.27 (d, J = 2.0 Hz, 1H), 5.54 (m, 1H), 5.40 (m, 1H), 4.75-4.71 (overlapped, 2H), 4.52 (d, J = 6.8 Hz, 1H), 4.35 (d, J = 2.8 Hz, 1H), 4.30 (d, J = 6.8 Hz, 1H), 4.16 (dt, J = 10.8, 3.2 Hz, 1H), 3.81 (s, 3H), 3.40 (s, 3H), 3.15 (s, 3H), 3.12 (m, 1H), 2.62-2.45 (over;apped, 3H), 1.53 (d, J = 6.4 Hz, 3H)
【0088】
実施例5 11Z-イノンマクロライドD
11Z-イノンマクロライドDを次のようにして合成した。
【化43】
実施例3で製造した11Z-イノンマクロライドB 4.9 mg (0.00975 mmol)に47%フッ化水素水溶液とアセトニトリルの混合液(1 : 10)を2.4 mL (5.0 mmol)加えた。室温で8時間撹拌した後、炭酸水素ナトリウム水溶液を0度で加え、酢酸エチルで分液を3回行った。得られた有機層を飽和食塩水で洗浄した後、有機層に硫酸ナトリウムを加え水の除去を行い、溶媒を減圧留去した。粗生成物をHPLCにて精製を行い、Compound #26を白色の固体として得た(0.3 mg、収率9.1%)。
1H-NMR (CDCl
3, 500 MHz) δppm: 11.60 (s, 1H), 6.72 (d, J = 11.5 Hz, 1H), 6.42 (d, J = 2.5 Hz, 1H), 6.25 (d, J = 1.8 Hz, 1H), 5.50 (m, 1H), 5.20 (td, J = 11.2, 5.5 Hz, 1H), 4.40 (m, 1H), 4.10 (m, 1H), 3.82 (s, 3H), 3.64 (m, 1H), 3.08 (dd, J = 17.1, 14.8 Hz, 1H), 2.67 (m, 1H), 2.57 (dd, J = 17.1, 2.8 Hz, 1H), 2.26 (td, J = 11.8, 5.8 Hz, 1H), 1.52 (d, J = 6.4 Hz, 3H)
【0089】
実施例6 11飽和-イノンマクロライドA
(6-1)11飽和-環化体ジコバルトヘキサカルボニルを次のようにして合成した。
【化44】
(1-5)で製造した11Z-環化体ジコバルトヘキサカルボニル2.9 mg (0.00353 mmol)をメタノール0.7 mLに溶解した後、ロジウムカーボン16 mg (0.00353 mmol)を加え、-40度に冷却した。その後、内部を水素ガスで置換し、-40度で3日間撹拌した。質量分析にて反応の進行を確認後、フィルターろ過を行い、ロジウムカーボンを除去した。溶媒を減圧留去した後、得られた粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン= 1 : 1から2 : 1)にて精製し、11飽和-環化体ジコバルトヘキサカルボニルを透明の液体として得た(1.2 mg、収率42%)。
1H-NMR (CDCl
3, 500 MHz) δppm: 6.54 (d, J = 2.4 Hz, 1H), 6.39 (d, J = 2.4 Hz, 1H), 5.28 (m, 1H), 5.20 (s, 2H), 4.73-4.61 (overlapped, 5H), 4.08 (m, 1H), 3.82-3.77 (overlapped, 2H), 3.77 (s, 3H), 3.55 (m, 2H), 3.37 (s, 6H), 3.32-3.26 (overlapped, 2H), 2.62 (m, 2H), 1.75-1.63 (overlapped, 4H), 1.57 (d, J = 6.0 Hz, 3H)
【0090】
(6-2)11飽和-イノンマクロライドAを次のようにして合成した。
【化45】
(6-1)で製造した11飽和-環化体ジコバルトヘキサカルボニル1.2 mg (0.00146 mmol)をアセトン0.15 mLに溶解しセリウムアンモニウムナイトレート0.8 mg (0.00146 mmol)を0度で加えた。0度で15分間撹拌した後、同量のセリアムアンモニウムナイトレートを加え、0度で15分間攪拌した。同じ作業を3回繰り返し行なった。薄層クロマトグラフィーにて原料の消失を確認後、精製水を1.0 mL加え、ジクロロメタンで分液を3回行った。得られた有機層を飽和食塩水で洗浄した後、有機層に硫酸ナトリウムを加え水の除去を行い、溶媒を減圧留去した。粗生成物をシリカゲルカラムクロマトグラフィー (酢酸エチル:ヘキサン= 2 : 1)にて精製し、11飽和-イノンマクロライドAを透明の液体として得た(0.8 mg、収率99%)。
1H-NMR (CDCl
3, 500 MHz) δppm: 6.62 (d, J = 2.4 Hz, 1H), 6.41 (d, J = 2.4 Hz, 1H), 5.32 (m, 1H), 5.25 (s, 2H), 4.82 (d, J = 6.8 Hz, 1H), 4.66-4.62 (overlapped, 3H), 4.47 (d, J = 2.4 Hz, 1H), 4.05 (m, 1H), 3.84-3.79 (overlapped, 2H), 3.79 (s, 3H), 3.58-3.55 (overlapped, 2H), 3.40 (s, 3H), 3.39-3.32 (overlapped, 1H), 3.38 (s, 3H), 3.37 (s, 3H), 2.73-2.58 (overlapped, 3H), 1.80-1.78 (overlapped, 4H), 1.48 (d, J = 6.4 Hz, 3H)
【0091】
実施例7 11飽和-イノンマクロライドB
11飽和-イノンマクロライドBを次のようにして合成した。
【化46】
実施例6で製造した11飽和-イノンマクロライドA 0.8 mg (0.00146 mmol)に47%フッ化水素水溶液とアセトニトリルの混合液(1 : 10)を0.4 mL (0.8 mmol) 加えた。室温で8時間撹拌した後、炭酸水素ナトリウム水溶液を0度で加え、酢酸エチルで分液を3回行った。得られた有機層を飽和食塩水で洗浄した後、有機層に硫酸ナトリウムを加え水の除去を行い、溶媒を減圧留去した。溶媒を減圧留去した後、HPLCにて精製を行い、11飽和-イノンマクロライドBを白色の固体として得た(0.05 mg、収率9.3%)。
1H-NMR (CDCl
3, 500 MHz) δppm: 11.95 (s, 1H), 6.37 (d, J = 2.5 Hz, 1H), 6.34 (d, J = 2.5 Hz, 1H), 5.41 (m, 1H), 4.39 (d, J = 2.5 Hz, 1H), 4.05 (m, 1H), 3.82 (s, 3H), 3.45 (td, J = 12.6, 2.5 Hz, 1H), 3.19 (dd, J = 17.5, 4.1 Hz, 1H), 2.75 (dd, J = 17.5, 4.1 Hz, 1H), 2.49 (m, 1H), 2.14-1.97 (overlapped, 4H), 1.55 (d, J = 6.7 Hz, 3H)
【0092】
実施例8 (S)-1-((4S,5R)-5-アリル-2,2-ジメチル-1,3-ジオキソラン-4-イル)-5-ヒドロキシヘキシ-2-イン-1-オン
(8-1)既知化合物(3aR,7aS)-2,2-ジメチルテトラヒドロ-4H-[1,3]ジオキソロ [4,5-c]ピラン-6-オールを次のようにして合成した。
【化47】
2-デオキシ-D-リボース6.0 g (44.7 mmol)をアセトン90 mL に溶解した後、2,2-ジメトキシプロパン18.8 mLを加え、室温で15分間撹拌した。その後、p-トシル酸170 mg ( 1.00 mmol)を加え、室温で2時間撹拌した。0度に冷却後、炭酸水素ナトリウム水溶液を加え、ジクロロメタンで分液を3回行った。得られた有機層を飽和食塩水で洗浄した後、有機層に硫酸ナトリウムを加え水の除去を行った。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー (酢酸エチル:ヘキサン= 1 : 2から4 : 1)にて精製し、(3aR,7aS)-2,2-ジメチルテトラヒドロ-4H-[1,3]ジオキソロ [4,5-c]ピラン-6-オールを透明の液体として得た(5.9 g、収率76%)。
【0093】
(8-2)既知化合物((4R,5R)-5-アリル-2,2-ジメチル-1,3-ジオキソラン-4-イル)メタノールを次のようにして合成した。
【化48】
メチルトリフェニルホスホニウムブロミド 370 mg (1.04 mmol)をテトラヒドロフラン 2.5 mLに溶解させ、-78度に冷却した後、ノルマルブチルリチウム 0.74 mL (0.888 mmol)を加えた。-78度で15分間撹拌した後、0度に昇温して30分間撹拌した。再度、-78度に反応液を冷却した後、(8-1)で製造した(3aR,7aS)-2,2-ジメチルテトラヒドロ-4H-[1,3]ジオキソロ [4,5-c]ピラン-6-オール 52 mg (0.296 mmol)をテトラヒドロフラン 0.5 mLに溶解させて反応液に加えた。室温で4時間撹拌した後、0度に冷却し、飽和塩化アンモニウム水溶液を加え、クロロホルムで分液を3回行った。得られた有機層を飽和食塩水で洗浄した後、有機層に硫酸ナトリウムを加え水の除去を行った。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー (酢酸エチル:ヘキサン=3:7から1:1)にて精製し、((4R,5R)-5-アリル-2,2-ジメチル-1,3-ジオキソラン-4-イル)メタノールを透明な液体として得た (44.4 mg、収率87%)。
【0094】
(8-3)(4S,5R)-5-アリル-N-メトキシ-N,2,2-トリメチル-1,3-ジオキソラン-4-カルボキサミドは次のようにして合成した。
【化49】
(8-2)で製造した((4R,5R)-5-アリル-2,2-ジメチル-1,3-ジオキソラン-4-イル)メタノール 2.99 g (17.4 mmo)にアセトニトリル 60 mLと精製水 30 mLに溶解させた後、ヨードベンゼンジアセテート 12.3 g (38.2 mmol)と2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル 543 mg (3.47 mmol)を室温で加えた。室温で2時間撹拌した後、精製水を加え、酢酸で反応液を酸性にしてから、酢酸エチルで分液を5回行った。得られた有機層を飽和食塩水で洗浄した後、有機層に硫酸ナトリウムを加え水の除去を行った。溶媒を減圧留去して(4S,5R)-5-アリル-2,2-ジメチル-1,3-ジオキソラン-4-カルボン酸の粗生成物を得た。
この粗生成物をジクロロメタン 90 mLに溶解させた後、0度に冷却し、N-メチルモルホリン 2.3 mL (20.8 mmol)、N,O-ジメチルヒドロキシアミン塩酸塩 1.87 g (19.1 mmol)と1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド 4.00 g (20.8 mmol)を加えた。0度で2時間撹拌した後、精製水を加え、酢酸エチルで分液を3回行った。得られた有機層を飽和食塩水で洗浄した後、有機層に硫酸ナトリウムを加え水の除去を行った。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー (酢酸エチル:ヘキサン=3:7から1:1)にて精製し、(4S,5R)-5-アリル-N-メトキシ-N,2,2-トリメチル-1,3-ジオキソラン-4-カルボキサミドを白色な固体として得た (3.37 g、二工程収率85%)。
1H-NMR (CDCl
3, 400 MHz) δppm: 5.83 (m, 1H), 5.12 (dd, J = 16.8, 2.0 Hz, 1H), 5.10 (d, J = 10.0, 2.0 Hz, 1H), 4.96 (d, J = 6.4 Hz, 1H), 4.56 (q, J = 6.8 Hz, 1H), 3.74 (s, 3H), 3.20 (s, 3H), 2.25 (t, J = 6.8 Hz, 2H), 1.66 (s, 3H), 1.43 (s, 3H)
【0095】
(8-4)(S)-1-((4S,5R)-5-アリル-2,2-ジメチル-1,3-ジオキソラン-4-イル)-5-((t-ブチルジフェニルシリル)オキシ)ヘキサ-2-イン-1-オンを次のように合成した。
【化50】
既知化合物(S)-t-ブチル (ペント-4-イン-2-イロキシ)ジフェニルシラン 4.90g (15.2 mmol)をテトラヒドロフラン 70 mLに溶解させ、-78度に冷却した後、ノルマルブチルリチウム 5.8 mL (15.2 mmol)を加えた。-78度で1時間撹拌した後、(8-3)で製造した(4S,5R)-5-アリル-N-メトキシ-N,2,2-トリメチル-1,3-ジオキソラン-4-カルボキサミド 3.16 g (11.4 mmol)をテトラヒドロフラン 20 mLに溶解させて反応液に-78度で加えた。0度で1時間撹拌した後、飽和塩化アンモニウム水溶液を加え、酢酸エチルで分液を3回行った。得られた有機層を飽和食塩水で洗浄した後、有機層に硫酸ナトリウムを加え水の除去を行った。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー (酢酸エチル:ヘキサン=1:1)にて精製し、(S)-1-((4S,5R)-5-アリル-2,2-ジメチル-1,3-ジオキソラン-4-イル)-5-((t-ブチルジフェニルシリル)オキシ)ヘキサ-2-イン-1-オンを薄黄色の液体として得た (6.14 g、収率100%)。
1H-NMR (CDCl
3, 400 MHz) δppm: 7.72-7.66 (overlapped, 4H), 7.43-7.35 (overlapped, 6H), 5.80 (m, 1H), 5.11 (d, J = 10.8 Hz, 1H), 5.09 (d, J = 9.2 Hz, 1H), 4.95 (d, J = 6.4 Hz, 1H), 4.45 (q, J = 6.8 Hz, 1H), 3.99 (sext, J = 6.0 Hz, 1H), 2.37-2.22 (overlapped, 4H), 1.62 (s, 3H), 1.49 (s, 3H), 1.20 (d, J = 6.4 Hz, 3H), 1.07 (s, 9H)
【0096】
(8-5)(S)-1-((4S,5R)-5-アリル-2,2-ジメチル-1,3-ジオキソラン-4-イル)-5-ヒドロキシヘキシ-2-イン-1-オンを次のようにして合成した。
【化51】
(8-4)で製造した(S)-1-((4S,5R)-5-アリル-2,2-ジメチル-1,3-ジオキソラン-4-イル)-5-((t-ブチルジフェニルシリル)オキシ)ヘキサ-2-イン-1-オン 5.6 mg (0.0114 mmol)をテトラヒドロフラン 0.17 mLに溶解させ、酢酸 7.0 μL (0.114 mmol)とn-テトラブチルアンモニウムフロリド溶液 0.17 mL (0.171 mmol)を室温で加えた。室温で9時間撹拌した後、0度で飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで分液を3回行った。得られた有機層を飽和食塩水で洗浄した後、有機層に硫酸ナトリウムを加え水の除去を行った。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー (酢酸エチル:ヘキサン=1:1)にて精製し、(S)-1-((4S,5R)-5-アリル-2,2-ジメチル-1,3-ジオキソラン-4-イル)-5-((t-ブチルジフェニルシリル)オキシ)ヘキサ-2-イン-1-オンを薄黄色の液体として得た (1.3 mg、収率45%)。
1H-NMR (CDCl
3, 400 MHz) δppm: 5.84 (m, 1H), 5.15 (d, J = 14.8 Hz, 1H), 5.12 (d, J = 8.0 Hz, 1H), 4.52 (d, J = 7.6 Hz), 4.44 (m, 1H), 4.08 (m, 1H), 2.65-2.54 (overlapped, 1H), 2.40 (m, 1H), 2.29 (m, 1H), 1.65 (s, 3H), 1.40 (s, 3H), 1.31 (d, J = 6.8 Hz, 3H)
【0097】
実施例9 (S)-1-((4S,5R)-2,2-ジメチル-5-(プロピ-2-イン-1-イル)-1,3-ジオキソラン-4-イル)-5-ヒドロキシヘキセ-2-イン-1-オン
(9-1)既知化合物((4R,5R)-2,2-ジメチル-5-(プロピ-2-イン-1-イル)-1,3-ジオキソラン-4-イル)メタノールを次のようにして合成した。
【化52】
テトラヒドロフラン1.5 mLにジイソプロピルアミン105 μL (0.755 mmol)を加え、0度に冷却した後、ノルマルブチルリチウム281 μL (0.755 mmol)を加えた。0度で15分間撹拌した後、-78度に冷却し15分間撹拌した。調製したリチウムジイソプロピルアミドに対し、トリメチルシリルジアゾメタン187 μL (0.374 mmol)を加え、-78度で30分間撹拌した。ここに、実施例1で得られた(3aR,7aS)-2,2-ジメチルテトラヒドロ-4H-[1,3]ジオキソロ [4,5-c]ピラン-6-オール 50.0 mg (0.287 mmol)をテトラヒドロフラン 0.3 mLに溶解した溶液を加え、-78度で30分間撹拌した。室温まで昇温させ、2時間撹拌した後、0度に冷却し、塩化アンモニウム水溶液を加え、酢酸エチルで分液を3回行った。得られた有機層を飽和食塩水で洗浄した後、有機層に硫酸ナトリウムを加え水の除去を行った。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン= 1 : 4から2 : 3)にて精製し、((4R,5R)-2,2-ジメチル-5-(プロピ-2-イン-1-イル)-1,3-ジオキソラン-4-イル)メタノールを得た(32.1 mg、収率66%)。
【0098】
(9-2)(4S,5R)-N-メトキシ-N,2,2-トリメチル-5-(プロピ-2-イン-1-イル)-1,3-ジオキソラン-4-カルボキサミドを次のようにして合成した。
【化53】
(9-1)で製造した((4R,5R)-2,2-ジメチル-5-(プロピ-2-イン-1-イル)-1,3-ジオキソラン-4-イル)メタノール 1.43 g (8.43 mmo)にアセトニトリル 30 mLと精製水 15 mLに溶解させた後、ヨードベンゼンジアセテート 5.97 g (18.5 mmol)と2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル 263 mg (1.69 mmol)を室温で加えた。室温で2時間撹拌した後、精製水を加え、酢酸で反応液を酸性にしてから、酢酸エチルで分液を5回行った。得られた有機層を飽和食塩水で洗浄した後、有機層に硫酸ナトリウムを加え水の除去を行った。溶媒を減圧留去して(4S,5R)-2,2-ジメチル-5-(プロピ-2-イン-1-イル)-1,3-ジオキソラン-4-カルボン酸の粗生成物を得た。
この粗生成物をジクロロメタン 90 mLに溶解させた後、0度に冷却し、N-メチルモルホリン 1.86 mL (18.5 mmol)、N,O-ジメチルヒドロキシアミン塩酸塩 1.64 g (16.9 mmol)と1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド 3.23 g (18.5 mmol)を加えた。0度で20時間撹拌した後、精製水を加え、酢酸エチルで分液を3回行った。得られた有機層を飽和食塩水で洗浄した後、有機層に硫酸ナトリウムを加え水の除去を行った。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー (酢酸エチル:ヘキサン=3:7から1:1)にて精製し、(4S,5R)-N-メトキシ-N,2,2-トリメチル-5-(プロピ-2-イン-1-イル)-1,3-ジオキソラン-4-カルボキサミドを透明な液体として得た (1.11 g、二工程収率58%)。
1H-NMR (CDCl
3, 400 MHz) δppm: 4.96 (d, J = 6.4 Hz, 1H), 4.56 (q, J = 6.4 Hz, 1H), 3.72 (s, 3H), 3.19 (s, 3H), 2.42-2.39 (overlapped, 2H), 2.01 (t, J = 2.8 Hz, 1H), 1.61 (s, 3H), 1.41 (s, 3H)
【0099】
(9-3)(S)-5-((t-ブチルジフェニルシリル)オキシ)-1-((4S,5R)-2,2-ジメチル-5-(プロピ-2-イン-1-イル)-1,3-ジオキソラン-4-イル)ヘキシ-2-イン-1-オンは次のようにして合成した。
【化54】
既知化合物(S)-t-ブチル (ペント-4-イン-2-イロキシ)ジフェニルシラン 92.3 mg (0.286 mmol)をテトラヒドロフラン 0.9 mLに溶解させ、-78度に冷却した後、ノルマルブチルリチウム 174 μL (0.286 mmol)を加えた。-78度で1時間撹拌した後、実施例19で製造した(4S,5R)-N-メトキシ-N,2,2-トリメチル-5-(プロピ-2-イン-1-イル)-1,3-ジオキソラン-4-カルボキサミド 50.0 mg (0.220 mmol)をテトラヒドロフラン 0.2 mLに溶解させて反応液に-78度で加えた。0度で10分間撹拌した後、飽和塩化アンモニウム水溶液を加え、酢酸エチルで分液を3回行った。得られた有機層を飽和食塩水で洗浄した後、有機層に硫酸ナトリウムを加え水の除去を行った。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー (酢酸エチル:ヘキサン=1:1)にて精製し、(S)-1-((4S,5R)-5-アリル-2,2-ジメチル-1,3-ジオキソラン-4-イル)-5-((t-ブチルジフェニルシリル)オキシ)ヘキサ-2-イン-1-オンを薄黄色の液体として得た (51.3 mg、収率48%)。
1H-NMR (CDCl
3, 400 MHz) δppm: 7.68-7.65 (overlapped, 4H), 7.46-7.36 (overlapped), 4.57-4.50 (overlapped, 2H), 4.03 (sext, J = 6.0 Hz, 1H), 2.56-2.50 (overlapped, 2H), 2.42 (ddd, J = 17.2, 7.6, 2.4 Hz, 1H), 2.02 (t, J = 2.8 Hz, 1H), 1.59 (s, 3H), 1.39 (s, 3H), 1.24 (d, J = 6.0 Hz, 3H), 1.05 (s, 9H)
【0100】
(9-4)(S)-1-((4S,5R)-2,2-ジメチル-5-(プロピ-2-イン-1-イル)-1,3-ジオキソラン-4-イル)-5-ヒドロキシヘキセ-2-イン-1-オンを次のようにして合成した。
【化55】
(9-3)で製造した(S)-1-((4S,5R)-5-アリル-2,2-ジメチル-1,3-ジオキソラン-4-イル)-5-((t-ブチルジフェニルシリル)オキシ)ヘキサ-2-イン-1-オン 5.0 mg (0.0103 mmol)をテトラヒドロフラン 0.1 mLに溶解させ、酢酸 3.7 μL (0.102 mmol)とn-テトラブチルアンモニウムフロリド溶液 150 μL (0.150 mmol)を室温で加えた。室温で10時間撹拌した後、0度で飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで分液を3回行った。得られた有機層を飽和食塩水で洗浄した後、有機層に硫酸ナトリウムを加え水の除去を行った。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー (酢酸エチル:ヘキサン=1:1)にて精製し、(S)-1-((4S,5R)-2,2-ジメチル-5-(プロピ-2-イン-1-イル)-1,3-ジオキソラン-4-イル)-5-ヒドロキシヘキセ-2-イン-1-オンを薄黄色の液体として得た (0.64 mg、収率25%)。
1H-NMR (CDCl
3, 400 MHz) δppm: 4.57 (overlapped, 2H), 4.06 (sext, J = 6.0 Hz, 1H), 2.65-2.53 (overlapped, 3H), 2.47 (ddd, J = 16.4, 6.8, 2.4 Hz, 1H), 2.06 (t, J = 2.8 Hz, 1H), 1.65 (s, 3H), 1.41 (s, 3H), 1.31 (d, J = 6.0 Hz, 3H)
【0101】
実施例10 1-((4S,5R)-5-アリル-2,2-ジメチル-1,3-ジオキソラン-4-イル)ヘキシ-2-イン-1-オン
1-((4S,5R)-5-アリル-2,2-ジメチル-1,3-ジオキソラン-4-イル)ヘキシ-2-イン-1-オンは次のようにして合成した。
【化56】
1-ペンチン 4.3 μL (0.0436 mmol)をテトラヒドロフラン 0.4 mLに溶解させ、-78度に冷却した後、ノルマルブチルリチウム 16 μL (0.0436 mmol)を加えた。-78度で1時間撹拌した後、(8-3)で製造した(4S,5R)-5-アリル-N-メトキシ-N,2,2-トリメチル-1,3-ジオキソラン-4-カルボキサミド 10.0 mg (0.0436 mmol)をテトラヒドロフラン 0.1 mLに溶解させて反応液に-78度で加えた。0度で3時間撹拌した後、飽和塩化アンモニウム水溶液を加え、酢酸エチルで分液を3回行った。得られた有機層を飽和食塩水で洗浄した後、有機層に硫酸ナトリウムを加え水の除去を行った。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー (酢酸エチル:ヘキサン=1:1)にて精製し、1-((4S,5R)-5-アリル-2,2-ジメチル-1,3-ジオキソラン-4-イル)ヘキシ-2-イン-1-オンを薄黄色の液体として得た (5.0 mg、収率45%)。
1H-NMR (CDCl
3, 400 MHz) δppm: 5.82 (m, 1H), 5.20-5.02 (overlapped, 2H), 4.53 (d, J = 7.4 Hz), 4.44 (m, 1H), 2.40-2.30 (overlapped, 3H), 2.28 (m, 1H), 1.70-1.63 (overlapped, 2H), 1.65 (s, 3H), 1.38 (s, 3H), 0.98 (d, J = 6.4 Hz, 3H)
【0102】
実施例11 (S)-1-((4S,5R)-2,2-ジメチル-5-プロピル-1,3-ジオキソラン-4-イル)-5-ヒドロキシヘキシ-2-イン-1-オン
(11-1)(4S,5R)-N-メトキシ-N,2,2-トリメチル-5-プロピル-1,3-ジオキソラン-4-カルボキサミドは次のようにして合成した。
【化57】
(8-3)で製造した(4S,5R)-5-アリル-N-メトキシ-N,2,2-トリメチル-1,3-ジオキソラン-4-カルボキサミド 20 mg (0.0872 mmol)をメタノール 0.4 mLに溶解させた後、パラジウム/カーボン 9.3 mg (0.00872 mmol)を加えた。水素雰囲気下、室温で12時間撹拌した後、セライト濾過でパラジウム/カーボンを除去した。溶媒を留去した後、粗生成物をシリカゲルカラムクロマトグラフィー (酢酸エチル:ヘキサン=1:1)にて精製し、(4S,5R)-N-メトキシ-N,2,2-トリメチル-5-プロピル-1,3-ジオキソラン-4-カルボキサミドを薄黄色の液体として得た (19.8 g、収率99%)。
1H-NMR (CDCl
3, 400 MHz) δppm: 4.92 (d, J = 6.8 Hz, 1H), 4.38 (ddd, J = 9.6, 6.8, 2.8 Hz, 1H), 3.69 (s, 3H), 3.18 (s, 3H), 1.60 (s, 3H), 1.58-1.31 (overlapped, 4H), 1.38 (s, 3H), 0.91 (t, J = 7.2 Hz, 3H)
【0103】
(11-2)(S)-5-((t-ブチルジフェニルシリル)オキシ)-1-((4S,5R)-2,2-ジメチル-5-プロピル-1,3-ジオキソラン-4-イル)ヘキシ-2-イン-1-オンは次のようにして合成した。
【化58】
既知化合物(S)-t-ブチル (ペント-4-イン-2-イロキシ)ジフェニルシラン 27.6 mg (0.0856 mmol)をテトラヒドロフラン 0.8 mLに溶解させ、-78度に冷却した後、ノルマルブチルリチウム 31 μL (0.0856 mmol)を加えた。-78度で1時間撹拌した後、(11-1)で製造した(4S,5R)-N-メトキシ-N,2,2-トリメチル-5-プロピル-1,3-ジオキソラン-4-カルボキサミド 19.8 mg (0.0856 mmol)をテトラヒドロフラン 0.2 mLに溶解させて反応液に-78度で加えた。0度で1時間撹拌した後、飽和塩化アンモニウム水溶液を加え、酢酸エチルで分液を3回行った。得られた有機層を飽和食塩水で洗浄した後、有機層に硫酸ナトリウムを加え水の除去を行った。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー (酢酸エチル:ヘキサン=1:4から1:1)にて精製し、(S)-5-((t-ブチルジフェニルシリル)オキシ)-1-((4S,5R)-2,2-ジメチル-5-プロピル-1,3-ジオキソラン-4-イル)ヘキシ-2-イン-1-オンを薄黄色の液体として得た (16.9 mg、収率40%)。
1H-NMR (CDCl
3, 400 MHz) δppm: 7.68-7.64 (overlapped, 4H), 7.47-7.33 (overlapped, 6H), 4.94 (d, J = 6.8 Hz, 1H), 4.57-4.50 (overlapped, 2H), 4.33 (ddd, J = 9.6, 6.8, 2.8 Hz, 1H), 4.03 (sext, J = 6.0 Hz, 1H), 1.62 (s, 3H), 1.58-1.31 (overlapped, 4H), 1.38 (s, 3H), 1.22 (t, J = 6.4 Hz, 3H), 0.89 (t, J = 7.0 Hz, 3H)
【0104】
(11-3)(S)-1-((4S,5R)-2,2-ジメチル-5-プロピル-1,3-ジオキソラン-4-イル)-5-ヒドロキシヘキシ-2-イン-1-オンを次のようにして合成した。
【化59】
(11-2)で製造した(S)-5-((t-ブチルジフェニルシリル)オキシ)-1-((4S,5R)-2,2-ジメチル-5-プロピル-1,3-ジオキソラン-4-イル)ヘキシ-2-イン-1-オン 6.0 mg (0.0122 mmol)をテトラヒドロフラン 0.18 mLに溶解させ、酢酸 7.0 μL (0.114 mmol)とn-テトラブチルアンモニウムフロリド溶液 0.17 mL (0.171 mmol)を室温で加えた。室温で9時間撹拌した後、0度で飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで分液を3回行った。得られた有機層を飽和食塩水で洗浄した後、有機層に硫酸ナトリウムを加え水の除去を行った。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー (酢酸エチル:ヘキサン=1:4から1:1)にて精製し、(S)-1-((4S,5R)-2,2-ジメチル-5-プロピル-1,3-ジオキソラン-4-イル)-5-ヒドロキシヘキシ-2-イン-1-オンを薄黄色の液体として得た (1.1 mg、収率35%)。
1H-NMR (CDCl
3, 400 MHz) δppm: 4.90 (d, J = 6.8 Hz, 1H), 4.30 (m, 1H), 1.62 (s, 3H), 1.59-1.29 (overlapped, 4H), 1.37 (s, 3H), 1.27 (t, J = 6.4 Hz, 3H), 0.91 (t, J = 7.2 Hz, 3H)
【0105】
試験例1 ヒト多発性骨髄腫細胞株RPMI8226に対する小胞体ストレス
ヒト多発性骨髄腫細胞株RPMI8226を、3.5cm dishに10000細胞/wellの密度で播種し、5%二酸化炭素雰囲気下、37℃で一晩インキュベートした。別途、実施例の化合物 (実施例7、18)をジメチルスルホキシドに溶解し、化合物の最終濃度が10μMとなるように各wellへ添加した。
次いで、5%二酸化炭素雰囲気下、37℃で24時間間培養した後、細胞を回収し、PBSバッファーを用いて細胞抽出液を調製し、SDS-PAGEにて泳動し、セミドライの転写装置でPVDF膜に転写した。
<抗体処理>
1次抗体:抗CHOP #2895 Lot:4[CST]
2次抗体:抗マウスIgG #7076 Lot:32[CST]
+抗ビオチン #7075 Lot:32[CST]
<検出条件>
検出試薬:Ultra
検出強度:Standard
露光時間:4秒
ゲル濃度:15%
タンパク量:50μg/レーン
結果を
図1に示す。
図1に示されるように、実施例2、8、及び9の化合物は、小胞体ストレス応答を誘起した。
【0106】
試験例2 抗がん活性
(1)ヒト多発性骨髄腫細胞株RPMI8226に対する抗がん活性
ヒト多発性骨髄腫細胞株RPMI8226を、96wellプレートに1×10
4細胞/wellの密度で播種し、5%二酸化炭素雰囲気下、37℃で一晩インキュベートした。別途、実施例の化合物をジメチルスルホキシドに溶解し、化合物の最終濃度が0.78125μM、1.5625μM、3.125μM、6.25μM、12.5μM、25μMまたは50μMとなるように各wellへ添加した。
次いで、5%二酸化炭素雰囲気下、37℃で3日間培養した後、細胞培養/細胞毒性測定用試薬(同仁化学社製,Cell Counting Kit-8)を用い、生細胞から産生される橙色色素(ホルマザン)の吸光度(420nm)を測定した。本発明化合物やメルファランを添加しない場合の吸光度を100とした場合の相対吸光度からIC
50値を求めた。
(2)各ヒトがん細胞株に対する抗がん活性
ヒトがん細胞株HCT116、A549、HeLaまたはヒト胎児腎由来細胞(HEK293)を、96wellプレートに1×10
4細胞/wellの密度で播種し、5%二酸化炭素雰囲気下、37℃で一晩インキュベートした。別途、実施例の化合物をジメチルスルホキシドに溶解し、化合物の最終濃度が0.78125μM、1.5625μM、3.125μM、6.25μM、12.5μM、25μMまたは50μMとなるように各wellへ添加した。
次いで、5%二酸化炭素雰囲気下、37℃で3日間培養した後、細胞培養/細胞毒性測定用試薬(同仁化学社製,Cell Counting Kit-8)を用い、生細胞から産生される橙色色素(ホルマザン)の吸光度(420nm)を測定した。本発明化合物やメルファランを添加しない場合の吸光度を100とした場合の相対吸光度からIC
50値を求めた。
これらの結果を表1に示す。
【表1】
【0107】
試験例3 PDI活性測定
Abcam製のPDI Inhibitor Screening Assay Kitを用いてPDI活性測定を行った (検出感度>37μM)。まず、96wellプレート各WellにMill-Q H2Oで希釈したInsulin solution (320μM)或いはMill-Q H2O(Blank)を50μL/wellとなるように加えた。次に、各WellにPDI working solution或いはMill-Q H2O(Negative control)を10μL/wellとなるように加えた。さらに、各Wellに希釈した化合物(最終濃度の8倍濃度の溶液)を10μL/wellとなるように加えた(Untreated, Negative control, BlankにはMill-Q H2Oを10μL/well)。次いで、各WellにDTTを10μL/wellとなるように加え、軽くプレートをたたいて混和した。その後、室温で30分間、遮光下でインキュベートし、各WellにStop Reagent working solutionを10μL/wellとなるように加えた。さらに各WellにPDI Detection Reagent working solutionを10μL/wellとなるように加えた。室温で15分間インキュベート後に励起波長500nm、蛍光波長603nmで蛍光をプレートリーダーで測定した。
Positive controlであるBacitracinのIC50は169.7μM、実施例2及び実施例9はそれぞれ24.1μM及び164.4μMであった。
【0108】
試験例4 マウスモデルにおける抗がん活性
ルシフェラーゼを恒常的に発現するマウス骨髄腫細胞株5TGM-1を6週齢雌ICRマウス右側脛骨骨髄内に10
6細胞移植し、1週間後に生着を確認後、実施例の化合物の最終濃度が20mg/kgとなるようマウスに腹腔内投与を隔日行った。2週間投与を行った後、腫瘍細胞の体内での増殖を観察するため、ルシフェリンを腹腔内投与しIVISイメージングシステムにより検出した。
結果を
図2~3に示す。
図2~3に示されるように、実施例2及び実施例8の化合物は、骨髄腫モデルマウスにおいて腫瘍進展を抑制した。
【0109】
試験例5 造血幹細胞への細胞障害活性への影響
ヒト末梢血幹細胞を12wellプレートに2X10
6細胞/wellの密度で播種し別途、実施例の化合物をジメチルスルホキシドに溶解し、最終濃度が10μMとなるように各wellへ添加し、24時間培養した。細胞を回収し、ヒト造血幹細胞コロニー測定用培地MethoCultに回収した細胞を2X10
5細胞/mlとなるよう混和後、35mmディッシュに1ml播種し、5%二酸化炭素雰囲気下、37℃で14日間培養した。培養後、白血球コロニー(CFU-GM)および赤血球コロニー(BFU-E)形成を明視野顕微鏡で観察し、数をカウントした。
結果を
図4~5に示す。
図4~5に示されるように、実施例2及び8の化合物は、正常造血には影響を与えなかった。
【0110】
試験例6 骨病変形成抑制活性
(1)マウス破骨前駆細胞株を用いた破骨細胞形成抑制活性
マウス破骨前駆細胞株RAW264.7細胞を96wellプレートに10
3細胞/wellの密度で播種し、リコンビナントヒトM-CSF(10ng/ml)およびリコンビナントヒトRANKL(25ng/ml)存在下で化合物の最終濃度が5μMとなるよう添加し、5%二酸化炭素雰囲気下、37℃で4日間培養した。培養後、TRAP染色を行い、3核以上のTRAP陽性破骨細胞数をカウントした。
結果を
図6に示す。
図6に示されるように、実施例8の化合物は、破骨細胞形成を抑制した。
(2)マウス初代培養細胞を用いた破骨細胞形成抑制活性
6週齢C57BL6マウス脛骨及び大腿骨より取り出した骨髄細胞を、5%二酸化炭素雰囲気下、37℃で一晩インキュベートし、浮遊細胞のみ分離し、細胞を96wellプレートに4×10
5細胞/wellの密度で播種した。これにリコンビナントヒトM-CSF(10ng/ml)を3日間処理し、その後リコンビナントヒトM-CSF(10ng/ml)およびリコンビナントヒトRANKL(25ng/ml)存在下で化合物の最終濃度が5μMとなるよう添加し、4日間培養した。培養後、TRAP染色を行い、3核以上のTRAP陽性破骨細胞数をカウントした。
結果を
図7に示す。
図7に示されるように、実施例2の化合物は、破骨細胞形成を抑制した。
(3)がん骨病変形成抑制活性
ルシフェラーゼを恒常的に発現するマウス骨髄腫細胞株5TGM-1を6週齢雌ICRマウス脛骨骨髄内に10
6細胞移植し、1週間後に生着を確認後、化合物の最終濃度が20mg/kgとなるようマウスに腹腔内投与を隔日行った。2週間投与を行い、脛骨を取り出し、軟X線写真撮影を行った。
結果を
図8に示す。
図8に示されるように、実施例8の化合物は、骨病変形成を抑制した。
【0111】
試験例7 抗リウマチ効果
ウシII型コラーゲンを10mM酢酸に溶解し、2mg/mlの溶液を作成後、Complete Freund's adjuvantと等量混ぜ合わせ、エマルジョンを作成した。作成したエマルジョンを6週齢雄DBA/1Jマウス尾基部皮内に100μl注射した。3週後、同様の方法で追加免疫を行い、2日後関節炎が誘発されたのを確認後、化合物の最終濃度が20mg/kgとなるようマウスに腹腔内投与を隔日行った。関節炎の評価は追加免疫後隔日Clinical Scoreを計測した。Clinical Scoreの判定は以下の基準を用い、四肢ごとに計測し、合計点を1匹の個体の測定値とした。
0:正常
1:1指に発赤・腫脹・変形が観察される
2:2指以上に発赤・腫脹・変形が観察される
3:足全体に発赤・腫脹・変形が観察される
結果を
図9に示す。
図9に示されるように、実施例2の化合物は抗リウマチ効果を奏した。