IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社リコーの特許一覧

特許7519012加熱体、加熱装置、定着装置および画像形成装置
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-07-10
(45)【発行日】2024-07-19
(54)【発明の名称】加熱体、加熱装置、定着装置および画像形成装置
(51)【国際特許分類】
   G03G 15/20 20060101AFI20240711BHJP
   H05B 3/03 20060101ALI20240711BHJP
   H05B 3/10 20060101ALI20240711BHJP
   H05B 3/00 20060101ALI20240711BHJP
【FI】
G03G15/20 510
H05B3/03
H05B3/10 A
H05B3/00 335
【請求項の数】 18
(21)【出願番号】P 2020162100
(22)【出願日】2020-09-28
(65)【公開番号】P2021162837
(43)【公開日】2021-10-11
【審査請求日】2023-07-14
(31)【優先権主張番号】P 2020060694
(32)【優先日】2020-03-30
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000006747
【氏名又は名称】株式会社リコー
(74)【代理人】
【識別番号】100107423
【弁理士】
【氏名又は名称】城村 邦彦
(72)【発明者】
【氏名】斎藤 聖治
(72)【発明者】
【氏名】足立 知哉
(72)【発明者】
【氏名】古市 祐介
(72)【発明者】
【氏名】岡本 潤
(72)【発明者】
【氏名】後藤 創
(72)【発明者】
【氏名】池田 保
(72)【発明者】
【氏名】南野 茂夫
【審査官】松本 泰典
(56)【参考文献】
【文献】特開2016-062024(JP,A)
【文献】特開2008-277117(JP,A)
【文献】再公表特許第2013/073276(JP,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G03G 15/20
H05B 3/03
H05B 3/10
H05B 3/00
(57)【特許請求の範囲】
【請求項1】
第1の導電部と、第2の導電部と、第3の導電部と、
第1の電極部と、第2の電極部と、第3の電極部と、
少なくとも1つの抵抗発熱体により構成される第1の発熱部および第2の発熱部と、を備えた加熱体であって、
前記抵抗発熱体は、複数並んで配列され、
前記複数の抵抗発熱体の配列方向において、前記第1の電極部および前記第2の電極部および前記第3の電極部は、前記複数の抵抗発熱体の中央よりも一方側に設けられ、
前記第1の電極部は、前記第1の導電部を介して前記第1の発熱部に接続され、
前記第2の電極部は、前記第2の導電部を介して前記第1の発熱部および前記第2の発熱部に接続され、
前記第3の電極部は、前記第3の導電部を介して前記第2の発熱部に接続され、
前記第2の導電部は、前記複数の抵抗発熱体の中央よりも前記一方側の1つの抵抗発熱体から延びた部分が、他の抵抗発熱体から延びた部分と合流して前記一方側と反対側である他方側に延び、その後に折り返して、前記第2の電極部に接続されることを特徴とする
加熱体。
【請求項2】
前記第2の導電部は、第2部分と第3部分と第4部分とを有し、
前記第2部分は、前記複数の抵抗発熱体の配列方向へ延びる部分で、
前記第3部分は、前記第2部分と前記第4部分とを、前記複数の抵抗発熱体の配列方向において、他方側の最端側に配置された前記抵抗発熱体に重なる位置あるいはそれよりも前記他方側で接続する部分で、
前記第4部分は、前記第3部分との接続位置から前記複数の抵抗発熱体の配列方向一方側へ延び、前記第2の電極部に接続される部分である請求項1記載の加熱体。
【請求項3】
前記第2の導電部は、さらに第1部分を有し、
前記複数の抵抗発熱体の配列方向と交差する方向で、前記加熱体の厚み方向と異なる方向を配列方向に交差する方向とすると、
前記第1部分は、前記各抵抗発熱体から延び、前記配列方向に交差する方向に延びて前記第2部分と接続される部分であり、
最も前記他方側に配置された前記抵抗発熱体と前記第1部分との接続位置は、当該抵抗発熱体の前記複数の抵抗発熱体の配列方向中央位置よりも前記他方側に設けられ、
前記複数の抵抗発熱体の配列方向において、前記第3部分が、前記接続位置よりも前記一方側に配置される請求項2記載の加熱体。
【請求項4】
前記複数の抵抗発熱体の配列方向において、前記第4部分は、前記第1の発熱部および前記第2の発熱部の全域にわたって設けられる請求項2記載の加熱体。
【請求項5】
前記複数の抵抗発熱体の配列方向と交差する方向で、前記加熱体の厚み方向と異なる方向を配列方向に交差する方向とすると、
前記複数の抵抗発熱体の配列方向において、前記第2部分あるいは前記第4部分の少なくともいずれか一方のうち、最も前記他方側に配置された抵抗発熱体に重なる部分の一部または全部の単位長さ当たりの抵抗値を、前記第3部分の前記配列方向に交差する方向の単位長さ当たりの抵抗値よりも相対的に小さくする請求項2から4いずれか1項に記載の加熱体。
【請求項6】
前記第3部分の前記複数の抵抗発熱体の配列方向の幅が、前記第4部分の前記配列方向に交差する方向の幅よりも大きい請求項5記載の加熱体。
【請求項7】
前記第4部分の前記複数の抵抗発熱体の配列方向の単位長さあたりの抵抗値が、前記第2部分の前記複数の抵抗発熱体の配列方向の単位長さあたりの抵抗値よりも大きい請求項2から6いずれか1項に記載の加熱体。
【請求項8】
前記複数の抵抗発熱体の配列方向と交差する方向で、前記加熱体の厚み方向と異なる方向を配列方向に交差する方向とすると、
前記第4部分の前記配列方向に交差する方向の幅が、前記第2部分の前記配列方向に交差する方向の幅よりも小さい請求項7記載の加熱体。
【請求項9】
前記第2の導電部は第1部分を有し、
前記複数の抵抗発熱体の配列方向と交差する方向で、前記加熱体の厚み方向と異なる方向を配列方向に交差する方向とすると、
前記第1部分は、前記各抵抗発熱体から延び、前記配列方向に交差する方向に延びて前記第2部分と接続される部分であり、
前記第1部分、前記第1の導電部の前記配列方向に交差する方向に延在する部分、および、前記第3の導電部の前記配列方向に交差する方向に延在する部分の少なくともいずれか1つの前記複数の抵抗発熱体の配列方向の幅が、前記第2部分、前記第1の導電部の前記複数の抵抗発熱体の配列方向に延在する部分、および、前記第3の導電部の前記複数の抵抗発熱体の配列方向に延在する部分の少なくともいずれか1つの前記配列方向に交差する方向の幅よりも広い請求項2から8いずれか1項に記載の加熱体。
【請求項10】
前記第2の導電部は第1部分を有し、
前記複数の抵抗発熱体の配列方向と交差する方向で、前記加熱体の厚み方向と異なる方向を配列方向に交差する方向とすると、
前記第1部分は、前記各抵抗発熱体から延び、前記配列方向に交差する方向に延びて前記第2部分と接続される部分であり、
前記第1部分、前記第1の導電部の前記配列方向に交差する方向に延在する部分、および、前記第3の導電部の前記配列方向に交差する方向に延在する部分の前記複数の抵抗発熱体の配列方向の幅の全てが、前記第2部分、前記第1の導電部の前記複数の抵抗発熱体の配列方向に延在する部分、および、前記第3の導電部の前記複数の抵抗発熱体の配列方向に延在する部分の少なくともいずれか1つの前記配列方向に交差する方向の幅よりも広い請求項2から8いずれか1項に記載の加熱体。
【請求項11】
前記複数の抵抗発熱体の配列方向と交差する方向で、厚み方向と異なる方向を配列方向に交差する方向とすると、
加熱体の前記配列方向に交差する方向の寸法に対する前記抵抗発熱体の前記配列方向に交差する方向の寸法の比が、25%以上である請求項1から10いずれか1項に記載の加熱体。
【請求項12】
前記複数の抵抗発熱体の配列方向と交差する方向で、厚み方向と異なる方向を配列方向に交差する方向とすると、
加熱体の前記配列方向に交差する方向の寸法に対する前記抵抗発熱体の前記配列方向に交差する方向の寸法の比が、40%以上である請求項1から10いずれか1項に記載の加熱体。
【請求項13】
請求項1から12いずれか1項に記載の加熱体を備えた加熱装置。
【請求項14】
前記複数の抵抗発熱体の配列方向において、前記第3部分の前記他方側端部は、加熱装置を通過する被加熱物の他方側端部の位置と同じである、請求項2、または請求項2に係る請求項3から12いずれか1項に記載の加熱体を備えた加熱装置。
【請求項15】
請求項13または14記載の加熱装置を備え、記録媒体上の画像を定着させる定着装置。
【請求項16】
請求項13から15いずれか1項に記載の加熱装置、もしくは定着装置を備えた画像形成装置。
【請求項17】
送風手段をさらに備えた請求項16記載の画像形成装置であって、
前記複数の抵抗発熱体の配列方向と交差する方向で、前記加熱体の厚み方向と異なる方向を配列方向に交差する方向とすると、
前記送風手段は、加熱体の複数の抵抗発熱体の配列方向中央位置よりも他方側へ向けて、前記配列方向に交差する方向の気流を発生させる画像形成装置。
【請求項18】
送風手段をさらに備えた請求項16記載の画像形成装置であって、
前記送風手段は、加熱体に対して、前記複数の抵抗発熱体の配列方向他方側から一方側への気流を発生させる画像形成装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、加熱体、加熱装置、定着装置および画像形成装置に関する。
【背景技術】
【0002】
加熱体により被加熱部材を加熱する加熱装置を備えた装置として、用紙上のトナーを熱により定着させる定着装置や用紙上のインクを乾燥させる乾燥装置などが知られている。
【0003】
例えば、下記特許文献1には、長手状の基板に、発熱体や電気接点、これらを電気的に接続する導体パターンなどが設けられた加熱体(ヒータ)を備える定着装置が開示されている。
【0004】
ところで、このような導体パターンが基板に設けられている加熱体においては、発熱体を発熱させる際、導体パターンへの通電により導体パターンでもわずかながら発熱が生じる。このため、厳密には、加熱体全体の発熱分布は、導体パターンの発熱の影響を受けることになる。
【0005】
従って、導体パターンの発熱分布によっては、それが原因で加熱体の温度分布にばらつきが生じる虞がある。
【発明の概要】
【発明が解決しようとする課題】
【0006】
加熱体において、複数の抵抗発熱体の配列方向の一方側と他方側との発熱量に偏差が生じるという課題があった。
【課題を解決するための手段】
【0007】
上記課題を解決するため、本発明は、第1の導電部と、第2の導電部と、第3の導電部と、第1の電極部と、第2の電極部と、第3の電極部と、少なくとも1つの抵抗発熱体により構成される第1の発熱部および第2の発熱部と、を備えた加熱体であって、前記抵抗発熱体は、複数並んで配列され、前記複数の抵抗発熱体の配列方向において、前記第1の電極部および前記第2の電極部および前記第3の電極部は、前記複数の抵抗発熱体の中央よりも一方側に設けられ、前記第1の電極部は、前記第1の導電部を介して前記第1の発熱部に接続され、前記第2の電極部は、前記第2の導電部を介して前記第1の発熱部および前記第2の発熱部に接続され、前記第3の電極部は、前記第3の導電部を介して前記第2の発熱部に接続され、前記第2の導電部は、前記複数の抵抗発熱体の中央よりも前記一方側の1つの抵抗発熱体から延びた部分が、他の抵抗発熱体から延びた部分と合流して前記一方側と反対側である他方側に延び、その後に折り返して、前記第2の電極部に接続されることを特徴とする。
【発明の効果】
【0008】
本発明によれば、加熱体における、複数の抵抗発熱体の配列方向の一方側と他方側とに生じる発熱量の偏差を抑制できる。
【図面の簡単な説明】
【0009】
図1】本発明の実施形態に係る画像形成装置の概略構成図である。
図2】定着装置の概略構成図である。
図3】定着装置の斜視図である。
図4】定着装置の分解斜視図である。
図5】加熱装置の斜視図である。
図6】加熱装置の分解斜視図である。
図7】ヒータの平面図である。
図8】ヒータの分解斜視図である。
図9】ヒータにコネクタが接続された状態を示す斜視図である。
図10】ヒータへの電力供給を示す図である。
図11】各導電部の構成を示す図である。
図12図10のヒータにおいて、通常の通電経路を示す図である。
図13図10のヒータにおいて、意図しない分流が生じた場合の通電経路を示す図である。
図14】本実施形態と異なるヒータの構成およびヒータへの電力供給を示す図である。
図15図14のヒータにおいて、部分通電で意図しない分流が生じた場合のブロックごとの給電線の発熱量を示す図である。
図16図14のヒータにおいて、全通電の場合のブロックごとの給電線の発熱量を示す図である。
図17図10のヒータにおいて、部分通電で意図しない分流が生じた場合のブロックごとの給電線の発熱量を示す図である。
図18図10のヒータにおいて、全通電の場合のブロックごとの給電線の発熱量を示す図である。
図19】第3部分の配置の変形例を示す図である。
図20図19のヒータにおいて、全通電の場合のブロックごとの給電線の発熱量を示す図である。
図21】第3部分の幅を変更した変形例を示す図である。
図22】第4部分の幅を変更した変形例を示す図である。
図23】送風機を設けた実施形態の画像形成装置を示す図である。
図24図23とは別の、送風機を設けた実施形態の画像形成装置を示す図である。
図25】ヒータの配列方向に交差する方向の寸法と抵抗発熱体の配列方向に交差する方向の寸法を示す平面図である。
図26】(a)、(b)図はそれぞれ、ヒータの変形例を示す平面図である。
図27】他の定着装置の構成を示す図である。
図28】別の定着装置の構成を示す図である。
図29】さらに別の定着装置の構成を示す図である。
図30】給電線の発熱量の左右偏差が大きくなる構成のヒータを示す図である。
【発明を実施するための形態】
【0010】
以下、本発明に係る実施の形態について、図面を参照して説明する。なお、各図中、同一又は相当する部分には同一の符号を付しており、その重複説明は適宜に簡略化ないし省略する。以下、各実施形態の説明において、加熱体を有する加熱装置を備えた装置として、トナーを熱により定着させる定着装置を説明する。
【0011】
図1に示すモノクロの画像形成装置1には、感光体ドラム10が設けられている。感光体ドラム10は、表面上に現像剤としてのトナーを担持可能なドラム状の回転体であり、図の矢印方向に回転する。感光体ドラム10の周囲には、感光体ドラム10の表面を一様に帯電させる帯電ローラ11と、感光体ドラム10の表面にトナーを供給する現像ローラ7等を備えた現像装置12と、感光体ドラム10の表面をクリーニングするためのクリーニングブレード13等で構成されている。
【0012】
感光体ドラム10の上方には、露光部が配置されている。露光部が画像データに基づいて発したレーザ光Lbが、ミラー14を介して感光体ドラム10の表面に照射される。
【0013】
また、感光体ドラム10に対向する位置に配置され、転写チャージャを備えた転写手段15が配置されている。転写手段15は、感光体ドラム10表面上の画像を用紙Pに転写する。
【0014】
画像形成装置1の下部には給紙部4が位置しており、記録媒体としての用紙Pを収容した給紙カセット16や、給紙カセット16から用紙Pを搬送路5へ搬出する給紙ローラ17等からなっている。給紙ローラ17の搬送方向下流側にはレジストローラ18が配置されている。
【0015】
定着装置9は、後述する加熱体によって加熱される定着ベルト20、その定着ベルト20を加圧可能な加圧ローラ21等を有している。
【0016】
以下、図1を参照して上記画像形成装置1の基本的動作について説明する。
【0017】
印刷動作(画像形成動作)が開始されると、まず感光体ドラム10が帯電ローラ11によってその表面を帯電される。そして、画像データに基づいて露光部からレーザービームLbが照射され、照射された部分の電位が低下して静電潜像が形成される。静電潜像が形成された感光体ドラム10には、現像装置12から表面部分にトナーが供給され、トナー画像(現像剤像)として可視像化される。そして、転写後の感光体ドラム10に残されたトナー等は、クリーニングブレード13によって取り除かれる。
【0018】
一方、印刷動作が開始されると、画像形成装置1の下部では、給紙部4の給紙ローラ17が回転駆動することによって、給紙カセット16に収容された用紙Pが搬送路5に送り出される。
【0019】
搬送路5に送り出された用紙Pは、レジストローラ18によってタイミングを計られ、感光体ドラム10表面上のトナー画像と向かい合うタイミングで転写手段15と感光体ドラム10との対向部である転写部へ搬送され、転写手段15による転写バイアス印加によりトナー画像が転写される。
【0020】
トナー画像が転写された用紙Pは、定着装置9へと搬送され、加熱されている定着ベルト20と加圧ローラ21とによって加熱および加圧されて、トナー画像が用紙Pに定着される。そして、トナー画像が定着された用紙Pは、定着ベルト20から分離され、定着装置9の下流側に設けられた搬送ローラ対によって搬送され、装置外側に設けられた排紙トレイへと排出される。
【0021】
続いて、定着装置9のより詳細な構成について説明する。
【0022】
図2に示すように、本実施形態に係る定着装置9は、ベルト部材あるいは定着部材としての定着ベルト20と、定着ベルト20の外周面に接触してニップ部Nを形成する、対向部材あるいは加圧部材としての加圧ローラ21と、定着ベルト20を加熱する加熱装置19と、を備えている。また、加熱装置19は、加熱体としての面状のヒータ22と、ヒータ22を保持する保持部材としてのヒータホルダ23と、ヒータホルダ23を支持する支持部材としてのステー24と、温度検知手段としてのサーミスタ35等を有する。定着ベルト20、加圧ローラ21、ヒータ22、ヒータホルダ23、および、ステー24は、図2の紙面に直交する方向(図3の両矢印B方向参照)に延在しており、以下、この方向を各部材の長手方向(ただし、加圧ローラ21の軸方向でもある)、あるいは、加熱装置19や定着装置9の長手方向と呼ぶ。また、この長手方向は、定着装置9に通紙される用紙の幅方向でもある。ただし、ヒータ22の長手方向とその他の部材や装置の長手方向が必ずしも一致する必要はない。
【0023】
定着ベルト20は、無端状のベルト部材で構成され、例えば外径が25mmで厚みが40~120μmのポリイミド(PI)製の筒状基体を有している。定着ベルト20の最表層には、耐久性を高めて離型性を確保するために、PFAやPTFE等のフッ素系樹脂による厚みが5~50μmの離型層が形成される。基体と離型層の間に厚さ50~500μmのゴム等からなる弾性層を設けてもよい。また、定着ベルト20の基体はポリイミドに限らず、PEEKなどの耐熱性樹脂やニッケル(Ni)、SUSなどの金属基体であってもよい。定着ベルト20の内周面に摺動層としてポリイミドやPTFEなどをコートしてもよい。
【0024】
加圧ローラ21は、例えば外径が25mmであり、中実の鉄製芯金21aと、この芯金21aの表面に形成された弾性層21bと、弾性層21bの外側に形成された離型層21cとで構成されている。弾性層21bはシリコーンゴムで形成されており、厚みは例えば3.5mmである。弾性層21bの表面は離型性を高めるために、厚みが例えば40μm程度のフッ素樹脂層による離型層21cを形成するのが望ましい。
【0025】
定着ベルト20は、加圧機構によって加圧ローラ21の側へ加圧され、加圧ローラ21に圧接されている。これにより、定着ベルト20と加圧ローラ21との間にニップ部Nが形成される。また、加圧ローラ21は、画像形成装置本体に設けられた駆動手段から駆動力が伝達されて回転駆動する駆動ローラとして機能する。一方、定着ベルト20は、加圧ローラ21の回転に伴って従動回転するように構成されている。定着ベルト20が回転すると、定着ベルト20はヒータ22に対して摺動するため、定着ベルト20の摺動性を高めるために、ヒータ22と定着ベルト20との間にオイルやグリースなどの潤滑剤を介在させてもよい。
【0026】
ヒータ22は、定着ベルト20の長手方向に渡って長手状に設けられ、加圧ローラ21に対応する位置で定着ベルト20の内周面に接触している。ヒータ22は、被加熱部材としての定着ベルト20を加熱し、定着ベルト20を所定の定着温度まで加熱するための部材である。
【0027】
本実施形態とは異なり、発熱部60を基材50の定着ベルト20側とは反対側(ヒータホルダ23側)に設けてもよい。その場合、発熱部60の熱が基材50を介して定着ベルト20に伝達されることになるため、基材50は窒化アルミニウムなどの熱伝導率の高い材料で構成されることが望ましい。また、本実施形態に係るヒータ22の構成において、さらに基材50の定着ベルト20とは反対側(ヒータホルダ23側)の面に、絶縁層を設けてもよい。
【0028】
ヒータ22は、定着ベルト20に対して、非接触あるいは低摩擦シートなどを介して間接的に接触する場合であってもよいが、定着ベルト20への熱伝達効率を高めるには、本実施形態のように、ヒータ22を定着ベルト20に対して直に接触させる方が好ましい。また、ヒータ22を定着ベルト20の外周面に接触させることもできるが、定着ベルト20の外周面がヒータ22との接触により傷付くと定着品質が低下する虞があるため、ヒータ22が接触する面は定着ベルト20の内周面とすることが望ましい。
【0029】
ヒータホルダ23およびステー24は、定着ベルト20の内側に配置されている。ステー24は、金属製のチャンネル材で構成され、その両端部分が定着装置9の両側壁部に支持されている。ステー24によってヒータホルダ23のヒータ22側とは反対側の面が支持されていることで、ヒータ22およびヒータホルダ23は加圧ローラ21の加圧力に対して大きく撓むことなく保たれ、定着ベルト20と加圧ローラ21との間に、ニップ部としての定着ニップNが形成される。
【0030】
ヒータホルダ23は、ヒータ22の熱によって高温になりやすいため、耐熱性の材料で形成されることが望ましい。例えば、ヒータホルダ23をLCPなどの低熱伝導性の耐熱性樹脂で形成した場合は、ヒータ22からヒータホルダ23への伝熱が抑制され効率的に定着ベルト20を加熱することができる。
【0031】
サーミスタ35は、基材50の裏面で発熱部60に対向する位置に設けられる。サーミスタ35が検知した温度に基づいて、加熱制御手段によってヒータ22に供給する電力を制御することで定着ベルト20の温度を所望の温度に制御する。加熱制御手段は、CPU,ROM,RAM,I/Oインターフェース等を包含するマイクロコンピュータを意味する。但し、通紙時などでは上記検知温度とは別に、通紙による抜熱分を考慮して、追加電力を適切に投入することで定着ベルト20の温度を所望の温度に制御する。
【0032】
印刷動作が開始されると、ヒータ22に電力が供給されることで、発熱部60が発熱し、定着ベルト20が加熱される。また、加圧ローラ21が回転駆動され、定着ベルト20が従動回転を開始する。そして、定着ベルト20の温度が所定の目標温度(定着温度)に到達した状態で、図2に示すように、未定着トナー画像が担持された用紙Pが、定着ベルト20と加圧ローラ21との間(定着ニップN)に搬送される(図2の矢印A方向参照)ことで、未定着トナー画像が加熱および加圧されて用紙Pに定着される。
【0033】
図3は、定着装置の斜視図、図4は、その分解斜視図である。
【0034】
図3および図4に示すように、定着装置9の装置フレーム40は、一対の側壁部28と前壁部27とから成る第1装置フレーム25と、後壁部29から成る第2装置フレーム26と、を備えている。一対の側壁部28は、長手方向の一端部側と他端部側とに配置されており、両側壁部28によって、定着ベルト20、加圧ローラ21および加熱装置19の両端部側が支持される。各側壁部28には、複数の係合突起28aが設けられ、各係合突起28aが後壁部29に設けられた係合孔29aに係合することで、第1装置フレーム25と第2装置フレーム26とが組み付けられる。
【0035】
また、各側壁部28は、加圧ローラ21の回転軸などを挿通させるための挿通溝28bが設けられている。挿通溝28bは、後壁部29側で開口し、これとは反対側では開口しない突き当て部となっている。この突き当て部側の端部には、加圧ローラ21の回転軸を支持する軸受30が設けられている。加圧ローラ21は、その回転軸の両端部がそれぞれ軸受30に装着されることで、両側壁部28によって回転可能に支持される。
【0036】
また、加圧ローラ21の回転軸の一端部側には、駆動伝達部材としての駆動伝達ギヤ31が設けられている。駆動伝達ギヤ31は、加圧ローラ21が両側壁部28に支持された状態で、側壁部28よりも外側に露出した状態で配置される。これにより、定着装置9が画像形成装置本体に搭載された際、駆動伝達ギヤ31が画像形成装置本体に設けられているギヤと連結し、駆動源からの駆動力を伝達可能な状態となる。なお、加圧ローラ21に駆動力を伝達する駆動伝達部材としては、駆動伝達ギヤ31のほか、駆動伝達ベルトを張架するプーリやカップリング機構などであってもよい。
【0037】
加熱装置19の長手方向の両端部には、定着ベルト20やヒータホルダ23、ステー24などを支持する一対のフランジ32が設けられている。各フランジ32には、ガイド溝32aが設けられている。このガイド溝32aを側壁部28の挿通溝28bの縁に沿って進入させることで、フランジ32が側壁部28に対して組み付けられる。
【0038】
また、各フランジ32には、付勢部材としての一対のバネ33が当接している。各バネ33によってステー24やフランジ32が加圧ローラ21側に付勢されることで、定着ベルト20が加圧ローラ21に押し当てられ、定着ベルト20と加圧ローラ21との間に定着ニップが形成される。
【0039】
また、図4に示すように、第2装置フレーム26を構成する後壁部29の長手方向の一端部側には、画像形成装置本体に対する定着装置本体の位置決めを行う位置決め部としての孔部29bが設けられている。一方、画像形成装置本体には、位置決め部としての突起101が設けられている。この突起101が、定着装置9の孔部29bに対して挿入されることで、突起101と孔部29bが嵌合し、画像形成装置本体に対する定着装置本体の長手方向の位置決めがなされる。なお、後壁部29の孔部29bが設けられた端部側とは反対の端部側には、位置決め部は設けられていない。これにより、温度変化に伴う定着装置本体の長手方向の伸縮が拘束されないようにしている。
【0040】
図5は、加熱装置19の斜視図、図6は、その分解斜視図である。
【0041】
図5および図6に示すように、ヒータホルダ23の定着ベルト側の面(図5および図6における手前側の面)には、ヒータ22を収容するための矩形の収容凹部23aが設けられている。収容凹部23aは、ヒータ22とほぼ同等の形状およびサイズに形成されているが、収容凹部23aの長手方向寸法L2はヒータ22の長手方向寸法L1よりも若干長く設定されている。このように、収容凹部23aがヒータ22よりも若干長く形成されていることで、熱膨張によりヒータ22がその長手方向に伸びても、ヒータ22と収容凹部23aとが干渉しないように構成されている。また、ヒータ22は、この収容凹部23a内に収容された状態で、給電部材としての後述のコネクタによってヒータホルダ23と一緒に挟まれて保持される。
【0042】
一対のフランジ32は、定着ベルト20の内側に挿入されて定着ベルト20を支持するC字状のベルト支持部32bと、定着ベルト20の端面に接触して長手方向の移動(片寄り)を規制するフランジ状のベルト規制部32cと、ヒータホルダ23およびステー24の両端部側が挿入されてこれらを支持する支持凹部32dと、を有している。定着ベルト20は、その両端部側にベルト支持部32bが挿入されることで、ベルト非回転時においては基本的に周方向(ベルト回転方向)の張力は生じない、いわゆるフリーベルト方式で支持される。
【0043】
図5および図6に示すように、ヒータホルダ23の長手方向一端部側には、位置決め部としての位置決め凹部23eが設けられている。この位置決め凹部23eに対して、図5および図6の左側に示されるフランジ32の嵌合部32eが嵌合することで、ヒータホルダ23とフランジ32との長手方向の位置決めがなされる。一方、図5および図6の右側に示されるフランジ32には、嵌合部32eは設けられておらず、ヒータホルダ23との長手方向の位置決めはされない。このように、フランジ32に対するヒータホルダ23の位置決めを長手方向の片側のみとすることで、温度変化に伴ってヒータホルダ23が長手方向へ伸縮したとしても、その伸縮が拘束されないようにしている。
【0044】
また、図6に示すように、ステー24の長手方向の両端部側には、各フランジ32に対するステー24の移動を規制する段差部24aが設けられている。各段差部24aはフランジ32に突き当たることでフランジ32に対するステー24の長手方向の移動を規制する。ただし、これら段差部24aのうち少なくとも一方は、フランジ32に対して隙間(ガタ)を介して配置される。このように、少なくとも一方の段差部24aがフランジ32に対して隙間を介して配置されることで、温度変化に伴ってステー24が長手方向に伸縮したとしても、その伸縮が拘束されないようにしている。
【0045】
図7は、ヒータ22の平面図、図8は、その分解斜視図である。
【0046】
図8に示すように、ヒータ22は、基材50と、基材50上に設けられた第1絶縁層51と、第1絶縁層51上に設けられた発熱部60などを有する導体層52と、導体層52を被覆する第2絶縁層53と、を有している。本実施形態では、定着ベルト20側(定着ニップN側)に向かって、基材50、第1絶縁層51、導体層52(発熱部60)、第2絶縁層53の順で積層されており、発熱部60から発された熱は、第2絶縁層53を介して定着ベルト20へと伝達される(図2参照)。
【0047】
基材50は、ステンレス(SUS)や鉄、アルミニウム等の金属材料で構成された長手状の板材である。また、基材50の材料として、金属材料のほか、セラミック、ガラス等を用いることも可能である。基材50にセラミックなどの絶縁材料を用いた場合は、基材50と導体層52との間の第1絶縁層51を省略することが可能である。一方、金属材料は、急速加熱に対する耐久性に優れ、加工もしやすいため、低コスト化を図るのに好適である。金属材料の中でも、特にアルミニウムや銅は熱伝導性が高く、温度むらが発生しにくい点で好ましい。また、ステンレスはこれらに比べて安価に製造できる利点がある。
【0048】
各絶縁層51,53は、耐熱性ガラスなどの絶縁性を有する材料で構成されている。また、これらの材料として、セラミックあるいはポリイミド(PI)等を用いてもよい。
【0049】
導体層52は、複数の抵抗発熱体59を有する発熱部60と、複数の電極部61と、これらを電気的に接続する複数の、導電体としての給電線62と、で構成されている。各抵抗発熱体59は、基材50上に設けられた複数の給電線62を介して3つの電極部61のいずれか2つに対して電気的に並列接続されている。
【0050】
抵抗発熱体59は、例えば、銀パラジウム(AgPd)やガラス粉末などを調合したペーストをスクリーン印刷等により基材50に塗工し、その後、当該基材50を焼成することによって形成される。抵抗発熱体59の材料として、これら以外に、銀合金(AgPt)や酸化ルテニウム(RuO)の抵抗材料を用いてもよい。
【0051】
給電線62は、抵抗発熱体59よりも小さい抵抗値の導体で構成されている。給電線62や電極部61の材料としては、銀(Ag)もしくは銀パラジウム(AgPd)などを用いることができ、このような材料をスクリーン印刷するなどによって給電線62や電極部61が形成されている。
【0052】
図9は、ヒータ22にコネクタ70が接続された状態を示す斜視図である。
【0053】
図9に示すように、コネクタ70は、樹脂製のハウジング71と、ハウジング71に設けられた複数のコンタクト端子72と、を有している。各コンタクト端子72は、板バネで構成され、給電用のハーネス73が接続されている。
【0054】
図9に示すように、コネクタ70は、ヒータ22とヒータホルダ23とを表側と裏側から一緒に挟むようにして取り付けられる。この状態で、各コンタクト端子72の先端に設けられた接触部72aが、それぞれ対応する電極部61に弾性的に接触(圧接)することで、コネクタ70を介して発熱部60と画像形成装置に設けられた電源とが電気的に接続される。これにより、電源から発熱部60へ電力が供給可能な状態となる。なお、各電極部61は、コネクタ70との接続を確保するため、少なくとも一部が第2絶縁層53に被覆されておらず、露出した状態になっている(図7参照)。
【0055】
図10に示すように、本実施形態では、基材50の長手方向に並ぶ複数の抵抗発熱体59のうち、両端以外の各抵抗発熱体59で構成される第1の発熱部60Aと、両端の各抵抗発熱体59で構成される第2の発熱部60Bとは、それぞれ独立して発熱制御可能に構成されている。具体的に、第1の発熱部60Aを構成する両端以外の各抵抗発熱体59は、第1の電極部61Aに対して第1の給電線62A(第1の導電部67A)を介して接続されている。また、第1の発熱部60Aを構成する各抵抗発熱体59は、第2の電極部61Bに対して第2の給電線62B(第2の導電部67B)を介して接続されている。一方、第2の発熱部60Bを構成する両端の各抵抗発熱体59は、(第1の電極部61Aとは別の)第3の電極部61Cに対して第3の給電線62Cおよび第4の給電線62D(第3の導電部67C)を介して接続されている。また、これら両端の各抵抗発熱体59は、第1の発熱部60Aの各抵抗発熱体59と同様に、第2の給電線62Bを介して第2の電極部61Bに接続されている。別の言い方をすると、第2の電極部61Bは、すべての抵抗発熱体59から伸びる給電線(第2の給電線62B)が合流して接続される。また、第1~3の電極部61A~61Cは、ヒータ22(基材50)の長手方向の中央位置F、あるいは複数の抵抗発熱体59の中央よりも長手方向一方側に設けられる。なお、本実施形態では、複数の抵抗発熱体59が配列された方向である図10の左右方向は、ヒータ22(基材50)の長手方向と一致している。以下の説明では、この図10の左右方向(長手方向)を複数の抵抗発熱体59の配列方向、あるいは、単に配列方向と称して説明する。また、この配列方向に交差する方向でヒータ22の厚み方向とは異なる方向(本実施形態では特に配列方向に直交する方向で、図10の上下方向あるいはヒータ22の短手方向でもある)を配列方向に交差する方向と称する。
【0056】
それぞれの電極部61A~61Cは、前述のコネクタ70を介して電源64に接続され、電源64から電力を供給される。電極部61Aは、電源64との間に、切替え部としてのスイッチ65Aが設けられており、スイッチ65AのONOFFにより、電圧の印加の有無を切り替えることができる。同様に、電極部61Cは、電源64との間に、切替え部としてのスイッチ65Cが設けられており、スイッチ65CのONOFFにより、電圧の印加の有無を切り替えることができる。さらに、これらのスイッチ65A,65CのONOFFやヒータ22への電力供給のタイミングは、制御部としての制御回路66によって制御されている。また制御回路66は、画像形成装置内の各種センサーの検知結果に基づいて、これらの制御を行う。例えば、定着ニップNの入口や出口に設けられたセンサーの検知結果に基づいて用紙の通紙タイミングを判断し、ヒータ22への電力の供給の有無やスイッチ65A,65Cの切り替えを行うことができる。制御回路66は、加熱装置や定着装置に設けられてもよいし、画像形成装置本体側に設けられてもよい。
【0057】
第1の電極部61Aおよび第2の電極部61Bに電圧を印加した場合は、両端以外の各抵抗発熱体59が通電することで、第1の発熱部60Aのみが発熱する。一方、第2の電極部61Bおよび第3の電極部61Cに電圧を印加した場合は、両端の各抵抗発熱体59が通電することで、第2の発熱部60Bのみが発熱する。また、全ての電極部61A~61Cに電圧を印加すれば、第1の発熱部60Aおよび第2の発熱部60Bの両方の(全ての)抵抗発熱体59を発熱させることができる。例えば、A4サイズ(通紙幅:210mm)以下の比較的小さい幅サイズの用紙を通紙する場合は、第1の発熱部60Aのみを発熱させ、A4サイズ(通紙幅:210mm)を超える比較的大きい幅サイズの用紙を通紙する場合は、第1の発熱部60Aに加え第2の発熱部60Bも発熱させることで、用紙幅に応じた発熱領域とすることができる。
【0058】
図11に示すように、第2の給電線62B(第2の導電部67B)は、第1部分62B1と、第2部分62B2と、第3部分62B3と、第4部分62B4とを有する。第1部分62B1は、第1の発熱部60Aおよび第2の発熱部60Bの各抵抗発熱体59に接続されて各抵抗発熱体59から延び、ヒータ22の配列方向に交差する方向(図11中の矢印Y方向:ヒータ22の発熱部60A,60Bが設けられている面に沿って配列方向Bと交差する方向でヒータの短手方向)に延在する部分である。第2部分62B2は、配列方向に延在し、各第1部分62B1が接続されて合流する部分である。第3部分62B3は、配列方向に交差する方向に延在し、第2部分62B2と第4部分62B4との配列方向他端側をつなぐ部分(配列方向において、最も他方側に配置された抵抗発熱体59に重なる位置、あるいは、それよりも他方側で第2部分62B2と第4部分62B4とをつなぐ部分)である。第4部分62B4は、配列方向に延在し、第2の電極部61Bに接続される部分である。言い換えると、第2の給電線62B(第2の導電部67B)は、各抵抗発熱体59から延びる部分が合流してヒータ22の配列方向他端側(ヒータ22の中央位置よりも他端側)で折り返し、配列方向一方側で第2の電極部61Bに接続されている。なお、図11(後述の図12等も同様)は概略図であり、ヒータ22の配列方向に交差する方向の寸法は誇張して表現している。
【0059】
本実施形態では、抵抗発熱体59の配列方向の中央位置Hに対して、第1の給電線62A、第3の給電線62C、および、第4の給電線62Dの抵抗発熱体59への接続位置K1は配列方向一方側(本実施形態では特に配列方向一方側端部)に配置され、第2の給電線62Bの抵抗発熱体59への接続位置K2は配列方向他方側(本実施形態では特に配列方向他方側端部)に配置される。図11では一例として、最も他方側に配置された抵抗発熱体59の中央位置Hおよび接続位置K1,K2を示している。
【0060】
また本実施形態では、全ての給電線62A~62Dの幅は同じに設定される。
【0061】
配列方向において、抵抗発熱体59が配置された領域をヒータ22の加熱領域Dとすると、第4部分62B4は加熱領域Dの全域にわたって設けられる。これにより、第4部分62B4を、ヒータ22が主として加熱する領域、例えば通紙領域に対応して設けることができ、第4部分62B4の発熱量を有効利用することができる。
【0062】
ところで、画像形成装置や定着装置のさらなる小型化を図るにあたっては、定着ベルトの内側に配置される部材の一つであるヒータの小型化が重要である。すなわち、ヒータをその配列方向に交差する方向に小さくすることで、定着ベルトを小径化することができ、ひいては定着装置および画像形成装置の小型化を実現できるようになる。具体的に、ヒータを配列方向に交差する方向に小さくする方法として、例えば次の方法が挙げられる。
【0063】
その方法とは給電線を配列方向に交差する方向に小さくする方法である。ただし、給電線を配列方向に交差する方向に小さくすると、給電線の抵抗値が大きくなるため、ヒータ全体の発熱量に対する給電線の発熱量の割合が大きくなり、給電線の発熱量による影響が無視できなくなる。また、給電線の抵抗値が大きくなると、ヒータの導電経路上で意図しない分流が発生する虞がある。特に、画像形成装置の高速化に対応すべく発熱部の発熱量を増大させるために、発熱部の抵抗値を小さくすると、給電線の抵抗値と発熱部の抵抗値が相対的に近づくため、意図しない分流が発生しやすくなる。従って、ヒータの配列方向に交差する方向の小型化を実現するには、抵抗値が上昇するのを見越したうえで給電線を配列方向に交差する方向に小さくし、これに伴って発生し得る意図しない分流に対しては別途対策を講じる必要がある。
【0064】
以下、上述のヒータ22と同じレイアウトのヒータを例に、意図しない分流について説明する。
【0065】
図12に示すヒータ22において、第1の発熱部60Aの各抵抗発熱体59のみを発熱させるために第1の電極部61Aと第2の電極部61Bとに電圧を印加すると、通常、電流は、第1の給電線62Aに流れ、両端以外の各抵抗発熱体59を通過して、第2の給電線62Bに流れる。
【0066】
しかしながら、上述の小型化に伴う給電線の抵抗値の増大や、発熱量向上に伴う発熱部の抵抗値の低下によって、給電線と発熱部のそれぞれの抵抗値の差が小さくなると、図13に示すように、意図しない経路の分流が発生する。すなわち、図13における左から2番目の抵抗発熱体59を通過した電流の一部が、その先の第2の給電線62Aの分岐部Xにて第2の電極部61B側とは反対側に流れる。そして、分流した電流は、図13における左端の抵抗発熱体59を通過し、さらに、第3の給電線62C、第3の電極部61C、第4の給電線62D、右端の抵抗発熱体59を順に通過した後、第2の給電線62Bに合流する。
【0067】
このように、図13に示すヒータ22において、第2の給電線62Bのうち分岐部Xから図の左側に伸びる部分と、第2の発熱部60Bを構成する両端の各抵抗発熱体59と、第3の電極部61Cと、第3の給電線62Cおよび第4の給電線62Dを含む部分は、意図しない経路で電流を流す分岐導電経路E3を構成する。
【0068】
また、このような意図しない分流は、ヒータ22の導電経路が、第1の発熱部60Aと第3の電極部61Cとを接続する第1の導電経路E1と、第1の発熱部60Aからヒータ22の配列方向のうち第1の方向S1(図13の右側)に伸びて第2の電極部61Bに接続される第2の導電経路E2と、第2の導電経路E2から第1の方向S1とは反対の第2の方向S2(図13の左側)に分岐して第1の導電経路E1を介さずに第2の導電経路E2または第2の電極部61Bに接続される分岐導電経路E3と、を少なくとも有する構成であれば、第1の発熱部60Aに通電した際に生じ得る。別の言い方をすると、「1つ目の電極部(第1の電極部61A)が配列方向中央側の抵抗発熱体59に接続される」、「2つ目の電極部(第3の電極部61C)が配列方向端部側の抵抗発熱体59に接続される」、「各抵抗発熱体59から伸びる給電線が合流して3つ目の電極部(第2の電極部61B)に接続される」という3つの条件により、第1の発熱部60Aに通電した際に上記の分流が生じ得る。本実施形態では、分岐導電経路E3上に、第2の発熱部60Bと第1の電極部61Aとが設けられているが、第2の発熱部60Bおよび第1の電極部61Aが設けられていない導電経路や、これら以外の導電部材が設けられた導電経路であっても、意図しない分流は生じる可能性がある。
【0069】
次に、全ての発熱部に通電した場合(以下、単に全通電の場合、とも呼ぶ)と、上記のように第1の発熱部60Aのみに通電した場合(以下、単に部分通電の場合、とも呼ぶ)において意図しない分流が生じた場合のそれぞれについて、給電線の発熱量の配列方向一方側と他方側との偏差が生じることを説明する。以下の説明では、まず、本発明と異なる構成のヒータとして、図14に示すヒータの構成を説明する。そして、図14の構成のヒータにおいて、全通電の場合と部分通電の場合について、給電線の発熱量の配列方向一方側と他方側との偏差が生じることを説明する。その後、対策を施した本実施形態の図10の構成について、全通電の場合と部分通電の場合の給電線の配列方向の各ブロックの発熱量を示す。
【0070】
図14に示すヒータ22は、前述の本実施形態のヒータと異なる点として、第2の電極部61Bが配列方向他方側、つまり、第1の電極部61Aや第3の電極部61Cとは反対側に配置されている。従って、各抵抗発熱体59と第2の電極部61Bとを接続する第2の給電線62Bは、配列方向他方側で第2の電極部61Bに接続され、折り返して配列方向他方側へ延在する部分(図11の第3部分62B3および第4部分62B4に相当する部分)が形成されない。この場合でも、部分通電した場合には、同様の分岐導電経路E3(図13参照)により意図しない分流が生じ得る。
【0071】
まず、図14のヒータ22に部分通電した場合の給電線の発熱量を、図15を用いて説明する。図15では、図14に示すヒータ22において、第1の電極部61Aから第1の発熱部60Aの各抵抗発熱体59へ電流が20%ずつ均等に流れ、このうち図の左から2番目の抵抗発熱体59を通過する電流が、その先の分岐部Xにおいて5%分流した場合の、抵抗発熱体59ごとに区画された各ブロック内で発生する給電線の発熱量を示している。なお、各ブロックの境界位置は、抵抗発熱体59同士の中間位置である。
【0072】
ここでは、各給電線のヒータ22の配列方向に交差する方向に伸びる部分は短く、その部分における発熱量はわずかであることからその発熱量は無視し、各給電線のヒータ22の配列方向に伸びる部分で発生する発熱量のみを算出している。具体的には、第1の給電線62Aと、第2の給電線62Bと、第4の給電線62Dの、それぞれのヒータ22の配列方向に伸びる部分で発生する発熱量を算出している。また、発熱量(W)は下記式(1)で表されることから、図13の表に示す発熱量は、便宜的に各給電線に流れる電流(I)の二乗として算出している。よって、図13の表に示す発熱量の数値は、あくまで簡易的に算出された値であり、実際の発熱量とは異なるものである。
【0073】
【数1】
【0074】
図15に基づき、発熱量の算出方法について具体的に説明すると、第1ブロックにおいては、第1の給電線62Aに流れる電流が100%、第4の給電線62Dに流れる電流が5%であるので、それぞれの二乗の合計値である10025(10000+25)が第1ブロックにおける給電線の合計発熱量となる。また、第2ブロックにおいては、第1の給電線62Aに流れる電流が80%、第2の給電線62Bに流れる電流が5%、第4の給電線62Dに流れる電流が5%であるので、これらの二乗の合計値である6450(6400+25+25)が第2ブロックにおける給電線の合計発熱量となる。また、他のブロックにおいても、同様にして発熱量を算出している。
【0075】
そして、図15の下側の表およびグラフに示すように、各ブロックの合計発熱量は、上記の意図しない分流の影響により、発熱領域中央の第4ブロックを基準に左右非対称となり、配列方向一方側の発熱量が他方側よりも大きくなる。ただし、第1ブロックおよび第7ブロックは、用紙が通過しない非通紙領域である。
【0076】
また全ての発熱部に通電した場合にも、導電部に流れる電流の大きさの差から、ヒータ22の配列方向の発熱量が左右非対称になる。つまり、上記のようにヒータ22を小型化しようとした場合、電極部や導電部の配置も制約を受けるため、ヒータ22の配列方向の発熱量が左右対称にすることも難しくなる。また前述のように装置の高速化を実現しようとした場合にも、導電部に流れる電流値の値が大きくなって左右の差も大きくなることから、その差を無視できなくなる。以下、全ての発熱部に通電した場合について説明する。
【0077】
図16に示すように、全ての発熱部に通電した場合、左右両端の抵抗発熱体59、および、これに接続された給電線62C,62Dにも20%の電流が流れる点が前述の場合と異なる。対して、給電線62Aに流れる電流の値は先ほどと同様である。この場合、第1ブロックにおいては、第1の給電線62Aに流れる電流が100%、第4の給電線62Dに流れる電流が20%であるので、それぞれの二乗の合計値である10400(10000+400)が第1ブロックにおける給電線の合計発熱量となる。また、第2ブロックにおいては、第1の給電線62Aに流れる電流が80%、第2の給電線62Bに流れる電流が20%、第4の給電線62Dに流れる電流が20%であるので、これらの二乗の合計値である7200(6400+400+400)が第2ブロックにおける給電線の合計発熱量となる。また、他のブロックにおいても、同様にして発熱量を算出している。
【0078】
そして、図16の下側の表およびグラフに示すように、各ブロックの合計発熱量は、発熱領域中央の第4ブロックを基準に左右非対称となる。特に、全ての抵抗発熱体59に接続された第2の給電線62Bが、その下流側、つまり第7ブロックで電流値が120%と大きくなり、配列方向他方側の発熱量が一方側よりも大きくなっている。なお、本実施形態では、小サイズ紙と大サイズ紙を均等に加熱できるように、各ブロックの長さは同じに設けている。
【0079】
次に、本実施形態の図10のヒータ22において、部分通電して意図しない分流が生じた場合の各ブロックの給電線の発熱量を図17に示す。
図17に示すように、本実施形態の図15と異なる点として、第2の給電線62Bの配列方向に延在する部分、つまり、第2の給電線62Bの主な発熱部分が、第2部分62B2と第4部分62B4とに分かれる点である。このうち、第2部分62B2の各ブロックの発熱量は、図15で示した第2の給電線62Bの各ブロックの発熱量と同じである。また、第1の給電線62Aおよび第4の給電線62Dの発熱量は図15の場合と同じである。従って、図17の各ブロックの合計発熱量は、図15と比較すると、第4部分62B4の発熱量の分だけ大きくなることになる。これは、後述する全通電の場合も同じである。
【0080】
第4部分62B4は、その途中で分岐などを生じないため、各ブロックを流れる電流値は100%で同じである。従って、図17における各ブロックの発熱量は、図15からその値が10000(100の2乗の値)ずつ増えた値になり、例えば第1ブロックの発熱量は、図15の第1ブロックの発熱量10025に10000を加えた20025になる。
【0081】
以上のことから、図17では、図15の場合と比較して、各ブロックの合計発熱量の大小関係に変化は生じない。従って、図17においても、配列方向一方側と他方側とでその発熱量に偏差が生じる。具体的には、第1ブロックの発熱量が20025と最も大きく、配列方向一方側の発熱量が他方側よりも大きくなる。
【0082】
また図18に示すように、図10のヒータ22において、全通電した場合においても、第4部分62B4の発熱量の分だけ各ブロックの合計発熱量が大きくなる。具体的には、第4部分62B4の各ブロックには140%の電流が流れるため、図18における各ブロックの発熱量は、図16からその値が19600(140の2乗の値)ずつ増えた値になり、例えば第1ブロックの発熱量は、図15の第1ブロックの発熱量10040に19600を加えた30000になる。
【0083】
以上のことから、図18では、図16の場合と比較して、各ブロックの合計発熱量の大小関係に変化は生じない。従って、図18においても、配列方向一方側と他方側とでその発熱量に偏差が生じる。具体的には、第7ブロックの発熱量が34000と最も大きく、配列方向他方側の発熱量が一方側よりも大きくなる。
【0084】
このように、図10のヒータ22においても、部分通電時および全通電時にヒータ22の発熱量に配列方向の偏差が生じる。具体的に、部分通電時には、ヒータ22の配列方向一方側(図17の左側)が発熱量の大きい側で、配列方向他方側(図17の右側)が発熱量の小さい側である。また、全通電時には、ヒータ22の配列方向他方側(図18の右側)が発熱量の大きい側で、配列方向一方側(図18の左側)が発熱量の小さい側である。
【0085】
上記の部分通電した場合、あるいは、全通電した場合において、第2の給電線62Bの第2部分62B2は、配列方向一方側から他方側へその電流量が増加している。また、第2の電極部61Bから第1の電極部61Aあるいは第3の電極部61Cの側へ電流を流した時に、配列方向他方側の抵抗発熱体59が電流方向の上流側、一方側の抵抗発熱体59が下流側に配置されることになる。
【0086】
以上の結果をまとめたものが表1および表2である。各表の「比較の構成」は図14のヒータを、「実施形態の構成」は図10の本実施形態のヒータをそれぞれ示している。表1は部分通電の場合を比較した結果で、表2は全通電の場合を比較した結果である。つまり、表1の2行目が図15の結果を、3行目が図17の結果を示しており、表2の2行目が図16の結果を、3行目が図18の結果を示している。また、それぞれの表では発熱部による発熱範囲の最も外側のブロックの発熱量を比較しており、具体的には、表1では第2ブロックと第6ブロックの発熱量を、表2では第1ブロックと第7ブロックの発熱量を比較している。各表の「発熱量の差」は、発熱量の大きいブロックから小さいブロックを差し引いた値を示し、「発熱量の比」は発熱量が小さいブロックの発熱量の大きいブロックの発熱量に対する比を示している。
【0087】
【表1】
【0088】
【表2】
【0089】
表1および表2に示すように、部分通電の場合と全通電の場合との両方において、「実施形態の構成」と「比較の構成」との間に「発熱量の差」に違いはない。具体的には、「発熱量の差」は部分通電の場合には800で、全通電の場合には4000である。また、発熱量が大きいブロックも同じである。しかし、それぞれの場合において、「実施形態の構成」の方が「比較の構成」よりも「発熱量の比」が大きく、1に近い値になっている。具体的には、「発熱量の比」は、「比較の構成」が、それぞれ、0.88,0.72であるのに対して、「実施形態の構成」が、それぞれ、0.95,0.88となっている。これは、「実施形態の構成」では、第4部分62B4の発熱量が全ブロックに等しく加算されたことで、各ブロックの合計発熱量の差が変わらずに合計発熱量の絶対値だけが大きくなったため、各ブロックの発熱量の差が相対的に小さくなったためである。
【0090】
以上のように本実施形態では、第2の電極部61Bを配列方向一方側に設けて第2の給電線62Bに折り返し部分(第3の部分62B3および第4の部分62B4)を設けることで、ヒータ22の配列方向一方側と他方側との発熱量の差を相対的に小さくすることができる。従って、ヒータ22の温度偏差に起因する不具合、具体的には、用紙の画像むらや光沢むらを抑制することができる。
【0091】
次に、ヒータ22の発熱量の左右の偏差をさらに抑制する実施形態について説明する。以下の図19あるいは図21に示す実施形態は、上記の全通電の場合にその温度偏差を抑制できる対策である。
【0092】
図19に示すように、本実施形態では、第2部分62B2と第4部分62B4とをつなぐ第3部分62B3が、図10に示す実施形態よりも第7ブロックの配列方向の中央寄りに配置されている。言い換えると、配列方向において、第3部分62B3が、第7ブロックの抵抗発熱体59に接続される第1部分62B1よりも配列方向一方側に配置される。
【0093】
上記第3部分62B3の配置により、第3部分62B3が第7ブロックの配列方向他端側、つまり、配列方向他方側の最端(最右端)に配置された抵抗発熱体59の配列方向他端に対応する位置に配置された場合(図10の場合)と比較すると、以下に説明する理由により第7ブロックの給電線の発熱量を小さくできる。
【0094】
第一に、図19に示すように、第3部分62B3が第7ブロックの中央寄り(他端よりも一方側)に配置されることで、第7ブロック内における第4部分62B4の長さが短くなる。これにより、第7ブロックの発熱量を小さくできる。従って、第3部分62B3が一方側に配置されるほど、第7ブロックの発熱量は小さくなる。
【0095】
第二に、第7ブロックの第2部分62B2の発熱量を小さくすることができる。つまり、第2部分62B2のうち、第3部分62B3よりも右側(配列方向他方側)の部分は、最右端の抵抗発熱体59に流れた電流分しか流れないため、その電流値が20%になる。また第2部分62B2のうち、第3部分62B3よりも左側(配列方向他方側)の部分はその電流値が120%になる。従って、図18のように、第7ブロックの第2部分62B2全体が120%である場合と比較すると、その発熱量が小さくなる。このため、第3部分62B3が一方側に配置されるほど、第7ブロックの発熱量は小さくなる。
【0096】
以上のように、第3部分62B3を第7ブロックの他端よりも一方側に配置することで、第7ブロックの給電線の発熱量を小さくできる。第7ブロックは、全通電時に発熱量の最も大きいブロックである(図18参照)ため、第7ブロックの発熱量を小さくして第6ブロックの発熱量に近づけることで、ヒータ22の配列方向の一方側と他方側の発熱量の温度偏差を小さくできる。従って、ヒータ22の温度偏差に起因する不具合、具体的には、用紙の画像むらや光沢むらを抑制することができる。
【0097】
図19に示すように、第7ブロックにおいて、第2部分62B2の第3部分よりも配列方向一方側(図19の左側)の長さをL1、配列方向他方側(図19の右側)の長さをL2とすると、一例として、本実施形態では、L1:L2を0.88:0.12とする。つまり、第2部分62B2のうち、電流値120%の部分と電流値20%の部分との比も0.88:0.12となる。また、第4部分62B4の長さは図18の場合(L2が0の場合)の0.88倍になる。従って、第7ブロックの給電線の発熱量は、(14400×0.88)+(20×20×0.12)+(19600×0.88)=29968となる。従って、図20に示すように、第1ブロックの発熱量が30000であるから、第1ブロックと第7ブロックの発熱量との差がほとんどなくなって前述の発熱量の比はほぼ1になり、ヒータ22の配列方向の一方側と他方側の発熱量の温度偏差をより小さくでき、ヒータ22の温度偏差に起因する不具合、具体的には、用紙の画像むらや光沢むらを抑制することができる。
【0098】
以上のように、第7ブロックの発熱量はL1の長さを小さくするほど小さくなるため、ヒータ22の配列方向一方側と他方側との発熱量や定着ベルト20の配列方向の温度分布等を考慮して、最適な長さL1と長さL2との比を決定することができる。
【0099】
また本実施形態では、配列方向において、定着装置に通紙される最大幅の用紙P1の配列方向他端P1aの通過位置は、第3部分62B3に一致する。これにより、第4部分62B4の発熱量を通紙範囲の定着ベルト20を加熱するために効率的に利用できるため、ヒータ22が定着ベルト20の通紙範囲を効率的に加熱できる。ただし、図10の実施形態において、第3部分62B3と他端P1aの通過位置を一致させてもよい。
【0100】
また、第3部分62B3の位置を第7ブロックの中央寄りへ移動させる他、図21に示すように、第3部分62B3の配列方向幅を大きくすることで同様の効果を得ることもできる。つまり本実施形態では、第3部分62B3の配列方向幅を大きくすることで、第3部分62B3、および、第2部分62B2と第4部分62B4の第3部分62B3と接続された部分(図21の範囲C参照)の抵抗値が小さくなる。これにより、この部分の発熱量が小さくなり(前述の数1参照)、第7ブロックの発熱量を小さくすることができる。従って、ヒータ22の配列方向の一方側と他方側の発熱量の温度偏差をより小さくし、ヒータ22の温度偏差に起因する不具合、具体的には、用紙の画像むらや光沢むらを抑制することができる。前述の実施形態と同様、範囲Cの大きさは、第1ブロックの発熱量と第7ブロックの発熱量の差を考慮して設定することができる。
【0101】
図21の実施形態は、第7ブロックにおける(あるいは、配列方向において、最も他方側の抵抗発熱体59に重なる位置の)第2部分62B2と第4部分62B4の発熱量を部分的に小さくする構成の一例である。つまり、図21では第3部分62B3を太くすることで、第3部分62B3に接続された第2部分62B2および第4部分62B4の短手方向の長さを部分的に大きくしている。これにより、その部分の抵抗値を小さくし、第7ブロックにおける第2部分62B2および第4部分62B4の発熱量を小さくしている。しかしこれに限らず、例えば、第7ブロックにおける第2部分62B2あるいは第4部分62B4の少なくともいずれか一方の、一部または全部の、配列方向の単位長さ当たりの抵抗値を、その他の給電線の単位長さ当たりの抵抗値(例えば第2の給電線62Bの第3部分62B3の配列方向に交差する方向の単位長さ当たりの抵抗値)よりも小さくすることができる。これにより、この部分からの発熱量を減らして第7ブロックの発熱量を減らし、ヒータ22の配列方向の一方側と他方側の発熱量の温度偏差をより小さくできる。また、単位長さ当たりの抵抗値を小さくする方法としては、その厚みや幅(第3部分62B3に接続された部分に限らず、それ以外の部分の幅でもよい)を大きくしたり、材料を変更することができる。ただし、加工上の理由から、給電線は同じ材料で形成され、同じ厚みで設けられることが多い。従ってこの場合、第7ブロックにおける第2部分62B2や第4部分62B4の配列方向に交差する方向の幅を大きくすることで、これらの部分の抵抗値を小さくできる。
【0102】
次に、図22に示す実施形態では、第4部分62B4の配列方向に交差する方向の幅G1が、その他の給電線の幅よりも小さく、特に、第2部分62B2の配列方向に交差する方向の幅G2よりも小さい。第4部分62B4の配列方向に交差する方向の幅G1を小さくすることで、この部分の抵抗値を大きくし、第4部分62B4の発熱量を大きくすることができる。従って、各ブロックの給電線の合計発熱量に対する第4部分62B4の発熱量の割合を大きくすることができるので、前述の表1や表2で「発熱量の比」をさらに1に近づけることができる。つまり、ヒータ22の配列方向一方側と他方側との発熱量の差を相対的に小さくすることができる。従って、ヒータ22の温度偏差に起因する不具合、具体的には、用紙の画像むらや光沢むらを抑制することができる。本実施形態の構成は、全通電および部分通電の場合の両方で、上記効果を得ることができる。
【0103】
図22の実施形態は、第4部分62B4の配列方向の単位長さ当たりの抵抗値を大きくする構成の一例であり、図22のように第4部分62B4の配列方向に交差する方向の幅を小さくする構成に限らない。具体的には、第4部分62B4の厚みを小さくしたり、材料を変更することにより、第4部分62B4の配列方向の単位長さ当たりの抵抗値を大きくしてもよい。ただし、加工上の理由から、給電線は同じ材料で形成され、同じ厚みで設けられることが多いため、図22のように第4部分62B4の配列方向に交差する方向の幅を小さくする構成は特に有用である。これにより、上記の実施形態と同様、各ブロックの給電線の合計発熱量に対する第4部分62B4の発熱量の割合を大きくし、ヒータ22の配列方向一方側と他方側との発熱量の差を相対的に小さくできる。
【0104】
図23に示すように、本実施形態では、画像形成装置1に、送風手段としての送風機110が設けられる。送風機110は、定着装置9の配列方向中央位置Jよりも配列方向他方側(図10の電極部61A~61Cが配置される側と反対側)に設けられる。送風機110は、画像形成装置の筐体102に設けられた吸気口102aから吸気し、ヒータ22(定着装置9)の配列方向他端部に向けて、配列方向と交差する方向へ送風する(図23の矢印方向参照)。本実施形態では特に、送風機110は、ヒータ22の配列方向他端部に向けて、配列方向に直交する方向へ送風する。
【0105】
送風機110の送風により、全通電時に発熱量の大きい側でヒータ22や定着ベルト20等の定着装置9内の部材から熱量を奪うことができる。従って、全通電時に、ヒータ22の配列方向一方側と他方側との発熱量の差に起因する不具合、具体的には、用紙の画像むらや光沢むらを抑制することができる。なお、配列方向一方側に送風機110を設けることで、部分通電時に、ヒータ22の配列方向一方側と他方側との発熱量の差に起因して生じる不具合、具体的には、用紙の画像むらや光沢むらを抑制することもできる。
【0106】
図24に示すように、本実施形態では、定着装置9よりも配列方向他方側に第1の送風手段としての第1の送風機110Aが設けられ、定着装置9よりも配列方向一方側に、第2の送風手段としての第2の送風機110Bが設けられる。
【0107】
第1の送風機110Aおよび第2の送風機110Bにより、ヒータ22(定着装置9)に、配列方向他方側から一方側への気流を発生させることができる(図24の矢印方向参照)。これにより、配列方向他方側の熱量を一方側へ移動させることができる。従って、全通電時に、ヒータ22の配列方向一方側と他方側との発熱量の差に起因する不具合、具体的には、用紙の画像むらや光沢むらを抑制することができる。なお、図24とは送風方向が逆方向になるように各送風機110A,110Bを設けることで、部分通電時に、ヒータ22の配列方向一方側と他方側との発熱量の差に起因して生じる不具合、具体的には、用紙の画像むらや光沢むらを抑制することもできる。また、送風機110A,110Bのうちのいずれか一方のみを設けてもよい。
【0108】
また本発明は、特に配列方向に交差する方向に小型化したヒータに好適である。つまり、前述のようにヒータ22の配列方向に交差する方向の寸法を小さくしようとした場合、給電線の配列方向に交差する方向の寸法を小さくする必要があり、給電線からの発熱量が相対的に大きくなってその影響も大きくなるためである。具体的には、図25に示すヒータ22(基材50)の配列方向に交差する方向の寸法Qに対する抵抗発熱体59の配列方向に交差する方向の寸法Rの比(R/Q)が25%以上となるヒータ22に本発明を適用することが好ましい。さらに、本発明は、前記配列方向に交差する方向の寸法比(R/Q)が40%以上となるヒータ22に適用されることがより好ましい。このような小型のヒータ22に本発明を適用することでより大きな効果を期待できる。
【0109】
次に、上記の配列方向に交差する方向の寸法の比(R/Q)を変化させた場合の、ヒータ22の配列方向中央側と端部側との間に生じる温度偏差の実験結果について説明する。実験では、前述した構成のヒータ22について、上記の配列方向に交差する方向の寸法比(R/Q)が、20%以上25%未満、25%以上40%未満、40%以上70%未満、70%以上80%未満のものをそれぞれ用意し、ヒータ単体の条件下でヒータの全ての抵抗発熱体に所定の電圧で通電し、ヒータの配列方向中央および端部のそれぞれの表面温度をフリアシステムズ社製の赤外線サーモグラフィ FLIR T620を用いて測定した。以上の実験結果を表1に示す。表1の結果は、中央側と端部側の温度差が2℃未満のものを○、2℃以上5℃未満のものを△、5℃以上のものを×とした。なお、配列方向に交差する方向の寸法の比(R/Q)を80%以上とすると、ヒータの配列方向に交差する方向の寸法を極端に大きくする等しない限り、給電線を配置するスペースがなくなるため、実験の対象にはしていない。
【0110】
【表3】
【0111】
表3に示すように、配列方向に交差する方向の寸法の比(R/Q)が大きくなるほど、ヒータの中央と端部の温度差も大きくなった。具体的には、20%以上25%未満では〇であるのに対して、25%以上40%未満では△に変化し、40%以上70%未満、および、70%以上80%未満では×に変化した。この結果からわかるように、ヒータの配列方向の温度むらは、配列方向に交差する方向の寸法の比(R/Q)が25%以上で顕著になり、40%以上で特に顕著になる。従って、このような寸法比のヒータに対して、本実施形態の上記構成を適用してその温度偏差を抑制することが好適である。
【0112】
また、前述のヒータ22の温度のばらつきを抑制するために、PTC特性を有する抵抗発熱体を用いてもよい。PTC特性とは、温度が高くなると抵抗値が高くなる(一定電圧をかけた場合に、ヒータ出力が下がる)特性である。PTC特性を有する発熱部とすることで、低温では高出力によって高速で立ち上がり、高温では低出力により過昇温を抑制することができる。例えば、PTC特性のTCR係数を300~4000ppm/度程度にすれば、ヒータに必要な抵抗値を確保しながら、低コスト化を図れる。より好ましくは、TCR係数を500~2000ppm/度とするのがよい。
【0113】
抵抗温度係数(TCR)は、下記式(2)を用いて算出することができる。式(2)中のT0は基準温度、T1は任意温度、R0は基準温度T0における抵抗値、R1は任意温度T1における抵抗値である。例えば、図7に示す上述のヒータ22において、第1の電極部61Aと第2の電極部61Bとの間の抵抗値が、25℃(基準温度T0)で10Ω(抵抗値R0)であり、125℃(任意温度T1)で12Ω(抵抗値R1)であった場合は、式(2)から抵抗温度係数は2000ppm/℃となる。
【0114】
【数2】
【0115】
また、本発明を適用するヒータは、図7などに示すようなブロック状(四角形状)の抵抗発熱体59を有するヒータ22に限らず、例えば、図26(a)あるいは図26(b)に示すような、直線を折り返したような形状の抵抗発熱体59を有するヒータ22や、その他の形状の抵抗発熱体を有するヒータにも適用可能である。なお、図中において、着色した箇所が抵抗発熱体59を示している。図26(a)では、ヒータ22の配列方向に沿って形成されている給電線62A、62Dから、配列方向に交差する方向に給電線が一部延びている例である。一方、図26(b)は、ヒータ22の配列方向に沿って形成されている給電線62A、62Dから配列方向に交差する方向に折れ曲がった領域も含めて抵抗発熱体59として形成されている例である。
【0116】
また、本発明は、前述の定着装置のほか、図27図29に示すような定着装置にも適用可能である。以下、図27図29に示す各定着装置の構成について簡単に説明する。
【0117】
まず、図27に示す定着装置9は、定着ベルト20に対して加圧ローラ21側とは反対側に、押圧ローラ90が配置されており、この押圧ローラ90とヒータ22とによって定着ベルト20を挟んで加熱するように構成されている。一方、加圧ローラ21側では、定着ベルト20の内周にニップ形成部材91が配置されている。ニップ形成部材91は、ステー24によって支持されており、ニップ形成部材91と加圧ローラ21とによって定着ベルト20を挟んで定着ニップNを形成している。
【0118】
次に、図28に示す定着装置9では、前述の押圧ローラ90が省略されており、定着ベルト20とヒータ22との周方向接触長さを確保するために、ヒータ22が定着ベルト20の曲率に合わせて円弧状に形成されている。その他は、図27に示す定着装置9と同じ構成である。
【0119】
最後に、図29に示す定着装置9について説明する。定着装置9は、加熱アセンブリ92、定着部材である定着ローラ93、対向部材である加圧アセンブリ94からなる。加熱アセンブリ92は、先の実施形態で説明したヒータ22および加熱装置19、ベルト部材としての加熱ベルト120を有する。また、定着ローラ93は、中実の鉄製芯金93aと、この芯金93aの表面に形成された弾性層93bと、弾性層93bの外側に形成された離型層93cとで構成されている。また、定着ローラ93に対して加熱アセンブリ92側とは反対側に、加圧アセンブリ94が設けられている。加圧アセンブリ94は、ニップ形成部材95とステー96とを配置し、これらニップ形成部材95とステー96を内包するように加圧ベルト97を回転可能に配置している。そして、加圧ベルト97と定着ローラ93との間の定着ニップN2に用紙Pを通紙して加熱および加圧して画像を定着する。
【0120】
図29に示す定着装置9において、加熱アセンブリ92は定着ローラ93を加熱するため、前述のようにヒータ22の配列方向(図の奥行方向)において一方側と他方側と発熱量の偏差があると、定着ローラ93においても、配列方向の一方側と他方側とで温度の偏差が生じる。
【0121】
以上の図27図29の定着装置においても、図10で示したヒータの構成を採用することにより、ヒータ22の配列方向の発熱量の差を相対的に小さくできる。従って、ヒータ22の温度偏差に起因する不具合、具体的には、用紙の画像むらや光沢むらを抑制することができる。
【0122】
また、本発明の加熱体を有する加熱装置を備えた装置としては、上記の実施形態で説明したような定着装置に限らず、用紙に塗布されたインクを乾燥させる乾燥装置、さらには、被覆部材としてのフィルムを用紙等のシートの表面に熱圧着するラミネータや、包材のシール部を熱圧着するヒートシーラーなどの熱圧着装置であってもよい。このような装置にも本発明の加熱体を適用することで、加熱体の配列方向の発熱量の差を相対的に小さくできる。従って、加熱体の温度偏差に起因する不具合を抑制することができる。
【0123】
記録媒体としては、用紙P(普通紙)の他、厚紙、はがき、封筒、薄紙、塗工紙(コート紙やアート紙等)、トレーシングペーパ、OHPシート、プラスチックフィルム、プリプレグ、銅箔等が含まれる。
【0124】
以上で説明した各実施形態の加熱体の構成、つまり、第2の導電部に折り返し部分を設ける構成は、特に、給電線の配列方向に延在する部分の発熱量が大きい加熱体に適用することが好適である。例えば、図30に示すヒータ22は、第1の給電線62A、第3の給電線62C、および、第4の給電線62Dの配列方向に延在する部分62A1,62C1,62D1、および、第2の給電線62Bの第2部分62B2の配列方向に交差する方向の幅が、その他の給電線の幅、特に本実施形態では、第1の給電線62A、第3の給電線62C、および、第4の給電線62Dの配列方向に交差する方向に延在する部分62A2,62C2,62D2の配列方向の幅、および、第2の給電線62Bの第1部分62B1の配列方向の幅よりも小さい。このようなヒータ22では、第1の給電線62A、第3の給電線62C、および、第4の給電線62Dの配列方向に延在する部分、および、第2の給電線62Bの第2部分62B2の発熱量が大きくなる。特に、第1の給電線62Aあるいは第2部分62B2の発熱量が大きくなることで、ヒータ22の発熱量の配列方向の偏差が大きくなる。従って、このようなヒータ22に対して第2の給電線62Bに折り返し部分を設けることで、効果的にヒータ22の配列方向の偏差を相対的に小さくすることができる。また本実施形態のように、各給電線の配列方向に延在する部分の幅を小さくすることで、ヒータ22の配列方向に交差する方向の寸法を小さくすることができ、ヒータ22をより小型化することができる。なお、本実施形態では、第1の給電線62A、第3の給電線62C、および、第4の給電線62Dの配列方向に延在する部分62A1,62C1,62D1、および、第2の給電線62Bの第2部分62B2の配列方向に交差する方向の幅が、全て上記の配列方向に交差する方向に延在する部分62A2,62C2,62D2、および、第1部分62B1の配列方向の幅よりも小さい場合を示したが、これらのいずれか1つ、また、これらの一部の配列方向に交差する方向の幅が小さい場合であってもよい。また、給電線の配列方向に延在する部分(62A1,62C1,62D1、および、第2の給電線62Bの第2部分62B2)の配列方向の単位長さ当たりの抵抗値が大きい例として、その配列方向に交差する方向の幅が小さい場合を例示した。しかし、給電線の配列方向に延在する部分の厚みが小さかったり、抵抗値の大きい材料が用いられることで、これらの部分の配列方向の単位長さ当たりの抵抗値が大きくなっていてもよい。このような構成に対しても、本発明の上記実施形態の加熱体の特徴部分を適用することが好適である。
【符号の説明】
【0125】
1 画像形成装置
9 定着装置
19 加熱装置
20 定着ベルト(被加熱部材あるいはベルト部材あるいは定着部材)
21 加圧ローラ(対向部材あるいは加圧部材)
22 ヒータ(加熱体)
59 抵抗発熱体(発熱体)
60 発熱部
61 電極部
62 給電線(導電体)
67A 第1の導電部
67B 第2の導電部
67C 第3の導電部
110 送風機(送風手段)
A 通紙方向
B 配列方向あるいはヒータの長手方向
F 抵抗発熱体の配列方向の中央位置
H 抵抗発熱体の配列方向中央位置
K1,K2 接続位置
N 定着ニップ(ニップ部)
P 用紙(記録媒体あるいは被加熱物)
Q ヒータの配列方向に交差する方向の寸法
R 抵抗発熱体の配列方向に交差する方向の寸法
Y ヒータの配列方向に交差する方向(ヒータの短手方向)
【先行技術文献】
【特許文献】
【0126】
【文献】特開2016-62024号公報
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29
図30