IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ インテグリス・インコーポレーテッドの特許一覧

特許7520936基材物品および装置の特性および性能を増強するためのコーティング
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-07-12
(45)【発行日】2024-07-23
(54)【発明の名称】基材物品および装置の特性および性能を増強するためのコーティング
(51)【国際特許分類】
   C23C 16/40 20060101AFI20240716BHJP
   H01L 21/31 20060101ALI20240716BHJP
   H01L 21/3065 20060101ALI20240716BHJP
   C23C 16/455 20060101ALI20240716BHJP
【FI】
C23C16/40
H01L21/31 B
H01L21/31 C
H01L21/302 101G
C23C16/455
【請求項の数】 8
【外国語出願】
(21)【出願番号】P 2022165444
(22)【出願日】2022-10-14
(62)【分割の表示】P 2020093800の分割
【原出願日】2016-02-13
(65)【公開番号】P2023011660
(43)【公開日】2023-01-24
【審査請求日】2022-11-09
(31)【優先権主張番号】62/221,594
(32)【優先日】2015-09-21
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/167,890
(32)【優先日】2015-05-28
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/116,181
(32)【優先日】2015-02-13
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/188,333
(32)【優先日】2015-07-02
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】505307471
【氏名又は名称】インテグリス・インコーポレーテッド
(74)【代理人】
【識別番号】110002077
【氏名又は名称】園田・小林弁理士法人
(72)【発明者】
【氏名】ヘンドリックス,ブライアン・シー
(72)【発明者】
【氏名】ピーターズ,デイビッド・ダブリュ
(72)【発明者】
【氏名】リー,ウェイミン
(72)【発明者】
【氏名】ウォルドフリード,カルロ
(72)【発明者】
【氏名】クック,リチャード・エイ
(72)【発明者】
【氏名】グンダ,ニレシュ
(72)【発明者】
【氏名】リン,イ-クアン
【審査官】山本 一郎
(56)【参考文献】
【文献】特表2012-530592(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C23C 16/40
H01L 21/31
H01L 21/3065
(57)【特許請求の範囲】
【請求項1】
1から40μmの範囲の平均細孔サイズを有する細孔を有する金属から形成されている繊維および/または粒子のマトリックスを含む多孔質マトリックスフィルターであって、金属から形成されている前記マトリックスが、20から2000μmの範囲の侵入深さを有する耐腐食性被膜として働くことができる金属酸化物ALDコーティングによって封入され、ALDコーティングが、前記金属から形成されているマトリックスを含むがALDコーティングを有さない多孔質マトリックスフィルターと比較して、多孔質マトリックスフィルターの繊維および/または粒子のマトリックスの細孔体積を5%を超えて変更することがなく、多孔質マトリックスフィルターが、散気板である、多孔質マトリックスフィルター。
【請求項2】
前記金属から形成されているマトリックスが、ステンレス鋼、ニッケル、又はチタンから形成されている、請求項1に記載の多孔質マトリックスフィルター。
【請求項3】
前記金属から形成されているマトリックスが、ステンレス鋼繊維、粒子、又は両方の焼成されているマトリックスである、請求項1に記載の多孔質マトリックスフィルター。
【請求項4】
ALDコーティングが、チタニア、アルミナ、ジルコニア、式MOの酸化物(Mは、Ca、Mg、又はBeである)、式M’Oの酸化物(M’は、化学量論的に許容される金属である)、及び式Lnの酸化物(Lnは、ランタニド元素、La、Sc、又はYである)からなる群から選択される金属酸化物を含む金属酸化物コーティングである、請求項1に記載の多孔質マトリックスフィルター。
【請求項5】
ALDコーティングが、アルミナコーティングである、請求項1に記載の多孔質マトリックスフィルター。
【請求項6】
ALDコーティングが、一方向で変化し多孔質マトリックスフィルター中で対応する細孔サイズの勾配をもたらす厚さを有する、請求項1に記載の多孔質マトリックスフィルター。
【請求項7】
金属から形成されている繊維および/または粒子のマトリックスを、ALDによる耐腐食性被膜として働くことができる金属酸化物コーティングを用いて20から2000μmの範囲の侵入深さまで封入することを含む、多孔質マトリックスフィルターの製造方法であって、金属から形成されている前記マトリックスが、1から40μmの範囲の平均細孔サイズを有する細孔を有し、ALDによる金属酸化物コーティングが、前記金属から形成されているマトリックスを含むがALDコーティングを有さない多孔質マトリックスフィルターと比較して、多孔質マトリックスフィルターの繊維および/または粒子のマトリックスの細孔体積を5%を超えて変更することがなく、多孔質マトリックスフィルターが、散気板である、製造方法。
【請求項8】
コーティングの厚さが、一方向で変化し、フィルター中で対応する細孔サイズの勾配をもたらす、請求項7に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は、35U.S.C.§119の規定の下、以下の米国仮特許出願:2015年2月13日出願のCarlo Waldfriedらの名称での「THIN FILM ATOMIC LAYER DEPOSITION COATINGS」に関する、米国仮特許出願第62/116,181号;2015年5月28日出願のBryan C.Hendrixらの名称での「COATINGS TO PREVENT TRANSPORT OF TRACE METALS BY AL2CL6 VAPOR」に関する、米国仮特許出願第62/167,890号;2015年7月2日出願のBryan C.Hendrixらの名称での、「COATINGS FOR ENHANCEMENT OF PROPERTIES AND PERFORMANCE OF SUBSTRATE ARTICLES AND APPARATUS」に関する米国仮特許出願第62/188,333号;および2015年9月21日出願のBryan C.Hendrixらの名称での「COATINGS FOR ENHANCEMENT OF PROPERTIES AND PERFORMANCE OF SUBSTRATE ARTICLES AND APPARATUS」に関する、米国仮特許出願第62/221,594号の利益を主張する。このような米国仮特許出願第62/116,181号、同第62/167,890号、同第62/188,333号および同第62/221,594号の開示は、すべての目的に対して、これらの各々の全体を参照により本明細書に組み込む。
【0002】
本開示は、例えば、望ましくない酸化物、窒化物、フッ化物、塩化物または他のハロゲン化物汚染物質化学種が形成されやすい表面を有する構造体および装置に関して、様々な基材物品および機器に適用可能なコーティングに一般に関する。特定の態様において、本開示は、半導体製造機器およびこの性能を増強する方法に関するものであり、さらに詳細には、このような機器において、六塩化二アルミニウム蒸気の存在に関連する汚染物質混入および粒子析出を受けやすい半導体製造機器、ならびにこのような有害な汚染物質混入および粒子析出に対処するための組成物および方法に関する。
【背景技術】
【0003】
多数の技術分野において、望ましくない酸化物、窒化物およびハロゲン化物(例えば、フッ化物および/または塩化物)汚染物質化学種が形成されやすいアルミニウム、陽極(アノード)化された酸化アルミニウム、石英、ステンレス鋼などの表面のような、汚染物質化学種が形成されやすい表面を含む構造体、材料および装置が見られ、これらの汚染物質化学種は、関連する製品、機器または材料の使用、利用または機能の妨げとなる。
【0004】
半導体製造の分野において、アルミニウムおよびアルミニウム含有材料が広く使用されている。金属化材料としてのアルミニウムは、ナノスケールの集積回路の用途において、銅によってかなり置きかえられてきたが、それでもなお、ワイヤの結合材料および接続材料として、ならびにバリア層、圧電性デバイスの構成要素、コールドカソード材料などとしての薄膜材料(例えばAIN薄膜)、ならびにLEDおよび他の光電子デバイスのような用途向け、または誘電体、誘電性ドーパント、バリア、光学コーティングなどとしてのAl層向けの半導体化合物組成物における使用として、アルミニウムが広範に利用され続けている。
【0005】
このような用途の多数において、ハロゲンガスが、デバイスの製造操作において、または半導体製造機器の表面および構成要素上に蓄積した汚染物質の堆積物を除去するための共流動性洗浄剤として、膜を加工する半導体製造機器に使用される。これらのハロゲンガスは、クロロ化学種を含むことがあり、この化学種は、機器、例えばウェハ表面、または機器の表面もしくは構成要素上に存在しているアルミニウムと接触すると、反応して六塩化二アルミニウム(AlCl)蒸気を形成する場合がある。このような六塩化二アルミニウム蒸気は、ひいては、半導体製造機器におけるステンレス鋼表面および構成要素を腐食し、クロム、鉄およびニッケルのような測定可能なレベルの金属を進行中のウェハ工程まで運ぶ働きをすることがある。
【0006】
別のクラスの用途は、AlCl蒸気をアルミニウム含有膜に堆積させるために使用する。Alは、試薬源としてトリメチルアルミニウムを使用するALDによって幅広く堆積されるが、それにもかかわらず、トリメチルアルミニウムは、大きな安全性および規制コストを受ける自然発火性溶液である。AlCl蒸気は、Entegris,Inc.、Billerica(Massachusetts、米国)によりProE-Vapという商標名で市販されているタイプの固体の気化ユニットのような固体気化器中で上記の固体AlClを容易に生成することができる。
【0007】
半導体および製造機器のステンレス鋼製構成要素は、316ステンレス鋼、または一般に電解研磨済みの他のステンレス鋼合金から形成され得る。このような電解研磨により、一般に、クロム、鉄、ニッケルおよび他の合金構成要素を含有する不動態酸化物の層により被覆されている表面が残る。さらに、このような金属構成要素は、自然酸化過程によって、対応する酸化物の微量表面を形成することがある。その結果、六塩化二アルミニウムが、このような金属酸化物に遭遇すると、金属酸化物が六塩化二アルミニウムと反応して、対応する蒸気相である、メタロ塩化アルミニウム化合物が形成し、この化合物は、ウェハおよび半導体デバイスまたデバイス前駆構造体に輸送される場合があり、微量金属が堆積することがある、またはそうでない場合、機器において製造されている製品に損害をもたらすことがある。あるいは、金属酸化物は、AlCl蒸気と反応して、デバイス構造体に運ばれて損害を引き起こすおそれがあるAlおよび金属塩化物微粒子を形成する場合がある。さらに、AlCl固体は、金属酸化物表面と接触して、メタロ塩化アルミニウム蒸気または固体塩化物粒子を形成する場合がある。
【発明の概要】
【発明が解決しようとする課題】
【0008】
その結果、このような半導体製造機器および他の薄膜堆積またはエッチング用機器において、六塩化二アルミニウムと金属の表面および構成要素との有害な相互作用を抑制することは、顕著な改善になると思われる。
【0009】
緻密でピンホールおよび欠陥がない様々な産業用途向けのコーティングであって、部品の電気絶縁体のような他のコーティング品質および利点、コンフォーマルに部品を被覆することができること、化学的およびエッチング耐性、耐腐食性、拡散バリア特性および接着層特性を実現するコーティングも、継続的に必要とされている。
【課題を解決するための手段】
【0010】
(発明の要旨)
本開示は一般に、様々な基材物品、構造体、材料および機器に適用可能なコーティングに関するものであり、特定の態様において、半導体製造機器およびこの性能を増強する方法、より詳細には、このような機器における六塩化二アルミニウムの存在に伴う汚染物質混入および粒子析出を受けやすい半導体製造機器、ならびにこのような有害な汚染物質混入および粒子析出に対処するための組成物および方法に関する。
【0011】
本開示は、一態様において、金属の酸化物、窒化物またはハロゲン化物が形成されやすい前記金属の表面を含む構造体、材料または装置であって、金属の表面が、前記構造体、材料または装置の使用または操作時にこのような金属酸化物、窒化物またはハロゲン化物と反応性して前記構造体、材料または装置およびこれらの使用または操作に有害な反応生成物を形成する気体、固体または液体と接触するよう構成されており、金属の表面が、被覆表面と反応性気体との反応を防止する保護被膜により被覆されている、構造体、材料または装置に関する。
【0012】
一態様において、本開示は、金属の酸化物、窒化物またはハロゲン化物が形成されやすい前記金属の表面を含む半導体製造装置であって、金属の表面が、前記装置の操作時に、前記金属酸化物、窒化物またはハロゲン化物と反応して前記装置およびこの操作に有害な反応生成物粒子および/または反応生成物蒸気を形成する気体、固体または液体と接触するよう構成されており、金属の表面が、被覆表面と反応性気体との反応を防止する保護被膜により被覆されている、半導体製造装置に関する。
【0013】
本開示のさらなる態様は、金属の酸化物、窒化物またはハロゲン化物が形成されやすい前記金属の表面を含む構造体、材料または装置の性能を改善する方法であって、金属の表面が、前記構造体、材料または装置の使用または操作時に、前記金属酸化物、窒化物またはハロゲン化物と反応して前記構造体、材料または装置およびこれらの使用または操作に有害な反応生成物を形成する気体、固体または液体と接触するよう構成されており、金属の表面を、被覆表面と反応性気体との反応を防止する保護被膜により被覆するステップを含む、方法に関する。
【0014】
別の態様において、本開示は、金属の酸化物、窒化物またはハロゲン化物が形成されやすい前記金属の表面を含む半導体製造装置の性能を改善する方法であって、金属の表面が、前記装置の操作時に、金属酸化物、窒化物またはハロゲン化物と反応して前記装置およびこの操作に有害な反応生成物を形成する気体、固体または液体に接触するよう構成されており、金属の表面を、被覆表面と反応性気体との反応を防止する保護被膜により被覆するステップを含む、方法に関する。
【0015】
別の態様において、本開示は、反応性固体に接触する半導体製造装置の性能の改善に関する。
【0016】
本開示のさらなる態様によれば、産業用途向けの薄膜原子層堆積コーティングが提供される。本開示による薄膜コーティングは、本明細書において記載されている。
【0017】
本開示の別の態様は、異なるALD生成物材料からなる層を含む複合ALD被膜に関する。
【0018】
本開示のさらなる態様は、少なくとも1つのALD層、およびALD層ではない少なくとも1つの堆積層を含む複合被膜に関する。
【0019】
別の態様において、本開示は、基材上にパターン化ALD被膜を形成させる方法であって、基材上にALD膜成長を防止するのに有効な表面終端材料からなる層のパターンを形成させるステップを含む、方法に関する。
【0020】
別の態様において、本開示は、材料の表面脆弱部(infirmity)を充填および/または封止する方法であって、脆弱部の充填および/または封止をもたらす厚さで、材料の表面脆弱部にALD被膜を適用するステップを含む、方法に関する。
【0021】
本開示のさらなる態様は、金属および/またはポリマー材料から形成されている繊維および/または粒子のマトリックスを含むフィルターであって、繊維および/または粒子のマトリックスはこの上にALD被膜を有しており、ALD被膜は、この上の前記ALD被膜のない対応する繊維および/または粒子のマトリックスと比べて、繊維および/または粒子のマトリックスの細孔体積を5%を超えて変更させることはなく、繊維および/または粒子が金属から形成されており、ALD被膜が金属を含み、ALD被膜の金属は、繊維および/または粒子の金属とは異なる、フィルターに関する。
【0022】
本開示のまた別の態様は、半導体処理器具に気体流または蒸気流を送達する方法であって、前記気体流源または蒸気流源から半導体処理器具への気体流または蒸気流の流路を設けるステップ、および気体流または蒸気流を流路中のフィルターに流し、流れに由来する外来性固体物質を除去するステップを含み、フィルターは、本明細書に様々に記載されている本開示のフィルターを含む、方法に関する。
【0023】
本開示は、さらなる態様において、アルミナのALD被膜により被覆されているステンレス鋼製繊維および/または粒子の焼成されているマトリックスを含むフィルターであって、焼成されているマトリックスは、1から40μm、例えば、10から20μmの範囲の直径の細孔を含み、ALD被膜が、2から500nmの範囲の厚さを有する、フィルターに関する。
【0024】
本開示の別の態様は、固体材料を気化させるための、その中に支持表面を含む内部容積部を画定する容器を備えた固体気化装置であって、支持表面の少なくとも一部がこの表面にALD被膜を有する、固体気化装置に関する。
【0025】
さらなる態様において、本開示は、1つ以上の層を含む、薄膜被膜であって、少なくとも1つの層が原子層堆積によって堆積されている、薄膜被膜に関する。
【0026】
本開示の別の態様は、1000Åを超える膜厚を有するALD被膜に関する。
【0027】
本開示のさらなる態様は、非常に緻密でピンホールがなく、欠陥のない層を含む、ALD被膜に関する。
【0028】
本開示のまた別の態様は、シリコンウェハ上の集積回路デバイス以外の部品表面上に堆積された薄膜被膜に関する。
【0029】
さらなる態様において、本開示は、絶縁性金属酸化物および金属を含む、ALD被膜に関する。
【0030】
別の態様において、本開示は、20℃から400℃の範囲の温度において堆積可能なALD被膜に関する。
【0031】
本開示のさらなる態様は、規定された化学量論を有する単一膜を含む、ALD被膜に関する。
【0032】
本開示の別の態様は、ALD層を、様々な堆積技法により堆積された少なくとも1つの他の層と組み合わせて含む、薄膜被膜に関する。
【0033】
別の態様において、本開示は、2μmを超えない被膜厚を有する、多層ALD被膜に関する。
【0034】
本開示の別の態様は、酸化物、アルミナ、酸窒化アルミニウム、イットリア、イットリア-アルミナ混合物、酸化ケイ素、酸窒化ケイ素、遷移金属酸化物、遷移金属酸窒化物、希土類金属酸化物および希土類金属酸窒化物からなる群から選択される材料からなるALD被膜に関する。
【0035】
本開示のさらなる態様は、基材部分上にパターン化ALD被膜を形成する方法であって、ALD被膜により該部分を均一に被覆するステップ、およびマスクにより望まれないコーティング材料をエッチバックするステップを含む、方法に関する。
【0036】
本開示の別の方法の態様は、基材部分上にパターン化ALD被膜を形成する方法であって、該部分の領域をマスクするステップ、ALD被膜により該部分を被覆するステップ、および該部分のマスク領域からALD被膜を除去するステップを含む、方法に関する。
【0037】
本開示のさらなる方法の態様は、基材部分上にパターン化ALD被膜を形成する方法であって、ALD膜成長を阻止する表面終端構成要素を含む材料により基材部分をパターン化するステップ、およびパターン化基材部分をALD被膜により被覆するステップを含む、方法に関する。
【0038】
本開示のさらなる態様は、基材部分を電気絶縁する方法であって、前記基材部分に欠陥がなく、ピンホールのない緻密な、電気絶縁性ALD被膜を適用するステップを含む、方法に関する。
【0039】
本開示は、基材表面にある被膜であって、化学的耐性特性およびエッチング耐性特性を有するALD被膜を含む、被膜に関する。
【0040】
本開示の別の態様は、ALDの耐腐食性被膜を含む、基材表面上の被膜に関する。
【0041】
本開示のさらなる態様は、ALD拡散バリア層を含む、基材表面上の被膜に関する。
【0042】
本開示のさらなる態様は、ALD接着層を含む、基材表面上の被膜に関する。
【0043】
本開示のまた別の態様は、ALD表面シーラント層を含む、基材表面上の被膜に関する。
【0044】
別の態様において、本開示は、化学的耐性ALD被膜により被覆されている繊維性金属膜を含む、多孔質フィルターに関する。
【0045】
本開示のさらなる態様は、ALD被膜により被覆されている多孔質材料マトリックスを含むフィルターであって、多孔質金属マトリックスの平均細孔サイズが、ALD被膜により被覆されていない、対応する多孔質材料マトリックスに関して、ALD被膜により低下される、フィルターに関する。
【0046】
本開示の別の態様は、ALD被膜により被覆されている多孔質材料マトリックスを含むフィルターであって、被膜厚が一方向に様々となり、フィルター中に対応する細孔サイズの勾配をもたらす、フィルターに関する。
【0047】
さらなる態様において、本開示は、多孔質フィルターを作製する方法であって、多孔質材料マトリックスの平均細孔サイズを低下させるために、多孔質材料マトリックスをALD被膜により被覆するステップを含む、方法に関する。
【0048】
別の態様において、本開示は、この中に内部容積部を画定する容器、容器から前駆体蒸気を排出するよう構成されている出口、および固体前駆体材料を気化させて前駆体の蒸気を形成させるための、固体前駆体材料をこの上に支持するようになされている容器の内部容積部内に支持構造体を備えた、固体気化装置であって、固体前駆体材料がアルミニウム前駆体を含み、内部容積部中の表面領域の少なくとも一部がアルミナ被膜により被覆されている、固体気化装置に関する。
【0049】
さらなる態様において、本開示は、使用または操作時に、ハロゲン化アルミニウムに曝露されるステンレス鋼構造体、材料または装置の耐腐食性を増強する方法であって、前記ステンレス鋼構造体、材料または装置をアルミナ被膜により被覆するステップを含む、方法に関する。
【0050】
本開示の別の態様は、使用または操作時に、エッチング用媒体に曝露される半導体処理用エッチング構造体、構成要素または装置であって、イットリアの層を含む被膜により被覆されており、イットリアの層が、任意選択的に前記被膜中のアルミナの層の上にある、半導体処理用エッチング構造体、構成要素または装置に関する。
【0051】
本開示のまた別の態様は、使用または操作時に、エッチング用媒体に曝露される半導体処理用エッチング構造体、構成要素または装置の耐腐食性およびエッチング耐性を増強する方法であって、構造体、構成要素または装置を、イットリアの層を含む被膜により被覆するステップを含み、イットリアの層が、任意選択的に前記被膜中のアルミナの層の上にある、方法に関する。
【0052】
別の態様において、本開示は、アルミナ被膜により封入されたニッケル膜を含む、エッチングチャンバ散気板に関する。
【0053】
本開示のさらなる態様は、ニッケル膜を含むエッチングチャンバ散気板に対する耐腐食性およびエッチング耐性を増強する方法であって、ニッケル膜をアルミナの封入被膜により被覆するステップを含む、方法に関する。
【0054】
別の態様において、本開示は、使用または操作時に、ハロゲン化物媒体に曝露される蒸着処理用構造体、構成要素または装置であって、イットリアのALDベースコーティングおよびイットリアのPVDオーバーコーティングを含む、イットリアの被膜により被覆されている、蒸着処理用構造体、構成要素または装置に関する。
【0055】
さらに別の態様において、本開示は、使用または操作時に、ハロゲン化物媒体に曝露される蒸着処理用構造体、構成要素または装置の耐腐食性およびエッチング耐性を増強する方法であって、イットリアのALDベースコーティングおよびイットリアのPVDオーバーコーティングを含む、イットリアの被膜により上記構造体、構成要素または装置を被覆するステップを含む、方法に関する。
【0056】
本開示のまた別の態様は、石英の封入構造体であって、この内方表面がアルミナ拡散バリア層により被覆されている石英の封入構造体に関する。
【0057】
本開示のさらなる態様は、石英の封入構造体の操作において、水銀の拡散を受けやすい石英の封入構造体へのこのような拡散を低減する方法であって、石英の封入構造体の内表面をアルミナ拡散バリア層により被覆するステップを含む、方法に関する。
【0058】
本開示のさらなる態様は、使用時または操作時における、1000Vを超えるプラズマおよび電圧に曝露されるプラズマ源構造体、構成要素または装置であって、前記構造体、構成要素または装置のプラズマ湿潤表面(plasma-wetted surface)が、アルミナのALD被膜により被覆されており、前記アルミナ被膜が、酸窒化アルミニウムのPVD被膜によりオーバー被覆されている、プラズマ源構造体、構成要素または装置に関する。
【0059】
一態様において、本開示は、使用時または操作時における、1000Vを超えるプラズマおよび電圧に曝露されるプラズマ源構造体、構成要素または装置の耐用年数を向上させる方法であって、前記構造体、構成要素または装置のプラズマ湿潤表面をアルミナのALD被膜により被覆するステップ、および前記アルミナ被膜を酸窒化アルミニウムのPVD被膜によりオーバー被覆するステップを含む、方法に関する。
【0060】
別の態様において、本開示は、アルミナのベース層、この上のニッケル電極層、ニッケル電極層上にALDアルミナ電気隔離層、ALDアルミナ電気隔離層上にPVD酸窒化アルミニウム熱膨張緩衝層、ならびにPVD酸窒化アルミニウム熱膨張緩衝層上にCVD酸窒化ケイ素ウェハの接触表面および電気スペーサー層を含む逐次層を備えた、誘電積層体に関する。
【0061】
別の態様において、本開示は、(i)および(ii)の多層被膜のうちの1つにより被覆されているアルミニウム表面を含む、プラズマ活性化構造体、構成要素または装置に関する:(i)アルミニウム表面上のCVDケイ素のベースコート、およびCVDケイ素のベースコート上のALDジルコニアの層;ならびに(ii)アルミニウム表面上のCVD酸窒化ケイ素のベースコート、およびCVD酸窒化ケイ素のベースコート上のALDアルミナ層。
【0062】
本開示の別の態様は、プラズマ活性化構造体、構成要素または装置のアルミニウム表面に対する粒子形成および金属の混入を低減する方法であって、(i)および(ii)の多層被膜のうちの1つにより、アルミニウム表面を被覆するステップを含む、方法に関する;(i)アルミニウム表面上のCVDケイ素のベースコート、およびCVDケイ素のベースコート上のALDジルコニアの層;ならびに(ii)アルミニウム表面上のCVD酸窒化ケイ素のベースコート、およびCVD酸窒化ケイ素のベースコート上のALDアルミナ層。
【0063】
本開示の別の態様において、ステンレス鋼、ニッケルまたはチタンから形成されている膜を含む、多孔質マトリックスフィルターであって、膜が、20から2000μmの範囲の被膜の侵入深さまでアルミナによって封入されている、多孔質マトリックスフィルターが企図される。
【0064】
対応する方法態様において、本開示は、多孔質マトリックスフィルターを作製する方法であって、ステンレス鋼、ニッケルまたはチタンから形成されている膜を20から2000μmの範囲の被膜の侵入深さまでアルミナにより封入するステップを含む、方法に関する。
【0065】
本開示の他の態様、特徴および実施形態は、この後の記載および添付の特許請求の範囲から一層完全に明確になる。
【図面の簡単な説明】
【0066】
図1】本開示の一態様による半導体ウェハ処理器具の蒸着炉の概略図である。
図2】AlCl蒸気を使用してウェハを被覆するための、本開示の別の態様による蒸着炉プロセスシステムであって、AlClを気化させるためのアンプルの形態にある固体源送達用気化器を利用してAlCl蒸気を形成させる、システムの概略図である。前記システムにおいて、トレイおよびアンプルの内部表面が、Alにより被覆されており、同様にアンプルの下流にあるバルブ、チューブおよびフィルターもすべて、Alにより被覆されている。
図3】気体を、ホルダーにより支持されている材料からの蒸気への接触を促進する一助となる、ホルダーを有する気化器用容器の透視破断図の一部である。
図4】本開示の別の態様による、フィルター素子において使用するのが有用なタイプの多孔質金属製フリットの表面の、15Kに拡大した、顕微鏡写真である。
図5】AlClへの曝露のない電解研磨済み316Lステンレス鋼の表面の、20,000倍に拡大した顕微鏡写真である。
図6】無水環境中、120℃において10日間、AlClへの曝露後の電解研磨済み316Lステンレス鋼の表面の、1000倍に拡大した顕微鏡写真である。
図7】AlClへの何ら曝露のなかった電解研磨済み316Lステンレス鋼の横断面の、50,000倍に拡大した顕微鏡写真である。
図8】無水環境中、120℃において、AlClに10日間、曝露した後の非被覆316Lステンレス鋼の、20,000倍に拡大した顕微鏡写真である。
図9】無水環境中、120℃において、AlClに10日間、曝露した後の電解研磨済み316Lステンレス鋼の、35,000倍に拡大した顕微鏡写真である。この図は、表面に沿って多数のくぼみがあることを示している。
図10】10日間、120℃において無水AlClに曝露する前の、トリメチルアルミニウムおよび水を使用して、100サイクルのALDによってAlが被覆されている電解研磨済み316Lステンレス鋼の、35,000倍の拡大の顕微鏡写真である。
図11】10日間、120℃において無水AlClに曝露する前の、トリメチルアルミニウムおよび水を使用して、1000サイクルのALDによってAlが被覆されている電解研磨済み316Lステンレス鋼の、35,000倍の拡大の顕微鏡写真である。
図12】155℃においてAlClに9日間、曝露した後に撮影した、ステンレス鋼試料試験片の合成写真である。試料試験片2および3は、アルミナの470Åの厚い被膜により被覆されており、試料試験片12および13は被覆されていない。
図13】10日間、220℃においてWClに曝露した後の、アルミナにより被覆されているステンレス鋼試料の上から見た走査型電子顕微鏡(SEM)写真である。
図14図13の試料における、10日間、220℃においてWClに曝露した後の、被膜の縁の集束イオンビーム(FIB)横断面図である。
図15】アルミニウム過程のために、三塩化アルミニウム(AlCl)固体前駆体を送達するための気化器アンプルにおいて使用するのが有用なテンレス鋼ホルダーの透視図である。この場合、気化器アンプルから排出するために、三塩化アルミニウム前駆体がホルダーにより支持されて気化され、三塩化アルミニウム前駆体蒸気を形成し、連結されている流通回路を通りアルミニウム過程へと送られる。
図16】ステンレス鋼ホルダーの上にアルミナの被膜を有する原子層堆積により被覆され、その結果、気化器アンプルの使用および操作時にホルダーが曝露される、三塩化アルミニウム(AlCl)の曝露を含む腐食環境において、ステンレス鋼表面がアルミナ被膜により封入される、図15に示されているタイプのステンレス鋼ホルダーの透視図である。
図17】耐腐食性をもたらすため、基材との化学反応を防止するため、および使用時の金属の混入を低減するための、原子層堆積によりステンレス鋼基材に適用されているアルミナ被膜の拡大概略図である。
図18】イットリア(Y)により被覆されている、プラズマエッチング装置のチャネルを示す図である。
図19】原子層堆積によってアルミナ上に適用されたイットリア被膜の拡大概略図である。
図20】アルミナ被膜により被覆されている、ステンレス鋼製フレームおよびニッケルフィルター膜を含む、散気板組立体の写真である。
図21】ステンレス鋼製フレームおよびニッケル膜がALDアルミナにより封入されている、散気板組立体の拡大概略図である。
図22】アルミニウム基材、アルミナのALD被膜およびAIONのPVD被膜を含む、被膜構造の拡大概略図である。
図23】ホットチャック構成要素に有用な誘電積層体の層構造の拡大概略図である。この場合、アルミナ基材がこの上に電極金属を有しており、この電極金属の上に、ALDアルミナの電気隔離層が存在し、この電気隔離層の上に、酸窒化アルミニウムのPVD被膜が存在し、PVD被膜の上に化学蒸着(CVD)により堆積した酸窒化ケイ素(SiON)の層が存在している。
図24】CVD Si層の上にジルコニアのALD層を有する、アルミニウム基材上に化学蒸着により適用したケイ素層を含む、多層積層体の拡大概略図である。
図25】アルミニウム基材上の酸窒化ケイ素のCVD層およびCVD SiON被膜層の上のアルミナのALD層を含む、多層積層体の拡大概略図である。
図26】原子層堆積によってアルミナにより被覆されている、1.5mmの壁厚および2-4μmの細孔サイズを有する多孔質材料の顕微鏡写真である。
図27】ステンレス鋼、ニッケル、チタン、またはALDに堆積させたアルミナにより完全に封入された他の好適な材料から形成されている膜を含む、封入膜の概略図である。
図28】被膜が、35μmの被膜の侵入深さを有するアルミナである、被覆フィルターの顕微鏡写真である。
図29】被膜が、175μmの被膜の侵入深さを有するアルミナである、被覆フィルターの顕微鏡写真である。
【発明を実施するための形態】
【0067】
本開示は、一般に、様々な基材物品、材料、構造体および機器に適用可能なコーティングに関する。様々な態様において、本開示は、半導体製造機器およびこの性能を増強する方法に関し、さらに詳細には、このような機器において、六塩化二アルミニウムの存在に関連する汚染物質混入および粒子析出を受けやすい半導体製造機器、ならびにこのような有害な汚染物質混入および粒子析出に対処するための組成物および方法に関する。
【0068】
本明細書において使用する場合、例えば、C-C12アルキル中の炭素数範囲の特定は、このような範囲内の構成要素の炭素数部分のそれぞれを含むことが意図されており、その結果、この明記されている範囲における間の炭素数の各々、および任意の他の明記されている炭素数値または間の炭素数値が包含され、指定した炭素数範囲内の炭素数の部分範囲は、本発明の範囲内のより小さな炭素数範囲に独立して含まれてもよいこと、および1個以上の炭素数を具体的に除く炭素数の範囲が本発明に含まれること、および指定した範囲の炭素数の境界値の一方または両方を除く部分範囲も、本発明に含まれることがさらに理解される。したがって、C-C12アルキルには、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシルおよびドデシルが、このようなタイプの直鎖基および分岐基を含めて、含まれることが意図されている。したがって、本発明の具体的な実施形態において、炭素数範囲の特定、例えば、置換基部分に広く適用可能なC-C12は、置換基部分のより幅広い規格内にある炭素数範囲を有する部分の部分群として、炭素数範囲をさらに制限することが可能であることを理解されたい。例として、本発明の特定の実施形態において、炭素数範囲、例えばC-C12アルキルは、一層厳密に指定されて、C-Cアルキル、C-Cアルキル、C-Cアルキル、C-Cアルキルのような部分範囲、または幅広い炭素数範囲内の任意の他の部分範囲を包含することができる。言い変えると、炭素数範囲は、このような範囲が該当する置換基、部分または化合物に関して、選択基の数の指定したものがこれから選択され得る選択基として、連続する炭素数の部分範囲またはこのような選択基内の指定した炭素数の種のどちらか一方として、この範囲の炭素数の種のそれぞれを断定的に説明すると考えられる。
【0069】
同じ構造および選択の適用柔軟性は、指定されている範囲、数値の制限(例えば、不等式、制限値超え、制限地未満)に関する、原子、官能基、イオンまたは部分の数を特定する化学量論係数および数値、ならびに酸化状態および特定の形態の他の決定変数、電荷状態、およびドーパント源に適用可能な組成物、注入種、ならびに本開示の幅広い範囲内の化学物質に適用可能である。
【0070】
「アルキル」には、本明細書において使用する場合、以下に限定されないが、メチル、エチル、プロピル、イソプロピル、ブチル、s-ブチル、t-ブチル、ペンチルおよびイソペンチルなどが含まれる。「アリール」には、本明細書において使用する場合、ベンゼン、または6から10個の炭素原子からなる不飽和芳香族炭素環式基であるベンゼン誘導体に由来する炭化水素が含まれる。アリールは、単環または多環式環を有していてもよい。用語「アリール」はまた、本明細書において使用する場合、置換アリールも含む。例は、以下に限定されないが、フェニル、ナフチル、キシレン、フェニルエタン、置換フェニル、置換ナフチル、置換キシレン、置換フェニルエタンなどを含む。「シクロアルキル」は、本明細書において使用する場合、以下に限定されないが、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシルなどを含む。本明細書におけるすべての化学式おいて、炭素数の範囲は、指定されている範囲における炭素数の端値の中間となる炭素原子数を含有するすべての部分、および指定範囲の端値に等しい炭素原子数を含有する部分を含めた、一連の連続する代替的な炭素含有部分を指定するものとして見なされ、例えば、C-Cは、C、C、C、C、CおよびCを含み、こうしたより幅広い範囲のそれぞれは、このような範囲内にある炭素数を参照して、この部分範囲としてさらに限定して指定され得る。したがって、例えば、範囲C-Cは、包括的なものであり、より幅広い範囲の範囲内にある、C-C、C-C、C-C、C-Cなどの部分範囲の規定によってさらに限定され得る。
【0071】
本開示は、一態様において、金属の酸化物、窒化物またはハロゲン化物(フッ化物、塩化物、ヨウ素および/または臭化物)が形成されやすいこうした金属の表面を含む構造体、材料または装置であって、金属の表面が、こうした構造体、材料もしくは装置の使用または操作時に、前記金属酸化物、窒化物またはハロゲン化物と反応して構造体、材料または装置およびこれらの使用または操作に有害な反応生成物を形成する気体、固体または液体に接触するよう構成されており、被覆表面と反応性気体との反応を防止する保護被膜により被覆されている、構造体、材料または装置に関する。
【0072】
一態様において、本開示は、金属の酸化物、窒化物またはハロゲン化物が形成されやすい前記金属の表面を含む半導体製造装置であって、金属の表面が、前記装置の使用または操作時に、前記金属と反応して前記装置およびこの使用または操作に有害な反応生成物を形成する気体、固体または液体と接触するよう構成されており、被覆表面と反応性気体との反応を防止する保護被膜により被覆されている、半導体製造装置に関する。
【0073】
このような半導体製造装置において、金属酸化物は、様々な実施形態において、Cr、Fe、CoおよびNiのうちの1種以上の少なくとも1種の酸化物を含んでもよく、または他の実施形態において、金属酸化物は、Cr、FeおよびNiのうちの1種以上の少なくとも1種の酸化物を含んでもよい。金属窒化物は、アンモニアが存在する場合の処理中に、アンモニアの存在下において、鉄またはコバルトから例えば形成することがあり、得られた窒化鉄または窒化コバルトは、続いて、AlClまたはTiClと反応する。金属ハロゲン化物は、操作中およびエッチング操作中、または洗浄サイクル操作中に、金属の表面上に形成することがある。様々な実施形態において、金属の表面は、ステンレス鋼表面を含んでもよい。具体的な実施形態において、金属酸化物、窒化物またはハロゲン化物と反応性を示して、装置およびこの使用または操作に有害な反応生成物を形成する気体はAlClを含む。
【0074】
具体的な用途における保護被膜は、Al、式MOの酸化物(Mは、Ca、MgまたはBeである。)、式M’Oの酸化物(M’は、化学量論的に許容される金属である。)、および式Lnの酸化物(Lnは、ランタニド元素、例えば、La、ScまたはYである。)からなる群から選択されるコーティング材料のうちの1種以上を含むことができる。さらに一般に、保護被膜は、装置の操作時における、金属の表面と接触する材料との反応の自由エネルギーがゼロ以上となる、金属酸化物を含むことができる。
【0075】
本開示のさらなる態様は、金属の酸化物、窒化物またはハロゲン化物が形成されやすいこのような金属の表面を含む構造体、材料または装置の性能を改善する方法であって、金属の表面が、前記構造体、材料もしくは装置の使用または操作時に、前記金属酸化物、窒化物もしくはハロゲン化物と反応して前記構造体、材料もしくは装置およびこれらの使用または操作に有害な反応生成物を形成する気体、固体または液体と接触するよう構成されており、金属の表面を、被覆表面と反応性気体との反応を防止する保護被膜により被覆するステップを含む、このような方法に関する。
【0076】
別の態様において、本開示は、金属の酸化物、窒化物またはハロゲン化物が形成されやすい前記金属の表面を含む半導体製造装置の性能を改善する方法であって、金属の表面が、前記装置の使用または操作時に、このような金属酸化物、窒化物もしくはハロゲン化物と反応して前記装置およびこの使用または操作に有害な反応生成物を形成する気体と接触するよう構成されており、金属の表面を、被覆表面と反応性気体との反応を防止する保護被膜により被覆するステップを含む、このような方法に関する。
【0077】
様々な実施形態において、金属酸化物、窒化物またはハロゲン化物は、Cr、Fe、CoおよびNiの1種以上の少なくとも1種の酸化物、窒化物またはハロゲン化物を含むことができ、他の実施形態において、Cr、FeおよびNiの1種以上の少なくとも1種の酸化物、窒化物もしくはハロゲン化物、または任意の他の好適な金属酸化物、窒化物もしくはハロゲン化物種を含むことができる。金属の表面は、例えば、ステンレス鋼を含んでもよい。金属酸化物、窒化物またはハロゲン化物と反応性を示して、構造体、材料または装置およびこれらの使用または操作に有害な反応生成物を形成する気体は、AlClを含むことができる。
【0078】
上述の方法において金属の表面に適用される保護被膜は、Al、式MOの酸化物(Mは、Ca、MgまたはBeである。)、式M’Oの酸化物(M’は、化学量論的に許容される金属である。)、および式Lnの酸化物(Lnは、ランタニド元素、例えば、La、ScまたはYである。)からなる群から選択されるコーティング材料のうちの1種以上を含むことができる。より一般に、本保護被膜は、前記構造体、材料もしくは装置の使用または操作時に金属の表面と接触する気体との反応の自由エネルギーがゼロ以上となる、金属酸化物を含むことができる。
【0079】
保護被膜は、任意の好適な技法により、本開示の方法において、金属の表面に適用することができ、特定の用途において、コーティング操作は、保護コーティングの物理蒸着(PVD)、化学蒸着(CVD)、溶液堆積または原子層堆積(ALD)を含むことができる。
【0080】
ALDは、金属の表面に保護被膜を適用するための好ましい技法である。特定の用途において、プラズマにより増強されたALDは、金属の表面上に保護被膜を形成させるためのALDプロセスとして利用され得る。様々なALD実施形態において、保護被膜はAlを含むことができる。このような保護被膜は、トリメチルアルミニウムおよびオゾンが、ALDサイクルプロセスに利用されて保護被膜を形成するプロセス配列を含む、原子層堆積によって、または代替として、トリメチルアルミニウムおよび水がALDサイクルプロセスに利用されて、保護被膜を形成するプロセス配列を含む原子層堆積によって適用され得る。
【0081】
本方法の他のALDの実施において、保護被膜は、式MOの金属酸化物を含んでもよく、Mは、Ca、MgまたはBeである。原子層堆積は、この施用に関すると、シクロペンタジエニルM化合物およびオゾンがALDサイクルプロセスに利用されて、保護被膜を形成するプロセス配列、またはシクロペンタジエニルM化合物および水がALDサイクルプロセスに利用されて保護被膜を形成するプロセス配列、またはMベータ-ジケトネート化合物およびオゾンがALDサイクルプロセスに利用されて、保護被膜を形成するプロセス配列、または他の適切なプロセス配列および金属酸化物前駆体化合物を含むことができる。幅広い前駆体配位子は、非限定的に、H、C-C10アルキル、直鎖状、分岐状または環式の、飽和または不飽和;芳香族、複素環式、アルコキシ、シクロアルキル、シリル、シリルアルキル、シリルアミド、トリメチルシリルシリル置換アルキル、トリアルキルシリル置換アルキンおよびトリアルキルシリルアミド置換アルキン、ジアルキルアミド、エチレン、アセチレン、アルキン、置換アルケン、置換アルキン、ジエン、シクロペンタジエニルアレン、アミン、アルキルアミンまたは二座アミン、アンモニア、RNH(Rは、有機置換基、例えばヒドロカルビル置換基である。)、アミジネート、グアニジネート、ジアザジエンシクロペンタジエニル、オキシム、ヒドロキシアミン、アセテート、ベータ-ジケトネート、ベータ-ケトイミネート、ニトリル、ニトレート、スルフェート、ホスフェート、ハロ;ヒドロキシル、置換ヒドロキシル、ならびにこれらの組合せおよび誘導体を含めた、保護被膜を堆積するために使用され得る。
【0082】
金属の表面に保護被膜を適用する方法のさらなる他のALD実施において、保護被膜は、式Lnである金属酸化物を含んでもよく、Lnはランタニド元素である。Lnは、例えばLa、ScまたはYとすることができる。ランタニド酸化物の保護被膜の適用において、原子層堆積は、シクロペンタジエニルLn化合物およびオゾンがALDサイクルプロセスに利用されて、保護被膜を形成するプロセス配列、またはシクロペンタジエニルLnおよび水がALDサイクルプロセスに利用されて、保護被膜を形成するプロセス配列、またはLnベータ-ジケトネート化合物およびオゾンがALDサイクルプロセスに利用されて、保護被膜を形成するプロセス配列、または他の適切なプロセス配列およびランタニド前駆体化合物を含むことができる。
【0083】
保護被膜は、任意の好適な厚さ、例えば、5nmから5μmの範囲の被膜厚で、金属の表面上に被覆され得る。
【0084】
様々な実施形態において、金属の表面は、保護被膜による金属の表面の被覆中、25℃から400℃の範囲の温度にあってもよい。他の実施形態において、このような金属の表面は、コーティング操作中、150℃から350℃の範囲の温度にあってもよい。さらに他の実施形態において、金属の表面の温度は、金属の表面への保護被膜を適用するために、他の範囲にあってもよい。
【0085】
半導体製造操作における、本開示により対処される、汚染物質化学種の化学的腐食および輸送の問題は、特に、マイクロ電子デバイスおよび他の半導体製造製品を製造するためにウェハが加工される、ステンレス鋼の炉において深刻である。このような炉において、AlCl蒸気がこのシステムに移動される場合、六塩化二アルミニウム蒸気の流れが、測定可能なレベルのCr、FeおよびNiをウェハに運ぶことが見い出された。測定される流れのレベルは、ステンレス鋼、例えば316Lステンレス鋼の表面上に、自然酸化または電解研磨のどちらかによって残留するこのような金属の対応する酸化物の除去に一致する。
【0086】
本開示は、AlClと反応しない材料の被膜により炉の表面および構成要素を被覆することによって上記の問題に対処する。これは、ステンレス鋼表面および構成要素から表面酸化物、窒化物およびハロゲン化物を除去する手法よりはるかに好ましい解決策を実現し、その結果、このような表面および構成要素が水分、ならびに酸素、窒素およびハロゲンに曝露する周囲水分の漏出または維持管理事象が常に低いレベルになるのでステンレス鋼表面および構成要素はAlClと反応しない。さらに、AlClが、炉に多量に流されて、金属酸化物、窒化物およびハロゲン化物を反応させて除去すれば、このような手法は、器具の出口をひどく分解し、成功を期待できる解決策にはならない。
【0087】
これとは反対に、本開示は、炉または他の半導体製造機器において、表面および構成要素の被膜を使用し、その結果、表面および構成要素が不動態化され、AlClと反応しない。議論されている通り、被膜は、Al、式MOの酸化物(Mは、Ca、MgまたはBeである。)、式M’Oの酸化物(M’は、化学量論的に許容される金属である。)、および式Lnの酸化物(Lnは、ランタニド元素、例えば、La、ScまたはYである。)からなる群から選択されるコーティング材料のうちの1種以上を有利に含む。
【0088】
被膜は、物理蒸着(PVD)、化学蒸着(CVD)、溶液堆積および原子層堆積(ALD)の技法を含めた、半導体製造機器の表面上におよび構成要素に、連続的なコンフォーマル被膜を生成させる、任意の好適な方法において適用され得る。
【0089】
特に、ALD堆積は、フィルター素子および管の内側を被覆するのに特に有利である。トリメチルアルミニウム/オゾン(TMA/O)またはトリメチルアルミニウム/水(TMA/HO)は、Alを堆積させるのに有用な組成物である。オゾン(O)または水蒸気(HO)を利用するALDサイクルプロセスにおいて、金属であるMまたはLnのシクロペンタジエニル化合物を利用して、MOまたはLnを堆積することができる。ベータ-ジケトネート金属前駆体の反応性パルスとOのパルスとを交互に行う、ALDサイクルプロセスにおいて、MまたはLnのベータ-ジケトネートを利用して、MOまたはLnを堆積することができる。
【0090】
酸化アルミニウム保護被膜の堆積の場合、金属の前駆体、例えばトリメチルアルミニウムが、オゾンまたは水のような有酸素構成要素と一緒に選択され、コーティング条件が特定され、この条件は、例えば150℃から350℃の範囲にあることができる基材温度および5nmから5μmの範囲の被膜厚を用いて、TMA/パージ/HO/パージのALD配列、またはTMA/パージ/O/パージの配列を例示的に含むことができる。次に、本プロセス配列のパルス回数およびパージ回数は、特定の反応器および被覆される表面または構成要素の形状に対して決定され得る。
【0091】
一般手法として、六塩化二アルミニウムから表面を保護するのに好適な金属酸化物および金属ハロゲン化物の蒸気から表面を保護するのに好適な金属酸化物は、以下の方法に基づいて選択され得る。
【0092】
六塩化二アルミニウムの曝露が半導体機器において行われる温度が最初に指定され、次に、半導体製造機器の表面および構成要素に接触する化学試薬による、このような表面および構成要素の金属に関して化学反応が特定される。指定温度におけるこれらの化学反応の場合、例えば、以下の表1に示されている、エンタルピーおよびエントロピー変化、ならびに自由エネルギーおよび反応定数が特定され得る。
【0093】
【表1】
【0094】
表中、Aはモル数であり、Xはハロゲン化物イオンであり、Nは任意の金属である。例えば、NXはHfClまたはWClとすることができる。
【0095】
表1の1行目の反応は、反応の自由エネルギーが正であるため、半導体製造機器において金属の腐食を引き起こさない。しかし、表1の2行目の反応は、腐食を引き起こすおそれがある。ステンレス鋼の半導体製造機器の表面酸化物をCrからAlに変更することによって、この反応に対する推進力がゼロに向かう。あるいは、表1の3行目に示されている通り、反応の自由エネルギーがセロ以上(および、xが、任意の化学量論的に適切な値を有する。)である任意の金属酸化物MOから、保護酸化物が選択され得る。さらに、表1の4行目に示されている通り、NFのような一般的な金属ハロゲン化物の蒸気NXが運ばれる場合、反応の自由エネルギーがセロ以上である金属酸化物MOから、保護酸化物が選択され得る。
【0096】
本開示の保護被膜が利用されて、NF、AlCl、HfCl、TiCl、ZrCl、WCl、WCl、VCl、NbCl、TaCl、および他の金属塩化物のような腐食作用剤に対して保護することができる。例えば、Alは、これらの腐食作用剤に対する保護コーティング材料として利用され得る。フッ素、塩素、臭素、フッ化水素、塩化水素、臭化水素、二フッ化キセノン、三フッ化ホウ素、四フッ化ケイ素、四フッ化ゲルマニウム、三フッ化リン、三フッ化ヒ素、三塩化ホウ素、四塩化ケイ素、オゾンのような気体または蒸気として送達され得る半導体材料は、腐食挙動を媒介し、Al被膜は、このような腐食作用剤に対する保護膜をもたらすよう、有用に使用され得る。四塩化チタンは、非常に腐食性であり、Yに対して正のΔGを有する。
【0097】
具体的な実施形態において、Alは、ステンレス鋼表面の臭化水素への曝露に対して、正のΔGを有する保護コーティング材料として利用される。他の実施形態において、Alは、ステンレス鋼表面の塩化水素への曝露に対して、正のΔGを有する保護コーティング材料として利用される。さらに他の実施形態において、ニッケルは、ステンレス鋼表面の四塩化ケイ素への曝露に対して、正のΔGを有する保護コーティング材料として利用される。
【0098】
さらなる実施形態において、四フッ化ゲルマニウムへの曝露におけるステンレス鋼表面に対する正のΔGを有する保護被膜は、ニッケル、Al、Cr、金、窒化チタン(TiN)のような窒化物、ガラスおよび銅のいずれかを含むことができる。四フッ化ゲルマニウムによる不動態化は、Ni-F、Cr-FおよびFe-F化学種が形成するために、ステンレス鋼およびニッケルに有効であり、これらの化学種は、ニッケルまたはステンレス鋼の上にあるNiF、CrFまたはFeF層と考えることができる。
【0099】
他の実施形態において、金は、ステンレス鋼表面のフッ化水素への曝露に対して、正のΔGを有する保護コーティング材料として利用される。
【0100】
様々な実施形態において、ステンレス鋼および炭素鋼用の保護コーティングは、ニッケルおよび金属合金のような金属を含む。他の実施形態において、このような使用(service)向けの保護コーティングは、Teflon(登録商標)およびKalrez(登録商標)という商標で市販されている材料の保護コーティングを含めた、ポリテトラフルオロエチレン(PTFE)またはPTFE様材料のようなポリマー材料を含むことがきる。保護コーティングはまた、ヒドリドガスへの曝露により引き起こされるステンレス鋼の脆弱化を回避するために使用されることができ、このような保護コーティングは、アルミニウム、銅または金のような物質から形成され得る、またはそうでない場合、これらの物質を含むことができる。
【0101】
保護被膜が表面上に提供される対象となる反応剤は、固体、液体および/または気体の形態にあってもよく、1種以上の溶媒を含む混合物または溶液中にあってもよい。
【0102】
より一般にΔGを考えると、10-4<K<10+4の範囲の安定性は、圧力または温度の変化によって変わり得、K>10+4の場合、任意の条件下において、腐食はほとんどない。
【0103】
ALDまたは他の蒸気相堆積技法により形成される、本開示の緻密なピンホールのない被膜は、自然酸化物表面とは区別される。自生酸化膜は、室温またはこの付近において通常、形成し、結晶性であり、このような自生酸化膜に関連する酸化は不完全なことがある。このような自生酸化膜は、蒸気相堆積被膜、例えば本開示のALD被膜よりも反応性が高い。本開示の、厚い緻密なピンホールのない蒸気相堆積による被膜は、アモルファス性であり共形である。
【0104】
本開示により形成される、ステンレス鋼上へのアルミナ被膜の場合、洗浄工程または他の予備処理工程が使用された後、Al被膜が堆積される。例えば、本開示の特定の実施において望ましいものとなり得るまたは有利となり得る、電解研磨処理もしくは低下処理、またはこのような処理の組合せが使用されてもよい。他の任意の好適な洗浄工程または予備処理工程が、さらに、または代替として利用されてもよい。
【0105】
三塩化アルミニウムに関すると、AlClは、溶媒、または油もしくはグリースに溶解しないが、油またはグリースは、例えば、固体送達気化器中で熱移動剤として存在していてもよく、この気化器中において、蒸気が加熱された場合に、気化のためにAlClまたは他の化学品が提供されて、容器から分注される蒸気流をもたらす。例えば、送達されることになるAlClまたは他の化学品が、高沸点の不活性油またはグリースと混合されてペーストが形成し、次に、固体送達容器中のトレイまたは他の支持表面上に搭載される。次に、油またはグリースは、熱移動剤として、ならびに小さな粒子を捕捉するため、および蒸気流中に浮遊するのを防止するための媒体として働く。次に、これらの捕捉された小さな粒子は、これらの粒子が気化されて、これにより熱移動剤から、最終的には気化器容器から排出されるまで、油またはグリース中に保持されている。このような方法では、油またはグリースは、熱伝導性を改善することができ、気化器のより低い送達温度を実現することが可能となる。
【0106】
図面をこれから参照すると、図1は、本開示の一態様による半導体ウェハ処理器具100の蒸着炉102の概略図である。
【0107】
示されている通り、炉102は加熱される内部容積部104を画定し、この中に、内部容積部をライナー110内の内側容積部108とライナーの外側の外部容積部106とに隔離するライナー110が配設されている。ウェハ担体112内にマウントされているウェハ114を有するウェハ担体112が、ライナー110内の内側容積部108に配置されており、こうして、ウェハは、炉内の処理用ガスに接触されることができる。
【0108】
図1の図面に示されている通り、第1の処理用ガスが、第1の処理用ガス源116から第1の処理用ガスフィードライン118を介して、炉の内側容積部108に供給され得る。同様に、第2の処理用ガスが、第2の処理用ガス源120から第2の処理用ガスフィードライン122を介して、炉の内側容積部108に供給され得る。第1および第2の処理用ガスは、器具の操作時に炉に、同時にまたは連続的に導入されてもよい。第1の処理用ガスは、例えば、ウェハ担体112におけるウェハ基材上に金属構成要素を蒸着するために、有機金属前駆体を含んでもよい。第2の処理用ガスは、例えば、ハロゲン化物の洗浄ガスを含んでもよい。炉の内側容積部108に導入されるガスは、ライナー内部において上方向に流れ、ライナー110の上部開放端から流れ出ると、環状の外部容積部106において下側に流れる。次に、このようなガスは、排出ライン124において炉から除去ユニット126に向かって流れ出て、このユニットにおいて、炉からの排出ガスが処理されて、このガスに由来する危険な構成要素が除去され、通気ライン128中の処置済みガスは、さらなる処理または他の処置へと排出される。除去ユニット126は、湿式および/または乾式スクラバー、触媒的酸化を行う装置または他の好適な除去用機器を含んでもよい。
【0109】
本開示により、炉およびライナーの構成要素の表面は、Alの層により被覆されており、その結果、これらは、ひいては、炉内のウェハ114に欠陥またはこの所期の目的に役に立たなくなることさえもたらす可能性のある、六塩化二アルミニウムからの化学的腐食に抵抗する。
【0110】
図2は、AlCl蒸気を使用してウェハを被覆するための、本開示の別の態様による蒸着炉プロセスシステムであって、AlClを気化させるためのアンプルの形態にある固体源送達用気化器を利用してAlCl蒸気を形成させる、システムの概略図であり、トレイおよびアンプルの内部表面が、Alにより被覆されており、同様にアンプルの下流にあるバルブ、チューブおよびフィルターもすべて、Alにより被覆されている。
【0111】
例示されている通り、アンプルに、供給用容器(「Ar」)からのアルゴンキャリアガスが供給され、このキャリアガスは、マスフローコントローラー(「MFC」)を含有するキャリアガスフィードラインからアンプルへと流される。このアンプルにおいて、キャリアガスは、アンプルを加熱してアンプル内のトレイ上に支持されている固体AlClを気化させることにより生成するAlCl蒸気と接触されて、次に、気化AlClは、アルミニウムがAlCl蒸気からこの上に堆積されるウェハを含有する炉に流される。堆積用の共反応物質は、炉への共反応物質用フィードラインにより、示されている炉に導入され得る。炉を流れる流体は、ポンプおよび圧力制御バルブアセンブリによって制御されて、この中で堆積操作を行うのに適した炉内条件に維持する。
【0112】
言及されている通り、六塩化二アルミニウム蒸気による腐食を防止するよう流通回路表面およびこの構成要素のすべてがアンプルの下流にあるので、トレイおよびアンプルの内部表面はAlにより被覆される。流通回路におけるフィルターは、Entegris、Inc.(Billerica、MA、米国)からのWafergard(商標)およびGasketgard(商標)という商標で市販されている、金属製フィルター素子を備えたタイプのものとすることができる。
【0113】
図3は、図2の蒸着炉プロセスシステムにおいて使用するのに好適なタイプの気化器アンプルの透視破断図の一部である。この気化器アンプルは、気体を、ホルダーにより支持されている材料からの蒸気への接触を促進する一助となる、ホルダーを有する容器300を含む。この容器は、個々の支持表面311、321、331、341、351および361を画定する、複数のホルダー310、320、330、340、350および360を有する。この容器は、一般に、容器300の上部またはこの近傍の環状開口部を有する容器300中に、円筒状内部領域を一般に画定する一助となる、表面301および側壁302を有する底部壁を有する。具体的な実施形態において、一般に円筒状の内部領域の内径は、例えば、約3インチから約6インチの範囲とすることができる。
【0114】
容器300は、統合されている本体を有するものとして、図3に例示されているが、この容器は個別の部品から形成されていてもよい。この容器は、処理用機器に送達するための材料を気化させるためのアンプルを備えている。
【0115】
図3に例示されている通り、ホルダー310は、底部表面301の上に支持表面311を画定するよう底部表面301の上に配置され得、ホルダー320は、支持表面311の上に支持表面321を画定するよう、ホルダー310の上に配置され得る。ホルダー330は、支持表面321の上に支持表面331を画定するようホルダー320の上に配置され得る。ホルダー340は、支持表面331の上に支持表面341を画定するようホルダー330の上に配置され得る。ホルダー350は、支持表面341の上に支持表面351を画定するようホルダー340の上に配置され得る。ホルダー360は、支持表面351の上に支持表面361を画定するようホルダー350の上に配置され得る。6つのホルダー310、320、330、340、350および360を使用するように図3に例示されているが、気化器の様々な実施形態において、任意の好適な数のホルダーが使用されてもよい。
【0116】
図3に例示されている通り、底部表面301の上にホルダー310を支持するよう、一般に管状の支持体304を容器300の内部領域内の底部表面301の上に配置されてもよい。次に、管305が、一般に容器300の内部領域の中央部にあるホルダー360、350、340、330、320および310の開口部から、ホルダー310と底部表面301との間の位置まで延在することができる。
【0117】
一例として、図3の気化器は、底部表面301の上に支持されている材料の上に直接気体が流れるのを助けるよう、管305の端部にバッフルまたは散気器を接続することにより変更されてもよい。気体が、気化される材料を支持する最下部のホルダーまたはこの近傍に導入される実施形態において、導入される気体は、任意の好適な構造体を使用する最下部のホルダーによって支持されている材料の上および/または材料に流れるよう向けられてもよい。
【0118】
図3に例示されている通り、容器300は、容器300の上部の開口部周辺にカラーを有していてもよく、蓋306は、例えば、ネジ307のようなネジを使用して、カラーの上に配置されて、このカラーに固定されてもよい。容器300と蓋306との間に、O-リング308を配置する手助けとなるよう、カラーの上部の開口部周辺に、溝が任意選択的に画定されていてもよい。O-リング308は、例えばTeflon(登録商標)のような任意の好適な材料、任意の好適なエラストマー、または例えばステンレス鋼のような任意の好適な金属から形成されてもよい。蓋306は、一般に蓋306の中央領域を介して、開口部を画定していてもよく、この開口部を介して、管305によって少なくとも一部が画定されている経路または入り口が、容器300の内部領域に延在していてもよい。蓋306は、容器300のカラーに固定されているので、蓋306は、カラーの上に蓋306を封止する一助となるようO-リング308を押さえてもよく、ホルダー360、350、340、330、320および310に対して、蓋306を押さえる一助となるよう管305の周辺のカラーを押さえてもよい。次に、ホルダー360、350、340、330、320および310のO-リングは、互いにおよび/または管305に対して、ホルダー360、350、340、330、320および310を封止する一助となるよう押圧されてもよい。391に接続している入り口を有するバルブ381は、容器300への気体の導入を調節する一助となるよう、管305に接続されていてもよい。蓋306はまた、開口部も画定してもよく、この開口部を介して、管によって少なくとも一部が画定される経路または出口が容器300に延在してもよい。392に接続している出口を有するバルブ382は、容器からの気体の送達を調節する一助となるよう、管に接続されていてもよい。
【0119】
図3に例示されている通り、蓋306によって画定されている出口を介して送達される前に、ホルダー360によって支持されている材料の上に向けられる気体流から固体材料をろ過する一助となるよう、上部ホルダー360の上に一般に管状フリット370が配置されていてもよい。フリット370は、一般にフリット370の中央領域を介して、一般に環状の開口部を画定してもよく、この環状開口部を介して、管305が延在してもよい。フリット370は、蓋306がホルダー360の上にフリット370を封止する一助となるよう容器300に固定されているので、任意の好適な構造体を使用する任意の好適な方法において、ホルダー360の上にフリット370が押さえられていてもよい。気化器は、フリット370に加えてまたはこの代わりに、容器300から気体を送達するための経路または出口に配置されているフリット、および/またはホルダー310、320、330、340、350および360のうちの1つ以上を介して1つ以上の流通路に位置されている1つ以上のフリットを備えてもよい。気化器中のフリットは、Alによりさらに被覆されていてもよい。同様に、気化器内の任意の他の内部構成要素がAlにより被覆されていてもよく、その結果、気化器の内部容積部中のすべての表面および構成要素がAlにより被覆されている。
【0120】
図3の気化器において、バルブ381と382との間に接続されている管395により画定されているバイパス経路が使用されて、バルブ381および382、391に接続している入り口、および/または392に接続している出口をパージする一助となり得る。バルブ383は、バイパス経路を介して、流体の流れを調節する一助となる管395に任意選択的に接続されていてもよい。397に接続している入り口/出口が任意選択的に使用されて、内部領域をパージする一助となる容器300の内部領域用の追加の入り口/出口を画定する一助となり得る。
【0121】
図4は、本開示の別の態様による、フィルター素子において使用するのが有用なタイプの多孔質金属製フリットの表面の、15Kに拡大した、顕微鏡写真である。
【0122】
フリットの表面領域が大きいとALDにより被覆されるのが有利となり得、金属前駆体および酸化性共反応物質は、個別の自己制限パルスにおいて表面に到達する。フリットをAlにより被覆するために、トリメチルアルミニウムと水またはO/O混合物のパルスが交互に使用されてもよい。表面のすべてが被覆されるまで、各工程のパルス長さを増加することにより具体的な条件が経験的に決定され得る。特定の実施形態において、100から400℃の堆積温度が使用されて、有用な膜を堆積することができる。
【0123】
例えばAlCl、他のAlR(アルキル)化合物として、他のアルミニウム源が、本開示の幅広い実施において使用されてもよく、Rは、有機部分または他の揮発性Al化合物であることが理解される。本開示のこのような実施において、アルミニウム源試薬と共に、NO、O、アルコール、過酸化物などのような他の酸素源も使用されて、Alまたは関連AlO材料を堆積することができる。
【0124】
本開示の特徴および利点が、以下の実施例によってさらに十分に示されており、これらの実施例は、本開示の理解を促進するための例示的な特徴である。
【実施例
【0125】
[実施例1]
電解研磨済み316Lステンレス鋼試料は、イソプロパノールによりすすいで、表面を洗浄した。2つの試料を原子層堆積(ALD)によってAlにより被覆した。試料の1つに、トリメチルアルミニウム/パージ/水/パージとなる100回のALDサイクルを施し、もう一方の試料に、同じALDプロセスを1000サイクル施した。堆積温度は150℃であった。2つの試料は被覆されていなかった。被覆されている試料と被覆されていない試料の1つの両方を、水分または酸素がこれらの試料またはAlClと相互作用するのを防止するため、窒素をパージしたグローブボックス中、AlCl固体粉末を有するガラス製アンプルに充填した。次に、このガラス製アンプルをPTFE製キャップにより密封した。AlClおよびステンレス鋼試料を含むアンプルを、10日間、120℃に加熱した。10日目の終わりに、アンプルを冷却し、グローブボックスに戻した。これらの試料をこの不活性雰囲気下において、AlClから取り出した。試料の質量増加は0.4から0.7mg(<0.15%)であった。表面はすべて、肉眼には無傷に見えた。次に、これらの3つの試料、およびAlClに何ら曝露されているように観察されない追加の試料を、試料の上部表面を走査型電子顕微鏡(SEM)において検査し、次に、集束イオンビーム(FIB)によって横断面で切断し、表面に何らかの腐食が存在するかどうかを決定した。
【0126】
図5は、AlClが何ら観察されなかった、試料の表面画像を示している。この試料の表面はきれいであり、ステンレス鋼の主要元素:Fe、CrおよびNiを示している。
【0127】
図6は、AlClに曝露された、被覆されていない試料を示している。ステンレス鋼の主要構成要素に、AlおよびClを添加することにより、この試料に相当な表面残留物が存在することを認めることができる。
【0128】
図7は、AlClに曝露されていない試料の横断面を示している。表面に腐食がないことは明らかである。
【0129】
図8は、AlClに曝露された、被覆されていない試料を示している。表面と比較する線があり、その結果、AlおよびCl含有残留物を有する領域の下に、0.1から0.2ミクロンの表面腐食が存在していたことは明白である。
【0130】
図9は、表面被膜のない、AlClに曝露された試料の異なる領域を示している。自然酸化物が、未処理ステンレス鋼表面に存在している。この領域において、複数のくぼみがはっきりと目視可能である。
【0131】
対照的に、図10は、120℃においてAlClに曝露する前に、100サイクルのTMA/HOからなる被膜を有した表面の横断図を示している。この場合、表面に付着したAlおよびCl含有残留物が依然として存在しているが、ステンレス鋼の表面に何ら腐食がある証拠は存在しない。
【0132】
同様に、図11は、120℃においてAlClに曝露する前の、1000サイクルのTMA/HOからなる被膜を有した表面の横断図を示している。この場合、表面に付着したAlおよびCl含有残留物が依然として存在しているが、ステンレス鋼の表面に何ら腐食がある証拠は存在しない。
【0133】
[実施例2]
特定の経験的評価において、第1の試験において三塩化アルミニウム(AlCl)に曝露し、第2の試験に五塩化タングステン(WCl)に曝露して、アルミナ被膜の有効性を評価した。
【0134】
第1の試験において、電解研磨済み316Lステンレス鋼の試験片は、470ÅのAlにより被覆されている、または被覆されていないかのどちらかであった。各タイプの試料の1つを固体AlClを含む2つの容器の一方に入れた。容器のどちらにも充填して、密封し、Nをパージした、OおよびHOレベルが0.1ppm未満のグローブボックスの内部においてヘリウムをゲージ圧3psiまで加圧した。外部へのHeリーク試験により、上記の容器の1つは、1E-6標準立方センチメートル/秒(scc/s)未満の漏れ率を有しており、これは、測定の解像限界であり、もう一方の容器は、2.5E-6scc/sの漏れ率を有した。これらの容器を同じオーブン中、155℃まで9日間、加熱し、冷却して、試験片をグローブボックスに取り出した。表2は、様々な試験片の質量変化を示している。
【0135】
【表2】
【0136】
図12は、155℃において9日間、AlClに曝露した後の表2の試料試験片の合成写真であり、各試験片は、表2に説明されている同じID番号によって特定されている。
【0137】
表2から、質量変化は、容器の測定可能な漏れが存在する場合しか定量化できなかったことは明白である。この腐食性曝露において、表2に作表されている試料の質量損失および図12における個々の試料試験片の合成写真により、被覆されている試料試験片2は、155℃においてAlClに9日間、曝露した後の被覆されていない試料試験片12よりも実質的に良好な状態にあったことが示されている。XRFによって測定される通り、Al被膜厚に変化はなかった。
【0138】
第2の試験において、電解研磨済み316Lステンレス鋼の試料試験片は、470Åの厚さのAl被膜により被覆されている、または被覆されていないかのどちらかであった。試料試験片は、個々の容器において維持されている、165℃、180℃および220℃の温度条件を用いて、固体WClを有する容器に入れた。これらの容器すべてに充填し、Nをパージした、OおよびHOレベルが0.1ppm未満のグローブボックスの内部に密封した。次に、これらの容器をオーブン中、10日間、加熱し、冷却して、これらの試料試験片をグローブボックス中において、個々の容器から取り出した。
【0139】
厚さの測定は、X線蛍光(XRF)分光技法により行い、アルミナ被膜の初期測定厚さからの被膜厚の変化を評価した。表3は、WClへの曝露前後のAl厚さのXRF測定を含有し、2つの試料試験片は、このような曝露に165℃において10日間、維持したものであり、2つの試料試験片は、このような曝露に180℃において10日間、維持したものであり、1つの試料試験片は、このような曝露に220℃において10日間、維持したものである。約15-30Åの被膜は、通常、洗浄工程においてエッチングにより除去された。
【0140】
【表3】
【0141】
図13は、10日間、220℃において、WClに曝露した試料の上から見た走査型電子顕微鏡(SEM)写真であり、図14は、このような試料における被膜の縁の集束イオンビーム(FIB)横断面である。
【0142】
この第2の試験における被覆されている試料および被覆されていない試料は、目視により、またはSEM検査によりまたは重量変化により腐食がないことが示された。しかし、より高い温度において、有意な量のAl被膜が除去された。165℃における試料はどちらも、洗浄過程に一致する量でエッチングされた。180℃における試料の1つは、27Åの厚さを失い、洗浄と一致するが、もう一方の試料は約66Åの厚さを失い、これは、洗浄の損失よりかなり大きい。220℃において、被膜の約60%が図13に示されている通り除去され、この場合、アルミナ被膜は、一部の領域(明るい方の領域部分)において除去され、他の領域(暗い方の領域部分)において無傷であった。図14において、顕微鏡写真により、右側に無傷な被膜が示されており、被覆されている領域の縁が矢印により示されている。
【0143】
本開示は、半導体製造機器を例示的に対象としているが、本開示の保護コーティング手法も同様に、平面パネルディスプレイ、光起電力セル、ソーラーパネルなどのような他の製品の製造用の他の気体処理装置にも適用可能であることが認識されており、この場合、処理機器の表面は、このような機器を用いて作製される製品およびこのような機器を用いて行われる方法に有害な反応生成物を形成するための、このような使用時に酸化物と反応する蒸気相構成要素によって腐食を受けやすい。
【0144】
薄膜の原子層堆積コーティングに関連する、本開示のさらなる態様が、以下に設計されている。
【0145】
様々な組成物および方法が記載されているが、本発明は、特定の分子、組成物、設計、方法またはプロトコルが様々となり得るように、これらに限定されないことを理解されたい。本記載において使用されている技術用語は、特定の変形または実施形態を記載する目的に過ぎず、本発明の範囲を限定することを意図するものではないことも理解されたい。
【0146】
本明細書において使用する場合、単数形「a」、「an」および「the」は、文脈によって特に明白に示されない限り、複数形の記載を含むことにやはり留意しなければならない。したがって、例えば、「層」への言及は、当業者に公知の複数の層およびこの等価物の1つなどを言う。特に定義されない限り、本明細書において使用される技術用語および科学用語はすべて、当業者によって一般的に理解されるものと同じ意味を有する。
【0147】
本明細書に記載されているものと類似のまたは等価な方法および材料は、本開示の実施形態の実施または試験において使用され得る。本明細書に言及されている刊行物はすべて、これらの全体が参照により組み込まれている。本明細書において特許請求されている発明は、先行発明によって、このような刊行物を先行するものと認めることを承認するものとして解釈すべきではない。「任意選択」または「任意選択的に」とは、この後に記載されている事象または状況が行われてもよく、または行われなくてもよいこと、およびこの記載が、事象が起こる場合および事象が起こらない場合を含むことを意味する。本明細書における数値はすべて、明確に示されているまたは示されていないに関わらず、用語「約」により修飾され得る。用語「約」は、一般に、当業者が列挙されている値と等価であると見なす数の範囲(すなわち、同様の機能または結果を有する。)を指す。一部の実施形態において、用語「約」とは、明記されている値の±10%を指し、他の実施形態において、用語「約」は、明記されている値の±2%を指す。組成物および方法が、様々な構成要素および工程に「反する(compromising)」に関して記載されているが、このような技術用語は、本質的に近接しているメンバーの群または近接しているメンバーの群を定義するものとして解釈すべきである。
【0148】
本明細書において使用する場合、用語「膜」とは、1000マイクロメートル未満の厚さ、例えば、このような値から原子単層の厚さの値までの厚さを有する堆積した材料の層を指す。様々な実施形態において、本発明の実施において堆積させた材料の層の膜厚は、関与する特定の施用に応じて、例えば、100、50、20、10または1マイクロメートル未満とすることができ、または様々な薄膜の様々なレジメンにおいて、200、100、50、20または10ナノメートル未満とすることができる。本明細書において使用する場合、用語「薄膜」は、1マイクロメートル未満の厚さを有する材料の層を意味する。
【0149】
本開示は、1つ以上の実施に関して、本明細書において説明されているが、本明細書の一読および理解に基づいて、等価な変更形態および修正形態が当業者に着想される。本開示は、このような修正形態および変更形態のすべてを含む。さらに、本開示の特定の特徴または態様が、いくつかの実施の1つだけについてしか開示されていないことがあるが、このような特徴または態様は、任意の所与のまたは特定の用途にとって望ましいものとなり得るおよび利点となり得る他の実施の1つ以上の他の特徴または態様と組み合わされてもよい。さらに、用語「含む(includes)」、「有する(having)」、「有する(has)」、「有する(with)」またはこれらの変化形は、本明細書に存在している程度に、このような用語が、用語「含む(comprising)」と類似して含まれることが意図される。同様に、用語「例示的な」は、最良と言うよりは、一例を意味することが単に意図されている。本明細書に示されているフィーチャ、層および/または要素は、理解の簡単さおよび容易さを目的として、互いに関連する特定の寸法および/または方向と共に例示および/または教示されていること、および実際の寸法および/または方向は、本明細書において例示および/または教示されているものとは実質的に異なってもよいことも理解すべきである。
【0150】
したがって、本開示の特徴、態様および実施形態に関して、本明細書において様々に説明されている本開示、特に実施は、このような特徴、態様および実施形態の一部またはすべて、ならびに本開示の様々なさらなる実施を構成するよう統合されている本開示の要素および構成要素を含む、これらからなる、またはこれらから本質的になるものとして構成されていてもよい。したがって、本開示は、様々な置きかえおよび組合せにおいて、このような特徴、態様および実施形態、またはこれらの選択された1つ以上のものを、本開示の範囲内にあるものとして企図している。さらに、本開示は、本開示の他の実施形態に関連して、本明細書において開示されている、特定の特徴、態様または要素の任意のうちの任意の1つ以上を含まないことにより定義され得る実施形態を企図している。
【0151】
本開示の一態様によれば、複数の層の1つからなる薄膜の被膜が提供され、少なくとも1つの層は、原子層堆積により堆積されている。
【0152】
本開示の態様によれば、以下が提供される:
・1Åを超える膜厚、一部の用途において、10,000Åを超える膜厚を有する、ALD被膜。
【0153】
・非常に緻密な、ピンホールがなく、欠陥のない層を実現するALD被膜。
【0154】
・多数の部品への堆積用途を意図するが、Siウェハ上に製造する実際のICデバイス(トランジスタ)を直接対象としない、薄膜被膜。
【0155】
・ALD被膜は、アルミナ(Al)、イットリア(Y)、ジルコニア(ZrO)、チタニア(TiO)などのような絶縁性金属酸化物、および白金、ニオブまたはニッケルのような金属からなり得る。
【0156】
・ALD被膜は、RT(室温)から400℃の間において堆積され得る。
【0157】
・ALD被膜は、例えば1ミクロンの厚いアルミナ層のような明確に定められた化学量論を有する単一膜、または例えば、{0.25ミクロンのチタニア+0.5ミクロンのアルミナ+0.25ミクロンのジルコニア}のようないくつかの層、または例えば{1原子層のチタニア+2原子層アルミナ}×n(nは、1から10,000の範囲にある。)のような真の多層構造体、またはこれらの組合せとすることができる。
【0158】
・ALD層がPE-CVD、PVD、スピン-オンまたはゾル-ゲル堆積、大気圧プラズマ堆積などのような異なる堆積技法により堆積される別の層と組み合わされている、薄膜被膜。
【0159】
・合計が1ミクロンから100ミクロンの間の膜厚。
【0160】
・1つ以上の異なる層にある2ミクロン以下の積層体全体のALD被膜厚の部分。
【0161】
・アルミナ、酸窒化アルミニウム、イットリア、イットリア-アルミナ混合物、酸化ケイ素、酸窒化ケイ素、遷移金属酸化物、遷移金属酸窒化物、希土類金属酸化物、希土類金属酸窒化物のような酸化物の群から選択される、他のコーティング材料。
【0162】
・ALD被膜をパターン化することができる。
【0163】
・方法1:均一に一部を被覆し、次に、マスクにより望ましくない物質をエッチバックする(このエッチバックは、機械的に、例えば、ビーズブラスト、物理的、例えばプラズマイオン、または化学的、例えばプラズマまたはウエットエッチングとすることができる。)
【0164】
・方法2:望ましくない領域をマスクし、ALD被覆し、次に、マスクされた領域を除去する。このマスクは、密封シート、またはフィクスチャもしくはフォトレジスト(リフトオフ技法)とすることができる。
【0165】
・方法3:ALD膜成長を遮断する表面終端を有する基材上にパターンを作製する。例えば、HOおよびTMA(トリメチルアルミニウム)の付着係数が「ゼロ」である表面終端層が使用され得る。本明細書において使用する場合、表面終端層は、自己制限層、例えば、自己制限ALD層である。本明細書において使用する場合、付着係数は、同じ時間の間に、表面に吸着または「付着」した吸着物質原子(または分子)の数と、この表面に影響を及ぼすものの総数との比である。
【0166】
本開示の態様によれば、以下の用途が提供される:
用途:
・部品の欠陥がなく、ピンホールのない、緻密な電気絶縁体。
【0167】
・高いアスペクト比のフィーチャにより部品を被覆することができる。例:(1)深いホール、チャネルおよび三次元フィーチャを有する部品、(2)ネジおよびナットのようなハードウェア、(3)多孔質膜、フィルター、三次元ネットワーク構造体、(4)結合した細孔マトリックスを有する構造体。
【0168】
・電気絶縁体層:高い絶縁破裂強さおよび高い電気抵抗(低い漏出)。これは、ALD Alにより実現される。チタニア-アルミナ-ジルコニア(TAZ)からなる多層を使用すると、電気絶縁性能がさらに改善される。様々な多層構成が存在する:
Xnm TiO+Ynm Al+Znm ZrO
[Unm TiO+Vnm Al+Wnm ZrOT]×n
Xnm TiO+[Vnm Al+Wnm ZrOT]×m
など;X、Y、Z、U、VおよびWは、それぞれ、0.02nmから500nmの範囲とすることができ、nおよびmはそれぞれ、2から2000の範囲とすることができる。
【0169】
・化学耐性およびエッチング耐性被膜:ALD層は、アルミナ、イットリア、酸化セリウムまたは類似物とすることができる。合計のエッチングに耐性な被膜は、(1)ALD層のみ、(2)PVD、CVDおよびALDの組合せからなり得る。(3)ALDは、これ以降に一層十分に議論されている通り、上に被覆されて、シーラント層として働くことができる。(4)ALDは、堅牢な基礎をもたらす下層であってもよい。(5)ALDは、CVDおよび/またはPVD被膜層の間に散在されていてもよい。
【0170】
・ALD被膜は、先端バッテリー、気体用フィルター、液体用フィルター、電気めっき器具の構成要素、プラズマ湿潤構成要素(フッ素および他のハロゲンの腐食から保護するため)のような用途向けの化学的耐性を実現することができる。
【0171】
・ALD被膜は、耐腐食性被膜として働くことができる。
【0172】
・拡散バリア層;緻密でコンフォーマルなピンホールのないALD層は、微量金属の優れた拡散バリア特性をもたらす。
【0173】
・ALD層は、下層基材(ガラス、石英、アルミニウム、陽極(アノード)化された酸化アルミニウム、アルミナ、ステンレス鋼、ケイ素、SiOx、AlONなど)と上層被膜層(PVDイットリア、PVD AlON、PVD Al、CVD SiOx、CVD SiO、CVD Al、CVD AlO、DLC、Si、SiCなど)との間の接着層として働くことができる。
【0174】
本開示の別の態様によれば、ALDが堆積した表面シーラント層は、被膜に使用される。ALD(原子層堆積)は、確立された技術であり、この技術は、2つ以上の交互の前駆体の化学的吸着を使用して、非常に緻密な、ほとんど完全に配列(物理的および化学量論的に)されている薄膜を形成する。この技法は、正確に制御された膜成長を可能にする、ほとんど100%コンフォーマルである、および非常に高いアスペクト比のフィーチャ内を含め、前駆体ガスが到達することが可能な任意の表面の位置に膜を成長させる。この点において、ALDが堆積されているシーラント被膜は、以下の用途に使用され得る。
【0175】
(1)既存の表面を上から被覆して封止し、したがって、この表面/部分の増強された優れた特性を実現する。
【0176】
(2)CVD、PVD、スプレーまたは他の被膜の上部にALD封止用被膜を適用して、以下の様な該被膜の欠陥に対するシーラントをもたらす:
(i)被膜表面の近傍の任意の傷を充填して、したがって、腐食およびエッチング環境に不浸透性の表面を実現する。
【0177】
(ii)マクロ細孔、被膜の欠損、貫入などのいずれかを充填して封止し、気体および液体に不浸透性であり、制御されている滑らかでコンフォーマルなシーラント層により終端化されている被膜表面層をもたらす。
【0178】
(iii)被膜の表面粗さおよび全体の表面領域を低下させて、こうして、腐食環境において最小限の腐食を可能にする、滑らかで緻密な表面層を実現する。
【0179】
(iv)オーバーコーティングにより緻密で滑らかな封止表面をもたらすことにより、粒子発生を最小化し、硬度、靱性および引っ掻き耐性を改善する。
【0180】
本開示の様々な態様において、ALDシーラントは、以下を必要とする部品および表面に適用され得る:
(a)エッチング耐性および耐腐食性の改善、および/または
(b)摩擦、損耗の低減、および機械的な耐摩耗性の改善
ALDシーラント層は、同時に、拡散バリアとしても働くことができ、表面の電気特性、ならびに親水性および疎水性のような表面終端化を制御する能力を有する。
【0181】
本開示のさらなる態様は、アルミナ、イットリアまたはこのタイプの他の被膜のような化学的に耐性な被膜を有する、金属繊維膜を用いる、ALD技法の使用を含む。このALD技法は、ガスが多孔質フィルターを通過するのを可能にし、多孔質膜上に被覆して腐食性ガスへの耐性をもたらす。
【0182】
本開示のこの態様は、小さなミクロンサイズの開口部に浸透して、繊維全体に均一に被覆することができる、堆積ガスをベースとする技法を提供する。
【0183】
本開示のこの態様は、Entegris、Inc.(Billerica、MA、米国)により作製されている4ミクロンのNiをベースとする気体用フィルターにアルミナ被膜を堆積することにより実証されている。
【0184】
この開示のALD技法は、以下のような多くの利点をもたらす:
1)フィルターのミクロンサイズの細孔性のような小さなフィーチャへの侵入を被覆して、完全な被覆を確実にする。
【0185】
2)繊維を密封し、こうしてフィルター膜を保護する。
【0186】
3)様々な異なる被膜は、この技法を使用して堆積され得る。
【0187】
本開示はまた、被覆されている基材物品または機器の加工特性を改善する、ALD被膜の使用も企図している。例えば、ALD膜は、多層膜物品の層間に熱膨張係数が一致しないため、ブリスタリング、または基材物品のアニーリングの間に発生し得る他の望ましくない現象に対処するために使用され得る。したがって、ALD膜は、多層膜構造体に使用されて、このような材料特性の差異を改善することができる、またはそうでない場合、最終製品物品の電気的、化学的、熱的および他の性能特性を改善することができる。
【0188】
本開示は、このような装置の使用において化学的腐食のリスクをもたらすおそれがある流体を取り扱う装置の液体接触表面を保護するALD被膜の使用をさらに企図している。このような装置は、例えば、流体貯蔵庫、および半導体製造器具に気体を供給するために使用される分注パッケージを含むことができ、流体は、流路の構成要素および下流の工程機器に有害に作用する場合がある。特定の用途において特定の問題もたらすおそれのある流体は、ホウ素またはゲルマニウムのフッ化物のようなハロゲン化ガスを含み得ることである。したがって、本開示のコーティングは、これらの用途および他の用途において、処理機器、流通回路およびシステムの構成要素の性能を増強するために使用され得る。
【0189】
さらなる態様において、本開示は、異なるALD生成物材料の層を含む複合ALD被膜に関する。異なるALD生成物材料は、任意の好適なタイプとすることができ、例えば、異なる金属酸化物、例えば、チタニア、アルミナ、ジルコニア、式MOの酸化物(Mは、Ca、MgまたはBeである。)、式M’Oの酸化物(M’は、化学量論的に許容される金属である。)、および式Lnの酸化物(Lnは、La、ScまたはYのようなランタニド元素である。)からなる群から選択される、少なくとも2種の金属酸化物を含むことができる。他の実施形態において、複合ALD被膜は、少なくとも1つのアルミナ層を含むことができる。さらに他の実施形態において、複合ALD被膜は、少なくとも1つのチタニアもしくはジルコニア層、または他の好適な材料を含むことができる。
【0190】
このような複合ALD被膜は、異なるALD生成物材料、例えば白金、ニオブおよびニッケルからなる群から選択される少なくとも2種の金属として、異なる金属を含むことができる。任意の好適な異なる金属が使用され得る。
【0191】
他の実施形態において、異なるALD生成物材料は、複合被膜の第1の層において第1のALD生成物材料として金属酸化物材料、および複合被膜の第2の層において第2のALD生成物材料として金属を含むことができる。金属酸化物材料は、例えば、アルミナ、チタニアおよびジルコニアからなる群から選択され得、金属は、白金、ニオブおよびニッケルからなる群から選択される。
【0192】
上記の複合ALD被膜は、被膜中に任意の好適な数の層、例えば2から10,000の層を有することができる。
【0193】
別の態様において、本開示は、少なくとも1つのALD層、およびALD層ではない少なくとも1つの堆積層を含む複合被膜に関する。本複合被膜は、ALD層ではない少なくとも1つの堆積層が、CVD層、PE-CVD層、PVD層、スピン-オン層、溶射層、ゾル-ゲル層および大気圧プラズマ堆積層からなる群から選択されるよう、例えば構成され得る。様々な実施形態において、複合被膜中の層は、アルミナ、酸窒化アルミニウム、イットリア、イットリア-アルミナ、酸化ケイ素、酸窒化ケイ素、遷移金属酸化物、遷移金属酸窒化物、希土類金属酸化物および希土類金属酸窒化物からなる群から選択される材料のうちの少なくとも1つの層を含むことができる。
【0194】
本開示は、基材上にパターン化ALD被膜を形成させる方法であって、基材上にALD膜成長を防止するのに有効な表面終端材料からなる層のパターンを形成させるステップを含む、方法をさらに企図する。特定の実施におけるこのような表面終端材料は、基本的にゼロの、水およびトリメチルアルミニウムの付着係数を示し得る。様々な実施形態において、ALD被膜はアルミナを含んでもよい。
【0195】
本開示は、材料の表面脆弱部を充填および/または封止する方法であって、脆弱部の充填および/または封止をもたらす厚さで、材料の表面脆弱部にALD被膜を適用するステップを含む、方法をさらに企図する。この脆弱部は、任意のタイプであってもよく、例えば、傷、形態的欠損、細孔、ピンホール、不連続部分、貫入、粗表面、表面のざらざらからなる群から選択され得る。
【0196】
本開示の別の態様は、金属および/またはポリマー材料から形成されている繊維および/または粒子のマトリックスを含むフィルターであって、繊維および/または粒子のマトリックスはこの上にALD被膜を有しており、ALD被膜は、この上の前記ALD被膜のない対応する繊維および/または粒子のマトリックスと比べて、繊維および/または粒子のマトリックスの細孔体積を5%を超えて変更させることはなく、繊維および/または粒子が金属から形成されており、ALD被膜が金属を含み、ALD被膜の金属は、繊維および/または粒子の金属とは異なる、フィルターに関する。
【0197】
フィルターは、流体をろ過するためのマトリックスを流体が流れるよう構成されているハウジング内の繊維および/または粒子のマトリックスと共に構成され得る。様々な実施形態において、ALD被膜は、適切なタイプの遷移金属、金属酸化物または遷移金属酸化物を含むことができる。例えば、ALD被膜は、チタニア、アルミナ、ジルコニア、式MOの酸化物(Mは、Ca、MgまたはBeである。)、式Lnの酸化物(Lnは、ランタニド元素、La、ScまたはYである。)からなる群から選択される金属酸化物を含むことができる。様々な実施におけるALD被膜は、アルミナを含む。フィルターのマトリックスは、ニッケル繊維および/もしくは粒子、ステンレス鋼製繊維および/もしくは粒子、または、ポリマー材料、例えばポリテトラフルオロエチレンのような他の材料の繊維および/もしくは粒子を含んでもよい。様々な実施形態において、フィルターは、任意の好適な直径の細孔を含むことができる。例えば、細孔は、一部の実施形態において、1μmから40μmの範囲にあってもよく、他の実施形態において、20μm未満、10μm未満、5μm未満、または他の好適な値であってもよく、他の実施形態において、1から10μm、1から20μm、20から40μmまたは他の値の好適な範囲にあってもよい。ALD被膜は、それ自体、任意の好適な厚さであってもよく、様々な実施形態において、2から500nmの範囲の厚さを有することができる。一般に、特定の最終使用または用途に対して適宜、任意の好適な細孔サイズおよび厚さ特性が使用され得る。
【0198】
フィルターは、この保持等級に関して好適な特性とすることができる。例えば、具体的な実施形態において、フィルターの保持等級は、気体流が1分間あたり30標準リットル以下の気体流速において、3nm超の粒子の場合、9というlog低下の値(9LRVと表される。)を特徴とすることができる。本開示のALDにより被覆されているフィルターは、フィルターが、特定の定格流量において、大部分の透過粒子サイズにおいて決定すると、例えば、99.9999999%の除去率、すなわち9LRVとして、高効率の除去率を実現することが望ましい様々な用途に使用され得る。9LRV等級を評価するための試験方法は、Rubow,K.L.およびDavis,C.B.、「Particle Penetration Characteristics of Porous Metal Filter Media For High Purity Gas Filtration」Proceedings of the 37rd Annual Technical Meeting of the Institute of Environmental Sciences、834-840頁(1991年);Rubow,K.L.、D.S.PrauseおよびM.R.Eisenmann、「A Low Pressure Drop Sintered Metal Filter for Ultra-High Purity Gas Systems」、Proc.of the 43rd Annual Technical Meeting of the Institute of Environmental Sciences(1997年);およびSemiconductor Equipment and Materials International(SEMI) test method SEMI F38-0699 「Test Method for Efficiency Qualification of Point-of-Use Gas Filters」に記載されており、これらはすべて参照により本明細書に組み込まれている。
【0199】
本開示によるALDによる保護被膜により被覆され得る、焼成されている金属製フィルター/散気器は、米国特許第5,114,447号;同第5,487,771号;および同第8,932,381号および米国特許出願公開第2013/0305673号に記載されている、金属製フィルター/散気器を含む。
【0200】
本開示による保護被膜により被覆されている気体用フィルターは、様々に構成され得る。特定の例示的な実施形態において、フィルターは、1から40μmの範囲、または1から20μmの範囲、または20から40μmの範囲、または他の好適な値の細孔サイズを有することができる。このような気体用フィルターは、ステンレス鋼およびニッケル配置で存在することができる。浸食性ガス環境に曝露された場合、ステンレス鋼およびニッケルのどちらも、金属の混入を受けやすい。このような気体用フィルターのフィルターマトリックスは、本開示によるALD被覆技法を使用して、化学的に不活性で堅牢な薄膜により上から被覆され得る。ALDプロセスは、例えば、100から5000サイクルの範囲の、任意の数の堆積サイクルを含むことができる。特定の実施において、ALDアルミナ膜は、例えば200℃から300℃、例えば、250℃の範囲にあり得る温度において、1サイクルあたり0.75Åから1.25Å、例えば1.1Å/サイクルの堆積を用い、待機時間およびパージ時間を延長したトリメチルアルミニウム/HO法を使用する、50から1500サイクルを用いて堆積され得る。
【0201】
様々な実施形態において、ALDアルミナ被覆プロセスが行われ、気体用フィルター上に例えば、15nmから200nmの範囲とすることができるアルミナ被膜厚をもたらすことができる。他の実施形態において、ALDアルミナ被膜厚は、20nmから50nmの範囲とすることができる。
【0202】
ALD被覆技法によって形成される上記の気体用フィルターコーティングが行われて、酸化アルミニウム膜中に様々なアルミニウム含有率をもたらすことができる。例えば、様々な実施形態において、このような膜のアルミニウム含有率は、25原子パーセントから40原子パーセントの範囲にあることができる。他の実施形態において、アルミニウム含有率は、28原子パーセントから35原子パーセントの範囲にあり、さらに他の実施形態において、ALD被膜のアルミニウム含有率は、酸化アルミニウム膜が30原子パーセントから32原子パーセントの範囲にある。
【0203】
他の例示的な実施形態において、気体用フィルターは、2から5μmの範囲の細孔サイズを有するインライン金属製気体用フィルターを含んでもよく、フィルターは、チタンフィルターマトリックスを含み、ALDアルミナ被膜は、10nmから40nmの範囲とすることができる厚さ、例えば20nmの厚さを有する。さらに他の実施形態において、気体用フィルターは、2から5μmの範囲の細孔サイズを有するニッケルをベースとする気体用フィルターマトリックスを含んでもよく、ALDアルミナ被膜は、10nmから40nmの範囲とすることができる厚さ、例えば20nmの厚を有する。
【0204】
本開示の保護被膜はまた、流体貯蔵庫および分注容器、固体試薬用の気化器容器などのような化学試薬の供給パッケージにおいて、表面のコーティングに使用されてもよい。このような流体貯蔵庫および分注容器は、このような容器中に貯蔵されてこの容器から分注される材料に加えて、貯蔵した材料用の貯蔵媒体を様々に含有してもよく、上記の容器からの貯蔵材料が、材料を分注するために、材料供給パッケージの容器から放出され得る。このような貯蔵媒体は、流体が可逆的に吸着される物理吸着剤、可逆的な流体貯蔵向けのイオン性貯蔵媒体などを含むことができる。例えば、この開示の全体が参照により本明細書に組み込まれている、2008年3月6日に公開の、国際公開WO2008/028170に開示されているタイプの固体送達パッケージが、本開示の保護被膜によりこの内表面に被覆され得る。
【0205】
他のタイプの化学試薬の供給パッケージが使用されてもよく、気体、例えば三フッ化ホウ素、四フッ化ゲルマニウム、四フッ化ケイ素、ならびに半導体製品、平面パネルディスプレイおよびソーラーパネルの製造に利用される他の気体のような気体を送達するために、内圧が調節されている流体供給容器のような供給容器の内部表面が、本開示の保護被膜により被覆される。
【0206】
本開示のさらなる態様は、半導体処理器具に気体流または蒸気流を送達する方法であって、前記気体流源または蒸気流源から半導体処理器具への気体流または蒸気流の流路を設けるステップ、および気体流または蒸気流を流路中のフィルターに流し、これらの流れに由来する外来性固体物質を除去するステップを含み、フィルターは、本明細書に様々に記載されているタイプのフィルターを含む、方法に関する。
【0207】
このような方法において、気体流または蒸気流は、任意の好適な流体種を含んでもよく、特定の実施形態において、このような流れは、六塩化二アルミニウムを含む。このような流体を適用するのに有用な特定のフィルターは、アルミナを含むALD被膜を含み、マトリックスはステンレス鋼製繊維および/または粒子を含む。
【0208】
前述の方法における半導体処理器具は、任意の好適なタイプであってもよく、例えば、蒸着炉を含むことができる。
【0209】
上記の通り、フィルターは、ALD被膜およびマトリックス中で様々となり得る。具体的な実施形態において、フィルターは、アルミナのALD被膜により被覆されているステンレス鋼製繊維および/または粒子の焼成されているマトリックスを含み、焼成されているマトリックスは、1から40μm、例えば1から20μm、1から10μm、10から20μmの範囲の直径の細孔、または他の好適な細孔径の値の範囲の細孔を含み、このような実施形態のいずれかにおけるALD被膜は、2から500nmの範囲の厚さを有する。
【0210】
別の態様において、本開示は、焼成されている金属マトリックスフィルター単独によってもたらされる性能を超える、特別な要求に応じたフィルターを実現するために、微細ろ過用途における細孔サイズを制御するためのALDの使用に関する。この点において、焼成されている金属マトリックスフィルターの細孔サイズを制御すると、目標細孔サイズは5μm未満まで小さくなるので、徐々に一層、困難になる。本開示により、ALD被膜が使用されて、細孔サイズの高い制御度および細孔サイズ分布を有する細孔サイズにまで効果的に小さくすることができる。ALDによって堆積された被膜は、他の用途において使用されるものよりも実質的に厚くなり得るが、ALDは、例えば、アルミナのALD被膜を用いることにより、化学的耐性の恩恵を依然として実現しながら、細孔サイズおよび細孔サイズ分布の驚くほどの制御を可能にする。
【0211】
したがって、焼成されている金属マトリックス材料のALD被膜は、焼成されている金属マトリックス構造体の上にかなりの厚さで適用され得、被膜厚は、被覆されている金属マトリックス構造体における細孔サイズを非常に小さいレベル、例えば、サブミクロンの細孔サイズのレベルまで低下するような大きさである。
【0212】
このような手法を使用して、気体の入り口面から気体の排出面までの多孔性勾配のような多孔性勾配を有するフィルターの作製を行うこともでき、比較的より大きなサイズの細孔は、気体入り口面に存在し、比較的より小さなサイズの細孔は、フィルターの気体排出面において存在しており、多孔性勾配は、フィルターの個々の面の間に存在している。このような多孔性勾配を用いて、フィルターが例えば使用されて、フィルターの入り口側において大きな粒子を捕捉し、フィルターの出口上においてより小さな粒子を捕捉することができ、その結果、全体的に非常に有効なろ過作用が実現される。
【0213】
したがって、本開示は、ALD被膜により被覆されている多孔質材料マトリックスを含むフィルターであって、多孔質金属マトリックスの細孔サイズはALD被膜によって低下する、例えば、ALD被膜により被覆されていない対応する多孔質材料マトリックスに関して、例えばALD被膜により平均細孔サイズが5%から95%まで低下する、フィルターを企図する。
【0214】
本開示はまた、ALD被膜により被覆されている多孔質材料マトリックスを含むフィルターであって、被膜厚が一方向に様々となり、上記の通り、例えば、フィルターの入り口の相から出口面まで、フィルター中に対応する細孔サイズの勾配をもたらす、フィルターを企図する。
【0215】
本開示のさらなる態様は、多孔質フィルターを作製する方法であって、多孔質材料マトリックスの平均細孔サイズを低下させるために、多孔質材料マトリックスをALD被膜により被覆するステップを含む、方法に関する。本方法は、多孔質材料マトリックスの平均細孔サイズの予め決められた低下、および/または多孔質材料マトリックスにおける一方向に様々な細孔サイズの勾配を実現するために利用され得る。
【0216】
上記の態様および実施形態のうちのいずれかにおける多孔質材料マトリックスは、例えば、チタン、ステンレス鋼または他の金属マトリックス材料の焼成されている金属マトリックスを含んでもよい。
【0217】
別の態様において、本開示は、固体材料を気化させるための、その中に支持表面を含む内部容積部を画定する容器を備えた固体気化装置であって、支持表面の少なくとも一部がこの表面にALD被膜を有する、固体気化装置に関する。支持表面は、容器壁表面のような容器の内表面、ならびに/または容器の床、または壁および/もしくは床表面と統合して形成された延在する表面を含んでもよく、その結果、支持表面は、容器の内表面を含む、および/または支持表面は、気化されることになる固体材料のための支持表面を内部容積部中に備えた、トレード(trade)のような支持部材の表面を含んでもよい。トレイは、ALD被膜により部分的または完全に被覆され得る。他の実施形態において、容器は、垂直方向に離間されたて一列に並んでいるトレイを含むことができ、それぞれのトレイは、固体材料のための支持表面を設けている。一列に並んでいるこのようなトレイのそれぞれは、ALD被膜により被覆されていてもよい。
【0218】
容器は、ALD被膜により被覆されている、その内部容積部に接合している容器の内壁表面を備えて作製され得る。ALD被膜は、例えば、2から500nmの範囲の厚さを有する、アルミナを例えば含むことができる。前述の実施形態のうちのいずれかにおけるALD被膜によって被覆されている支持表面は、ステンレス鋼表面とすることができる。気化器容器はそれ自体、ステンレス鋼から形成されていてもよい。気化器装置は、容器の支持表面上、例えば、容器の内部容積部中の積み重ねられているトレイの支持表面に蒸発可能な固体材料を含有する、固体をロードした状態で提供され得る。蒸発可能な固体材料は、任意の好適なタイプとすることができ、蒸着またはイオン注入操作用の前駆体材料を例えば含んでもよい。蒸発可能な固体材料は、有機金属化合物、または三塩化アルミニウムのような金属ハロゲン化物化合物を含むことができる。容器の支持表面に適用されるALD被膜は、特定の蒸発可能な固体材料に特異的に適合され得ることが理解される。ALD被膜は、容器の壁表面および床表面、ならびに任意のトレイまたは容器の内部容積部に配設されている蒸発可能な固体用の他の支持構造体により提供される表面を含めた、容器の内部容積部内の内表面すべてに適用され得ることも理解される。
【0219】
続く開示は、本明細書に記載されている被覆技術の特定の特徴、態様および性質を例示する、本開示の被覆されている基材物品、デバイスおよび装置の様々な例示を対象としている。
【0220】
本開示によるアルミナ被膜は、本明細書に既に記載されている通り、この図3に示されているタイプのアンプルのような気化器アンプルにおいて利用されるホルダーの表面に適用され得る。図15は、アルミニウム過程のために、三塩化アルミニウム(AlCl)固体前駆体を送達するための気化器アンプルにおいて使用するのが有用なテンレス鋼ホルダーの透視図であり、この場合、気化器アンプルから排出するために、三塩化アルミニウム前駆体がホルダーにより支持されて気化され、三塩化アルミニウム前駆体蒸気を形成し、連結されている流通回路を通りアルミニウム過程へと送られる。アルミニウム法は、例えば、好適なウェハ基材上および/またはウェハ基材において半導体デバイス構造体の金属化に使用され得る。
【0221】
図16は、ステンレス鋼ホルダーの上にアルミナの被膜が原子層堆積により被覆され、その結果、気化器アンプルの使用および操作時にホルダーが曝露される、三塩化アルミニウム(AlCl)の曝露を含む腐食環境において、ステンレス鋼表面がアルミナ被膜により封入される、図15に示されているタイプのステンレス鋼ホルダーの透視図である。このようなアルミナ被膜によって、ホルダーは腐食から保護され、前駆体蒸気の金属の混入は実質的に低減される。ホルダーのこのようなアルミナ被膜に加えて、気化器アンプルの内表面全体およびアンプルの外側表面も同様に被覆されて、アルミニウム法または他の利用のための前駆体蒸気を発生させるため、三塩化アルミニウム(AlCl)固体前駆体を処理してこれを気化させることに由来する腐食環境からの保護の延長をもたらすことができる。
【0222】
ホルダーおよび/または他の気化器アンプルの使用の表面へのアルミナ被膜は、任意の好適な厚さとすることができ、例えば、20nmから250nmまたはそれ超の範囲の厚さとすることができる。様々な実施形態において、ホルダー表面上の被膜厚は、50から125nmの範囲とすることができる。対応する堆積サイクル数および堆積回数の対応する蒸着操作を行うことによって、任意の好適な厚さのアルミナ被膜が適用されることができ、好適な厚さは、経験的な方法によって適宜決定可能であり、金属の表面上へ所望のレベルの耐腐食保護をもたらすことが理解される。
【0223】
図17は、気化器アンプルにおいて利用される固体前駆体ホルダーへの適用において、上記の、原子層堆積によりステンレス鋼基材に適用されたアルミナ被膜の拡大概略図である。アルミナ被膜は、耐腐食性を実現する、基材との化学反応を防止する、三塩化アルミニウム前駆体蒸気を発生させるための気化器の使用において金属の混入を低減する。
【0224】
別の用途において、イッテリア被膜は、エッチング装置または装置の構成要素の表面、例えば、プラズマエッチング機器において使用される注入器ノズルの表面に適用され得る。図18は、イットリア(Y)により被覆されている、プラズマエッチング装置のチャネルを示している。イットリアは、高いアスペクト比フィーチャのような複雑な形状の表面および部品に好適なエッチング耐性被膜をもたらす。原子層堆積によって堆積される場合、イットリアは、エッチングに耐性を示す緻密でコンフォーマルな、ピンホールのない被膜を形成し、このようなイットリア被膜のない表面に関連する、脱粒および腐食を実質的に低減する。
【0225】
イッテリア被膜は、図19の拡大概略図と同様に、アルミナの上への原子層堆積によって適用され得る。プラズマエッチング機器および機器の構成要素への適用において、ALDイットリア層は、耐腐食性およびエッチング耐性の向上をもたらし、クロロおよびフルオロおよび他のハロゲンをベースとするプラズマへの曝露のような有害なプラズマ曝露から、下層表面を保護する。これらにより、ALDイットリア層は、望ましくない粒子の発生を低減し、この表面がイットリア被膜により被覆されているプラズマエッチング機器の部品の寿命が延びる。
【0226】
別の用途において、エッチングチャンバ装置に使用されるロードロック構成要素が、使用時に、エッチングチャンバからの残留エッチング用化学物質に晒され、金属構成要素の深刻な腐食をもたらす。一例は、例えば、ニッケルまたは他の金属または金属合金から形成されているフィルター膜を有する、ステンレス鋼または他の金属または金属合金から作製され得る散気板である。このような散気板組立体は、アルミナ被膜により被覆されて、散気板およびフィルター膜を封入して保護することができる。フィルター膜の完全な封入によって、膜の腐食が阻止される。
【0227】
図20は、アルミナ被膜により被覆されている、ステンレス鋼製フレームおよびニッケルフィルター膜を含む、散気板組立体の写真である。図21は、ステンレス鋼製フレームおよびニッケル膜がALDアルミナにより封入されている、散気板組立体の拡大概略図である。ALD被膜は、有害な化学物質、例えば、臭化水素をベースとする化学物質から保護する腐食耐性層およびエッチング耐性層をもたらし、粒子の低減、および組立体の寿命を延ばす。
【0228】
別の用途は、ALD処理に由来する塩素をベースとする前駆体、およびチャンバでの洗浄操作に由来するフッ素をベースとするプラズマに曝露される半導体処理機器に関する。このような用途において、イッテリア被膜が使用されて、良好なエッチング耐性をもたらし、複雑な形状を有する部品を被覆することができる。このような用途における手法の1つは、イットリアの物理蒸着(PVD)と原子層堆積(ALD)との組合せ使用であり、ALDは、高いアスペクト比のフィーチャおよび重要素子の一層薄いコーティングに使用され、部品の残りに、PVDの厚いコーティングが使用される。このような用途において、イットリアALD層は、耐腐食性およびエッチング耐性、フッ素をベースとする化学物質およびフッ素をベースとするプラズマからの保護をもたらして、粒子発生を低減し、保護イットリア被膜により被覆されている部品の寿命を延ばす。
【0229】
さらなる用途は、バックエンドブライン(BEOL)およびフロントエンドオブライン(FEOL)のUV硬化操作において使用される、紫外(UV)硬化用ランプの電球のような、石英の封封入構造体のコーティングに関する。電球が石英から作製されるようなUVランプの操作において、水銀は、例えば1000℃程度において関与する高温での操作中に石英に拡散し、このような水銀の拡散は、UVランプの分解、およびこの操作耐用年数がかなり短縮する。石英封入体(電球)材料へのこのような水銀の移動に対処するため、アルミナおよび/またはイットリアが、電球の内表面上に被覆されて、石英封入体材料への水銀の侵入に対する拡散バリア層をもたらす。
【0230】
プラズマチャネル被膜および水チャネル被膜48は、アルミナのALD被膜を含んでもよく、この被膜の上に酸窒化アルミニウム(AlON)の物理蒸着(PVD)ALD被膜が堆積されており、これは、アルミニウム基材、アルミナのALDALD被膜およびAIONのPVDALD被膜を示している、図22の拡大概略図に示されている。それぞれのアルミナおよび酸窒化アルミニウム被膜の厚さは、任意の好適な厚さとすることができる。例として、アルミナ被膜の厚さは、0.05から5μmの範囲とすることができ、PVD被膜の厚さは、2から25μmの範囲とすることができる。具体的な実施形態において、アルミナ被膜は、1μmの厚さを有しており、PDV AION被膜は10μmの厚さを有する。この構造体において、PVD AlON被膜は、エッチング耐性およびプラズマ表面の再結合能力を有する装置を実現し、アルミナ被膜は、エッチング耐性を実現することに加えて、電気隔離コーティングを実現する。
【0231】
さらなる用途は、図23に示されている層構造体を有することがある、ホットチャック構成要素用の誘電積層体に関する。示されている通り、アルミナ基材は、電極金属、例えば、この上にニッケルを有しており、ニッケルの上に、ALDアルミナの電気隔離層がある。酸窒化アルミニウムのPVD被膜が、アルミナ層上に堆積され、化学蒸着(CVD)により堆積させた酸窒化ケイ素(SiON)の層がAION層上に堆積する。この層構造体において、CVD SiON層は、接触表面および電気スペーサーの清浄な通路をもたらし、PVD AION層は、熱膨張(CTE)緩衝層の係数をもたらし、アルミナのALD層は、電気隔離層をもたらし、ニッケルは、アルミナ基材上に、電極金属層をもたらす。
【0232】
さらなる用途は、プラズマ活性化チャンバのプラズマ活性化チャンク構成要素に関し、アルミニウム部品が、図24および図25に示されている多層積層体を含む多層積層体により被覆されている。図24の多層積層体は、アルミニウム基材上に化学蒸着を適用したケイ素層を含み、CVD Si層の上にジルコニアのALD層がある。この多層積層体において、ジルコニアのALD層は、拡散バリア層および電気的隔離体として働く、接触表面に対する、清浄で緻密な通路をもたらすよう機能する。CVDケイ素層は、アルミニウム基材上に清浄な緩衝層をもたらす。図25の多層積層体は、アルミニウム基材上の酸窒化ケイ素のCVD層、およびCVD SiON被膜層上のアルミナのALD層を含み、ALDアルミナ層は、電気隔離層、拡散バリア層、および接触表面のための清浄で緻密な経路をもたらす層として機能する。CVD SiON層は、多層コーティング構造体における清浄な緩衝層をもたらす。
【0233】
本開示のコーティング技術のさらなる用途は、多孔質マトリックスおよびフィルター物品のコーティングであって、多孔質マトリックスまたはフィルター材料における、侵入深さおよび被膜厚を独立して制御することを可能にする、アルミナのような被膜が原子層堆積により堆積され得る、コーティングに関する。部分的なアルミナ被膜侵入または完全なアルミナ被膜侵入のどちらかが、物品およびこの特定の最終使用に応じて使用され得る。
【0234】
図26は、原子層堆積によってアルミナにより被覆されている、1.5mmの壁厚および2-4μmの細孔サイズを有する多孔質材料の顕微鏡写真である。図27は、耐腐食性およびエッチング耐性を有する封入膜、化学的腐食からの保護、粒子生成の低減、および金属の混入の低減を実現する、ステンレス鋼、ニッケル、チタン、またはALDに堆積させたアルミナにより完全に封入された他の好適な材料から形成されている膜を含む、封入膜の概略図である。
【0235】
示されている原子層堆積の使用は、被膜の侵入深さおよび被膜厚の独立した制御を可能にする。この能力は、例えば、20nmから250nmの範囲の名目細孔サイズ、例えば100nm程度の名目細孔サイズを有するもののような、超微細膜の細孔サイズおよび流量制限を制御するために使用されるのが有用である。
【0236】
図28は、被膜が、35μmの被膜の侵入深さを有するアルミナである、被覆フィルターの顕微鏡写真である。図29は、被膜が、175μmの被膜の侵入深さを有するアルミナである、被覆フィルターの顕微鏡写真である。
【0237】
本明細書における上述の開示に一致して、一態様において、本開示は、この中に内部容積部を画定する容器、容器から前駆体蒸気を排出するよう構成されている出口、および固体前駆体材料を気化させて前駆体の蒸気を形成させるための、固体前駆体材料をこの上に支持するようになされている容器の内部容積部内に支持構造体を備えた、固体気化装置であって、上記固体前駆体材料がアルミニウム前駆体を含み、内部容積部中の表面領域の少なくとも一部がアルミナ被膜により被覆されている、固体気化装置に関する。このような固体気化装置の様々な実施形態において、表面領域は、支持構造体の表面領域の少なくとも1つ、および前記内部容積部中の容器の表面領域を含んでもよい。他の実施形態において、表面領域は、支持構造体の表面領域、および前記内部容積部における容器の表面領域を含んでもよい。さらに他の実施形態において、アルミナ被膜により被覆されている内部容積部内の表面領域はステンレス鋼を含む。固体気化装置の様々な実施において、アルミナ被膜は、20から125nmの範囲の厚さを有することができる。アルミナ被膜は、上述の態様および実施形態のいずれかにおける、ALDアルミナ被膜を例えば含むことができる。
【0238】
本開示は、別の態様において、使用または操作時に、ハロゲン化アルミニウムに曝露されるステンレス鋼構造体、材料または装置の耐腐食性を増強する方法であって、前記ステンレス鋼構造体、材料または装置をアルミナ被膜により被覆するステップを含む、方法に関する。このような方法におけるアルミナ被膜は、20から125nmの範囲の厚さを例えば有することができる。アルミナ被膜は、原子層堆積によって例えば適用され得る。
【0239】
さらなる態様において、本開示は、使用または操作時に、エッチング用媒体に曝露される半導体処理用エッチング構造体、構成要素または装置であって、イットリアの層を含む被膜により被覆されており、イットリアの層が、任意選択的に前記被膜中のアルミナの層の上にある、半導体処理用エッチング構造体、構成要素または装置に関する。本エッチング構造体、構成要素または装置は、エッチング用装置注入器ノズルを例えば含むことができる。
【0240】
本開示の別の態様は、使用または操作時に、エッチング用媒体に曝露される半導体処理用エッチング構造体、構成要素または装置の耐腐食性およびエッチング耐性を増強する方法であって、構造体、構成要素または装置を、イットリアの層を含む被膜により被覆するステップを含み、イットリアの層が、任意選択的に前記被膜中のアルミナの層の上にある、方法に関する。
【0241】
本開示のさらに別の態様は、アルミナ被膜により封入されたニッケル膜を含む、エッチングチャンバ散気板に関する。このようなエッチングチャンバ散気板において、アルミナ被膜は、ALDアルミナ被膜を含んでもよい。
【0242】
本開示のさらなる態様は、ニッケル膜を含むエッチングチャンバ散気板の耐腐食性およびエッチング耐性を増強する方法であって、ニッケル膜をアルミナの封入用被膜により被覆するステップを含む、方法に関する。アルミナの被膜は、ALD被膜を例えば含んでもよい。
【0243】
別の態様において、本開示は、使用または操作時に、ハロゲン化物媒体に曝露される蒸着処理用構造体、構成要素または装置であって、イットリアのALDベースコーティングおよびイットリアのPVDオーバーコーティングを含むイットリアの被膜により被覆されている、蒸着処理用構造体、構成要素または装置に関する。このような構造体、構成要素または装置において、イットリアのALDベースコーティングおよびイットリアのPVDオーバーコーティングにより被覆されている表面はアルミニウムを含んでもよい。
【0244】
本開示のさらなる態様は、使用または操作時に、ハロゲン化物媒体に曝露される蒸着処理用構造体、構成要素または装置の耐腐食性およびエッチング耐性を増強する方法であって、イットリアのALDベースコーティングおよびイットリアのPVDオーバーコーティングを含む、イットリアの被膜により上記構造体、構成要素または装置を被覆するステップを含む、方法に関する。上記の通り、構造体、構成要素または装置は、イットリアの被膜により被覆されているアルミニウム表面を含んでもよい。
【0245】
別の態様において、本開示は、石英の封入構造体であって、この内方表面がアルミナ拡散バリア層により被覆されている石英の封入構造体に関する。
【0246】
本開示の対応する態様は、石英の封入構造体の操作において、水銀の拡散を受けやすい石英の封入構造体へのこのような拡散を低減する方法であって、石英の封入構造体の内表をアルミナ拡散バリア層により被覆するステップを含む、方法に関する。
【0247】
本開示は、さらなる態様において、使用時または操作時における、1000Vを超えるプラズマおよび電圧に曝露されるプラズマ源構造体、構成要素または装置であって、前記構造体、構成要素または装置のプラズマ湿潤表面が、アルミナのALD被膜により被覆されており、前記アルミナ被膜が、酸窒化アルミニウムのPVD被膜によりオーバー被覆されている、プラズマ源構造体、構成要素または装置に関する。プラズマ湿潤表面は、アルミニウムまたは酸窒化アルミニウムを例えば含むことができる。
【0248】
本開示のさらなる態様は、使用時または操作時における、1000Vを超えるプラズマおよび電圧に曝露されるプラズマ源構造体、構成要素または装置の耐用年数を向上させる方法であって、前記構造体、構成要素または装置のプラズマ湿潤表面をアルミナのALD被膜により被覆するステップ、および前記アルミナ被膜を酸窒化アルミニウムのPVD被膜によりオーバー被覆するステップを含む、方法に関する。上で示されている通り、プラズマ湿潤表面は、アルミニウムまたは酸窒化アルミニウムを含んでもよい。
【0249】
本開示の追加的な態様は、アルミナのベース層、この上にニッケル電極層、このニッケル電極層上のALDアルミナ電気隔離層、このALDアルミナ電気隔離層上にPVD酸窒化アルミニウム熱膨張緩衝層、ならびにこのPVD酸窒化アルミニウム熱膨張緩衝層上にCVD酸窒化ケイ素ウェハの接触表面および電気スペーサー層を含む逐次層を備えた、誘電積層体に関する。
【0250】
本開示の別の態様において、(i)および(ii)の多層被膜のうちの1つにより被覆されているアルミニウム表面を含む、プラズマ活性化構造体、構成要素または装置が企図される:(i)アルミニウム表面上のCVDケイ素のベースコート、およびCVDケイ素のベースコート上のALDジルコニアの層;ならびに(ii)アルミニウム表面上のCVD酸窒化ケイ素のベースコート、およびCVD酸窒化ケイ素のベースコート上のALDアルミナ層。
【0251】
プラズマ活性化構造体、構成要素または装置のアルミニウム表面に対する粒子形成および金属の混入を低減する対応する方法であって、(i)および(ii)の多層被膜のうちの1つにより、アルミニウム表面を被覆するステップを含む、方法が企図される:(i)アルミニウム表面上のCVDケイ素のベースコート、およびCVDケイ素のベースコート上のALDジルコニアの層;ならびに(ii)アルミニウム表面上のCVD酸窒化ケイ素のベースコート、およびCVD酸窒化ケイ素のベースコート上のALDアルミナ層。
【0252】
別の態様において、本開示は、ステンレス鋼、ニッケルまたはチタンから形成される膜を含む、多孔質マトリックスフィルターであって、膜が、20から2000μmの範囲の被膜の侵入深さまでアルミナによって封入されている、多孔質マトリックスフィルターを企図する。より詳細に、様々な実施形態において、細孔性(porosity)は、10から1000nmの範囲の名目細孔サイズを有することができる。
【0253】
本開示の別の態様は、多孔質マトリックスフィルターを作製する方法であって、ステンレス鋼、ニッケルまたはチタンから形成されている膜を20から2000μmの範囲の被膜の侵入深さまでアルミナにより封入するステップを含む、方法に関する。このような方法の具体的な実施形態において、封入するステップは、アルミナのALDを含み、この方法が行われて、10から1000nmの範囲にある名目細孔サイズを有する多孔質マトリックスフィルターに多孔性をもたらす。
【0254】
本開示は、本明細書において、特定の態様、特徴および例示的な実施形態を参照して説明されているが、本開示の利用性はこのように制限されず、むしろ、本明細書における記載に基づいて、本開示の当業者にこれら自体を示唆する通り、他の変更形態、修正形態および代替実施形態にまで拡張し、これらを包含することが理解される。これに対応して、これ以降に特許請求されている本開示は、この主旨および範囲内にこのようなすべての変更形態、修正形態および代替実施形態を含むものとして、幅広く解釈されて理解されることが意図される。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29