(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-07-25
(45)【発行日】2024-08-02
(54)【発明の名称】プラズマ処理装置、プラズマ状態検出方法およびプラズマ状態検出プログラム
(51)【国際特許分類】
H01L 21/3065 20060101AFI20240726BHJP
H01L 21/205 20060101ALI20240726BHJP
H01L 21/31 20060101ALI20240726BHJP
H05H 1/46 20060101ALI20240726BHJP
【FI】
H01L21/302 103
H01L21/205
H01L21/31 C
H05H1/46 A
H05H1/46 M
(21)【出願番号】P 2022207737
(22)【出願日】2022-12-26
(62)【分割の表示】P 2019099609の分割
【原出願日】2019-05-28
【審査請求日】2023-01-25
(31)【優先権主張番号】P 2018124896
(32)【優先日】2018-06-29
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2019032013
(32)【優先日】2019-02-25
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000219967
【氏名又は名称】東京エレクトロン株式会社
(74)【代理人】
【識別番号】110002147
【氏名又は名称】弁理士法人酒井国際特許事務所
(72)【発明者】
【氏名】林 大輔
(72)【発明者】
【氏名】梅澤 義弘
(72)【発明者】
【氏名】岡 信介
【審査官】宇多川 勉
(56)【参考文献】
【文献】特開2017-005128(JP,A)
【文献】特開2010-171288(JP,A)
【文献】特開2009-302390(JP,A)
【文献】特開2004-247526(JP,A)
【文献】特開2010-199107(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/3065
H01L 21/205
H01L 21/31
H05H 1/46
(57)【特許請求の範囲】
【請求項1】
プラズマ処理の対象となる被処理体が載置される載置面の温度を調整可能なヒーターが設けられた載置台と、
前記ヒーターが設定温度となるよう前記ヒーターへの供給電力を制御するヒーター制御部と、
前記ヒーター制御部により、前記ヒーターの温度が一定となるよう前記ヒーターへの供給電力を制御して、プラズマを点火して無い未点火状態と、プラズマ点火後の点火状態での供給電力を計測する計測部と、
前記計測部により計測された未点火状態と点火状態の供給電力を用いて、
プラズマからの入熱量を算出するパラメータ算出部と、
前記パラメータ算出部により算出された前記入熱量に基づく情報を出力する出力部と、
を有するプラズマ処理装置。
【請求項2】
前記載置台は、前記載置面を分割した領域毎に前記ヒーターが個別に設けられ、
前記ヒーター制御部は、領域毎に設けられた前記ヒーターが領域毎に設定温度となるよう前記ヒーターごとに供給電力を制御し、
前記計測部は、前記ヒーター制御部により、前記ヒーターごとに温度が一定となるよう供給電力を制御して、前記未点火状態と、前記点火状態での供給電力を前記ヒーターごとに計測し、
前記パラメータ算出部は、前記ヒーターごとに、前記計測部により計測された未点火状態と点火状態の供給電力を用いて、前記ヒーターごとに前記入熱量を算出し、
前記出力部は、前記パラメータ算出部により算出された前記ヒーターごとの前記入熱量に基づき、プラズマの密度分布を示す情報を出力する
ことを特徴とする請求項1に記載のプラズマ処理装置。
【請求項3】
前記プラズマの密度分布に基づき、前記被処理体に対するプラズマ処理が均等化するようプラズマ処理の制御パラメータを変更する変更部をさらに有することを特徴とする請求項2に記載のプラズマ処理装置。
【請求項4】
前記出力部により出力される情報または当該情報の変化に基づき、アラートを行うアラート部をさらに有することを特徴とする請求項1~3の何れか1つに記載のプラズマ処理装置。
【請求項5】
前記計測部は、所定のサイクルで、前記未点火状態と、前記点火状態の前記ヒーターへの供給電力を計測し、
前記パラメータ算出部は、前記サイクルごとに、前記計測部により計測された未点火状態と点火状態の供給電力を用いて、前記入熱量を算出する
請求項1に記載のプラズマ処理装置。
【請求項6】
前記計測部は、プラズマ処理を行う毎に、前記未点火状態と、前記点火状態の前記ヒーターへの供給電力を計測し、
前記パラメータ算出部は、プラズマ処理を行う毎に、前記計測部により計測された未点火状態と点火状態の供給電力を用いて、前記入熱量を算出する
請求項1に記載のプラズマ処理装置。
【請求項7】
プラズマ点火後の点火状態は、プラズマを点火してからヒーターへの供給電力が低下する過渡状態である
請求項1に記載のプラズマ処理装置。
【請求項8】
前記計測部は、前記過渡状態において前記ヒーターへの供給電力を2回以上計測する
請求項7に記載のプラズマ処理装置。
【請求項9】
前記変更部は、プラズマ密度分布を示す情報に基づき、載置領域の分割領域ごとのウエハの温度の目標温度を変更する
請求項3に記載のプラズマ処理装置。
【請求項10】
前記変更部は、プラズマ密度分布を示す情報に基づき、上部電極の分割領域ごとに、吐出するガスの濃度を変更する
請求項3に記載のプラズマ処理装置。
【請求項11】
前記載置台は、前記載置面を分割した領域毎にヒーターの温度を検出可能な温度センサ
が設けられている
請求項2に記載のプラズマ処理装置。
【請求項12】
前記温度センサは、ヒーターに取り付けられている
請求項11に記載のプラズマ処理装置。
【請求項13】
前記温度センサは、ヒーターと冷媒の間に設けられている
請求項11に記載のプラズマ処理装置。
【請求項14】
前記載置台は、前記載置面が周方向に複数の領域に分割されている
請求項2に記載のプラズマ処理装置。
【請求項15】
前記複数の領域は、前記載置面が外周に近いほど、径方向の幅が狭い
請求項14に記載のプラズマ処理装置。
【請求項16】
プラズマ処理の対象となる被処理体が載置される載置面の温度を調整可能なヒーターが設けられた載置台の前記ヒーターの温度が一定となるよう前記ヒーターへの供給電力を制御して、プラズマを点火して無い未点火状態と、プラズマ点火後の点火状態での供給電力を計測し、
計測された未点火状態と点火状態の供給電力を用いて、
プラズマからの入熱量を算出し、
算出された前記入熱量に基づく情報を出力する
処理をコンピュータが実行することを特徴とするプラズマ状態検出方法。
【請求項17】
プラズマ処理の対象となる被処理体が載置される載置面の温度を調整可能なヒーターが設けられた載置台の前記ヒーターの温度が一定となるよう前記ヒーターへの供給電力を制御して、プラズマを点火して無い未点火状態と、プラズマ点火後の点火状態での供給電力を計測し、
計測された未点火状態と点火状態の供給電力を用いて、
プラズマからの入熱量を算出し、
算出された前記入熱量に基づく情報を出力する
処理をコンピュータに実行させることを特徴とするプラズマ状態検出プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、プラズマ処理装置、プラズマ状態検出方法およびプラズマ状態検出プログラムに関するものである。
【背景技術】
【0002】
従来から、半導体ウエハ(以下「ウエハ」とも称する)などの被処理体に対してプラズマを用いて、エッチングなどのプラズマ処理を行うプラズマ処理装置が知られている。このプラズマ処理装置には、処理容器内に各種プローブや各種電気センサなどのセンサを配置して、プラズマの状態を検出する技術が提案されている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2009-194032号公報
【文献】特開2009-087790号公報
【文献】特表2014-513390号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
本開示は、センサを配置することなくプラズマの状態を検出する技術を提供する。
【課題を解決するための手段】
【0005】
本開示の一態様によるプラズマ処理装置は、載置台と、ヒーター制御部と、計測部と、パラメータ算出部と、出力部とを有する。載置台は、プラズマ処理の対象となる被処理体が載置される載置面の温度を調整可能なヒーターが設けられている。ヒーター制御部は、ヒーターが設定された設定温度となるようヒーターへの供給電力を制御する。計測部は、ヒーター制御部により、ヒーターの温度が一定となるようヒーターへの供給電力を制御して、プラズマを点火して無い未点火状態と、プラズマを点火してからヒーターへの供給電力が低下する過渡状態での供給電力を計測する。パラメータ算出部は、プラズマからの入熱量をパラメータとして含み、前記過渡状態の供給電力を算出する算出モデルに対して、前記計測部により計測された未点火状態と過渡状態の供給電力を用いてフィッティングを行って、入熱量を算出する。出力部は、パラメータ算出部により算出された入熱量に基づく情報を出力する。
【発明の効果】
【0006】
本開示によれば、処理容器内にセンサを配置することなくプラズマの状態を検出できる。
【図面の簡単な説明】
【0007】
【
図1】
図1は、実施形態に係るプラズマ処理装置の概略構成の一例を示す断面図である。
【
図2】
図2は、実施形態に係る載置台の構成の一例を示す平面図である。
【
図3】
図3は、実施形態に係るプラズマ処理装置を制御する制御部の概略的な構成の一例を示したブロック図である。
【
図4】
図4は、ウエハの温度に影響を与えるエネルギーの流れの一例を模式的に示した図である。
【
図5A】
図5Aは、未点火状態のエネルギーの流れの一例を模式的に示す図である。
【
図5B】
図5Bは、点火状態のエネルギーの流れの一例を模式的に示す図である。
【
図6】
図6は、ウエハWの温度とヒーターHTへの供給電力の変化の一例を示す図である。
【
図7】
図7は、点火状態のエネルギーの流れの一例を模式的に示す図である。
【
図8】
図8は、プラズマの密度分布による未点火状態と過渡状態の温度変化の一例を概略的に示す図である。
【
図9】
図9は、未点火状態と過渡状態のエネルギーの流れの一例を模式的に示す図である。
【
図10】
図10は、ウエハWの温度とヒーターHTへの供給電力の変化の一例を示す図である。
【
図11A】
図11Aは、プラズマの密度分布を示す情報の出力の一例を示す図である。
【
図11B】
図11Bは、プラズマの密度分布を示す情報の出力の一例を示す図である。
【
図12】
図12は、プラズマエッチングを模式的に示した図である。
【
図13】
図13は、実施形態に係るプラズマ状態検出およびプラズマ状態制御の流れの一例を示すフローチャートである。
【
図14】
図14は、実施形態に係る載置台の載置面の分割の一例を示す平面図である。
【発明を実施するための形態】
【0008】
以下、図面を参照して本願の開示するプラズマ処理装置、プラズマ状態検出方法およびプラズマ状態検出プログラムの実施形態について詳細に説明する。なお、本実施形態により、開示するプラズマ処理装置、プラズマ状態検出方法およびプラズマ状態検出プログラムが限定されるものではない。
【0009】
ところで、例えば、プラズマ処理装置には、処理容内に各種プローブや各種電気センサなどのセンサを配置して、プラズマの状態を検出すものがある。しかし、処理容器内、時にプラズマ生成領域に近い場所にセンサが配置されていると、センサの影響によりプラズマの状態が変化してしまう。そうすると、プラズマ処理装置では、被処理膜に対するプラズマ処理の特性や均一性などに影響が発生する懸念がある。また、プラズマ処理装置では、パーティクルや異常放電が発生する懸念もある。また、プラズマ処理装置では、処理容器内にセンサが配置されていると、被処理膜に対してプラズマ処理を実行できない場合がある。そうすると、プラズマ処理装置では、実際にプラズマ処理を実行している最中のプラズマの状態を検出することが出来ない。そこで、処理容器内にセンサを配置することなくプラズマの状態を検出することが期待されている。
【0010】
[プラズマ処理装置の構成]
最初に、実施形態に係るプラズマ処理装置10の構成について説明する。
図1は、実施形態に係るプラズマ処理装置の概略構成の一例を示す断面図である。
図1に示すプラズマ処理装置10は、容量結合型平行平板プラズマエッチング装置である。プラズマ処理装置10は、略円筒状の処理容器12を備えている。処理容器12は、例えば、アルミニウムから構成されている。また、処理容器12の表面は、陽極酸化処理が施されている。
【0011】
処理容器12内には、載置台16が設けられている。載置台16は、静電チャック18および基台20を含んでいる。静電チャック18の上面は、プラズマ処理の対象となる被処理体が載置される載置面とされている。本実施形態では、被処理体としてウエハWが静電チャック18の上面に載置される。基台20は、略円盤形状を有しており、その主部において、例えばアルミニウムといった導電性の金属から構成されている。基台20は、下部電極を構成している。基台20は、支持部14によって支持されている。支持部14は、処理容器12の底部から延びる円筒状の部材である。
【0012】
基台20には、第1の高周波電源HFSが電気的に接続されている。第1の高周波電源HFSは、プラズマ生成用の高周波電力を発生する電源であり、27~100MHzの周波数、一例においては40MHzの高周波電力を発生する。これにより基台20直上にプラズマが生成される。整合器MU1は、第1の高周波電源HFSの出力インピーダンスと負荷側(基台20側)の入力インピーダンスを整合させるための回路を有している。
【0013】
また、基台20には、整合器MU2を介して第2の高周波電源LFSが電気的に接続されている。第2の高周波電源LFSは、ウエハWにイオンを引き込むための高周波電力(高周波バイアス電力)を発生して、当該高周波バイアス電力を基台20に供給する。これにより基台20にバイアス電位が生じる。高周波バイアス電力の周波数は、400kHz~13.56MHzの範囲内の周波数であり、一例においては3MHzである。整合器MU2は、第2の高周波電源LFSの出力インピーダンスと負荷側(基台20側)の入力インピーダンスを整合させるための回路を有している。
【0014】
基台20上には、静電チャック18が設けられている。静電チャック18は、クーロン力等の静電力によりウエハWを吸着し、当該ウエハWを保持する。静電チャック18は、セラミック製の本体部内に静電吸着用の電極E1を有している。電極E1には、スイッチSW1を介して直流電源22が電気的に接続されている。ウエハWを保持する吸着力は、直流電源22から印加される直流電圧の値に依存する。
【0015】
基台20の上面の上、且つ、静電チャック18の周囲には、フォーカスリングFRが設けられている。フォーカスリングFRは、プラズマ処理の均一性を向上させるために設けられている。フォーカスリングFRは、実行すべきプラズマ処理に応じて適宜選択される材料から構成されており、例えば、シリコン、または石英から構成され得る。
【0016】
基台20の内部には、冷媒流路24が形成されている。冷媒流路24には、処理容器12の外部に設けられたチラーユニットから配管26aを介して冷媒が供給される。冷媒流路24に供給された冷媒は、配管26bを介してチラーユニットに戻るようになっている。なお、基台20および静電チャック18を含む載置台16の詳細については、後述する。
【0017】
処理容器12内には、上部電極30が設けられている。上部電極30は、載置台16の上方において、基台20と対向配置されており、基台20と上部電極30とは、互いに略平行に設けられている。
【0018】
上部電極30は、絶縁性遮蔽部材32を介して、処理容器12の上部に支持されている。上部電極30は、電極板34および電極支持体36を含み得る。電極板34は、処理空間Sに面しており、複数のガス吐出孔34aを提供している。電極板34は、ジュール熱の少ない低抵抗の導電体または半導体から構成され得る。
【0019】
電極支持体36は、電極板34を着脱自在に支持するものであり、例えばアルミニウムといった導電性材料から構成され得る。電極支持体36は、水冷構造を有し得る。電極支持体36の内部には、ガス拡散室36aが設けられている。ガス拡散室36aからは、ガス吐出孔34aに連通する複数のガス通流孔36bが下方に延びている。また、電極支持体36にはガス拡散室36aに処理ガスを導くガス導入口36cが形成されており、ガス導入口36cには、ガス供給管38が接続されている。
【0020】
ガス供給管38には、バルブ群42および流量制御器群44を介してガスソース群40が接続されている。バルブ群42は複数の開閉バルブを有しており、流量制御器群44は、マスフローコントローラといった複数の流量制御器を有している。また、ガスソース群40は、プラズマ処理に必要な複数種のガス用のガスソースを有している。ガスソース群40の複数のガスソースは、対応の開閉バルブおよび対応のマスフローコントローラを介してガス供給管38に接続されている。
【0021】
プラズマ処理装置10では、ガスソース群40の複数のガスソースのうち選択された一以上のガスソースからの一以上のガスが、ガス供給管38に供給される。ガス供給管38に供給されたガスは、ガス拡散室36aに至り、ガス通流孔36bおよびガス吐出孔34aを介して処理空間Sに吐出される。
【0022】
また、
図1に示すように、プラズマ処理装置10は、接地導体12aを更に備え得る。接地導体12aは、略円筒状の接地導体であり、処理容器12の側壁から上部電極30の高さ位置よりも上方に延びるように設けられている。
【0023】
また、プラズマ処理装置10では、処理容器12の内壁に沿ってデポシールド46が着脱自在に設けられている。また、デポシールド46は、支持部14の外周にも設けられている。デポシールド46は、処理容器12にエッチング副生物(デポ)が付着することを防止するものであり、アルミニウム材にY2O3等のセラミックスを被覆することにより構成され得る。
【0024】
処理容器12の底部側においては、支持部14と処理容器12の内壁との間に排気プレート48が設けられている。排気プレート48は、例えば、アルミニウム材にY2O3等のセラミックスを被覆することにより構成され得る。排気プレート48の下方において処理容器12には、排気口12eが設けられている。排気口12eには、排気管52を介して排気装置50が接続されている。排気装置50は、ターボ分子ポンプなどの真空ポンプを有しており、処理容器12内を所望の真空度まで減圧することができる。また、処理容器12の側壁にはウエハWの搬入出口12gが設けられており、搬入出口12gはゲートバルブ54により開閉可能となっている。
【0025】
上記のように構成されたプラズマ処理装置10は、制御部100によって、その動作が統括的に制御される。制御部100は、例えば、コンピュータであり、プラズマ処理装置10の各部を制御する。プラズマ処理装置10は、制御部100によって、その動作が統括的に制御される。
【0026】
[載置台の構成]
次に、載置台16について詳細に説明する。
図2は、実施形態に係る載置台の構成の一例を示す平面図である。上述したように載置台16は、静電チャック18および基台20を有している。静電チャック18は、セラミック製の本体部18mを有している。本体部18mは、略円盤形状を有している。本体部18mは、載置領域18aおよび外周領域18bを提供している。載置領域18aは、平面視において略円形の領域である。載置領域18aの上面上には、ウエハWが載置される。すなわち、載置領域18aの上面は、ウエハWが載置される載置面として機能する。載置領域18aの直径は、ウエハWと略同一の直径であるか、或いは、ウエハWの直径よりも若干小さくなっている。外周領域18bは、載置領域18aを囲む領域であり、略環状に延在している。本実施形態では、外周領域18bの上面は、載置領域18aの上面より低い位置にある。
【0027】
図2に示すように、静電チャック18は、載置領域18a内に静電吸着用の電極E1を有している。電極E1は、上述したように、スイッチSW1を介して直流電源22に接続されている。
【0028】
また、載置領域18a内、且つ、電極E1の下方には、複数のヒーターHTが設けられている。本実施形態では、載置領域18aは、複数の分割領域に分割され、それぞれの分割領域にヒーターHTが設けられている。例えば、
図2に示すように、載置領域18aの中央の円形領域内、および、当該円形領域を囲む同心状の複数の環状領域に、複数のヒーターHTが設けられている。また、複数の環状領域のそれぞれにおいては、複数のヒーターHTが周方向に配列されている。なお、
図2に示す分割領域の分割手法は、一例であり、これに限定されるものではない。載置領域18aは、より多くの分割領域に分割してもよい。例えば、載置領域18aは、外周に近いほど、角度幅が小さく、径方向の幅が狭い分割領域に分割してもよい。ヒーターHTは、基台20の外周部分に設けられた不図示の配線を介して、
図1に示す、ヒーター電源HPに個別に接続されている。ヒーター電源HPは、制御部100から制御の元、各ヒーターHTに個別に調整された電力を供給する。これにより、各ヒーターHTが発する熱が個別に制御され、載置領域18a内の複数の分割領域の温度が個別に調整される。
【0029】
ヒーター電源HPには、各ヒーターHTへ供給する供給電力を検出する電力検出部PDが設けられている。なお、電力検出部PDは、ヒーター電源HPとは別に、ヒーター電源HPから各ヒーターHTへの電力が流れる配線に設けてもよい。電力検出部PDは、各ヒーターHTへ供給する供給電力を検出する。例えば、電力検出部PDは、各ヒーターHTへ供給する供給電力として、電力量[W]を検出する。ヒーターHTは、電力量に応じて発熱する。このため、ヒーターHTへ供給する電力量は、ヒータパワーを表す。電力検出部PDは、検出した各ヒーターHTへの供給電力を示す電力データを制御部100に通知する。
【0030】
また、載置台16は、載置領域18aの各分割領域に、それぞれヒーターHTの温度が検出可能な不図示の温度センサが設けられている。温度センサは、ヒーターHTとは別に温度を測定することができる素子であってもよい。また、温度センサは、ヒーターHTへの電力が流れる配線に配置され、主な金属の電気抵抗は温度上昇に比例して増大する性質であることを利用して、ヒーターHTにかかる電圧、電流を測定することから求められる抵抗値から温度を検出してもよい。各温度センサにより検出されたセンサ値は、温度測定器TDに送られる。温度測定器TDは、各センサ値から載置領域18aの各分割領域の温度を測定する。温度測定器TDは、載置領域18aの各分割領域の温度を示す温度データを制御部100に通知する。
【0031】
さらに、図示しない伝熱ガス供給機構およびガス供給ラインによって伝熱ガス、例えばHeガスが静電チャック18の上面とウエハWの裏面との間に供給されてもよい。
【0032】
[制御部の構成]
次に、制御部100について詳細に説明する。
図3は、実施形態に係るプラズマ処理装置を制御する制御部の概略的な構成の一例を示したブロック図である。制御部100は、外部インターフェース101と、プロセスコントローラ102と、ユーザインターフェース103と、記憶部104とが設けられている。
【0033】
外部インターフェース101は、プラズマ処理装置10の各部と通信可能とされ、各種のデータを入出力する。例えば、外部インターフェース101には、電力検出部PDから各ヒーターHTへの供給電力を示す電力データが入力する。また、外部インターフェース101には、温度測定器TDから載置領域18aの各分割領域の温度を示す温度データが入力する。また、外部インターフェース101は、各ヒーターHTへ供給する供給電力を制御する制御データをヒーター電源HPへ出力する。
【0034】
プロセスコントローラ102は、CPU(Central Processing Unit)を備えプラズマ処理装置10の各部を制御する。
【0035】
ユーザインターフェース103は、工程管理者がプラズマ処理装置10を管理するためにコマンドの入力操作を行うキーボードや、プラズマ処理装置10の稼動状況を可視化して表示するディスプレイ等から構成されている。
【0036】
記憶部104には、プラズマ処理装置10で実行される各種処理をプロセスコントローラ102の制御にて実現するための制御プログラム(ソフトウエア)や、処理条件データ等が記憶されたレシピ、およびプラズマ処理を行う上での装置やプロセスに関するパラメータ等が格納されている。なお、制御プログラムや処理条件データ等のレシピは、コンピュータで読み取り可能なコンピュータ記録媒体(例えば、ハードディスク、DVDなどの光ディスク、フレキシブルディスク、半導体メモリ等)などに格納された状態のものを利用してもよい。また、レシピは、他の装置から、例えば専用回線を介して随時伝送させてオンラインで利用したりすることも可能である。
【0037】
プロセスコントローラ102は、プログラムやデータを格納するための内部メモリを有し、記憶部104に記憶された制御プログラムを読み出し、読み出した制御プログラムの処理を実行する。プロセスコントローラ102は、制御プログラムが動作することにより各種の処理部として機能する。例えば、プロセスコントローラ102は、ヒーター制御部102aと、計測部102bと、パラメータ算出部102cと、出力部102dと、アラート部102eと、変更部102fと、設定温度算出部102gの機能を有する。なお、ヒーター制御部102a、計測部102b、パラメータ算出部102c、出力部102d、アラート部102e、変更部102fおよび設定温度算出部102gの各機能は、複数のコントローラで分散して実現されてもよい。
【0038】
ここで、ウエハWの温度に影響を与えるエネルギーの流れを説明する。
図4は、ウエハの温度に影響を与えるエネルギーの流れの一例を模式的に示した図である。
図4には、ウエハWや、静電チャック(ESC)18を含む載置台16が簡略化して示されている。
図4の例は、静電チャック18の載置領域18aの1つの分割領域について、ウエハWの温度に影響を与えるエネルギーの流れを示している。載置台16は、静電チャック18および基台20を有している。静電チャック18と基台20は、接着層19により接着されている。静電チャック18の載置領域18aの内部には、ヒーターHTが設けられている。基台20の内部には、冷媒が流れる冷媒流路24が形成されている。
【0039】
ヒーターHTは、ヒーター電源HPから供給される供給電力に応じて発熱し、温度が上昇する。
図4では、ヒーターHTへ供給される供給電力をヒータパワーP
hとして示している。ヒーターHTでは、ヒータパワーP
hを、静電チャック18のヒーターHTが設けられている領域の面積Aで割った単位面積当たりの発熱量(熱流束)q
hが生じる。
【0040】
また、プラズマ処理を行っている場合、ウエハWは、プラズマからの入熱により、温度が上昇する。
図4では、プラズマからウエハWへの入熱量をウエハWの面積で割った単位面積当たりのプラズマからの熱流束q
pとして示している。
【0041】
プラズマからの入熱は、主にウエハWへの照射されるプラズマ中のイオンの量と、プラズマ中のイオンをウエハWに引き込むためのバイアス電位との積に比例することが知られている。ウエハWへの照射されるプラズマ中のイオンの量は、プラズマの電子密度に比例する。プラズマの電子密度は、プラズマの生成で印加する第1の高周波電源HFSからの高周波電力HFSのパワーに比例する。また、プラズマの電子密度は、処理容器12内の圧力に依存する。プラズマ中のイオンをウエハWに引き込むためのバイアス電位は、バイアス電位の発生で印加する第2の高周波電源LFSからの高周波電力LFSのパワーに比例する。また、プラズマ中のイオンをウエハWに引き込むためのバイアス電位は、処理容器12内の圧力に依存する。なお、高周波電力LFSが載置台12に印加されていない場合、プラズマが生成された時に生じるプラズマの電位(プラズマポテンシャル)と載置台12の電位差によって、イオンが載置台へ引き込まれる。
【0042】
また、プラズマからの入熱は、プラズマの発光による加熱やプラズマ中の電子やラジカルによるウエハWへの照射、イオンとラジカルによるウエハW上の表面反応などが含まれる。これらの成分も交流電力のパワーや圧力に依存する。プラズマからの入熱は、その他、プラズマ生成に関わる装置パラメータ、例えば、載置台16と上部電極30との間隔距離や処理空間Sに供給されるガス種に依存する。
【0043】
ウエハWに伝わった熱は、静電チャック18に伝わる。ここで、静電チャック18には、ウエハWの熱が全て伝わるわけではなく、ウエハWと静電チャック18との接触度合など、熱の伝わり難さに応じて静電チャック18に熱が伝わる。熱の伝わり難さ、すなわち熱抵抗は、熱の伝熱方向に対する断面積に反比例する。このため、
図4では、ウエハWから静電チャック18の表面への熱の伝わり難さを、ウエハWと静電チャック18の表面間の単位面積当たりの熱抵抗R
th・Aとして示している。なお、Aは、ヒーターHTが設けられている領域の面積である。R
thは、ヒーターHTが設けられている領域全体における熱抵抗である。また、
図4では、ウエハWから静電チャック18表面への入熱量を、ウエハWから静電チャック18表面への単位面積当たりの熱流束qとして示している。なお、ウエハWと静電チャック18の表面間の単位面積当たりの熱抵抗R
th・Aは、静電チャック18の表面状態、ウエハWを保持するために直流電源22から印加される直流電圧の値、および静電チャック18の上面とウエハWの裏面との間に供給される伝熱ガスの圧力に依存する。また、熱抵抗R
th・Aは、その他、熱抵抗もしくは熱伝導率に関与する装置パラメータにも依存する。
【0044】
静電チャック18の表面に伝わった熱は、静電チャック18の温度を上昇させ、さらに、ヒーターHTに伝わる。
図4では、静電チャック18表面からヒーターHTへの入熱量を、静電チャック18表面からヒーターHTへの単位面積当たりの熱流束q
cとして示している。
【0045】
一方、基台20は、冷媒流路24を流れる冷媒により冷却され、接触する静電チャック18を冷却する。
図4では、接着層19を通過して静電チャック18の裏面から基台20への抜熱量を、静電チャック18の裏面から基台20への単位面積当たりの熱流束q
susとして示している。これにより、ヒーターHTは、抜熱によって冷却され、温度が低下する。
【0046】
ヒーターHTの温度が一定となるように制御している場合、ヒーターHTは、ヒーターHTに伝わる熱の入熱量およびヒーターHTで発生する発熱量の総和と、ヒーターHTから抜熱される抜熱量とが等しい状態となる。例えば、プラズマを点火して無い未点火状態では、ヒーターHTで発生する発熱量と、ヒーターHTから抜熱される抜熱量とが等しい状態となる。
図5Aは、未点火状態のエネルギーの流れの一例を模式的に示す図である。
図5Aの例では、基台20から冷却により、ヒーターHTから「100」の熱量が抜熱されている。例えば、ヒーターHTの温度が一定となるように制御している場合、ヒーターHTには、ヒーター電源HPからヒータパワーP
hにより「100」の熱量が発生する。
【0047】
一方、例えば、プラズマを点火した点火状態では、ヒーターHTに入熱する熱量およびヒーターHTで発生する熱量の総和と、ヒーターHTから抜熱される抜熱量とが等しい状態となる。
図5Bは、点火状態のエネルギーの流れの一例を模式的に示す図である。ここで、点火状態には、過度状態と定常状態とがある。過度状態は、例えば、ウエハWや静電チャック18に対する入熱量が抜熱量よりも多く、ウエハWや静電チャック18の温度が経時的に上昇傾向となる状態である。定常状態は、ウエハWや静電チャック18の入熱量と抜熱量が等しくなり、ウエハWや静電チャック18の温度に経時的な上昇傾向がなくなり、温度が略一定となった状態である。
【0048】
図5Bの例でも、基台20から冷却により、ヒーターHTから「100」の熱量が抜熱されている。点火状態の場合、ウエハWは、定常状態となるまで、プラズマからの入熱により温度が上昇する。ヒーターHTには、静電チャック18を介してウエハWから熱が伝わる。上述のように、ヒーターHTの温度が一定となるように制御している場合、ヒーターHTに入熱する熱量とヒーターHTから抜熱される熱量は、等しい状態となる。ヒーターHTは、ヒーターHTの温度を一定に維持するために必要な熱量が低下する。このため、ヒーターHTへの供給電力が低下する。
【0049】
例えば、
図5Bにおいて、「過度状態」とした例では、プラズマからウエハWへ「80」の熱量が伝わる。ウエハWに伝わった熱は、静電チャック18に伝わる。また、ウエハWの温度が定常状態ではない場合、ウエハWに伝わった熱は、一部がウエハWの温度の上昇に作用する。ウエハWの温度上昇に作用する熱量は、ウエハWの熱容量に依存する。このため、プラズマからウエハWに伝わった「80」の熱量のうち、「60」の熱量がウエハWから静電チャック18の表面へ伝わる。静電チャック18の表面に伝わった熱は、ヒーターHTに伝わる。また、静電チャック18の温度が定常状態ではない場合、静電チャック18の表面に伝わった熱は、一部が静電チャック18の温度の上昇に作用する。静電チャック18の温度上昇に作用する熱量は静電チャック18の熱容量に依存する。このため、静電チャック18の表面に伝わった「60」の熱量のうち、「40」の熱量がヒーターHTに伝わる。このため、ヒーターHTの温度が一定となるように制御している場合、ヒーターHTには、ヒーター電源HPからヒータパワーP
hにより「60」の熱量が発生する。
【0050】
また、
図5Bにおいて、「定常状態」とした例では、プラズマからウエハWへ「80」の熱量が伝わる。ウエハWに伝わった熱は、静電チャック18に伝わる。また、ウエハWの温度が定常状態である場合、ウエハWは、入熱量と抜熱量が等しい状態となっている。このため、プラズマからウエハWに伝わった「80」の熱量がウエハWから静電チャック18の表面へ伝わる。静電チャック18の表面に伝わった熱は、ヒーターHTに伝わる。静電チャック18の温度が定常状態である場合、静電チャック18は、入熱量と抜熱量が等しいとなっている。このため、静電チャック18の表面に伝わった「80」の熱量がヒーターHTに伝わる。このため、ヒーターHTの温度が一定となるように制御している場合、ヒーターHTには、ヒーター電源HPからヒータパワーP
hにより「20」の熱量が発生する。
【0051】
図5Aおよび
図5Bに示したように、ヒーターHTへの供給電力は、未点火状態よりも点火状態の方が低下する。また、点火状態では、ヒーターHTへの供給電力が定常状態となるまで低下する。
【0052】
なお、
図5Aおよび
図5Bに示したように、ヒーターHTの温度が一定となるように制御している場合、「未点火状態」、「過度状態」、「定常状態」のいずれの状態であっても、基台20から冷却により、ヒーターHTから「100」の熱量が抜熱されている。すなわち、ヒーターHTから基台20の内部に形成された冷媒流路24に供給される冷媒に向かう単位面積当たりの熱流束q
susは、常に一定となり、ヒーターHTから冷媒までの温度勾配も常に一定である。そのため、ヒーターHTの温度が一定となるように制御するために用いられる温度センサは、必ずしもヒーターHTに直接取り付ける必要はない。例えば、静電チャック18の裏面、接着層19の中、基台20の内部など、ヒーターHTと冷媒までの間であれば、ヒーターHTと温度センサ間の温度差も常に一定であり、ヒーターHT温度とセンサの間にある材質が有する熱伝導率、熱抵抗などを用いて温度センサとヒーターHTの間の温度差(ΔT)を算出し、温度センサで検出される温度の値に温度差(ΔT)を加算することによって、ヒーターHTの温度として出力することが可能であり、実際のヒーターHTの温度が一定となるように制御することができる。
【0053】
図6は、ウエハWの温度とヒーターHTへの供給電力の変化の一例を示す図である。
図6の(A)は、ウエハWの温度の変化を示している。
図6の(B)は、ヒーターHTへの供給電力の変化を示している。
図6の例は、ヒーターHTの温度が一定となるように制御し、プラズマを点火して無い未点火状態からプラズマを点火して、ウエハWの温度とヒーターHTへの供給電力を測定した結果の一例を示している。ウエハWの温度は、ケーエルエー・テンコール(KLA-Tencor)社から販売されているEtch Tempなどの温度計測用のウエハを用いて計測した。
【0054】
図6の期間T1は、プラズマを点火して無い未点火状態である。期間T1では、ヒーターHTへの供給電力が一定となっている。
図6の期間T2は、プラズマを点火した点火状態であり、過渡状態である。期間T2では、ヒーターHTへの供給電力が低下する。また、期間T2では、ウエハWの温度が一定の温度まで上昇する。
図6の期間T3は、プラズマを点火した点火状態である。期間T3では、ウエハWの温度は一定であり、定常状態となっている。静電チャック18も定常状態となると、ヒーターHTへの供給電力は、略一定となり、低下する傾向の変動が安定する。
図6の期間T4は、プラズマを消した未点火状態である。期間T4では、ウエハWに対するプラズマから入熱が無くなるため、ウエハWの温度が低下し、ヒーターHTへの供給電力が増加している。
【0055】
図6の期間T2に示される過度状態でのヒーターHTへの供給電力の低下の傾向は、プラズマからウエハWへの入熱量や、ウエハWと静電チャック18の表面間の熱抵抗などによって変化する。
【0056】
図7は、点火状態のエネルギーの流れの一例を模式的に示す図である。なお、
図7は、何れも過度状態の例である。例えば、
図7において、「入熱量:小、熱抵抗:小」とした例では、プラズマからウエハWへ「80」の熱量が伝わる。プラズマからウエハWに伝わった「80」の熱量のうち、「60」の熱量がウエハWから静電チャック18の表面へ伝わる。そして、静電チャック18の表面に伝わった「60」の熱量のうち、「40」の熱量がヒーターHTに伝わる。例えば、ヒーターHTの温度が一定となるように制御している場合、ヒーターHTには、ヒーター電源HPからヒータパワーP
hにより「60」の熱量が発生する。
【0057】
また、
図7において、「入熱量:大、熱抵抗:小」とした例では、プラズマからウエハWへ「100」の熱量が伝わる。プラズマからウエハWに伝わった「100」の熱量のうち、「80」の熱量がウエハWから静電チャック18の表面へ伝わる。そして、静電チャック18の表面に伝わった「80」の熱量のうち、「60」の熱量がヒーターHTに伝わる。例えば、ヒーターHTの温度が一定となるように制御している場合、ヒーターHTには、ヒーター電源HPからヒータパワーP
hにより「40」の熱量が発生する。
【0058】
また、
図7において、「入熱量:小、熱抵抗:大」とした例では、プラズマからウエハWへ「80」の熱量が伝わる。プラズマからウエハWに伝わった「80」の熱量のうち、「40」の熱量がウエハWから静電チャック18の表面へ伝わる。静電チャック18の表面に伝わった「40」の熱量のうち、「20」の熱量がヒーターHTに伝わる。例えば、ヒーターHTの温度が一定となるように制御している場合、ヒーターHTには、ヒーター電源HPからヒータパワーP
hにより「80」の熱量が発生する。
【0059】
このように、ヒーターHTの温度を一定に制御している場合、ヒータパワーP
hは、プラズマからウエハWへの入熱量や、ウエハWと静電チャック18の表面間の熱抵抗よって変化する。よって、
図6の(B)に示される期間T2のヒーターHTへの供給電力の低下の傾向は、プラズマからウエハWへの入熱量や、ウエハWと静電チャック18の表面間の熱抵抗などによって変化する。このため、期間T2のヒーターHTへの供給電力のグラフは、プラズマからウエハWへの入熱量や、ウエハWと静電チャック18の表面間の熱抵抗をパラメータとしてモデル化できる。すなわち、期間T2のヒーターHTへの供給電力の変化は、プラズマからウエハWへの入熱量や、ウエハWと静電チャック18の表面間の熱抵抗をパラメータとして、演算式によりモデル化できる。
【0060】
本実施形態では、
図6の(B)に示す、期間T2のヒーターHTへの供給電力の変化を単位面積当たりの式としてモデル化する。例えば、プラズマを点火してからの経過時間をtとし、経過時間tでのヒータパワーP
hをP
h(t)とし、経過時間tでの経過時間tでのプラズマからの熱流束があるときの単位面積当たりのヒーターHTからの発熱量q
hをq
h(t)とする。この場合、経過時間tでのプラズマからの熱流束があるときの単位面積当たりのヒーターHTからの発熱量q
h(t)は、以下の式(2)のように表せる。また、プラズマを点火しておらず、プラズマからの熱流束がないときの定常状態での単位面積当たりのヒーターHTからの発熱量q
h_Offは、以下の式(3)のように表せる。また、静電チャック18の表面とヒーター間の単位面積当たりの熱抵抗R
thc・Aは、以下の式(4)のように表せる。熱流束q
pは、プラズマが発生している場合と、発生していない場合で変化する。プラズマが発生している際のプラズマからウエハWへの単位面積当たりの熱流束q
pを熱流束q
p_onとする。プラズマからウエハWへの単位面積当たりの熱流束q
p_on、および、ウエハWと静電チャック18の表面間の単位面積当たりの熱抵抗R
th・Aをパラメータとし、a
1、a
2、a
3、λ
1、λ
2、τ
1、τ
2を以下の式(5)-(11)のように表した場合、プラズマからの熱流束があるときの単位面積当たりのヒーターHTからの発熱量q
h(t)は、以下の式(1)のように表せる。
【0061】
【0062】
ここで、
Ph(t)は、経過時間tでのプラズマからの熱流束があるときのヒータパワー[W]である。
Ph_Offは、プラズマからの熱流束がないときの定常状態でのヒータパワー[W/m2]である。
qh(t)は、経過時間tでのプラズマからの熱流束があるときの単位面積当たりのヒーターHTからの発熱量[W/m2]である。
qh_Offは、プラズマからの熱流束がないときの定常状態での単位面積当たりのヒーターHTからの発熱量[W/m2]である。
Rth・Aは、プラズマからウエハWへの単位面積当たりの熱流束[W/m2]である。
Rthc・Aは、静電チャック18の表面とヒーター間の単位面積当たりの熱抵抗[K・m2/W]である。
Aは、ヒーターが設けられている領域の面積[m2]である。
ρwは、ウエハWの密度[kg/m3]である。
Cwは、ウエハWの単位面積当たりの熱容量[J/K・m2]である。
zwは、ウエハWの厚さ[m]である。
ρcは、静電チャック18を構成するセラミックの密度[kg/m3]である。
Ccは、静電チャック18を構成するセラミックの単位面積当たりの熱容量[J/K・m2]である。
zcは、静電チャック18の表面からヒーターHTまでの距離[m]である。
κcは、静電チャック18を構成するセラミックの熱伝導率[W/K・m]である。
tは、プラズマを点火してからの経過時間[sec]である。
【0063】
式(5)に示したa1について、1/a1がウエハWの温まり難さを示す時定数となる。また、式(6)に示したa2について、1/a2が静電チャック18の熱の入り難さ、温まり難さを示す時定数となる。また、式(7)に示したa3について、1/a3が静電チャック18の熱の浸透し難さ、温まり難さを示す時定数となる。
【0064】
ヒーターHTの面積A、ウエハWの密度ρw、ウエハWの単位面積当たりの熱容量Cw、ウエハWの厚さzw、静電チャック18を構成するセラミックの密度ρc、静電チャック18を構成するセラミックの単位面積当たりの熱容量Cc、静電チャック18の表面からヒーターHTまでの距離zc、および、静電チャック18を構成するセラミックの熱伝導κcは、ウエハWやプラズマ処理装置10の実際の構成からそれぞれ予め定まる。Rthc・Aは、熱伝導κc、距離zcから式(4)により予め定まる。
【0065】
プラズマを点火してからの経過時間tごとのプラズマからの熱流束があるときのヒータパワーPh(t)、および、プラズマからの熱流束がないときの定常状態でのヒータパワーPh_Offは、プラズマ処理装置10を用いて計測により求めることができる。そして、式(2)および(3)に示すように、求めたヒータパワーPh(t)、およびヒータパワーPh_OffのそれぞれをヒーターHTの面積Aで除算することによって、プラズマからの熱流束があるときの単位面積当たりのヒーターHTからの発熱量qh(t)、および、プラズマからの熱流束がないときの定常状態での単位面積当たりのヒーターHTからの発熱量qh_Offを求めることができる。
【0066】
そして、プラズマからウエハWへの単位面積当たりの熱流束qp_on、および、ウエハWと静電チャック18の表面間の単位面積当たりの熱抵抗Rth・Aは、計測結果を用いて、(1)式のフィッティングを行うことにより、求めることができる。
【0067】
また、
図6の(A)に示される期間T2のウエハWの温度のグラフも、プラズマからウエハWへの入熱量や、ウエハWと静電チャック18の表面間の熱抵抗をパラメータとしてモデル化できる。本実施形態では、期間T2のウエハWの温度の変化を単位面積当たりの式としてモデル化する。例えば、プラズマからウエハWへの単位面積当たりの熱流束q
p_on、および、ウエハWと静電チャック18の表面間の単位面積当たりの熱抵抗R
th・Aをパラメータとし、式(5)-(11)に示したa
1、a
2、a
3、λ
1、λ
2、τ
1、τ
2を用いた場合、経過時間tでのウエハWの温度T
W(t)[℃]は、以下の式(12)のように表せる。
【0068】
【0069】
ここで、
TW(t)は、経過時間tでのウエハWの温度[℃]である。
Thは、一定に制御したヒーターHTの温度[℃]である。
【0070】
ヒーターHTの温度Thは、実際にウエハWの温度を一定に制御した際の条件から求めることができる。
【0071】
計測結果を用いて、(1)式のフィッティングを行うことにより、熱流束qp_on、および、熱抵抗Rth・Aが求まった場合、ウエハWの温度TWは、式(12)から算出できる。
【0072】
経過時間tが、式(10)、(11)によって表される時定数τ
1、τ
2より十分に長い場合、すなわち
図6の期間T2である過渡状態から期間T3である定常状態に移行した後におけるウエハWの温度T
Wが目標温度となるヒーターHTの温度T
hを算出する場合、式(12)は、以下の式(13)のように省略できる。
【0073】
【0074】
例えば、式(13)により、ヒーターの温度Th、熱流束qp_on、熱抵抗Rth・A、Rthc・AからウエハWの温度TWを求めることができる。
【0075】
ところで、プラズマ処理装置10は、プラズマ処理の状況を把握するため、プラズマ処理中のプラズマの状態を検出することが所望されている。例えば、プラズマ処理装置10では、プラズマの状態として、プラズマの密度分布を検出することが所望されている。プラズマ処理装置10では、プラズマの密度分布によってプラズマからの入熱量が変化する。
【0076】
図8は、プラズマの密度分布による未点火状態と過渡状態の温度変化の一例を概略的に示す図である。
図8の(A)~(D)には、プラズマ処理の際のプラズマ密度の分布と、載置台16の各分割領域の表面温度変化が時系列に示されている。
図8の(A)は、未点火状態を示している。未点火状態では、プラズマが生成されておらず、各ヒーターHTの温度を一定となるよう各ヒーターHTへの供給電力を制御している場合、載置領域18aの各分割領域の温度も一定となる。
図8の(B)~(D)は、過渡状態を示している。プラズマの密度が高い領域は、載置領域18aへのプラズマからの入熱量が多くなる。プラズマの密度が低い領域は、載置領域18aへのプラズマからの入熱量が少なくなる。例えば、生成したプラズマの密度分布が、
図8の(B)~(D)に示すように、載置領域18aの中心で高く、周辺で低い場合、載置領域18aの中心は、入熱量が多くなる。このため、載置領域18aの中心の表面温度が、周辺付近よりも上昇する。各ヒーターHTの温度を一定となるよう各ヒーターHTへの供給電力を制御した場合、載置領域18aの表面温度の上昇分を低下させるため、ヒーターHTへの供給電力が低下する。載置領域18aの中心のヒーターHTは、入熱量が多いため、周辺付近のヒーターHTよりも供給電力が大きく低下する。
【0077】
図9は、未点火状態と過渡状態のエネルギーの流れの一例を模式的に示す図である。なお、
図9の例では、載置領域18aを、載置領域18aの中心付近である中央部(Center)、中央部を囲む周辺部(Middle)、周辺部を囲み載置領域18aのエッジ付近であるエッジ部(Edge)の3つのゾーンに分けている。プラズマの密度分布は、
図8の(B)~(D)と同様に、載置領域18aの中心で高く、周辺で低いものと仮定する。
【0078】
図9に示す未点火状態では、基台20から冷却により、ヒーターHTから「100」の熱量が抜熱されている。例えば、ヒーターHTの温度が一定となるように制御している場合、ヒーターHTには、ヒーター電源HPからヒータパワーP
hにより「100」の熱量が発生する。これにより、ヒーターHTで発生する熱量と、ヒーターHTから抜熱される熱量とが等しい状態となる。
【0079】
一方、
図9に示す過渡状態では、載置領域18aの中心のプラズマの密度分布が周辺よりも高いため、載置領域18aの中央部(Center)の入熱量が「大」、周辺部(Middle)の入熱量が「中」、エッジ部(Edge)の入熱量が「小」となっている。例えば、中央部、周辺部、エッジ部の熱抵抗を同じとした場合、中央部(Center)では、プラズマから「100」の熱量が入熱し、「60」の熱量がヒーターHTに伝わる。周辺部(Middle)では、プラズマから「80」の熱量が入熱し、「40」の熱量がヒーターHTに伝わる。エッジ部(Edge)では、プラズマから「40」の熱量が入熱し、「20」の熱量がヒーターHTに伝わる。
【0080】
図10は、ウエハWの温度とヒーターHTへの供給電力の変化の一例を示す図である。
図10の(A)は、中央部(Center)、周辺部(Middle)、エッジ部(Edge)のウエハWの温度の変化を示している。
図10の(B)は、中央部(Center)、周辺部(Middle)、エッジ部(Edge)のヒーターHTへの供給電力の変化を示している。
図10の(B)に示すように、入熱量によって供給電力の波形も変化する。よって、未点火状態と過渡状態での各ゾーンのヒーターHTへの供給電力を計測し、ソーンごとの計測結果を用いて、(1)式のフィッティングを行うことにより、各ゾーンの入熱量を求めることができる。そして、各ゾーンの入熱量からプラズマの密度分布を求めることができる。すなわち、実施形態に係るプラズマ処理装置10は、処理容器12内にセンサを配置することなくプラズマの状態を検出できる。
【0081】
図3に戻る。ヒーター制御部102aは、各ヒーターHTの温度を制御する。例えば、ヒーター制御部102aは、各ヒーターHTへの供給電力を指示する制御データをヒーター電源HPへ出力して、ヒーター電源HPから各ヒーターHTへ供給する供給電力を制御することにより、各ヒーターHTの温度を制御する。
【0082】
プラズマ処理の際、ヒーター制御部102aには、各ヒーターHTの目標とする設定温度が設定される。例えば、ヒーター制御部102aには、載置領域18aの各分割領域ごとに、目標とするウエハWの目標温度が、当該分割領域のヒーターHTの設定温度として設定される。目標温度は、例えば、ウエハWに対するプラズマエッチングの精度が最も良好となる温度である。
【0083】
ヒーター制御部102aは、プラズマ処理の際、各ヒーターHTが設定された設定温度となるよう各ヒーターHTへの供給電力を制御する。例えば、ヒーター制御部102aは、外部インターフェース101に入力する温度データが示す載置領域18aの各分割領域の温度を、分割領域ごとに、当該分割領域の設定温度と比較する。そして、ヒーター制御部102aは、設定温度に対して温度が低い分割領域、および、設定温度に対して温度が高い分割領域をそれぞれ特定する。ヒーター制御部102aは、設定温度に対して温度が低い分割領域に対する供給電力を増加させ、設定温度に対して温度が高い分割領域に対する供給電力を減少させる制御データをヒーター電源HPへ出力する。
【0084】
計測部102bは、外部インターフェース101に入力する電力データが示す各ヒーターHTへの供給電力を用いて、各ヒーターHTへの供給電力を計測する。例えば、計測部102bは、ヒーター制御部102aにより、各ヒーターHTの温度が一定となるよう各ヒーターHTへの供給電力を制御して、プラズマを点火して無い未点火状態の各ヒーターHTへの供給電力を計測する。また、計測部102bは、プラズマを点火してから各ヒーターHTへの供給電力が低下する傾向の変動が安定するまでの過渡状態での各ヒーターHTへの供給電力を計測する。
【0085】
例えば、計測部102bは、ヒーター制御部102aが各ヒーターHTの温度が一定の設定温度となるよう各ヒーターHTへの供給電力を制御している状態で、プラズマ処理の開始前のプラズマが未点火状態での各ヒーターHTへの供給電力を計測する。また、計測部102bは、プラズマを点火してから各ヒーターHTへの供給電力が低下する傾向の変動が安定するまでの過渡状態での各ヒーターHTへの供給電力を計測する。未点火状態での各ヒーターHTへの供給電力は、各ヒーターHTで少なくとも1つ計測されていればよく、複数回計測して平均値を未点火状態の供給電力としてもよい。過渡状態での各ヒーターHTへの供給電力は、2回以上計測されていればよい。供給電力を計測する計測タイミングは、供給電力が低下する傾向が大きいタイミングであることが好ましい。また、計測タイミングは、計測回数が少ない場合、所定期間以上離れていることが好ましい。本実施形態では、計測部102bは、プラズマ処理の期間中、所定周期(例えば、0.1秒周期)で各ヒーターHTへの供給電力を計測する。これにより、過渡状態での各ヒーターHTへの供給電力が多数計測される。
【0086】
計測部102bは、所定のサイクルで、未点火状態と、過渡状態の各ヒーターHTへの供給電力を計測する。例えば、計測部102bは、ウエハWが交換され、交換されたウエハWを載置台16に載置してプラズマ処理を行う際に、毎回、未点火状態と、過渡状態の各ヒーターHTへの供給電力を計測する。なお、例えば、パラメータ算出部102cは、プラズマ処理ごとに、未点火状態と、過渡状態の各ヒーターHTへの供給電力を計測してもよい。
【0087】
パラメータ算出部102cは、ヒーターHTごとに、プラズマからの入熱量およびウエハWとヒーターHT間の熱抵抗をパラメータとし、過渡状態の供給電力を算出する算出モデルを用いて入熱量および熱抵抗を算出する。例えば、パラメータ算出部102cは、算出モデルに対して、計測部102bにより計測された未点火状態と過渡状態の供給電力を用いてフィッティングを行って、入熱量および熱抵抗を算出する。
【0088】
例えば、パラメータ算出部102cは、ヒーターHTごとに、経過時間tごとの未点火状態のヒータパワーPh_Offを求める。また、パラメータ算出部102cは、ヒーターHTごとに、経過時間tごとの過渡状態のヒータパワーPh(t)を求める。そして、パラメータ算出部102cは、求めたヒータパワーPh(t)、およびヒータパワーPh_OffのそれぞれをヒーターHTごとの面積で除算することによって、経過時間tごとの未点火状態の単位面積当たりのヒーターHTからの発熱量qh_Off、および経過時間tごとの過渡状態の単位面積当たりのヒーターHTからの発熱量qh(t)を求める。
【0089】
パラメータ算出部102cは、上記の式(1)-(11)を算出モデルとして用いて、ヒーターHTごとに、経過時間tごとの単位面積当たりのヒーターHTからの発熱量qh(t)、および、単位面積当たりのヒーターHTからの発熱量qh_Offのフィッティングを行い、誤差が最も小さくなる熱流束qp_on、および、熱抵抗Rth・Aを算出する。
【0090】
パラメータ算出部102cは、所定のサイクルで、測定された未点火状態と過渡状態の供給電力を用いて、熱流束qp_on、および、熱抵抗Rth・Aを算出する。例えば、パラメータ算出部102cは、ウエハWが交換されるごとに、当該ウエハWを載置台16に載置した状態で測定された未点火状態と過渡状態の供給電力を用いて、熱流束qp_on、および、熱抵抗Rth・Aを算出する。なお、例えば、パラメータ算出部102cは、プラズマ処理ごとに、未点火状態と過渡状態の供給電力を用いて、熱流束qp_on、および、熱抵抗Rth・Aを算出してもよい。
【0091】
出力部102dは、各種の情報の出力を制御する。例えば、出力部102dは、所定のサイクルで、パラメータ算出部102cにより算出された熱流束qp_onに基づく情報を出力する。例えば、出力部102dは、パラメータ算出部102cにより算出されたヒーターHTごとの熱流束qp_onに基づき、プラズマの密度分布を示す情報をユーザインターフェース103に出力する。例えば、出力部102dは、ウエハWが交換されるごとに、当該ウエハWに対してプラズマ処理を行った際のプラズマの密度分布を示す情報をユーザインターフェース103に出力する。なお、出力部102dは、プラズマの密度分布を示す情報を外部装置へデータとして出力してもよい。
【0092】
図11Aは、プラズマの密度分布を示す情報の出力の一例を示す図である。
図11Aの例では、ヒーターHTが設けられた載置領域18aの分割領域ごとに、当該分割領域の熱流束q
p_onをパターンで表示している。
【0093】
図11Bは、プラズマの密度分布を示す情報の出力の一例を示す図である。
図11Bの例では、央部(Center)、周辺部(Middle)、エッジ部(Edge)の熱流束q
p_onが示されている。
【0094】
これにより、工程管理者やプラズマ処理装置10の管理者は、プラズマの状態を把握できる。
【0095】
ところで、プラズマ処理装置10は、プラズマの状態に異常が発生する場合がある。例えば、プラズマ処理装置10は、静電チャック18の大幅な消耗やデポの付着などにより処理容器12内の特性が変化して、プラズマの状態がプラズマ処理に適さない異常な状態となる場合がある。また、プラズマ処理装置10は、異常なウエハWが搬入される場合もある。
【0096】
そこで、アラート部102eは、パラメータ算出部102cにより所定のサイクルで算出される入熱量、または入熱量の変化に基づき、アラートを行う。例えば、アラート部102eは、所定のサイクルでパラメータ算出部102cにより算出される熱流束qp_onが所定の許容範囲以外の場合、アラートを行う。また、アラート部102eは、所定のサイクルでパラメータ算出部102cにより算出される熱流束qp_onが所定の許容値以上変化している場合、アラートを行う。アラートは、工程管理者やプラズマ処理装置10の管理者などに異常を報知できれば、何れの方式でもよい。例えば、アラート部102eは、ユーザインターフェース103に異常を報知するメッセージを表示する。
【0097】
これにより、本実施形態に係るプラズマ処理装置10は、処理容器12内の特性や、異常なウエハWが搬入などにより、プラズマの状態が異常となった場合に、異常の発生を報知できる。
【0098】
変更部102fは、プラズマの密度分布を示す情報に基づき、ウエハWに対するプラズマ処理が均等化するようプラズマ処理の制御パラメータを変更する。
【0099】
ここで、プラズマエッチングは、ラジカルの表面吸着、熱エネルギーによる離脱およびイオン衝突による離脱の要因を含んでいる。
図12は、プラズマエッチングを模式的に示した図である。
図12の例は、有機膜の表面をO
2ガスでプラズマエッチングする状態をモデル化したものである。有機膜の表面は、Oラジカルの吸着と、熱エネルギーによる離脱、およびイオン衝突による離脱との相乗作用によりエッチングされる。
【0100】
プラズマエッチングのエッチングレート(E/R)は、以下の式(14)で表すことができる。
【0101】
【0102】
ここで、
ncは、被エッチング膜の材質を示す値である。
Γradicalは、ラジカルの供給量である。
sは、表面への吸着確率である。
Kdは、熱反応速度である。
Γionlは、イオン入射量である。
Eiは、イオンエネルギーである。
kは、イオン性脱離の反応確率である。
【0103】
式(14)の「Kd」の部分は熱エネルギーによる離脱を表している。「kEi・Γionl」の部分はイオン衝突による離脱を表している。「s・Γradical」の部分はラジカルの表面吸着を表している。
【0104】
プラズマの濃度分布は、イオン衝突による離脱に影響を与えており、式(14)の「kEi・Γionl」の部分がプラズマの濃度によって変化する。エッチングレートは、「Kd」の部分や、「s・Γradical」の部分によっても変化する。このため、プラズマの密度分布に対応して、「Kd」の部分や、「s・Γradical」の部分を変えることで、エッチングレートを均等化することができる。変更部102fは、プラズマの密度分布を示す情報に基づき、ウエハWに対するプラズマ処理が均等化するよう、「Kd」の部分や、「s・Γradical」の部分に影響するプラズマ処理の制御パラメータを変更する。
【0105】
例えば、「Kd」の部分は、例えば、ウエハWの温度によって変化する。また、「s・Γradical」の部分は、プラズマにするガスの濃度によって変化する。
【0106】
変更部102fは、プラズマの密度分布を示す情報に基づき、載置領域18aの分割領域ごとのウエハWの温度の目標温度を変更する。例えば、変更部102fは、プラズマの密度が高い分割領域について、熱エネルギーによる離脱が減少するように目標温度を変更する。例えば、変更部102fは、目標温度を低く変更する。また、変更部102fは、プラズマの密度が低い分割領域について熱エネルギーによる離脱が増加するように目標温度を変更する。例えば、変更部102fは、目標温度を高く変更する。なお、上部電極30が、下面を分割した分割領域ごとに、吐出するガスの濃度を変更可能に構成した場合、変更部102fは、プラズマの密度分布を示す情報に基づき、上部電極30の分割領域ごとに、吐出するガスの濃度を変更してもよい。例えば、変更部102fは、プラズマの密度が高い分割領域のガスの濃度を低く変更する。また、変更部102fは、プラズマの密度が低い分割領域のガスの濃度を高く変更する。変更部102fは、分割領域ごとのウエハWの温度の目標温度の変更と、上部電極30の分割領域ごとに、吐出するガスの濃度の変更を合わせて行ってもよい。
【0107】
設定温度算出部102gは、ヒーターHTごとに、算出された入熱量および熱抵抗を用いて、ウエハWが目標温度となるヒーターHTの設定温度を算出する。例えば、設定温度算出部102gは、ヒーターHTごとに、算出された熱流束qp_on、および、熱抵抗Rth・Aを式(5)、(6)、(12)に代入する。そして、設定温度算出部102gは、ヒーターHTごとに、式(5)-(11)に示したa1、a2、a3、λ1、λ2、τ1、τ2を用いて、式(12)からウエハWの温度TWが目標温度となるヒーターHTの温度Thを算出する。例えば、設定温度算出部102gは、経過時間tを定常状態とみなせる程度の大きい所定の値として、ウエハWの温度TWが目標温度となるヒーターHTの温度Thを算出する。算出されるヒーターHTの温度Thは、ウエハWの温度が目標温度となるヒーターHTの温度である。なお、ウエハWの温度が目標温度となるヒーターHTの温度Thは、式(13)から求めてもよい。
【0108】
なお、設定温度算出部102gは、式(12)から、以下のように現在のヒーターHTの温度ThでのウエハWの温度TWを算出してもよい。例えば、設定温度算出部102gは、現在のヒーターHTの温度Thで、経過時間tを定常状態とみなせる程度の大きい所定の値とした場合のウエハWの温度TWを算出する。次に、設定温度算出部102gは、算出した温度TWと目標温度との差分ΔTWを算出する。そして、設定温度算出部102gは、現在のヒーターHTの温度Thから差分ΔTWの減算を行った温度を、ウエハWの温度が目標温度となるヒーターHTの温度と算出してもよい。
【0109】
設定温度算出部102gは、ヒーター制御部102aの各ヒーターHTの設定温度を、ウエハWの温度が目標温度となるヒーターHTの温度に修正する。
【0110】
設定温度算出部102gは、所定のサイクルで、ウエハWの温度が目標温度となるヒーターHTの温度を算出し、各ヒーターHTの設定温度を修正する。例えば、設定温度算出部102gは、ウエハWが交換されるごとに、ウエハWの温度が目標温度となるヒーターHTの温度を算出し、各ヒーターHTの設定温度を修正する。なお、例えば、設定温度算出部102gは、プラズマ処理ごとに、ウエハWの温度が目標温度となるヒーターHTの温度を算出し、各ヒーターHTの設定温度を修正してもよい。
【0111】
これにより、本実施形態に係るプラズマ処理装置10は、プラズマ処理中のウエハWの温度を目標温度に精度よく制御できる。
【0112】
[制御の流れ]
次に、本実施形態に係るプラズマ処理装置10を用いたプラズマ状態検出方法について説明する。
図13は、実施形態に係るプラズマ状態検出およびプラズマ状態制御の処理の流れの一例を示すフローチャートである。この処理は、所定のタイミング、例えば、プラズマ処理を開始するタイミングで実行される。
【0113】
ヒーター制御部102aは、各ヒーターHTが設定温度となるよう各ヒーターHTへの供給電力を制御する(ステップS10)。
【0114】
計測部102bは、ヒーター制御部102aが各ヒーターHTの温度が一定の設定温度となるよう各ヒーターHTへの供給電力を制御している状態で、未点火状態と過渡状態での各ヒーターHTへの供給電力を計測する(ステップS11)。
【0115】
パラメータ算出部102cは、ヒーターHTごとに、算出モデルに対して、計測された未点火状態と過渡状態の供給電力をヒーターHTの面積で除算することによって求められる単位面積当たりのヒーターHTからの発熱量を用いてフィッティングを行って、入熱量および熱抵抗を算出する(ステップS12)。例えば、パラメータ算出部102cは、上記の式(1)-(11)を算出モデルとして用いて、ヒーターHTごとに、経過時間tごとの単位面積当たりのヒーターHTからの発熱量qh(t)、および、単位面積当たりのヒーターHTからの発熱量qh_Offのフィッティングを行い、誤差が最も小さくなる熱流束qp_onおよび熱抵抗Rth・Aを算出する。
【0116】
出力部102dは、パラメータ算出部102cにより算出された入熱量に基づく情報を出力する(ステップS13)。例えば、出力部102dは、パラメータ算出部102cにより算出されたヒーターHTごとの熱流束qp_onに基づき、プラズマの密度分布を示す情報をユーザインターフェース103に出力する。
【0117】
変更部102fは、プラズマの密度分布を示す情報に基づき、ウエハWに対するプラズマ処理が均等化するようプラズマ処理の制御パラメータを変更する(ステップS14)。例えば、変更部102fは、プラズマの密度分布を示す情報に基づき、載置領域18aの分割領域ごとのウエハWの温度の目標温度を変更する。
【0118】
設定温度算出部102gは、ヒーターHTごとに、算出された入熱量および熱抵抗を用いて、ウエハWが目標温度となるヒーターHTの設定温度を算出する(ステップS15)。例えば、設定温度算出部102gは、ヒーターHTごとに、算出された熱流束qp_on、および、熱抵抗Rth・Aを式(5)、(6)、(12)に代入する。そして、設定温度算出部102gは、式(5)-(11)に示したa1、a2、a3、λ1、λ2、τ1、τ2を用いて、式(12)からウエハWの温度TWが目標温度となるヒーターHTの温度Thを算出する。なお、ウエハWの温度が目標温度となるヒーターHTの温度Thは、式(13)から求めてもよい。
【0119】
設定温度算出部102gは、ヒーター制御部102aの各ヒーターHTの設定温度を、ウエハWの温度が目標温度となるヒーターHTの設定温度に修正し(ステップS16)、処理を終了する。
【0120】
このように、本実施形態に係るプラズマ処理装置10は、載置台16と、ヒーター制御部102aと、計測部102bと、パラメータ算出部102cと、出力部102dとを有する。載置台16は、ウエハWが載置される載置面の温度を調整可能なヒーターHTが設けられている。ヒーター制御部102aは、ヒーターHTが設定された設定温度となるようヒーターHTへの供給電力を制御する。計測部102bは、ヒーター制御部102aにより、ヒーターHTの温度が一定となるようヒーターHTへの供給電力を制御して、プラズマを点火して無い未点火状態と、プラズマを点火してからヒーターHTへの供給電力が低下する過渡状態での供給電力を計測する。パラメータ算出部102cは、プラズマからの入熱量をパラメータとして含み、過渡状態の供給電力を算出する算出モデルに対して、計測部102bにより計測された未点火状態と過渡状態の供給電力を用いてフィッティングを行って、入熱量を算出する。出力部102dは、パラメータ算出部102cにより算出された入熱量に基づく情報を出力する。これにより、プラズマ処理装置10は、処理容器12内にセンサを配置することなくプラズマの状態を検出できる。
【0121】
また、本実施形態に係るプラズマ処理装置10は、載置台16の載置面を分割した領域毎にヒーターHTが個別に設けられている。ヒーター制御部102aは、領域毎に設けられたヒーターHTが領域毎に設定された設定温度となるようヒーターHTごとに供給電力を制御する。計測部102bは、ヒーター制御部102aにより、ヒーターHTごとに温度が一定となるよう供給電力を制御して、未点火状態と、過渡状態での供給電力をヒーターHTごとに計測する。パラメータ算出部102cは、ヒーターHTごとに、算出モデルに対して、計測部102bにより計測された未点火状態と過渡状態の供給電力を用いてフィッティングを行って、ヒーターHTごとに入熱量を算出する。出力部102dは、パラメータ算出部102cにより算出されたヒーターHTごとの入熱量に基づき、プラズマの密度分布を示す情報を出力する。これにより、プラズマ処理装置10は、処理容器12内にセンサを配置することなく、プラズマ処理の際のプラズマの密度分布を示す情報を提供できる。
【0122】
また、本実施形態に係るプラズマ処理装置10は、変更部102fをさらに有する。変更部102fは、プラズマの密度分布に基づき、ウエハWに対するプラズマ処理が均等化するようプラズマ処理の制御パラメータを変更する。これにより、プラズマ処理装置10は、ウエハWに対するプラズマ処理を均等化できる。
【0123】
また、本実施形態に係るプラズマ処理装置10は、アラート部102eをさらに有する。アラート部102eは、出力部102dにより出力される情報または当該情報の変化に基づき、アラートを行う。これにより、プラズマ処理装置10は、プラズマの状態に異常が発生した場合にアラートを行うことができる。
【0124】
以上、実施形態について説明してきたが、今回開示された実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は、多様な形態で具現され得る。また、上記の実施形態は、請求の範囲およびその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
【0125】
例えば、上記の実施形態では、被処理体として半導体ウエハにプラズマ処理を行う場合を例に説明したが、これに限定されるものではない。被処理体は、温度によってプラズマ処理の進行に影響があるものであれば何れであってもよい。例えば、被処理体は、ガラス基板などであってもよい。
【0126】
また、上記の実施形態では、プラズマ処理としてプラズマエッチングを行う場合を例に説明したが、これに限定されるものではない。プラズマ処理は、プラズマを用いた処理であれば何れであってもよい。例えば、プラズマ処理としては、化学気層堆積法(CVD)、原子層堆積法(ALD)、アッシング、プラズマドーピング、プラズマアニール等が挙げられる。
【0127】
また、上記の実施形態では、プラズマ処理装置10は、基台20にプラズマ生成用の第1の高周波電源HFSとバイアス電力用の第2の高周波電源LFSが接続されているが、これに限定されない。プラズマ生成用の第1の高周波電源HFSは、整合器MUを介して上部電極30に接続されてもよい。
【0128】
また、上記の実施形態では、プラズマ処理装置10は、容量結合型平行平板プラズマ処理装置であったが、任意のプラズマ処理装置に採用され得る。例えば、プラズマ処理装置10は、誘導結合型のプラズマ処理装置、マイクロ波といった表面波によってガスを励起させるプラズマ処理装置のように、任意のタイプのプラズマ処理装置であってもよい。
【0129】
また、上記の実施形態では、変更部102fは、プラズマの密度分布を示す情報に基づき、載置領域18aの分割領域ごとのウエハWの温度の目標温度を変更した場合を例に説明したが、これに限定されるものではない。例えば、プラズマの生成におけるプラズマ密度の分布を、上部電極30の下面を分割した分割領域ごと、もしくは近似する分割領域ごとに変更可能な構成した場合、変更部102fは、プラズマの密度分布を示す情報に基づき、プラズマ生成の分割ごとにプラズマ密度を変更してもよい。なお、プラズマ密度の分布を分割領域ごとに変更可能な構成とは、一例として、容量結合型平行平板プラズマ処理装置の場合、上部電極30が分割領域ごとに分割され、分割された上部電極ごとに異なる高周波電力を発生することが出来る複数の第1の高周波電源HFSを接続した構成が挙げられる。また、誘導結合型プラズマ処理装置の場合、プラズマ生成用のアンテナが分割領域ごとに分かれており、分割されたアンテナごとに異なる高周波電力を発生することが出来る複数の第1の高周波電源HFSを接続した構成が挙げられる。
【0130】
また、上記の実施形態では、載置台16の載置領域18aを分割した各分割領域にヒーターHTを設けている場合を例に説明したが、これに限定されるものではない。載置台16の載置領域18a全体に1つのヒーターHTを設けて、当該ヒーターHTへの未点火状態と過渡状態での供給電力の計測し、算出モデルに対して計測結果のフィッティングを行って、入熱量を算出してもよい。算出される入熱量は、プラズマ全体での入熱量であるため、算出される入熱量からプラズマ全体としての状態を検出できる。
【0131】
また、上記の実施形態では、
図2に示すように、載置台16の載置領域18aを中央の円形領域内、および、当該円形領域を囲む同心状の複数の環状領域に分割する場合を例に説明したが、これに限定されるものではない。
図14は、実施形態に係る載置台の載置面の分割の一例を示す平面図である。例えば、
図14に示すように、載置台16の載置領域18aを格子状に分割し、各分割領域にヒーターHTを設けてもよい。これにより、格子状の分割領域ごとに入熱量を検出でき、プラズマの密度分布をより詳細に求めることができる。
【符号の説明】
【0132】
10 プラズマ処理装置
16 載置台
18 静電チャック
18a 載置領域
20 基台
100 制御部
102 プロセスコントローラ
102a ヒーター制御部
102b 計測部
102c パラメータ算出部
102d 出力部
102e アラート部
102f 変更部
102g 設定温度算出部
HP ヒーター電源
HT ヒーター
PD 電力検出部
TD 温度測定器
W ウエハ