IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ニューフレアテクノロジーの特許一覧

特許7532225荷電粒子ビーム検査装置及び荷電粒子ビーム検査方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-08-02
(45)【発行日】2024-08-13
(54)【発明の名称】荷電粒子ビーム検査装置及び荷電粒子ビーム検査方法
(51)【国際特許分類】
   G01N 23/2251 20180101AFI20240805BHJP
   H01J 37/22 20060101ALI20240805BHJP
   H01J 37/28 20060101ALI20240805BHJP
   H01J 37/244 20060101ALI20240805BHJP
   H01L 21/66 20060101ALI20240805BHJP
【FI】
G01N23/2251
H01J37/22 502B
H01J37/28 B
H01J37/244
H01J37/22 502H
H01L21/66 J
【請求項の数】 20
(21)【出願番号】P 2020194644
(22)【出願日】2020-11-24
(65)【公開番号】P2021107807
(43)【公開日】2021-07-29
【審査請求日】2023-10-19
(31)【優先権主張番号】P 2019238575
(32)【優先日】2019-12-27
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】504162958
【氏名又は名称】株式会社ニューフレアテクノロジー
(74)【代理人】
【識別番号】100119035
【弁理士】
【氏名又は名称】池上 徹真
(74)【代理人】
【識別番号】100141036
【弁理士】
【氏名又は名称】須藤 章
(74)【代理人】
【識別番号】100178984
【弁理士】
【氏名又は名称】高下 雅弘
(72)【発明者】
【氏名】竹越 秀和
【審査官】比嘉 翔一
(56)【参考文献】
【文献】特開2018-017571(JP,A)
【文献】特開2009-192345(JP,A)
【文献】特開2008-215969(JP,A)
【文献】特開2011-187191(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N23/00-G01N23/2276
H01J37/00-H01J37/36
G01B15/00-G01B15/08
H01L21/64-H01L21/66
JSTPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
基板を載置する、移動可能なステージと、
前記ステージを第1の方向の逆方向に連続移動させるステージ制御回路と、
前記第1の方向に前記基板面上において同一ピッチpでN列(Nは2以上の整数)かつ前記第1の方向と直交する第2の方向にN’列(N’は1以上の整数)並ぶ複数の荷電粒子ビームによって構成されるマルチビームを用いて、前記基板の検査領域が前記第1の方向にp/M(Mは2以上の整数)で得られるサイズかつ前記第2の方向に所定のサイズで分割された複数の小領域のうち、前記第1の方向に前記ピッチpでN個かつ前記第2の方向にN’個並ぶ前記基板上のN×N’個の小領域群に前記マルチビームを一括して偏向して、前記ステージが前記第1の方向の逆方向にN/M・pで得られる距離を連続移動する間、前記ステージの連続移動に追従するように前記マルチビームをトラッキング偏向すると共に、前記第1の方向の逆方向に前記N/M・pで得られる距離の前記ステージの移動が完了するまでに、前記N×N’個の小領域群から前記第1の方向にN個離れた、前記第1の方向に前記ピッチpで並ぶ新たなN×N’個の小領域群に前記マルチビームを一括して偏向し直すことでトラッキングリセットを行う第1の機能と、
前記ステージの連続移動に追従するように前記マルチビームがトラッキング偏向されている間に、前記マルチビームのそれぞれを、前記複数の小領域のそれぞれにおいて、
前記複数の小領域のそれぞれにおける、前記第1の方向の逆方向の側の端部を始点として、かつ、前記複数の小領域のそれぞれにおける、前記第1の方向の側の端部を終点として、前記第2の方向に沿った前記マルチビームの一括した偏向を、前記第1の方向の逆方向の側の端部から前記第1の方向の側の端部へ向かって繰り返し行う第1の工程を行い、その後、
前記複数の小領域のそれぞれにおける、前記第1の方向の逆方向の側の端部を始点として、かつ、前記複数の小領域のそれぞれにおける、前記第1の方向の側の端部を終点として、前記第2の方向の逆方向に沿った前記マルチビームの一括した偏向を、前記第1の方向の逆方向の側の端部から前記第1の方向の側の端部へ向かって繰り返し行う第2の工程を行うことにより、
前記N×N’個の小領域群を走査するように、前記マルチビームを一括して偏向する第2の機能の2つの機能を持つ偏向器と、
前記基板に前記マルチビームを照射することに起因して前記基板から放出される2次電子を検出する検出器と、
を備え、
前記Nの値と前記Mの値として、前記Nの値と前記Mの値との間の最大公約数が1になる組み合わせの値を用いることを特徴とする荷電粒子ビーム検査装置。
【請求項2】
前記荷電粒子ビームで照射可能な測定用画素サイズをPS、前記第2の方向又は前記第2の方向の逆方向における第2ビーム整定時間Ofs_vを含む、前記第2の方向又は前記第2の方向の逆方向のビームスキャン時間をTvとしたときに、
前記ステージの移動速度Vは
V=PS/(2Tv)
である請求項1記載の荷電粒子ビーム検査装置。
【請求項3】
前記荷電粒子ビームで照射可能な測定用画素サイズをPS、前記荷電粒子ビームのスキャン周波数をfとしたときに、
前記第2の方向又は前記第2の方向の逆方向のビームスキャン時間Tvは
Tv=(p/PS)×(p/M/PS)×(1/f)+(p/M/PS)×Ofs_v
である請求項1記載の荷電粒子ビーム検査装置。
【請求項4】
前記第1の工程で取得された第1の2次電子画像と、前記第2の工程で取得された第2の2次電子画像と、を平均した平均2次電子画像を取得する平均画像取得回路をさらに備える請求項1記載の荷電粒子ビーム検査装置。
【請求項5】
基板を載置する、移動可能なステージと、
前記ステージを第1の方向の逆方向に連続移動させるステージ制御回路と、
前記第1の方向に前記基板面上において同一ピッチpでN列(Nは2以上の整数)かつ前記第1の方向と直交する第2の方向にN’列(N’は1以上の整数)並ぶ複数の荷電粒子ビームによって構成されるマルチビームを用いて、前記基板の検査領域が前記第1の方向にp/M(Mは2以上の整数)で得られるサイズかつ前記第2の方向に所定のサイズで分割された複数の小領域のうち、前記第1の方向に前記ピッチpでN個かつ前記第2の方向にN’個並ぶ前記基板上のN×N’個の小領域群に前記マルチビームを一括して偏向して、前記ステージが前記第1の方向の逆方向にN/M・pで得られる距離を連続移動する間、前記ステージの連続移動に追従するように前記マルチビームをトラッキング偏向すると共に、前記第1の方向の逆方向に前記N/M・pで得られる距離の前記ステージの移動が完了するまでに、前記N×N’個の小領域群から前記第1の方向にN個離れた、前記第1の方向に前記ピッチpで並ぶ新たなN×N’個の小領域群に前記マルチビームを一括して偏向し直すことでトラッキングリセットを行う第1の機能と、
前記ステージの連続移動に追従するように前記マルチビームがトラッキング偏向されている間に、前記マルチビームのそれぞれを、前記複数の小領域のそれぞれにおいて、
前記複数の小領域のそれぞれにおける、前記第1の方向の逆方向の側の端部を始点として、かつ、前記複数の小領域のそれぞれにおける、前記第1の方向の側の端部を終点として、前記第2の方向に沿った前記マルチビームの一括した偏向を、前記第1の方向の逆方向の側の端部から前記第1の方向の側の端部へ向かって繰り返し行う第1の工程を行い、その後、
前記第1の方向の逆方向に沿った前記マルチビームの一括した偏向を、繰り返し行う第2の工程を行い、その後、
前記第1の方向に沿った前記マルチビームの一括した偏向を、繰り返し行う第3の工程を行い、その後、
前記複数の小領域のそれぞれにおける、前記第1の方向の逆方向の側の端部を始点として、かつ、前記複数の小領域のそれぞれにおける、前記第1の方向の側の端部を終点として、前記第2の方向の逆方向に沿った前記マルチビームの一括した偏向を、前記第1の方向の逆方向の側の端部から前記第1の方向の側の端部へ向かって繰り返し行う第4の工程を行うことにより、
前記N×N’個の小領域群を走査するように、前記マルチビームを一括して偏向する第2の機能の2つの機能を持つ偏向器と、
前記基板に前記マルチビームを照射することに起因して前記基板から放出される2次電子を検出する検出器と、
を備え、
前記Nの値と前記Mの値として、前記Nの値と前記Mの値との間の最大公約数が1になる組み合わせの値を用いることを特徴とする荷電粒子ビーム検査装置。
【請求項6】
前記第2の工程の前記マルチビームの一括した偏向は、前記第2の方向の逆方向の側から前記第2の方向の側へと向かって、繰り返し行われる請求項5記載の荷電粒子ビーム検査装置。
【請求項7】
前記第2の工程の前記マルチビームの一括した偏向は、前記第2の方向の側から前記第2の方向の逆方向の側へと向かって、繰り返し行われる請求項5記載の荷電粒子ビーム検査装置。
【請求項8】
前記荷電粒子ビームで照射可能な測定用画素サイズをPS、
前記第1の方向又は前記第1の方向の逆方向における第1ビーム整定時間Ofs_hを含む、前記第1の方向又は前記第1の方向の逆方向のビームスキャン時間をTh、
前記第2の方向又は前記第2の方向の逆方向における第2ビーム整定時間Ofs_vを含む、前記第2の方向又は前記第2の方向の逆方向のビームスキャン時間をTvとしたときに、
前記ステージの移動速度Vは
V=PS/(2×(M×Th+Tv))
である請求項5記載の荷電粒子ビーム検査装置。
【請求項9】
前記荷電粒子ビームで照射可能な測定用画素サイズをPS、前記荷電粒子ビームのスキャン周波数をfとしたときに、
前記第1の方向又は前記第1の方向の逆方向のビームスキャン時間Thは
Th=(p/PS)×(p/M/PS)×(1/f)+(p/PS)×Ofs_h
であり、
前記第2の方向又は前記第2の方向の逆方向のビームスキャン時間Tvは
Tv=(p/PS)×(p/M/PS)×(1/f)+(p/M/PS)×Ofs_v
である請求項5記載の荷電粒子ビーム検査装置。
【請求項10】
前記第1の工程で取得された第1の2次電子画像と、前記第2の工程で取得された第2の2次電子画像と、前記第3の工程で取得された第3の2次電子画像と、前記第4の工程で取得された第4の2次電子画像と、を平均した平均2次電子画像を取得する平均画像取得回路をさらに備える請求項5記載の荷電粒子ビーム検査装置。
【請求項11】
第1の方向に基板面上において同一ピッチpでN列(Nは2以上の整数)かつ前記第1の方向と直交する第2の方向にN’列(N’は1以上の整数)並ぶ複数の荷電粒子ビームによって構成されるマルチビームを用いて、基板の検査領域が前記第1の方向にp/M(Mは2以上の整数)で得られるサイズかつ前記第2の方向に所定のサイズで分割された複数の小領域のうち、前記第1の方向に前記ピッチpでN個かつ前記第2の方向にN’個並ぶ前記基板上のN×N’個の小領域群に前記マルチビームを一括して偏向して、前記基板を載置するステージが前記第1の方向の逆方向にN/M・pで得られる距離を連続移動する間、前記ステージの連続移動に追従するように前記マルチビームをトラッキング偏向しながら、
前記マルチビームのそれぞれを、前記複数の小領域のそれぞれにおいて、
前記複数の小領域のそれぞれにおける、前記第1の方向の逆方向の側の端部を始点として、かつ、前記複数の小領域のそれぞれにおける、前記第1の方向の側の端部を終点として、前記第2の方向に沿った前記マルチビームの一括した偏向を、前記第1の方向の逆方向の側の端部から前記第1の方向の側の端部へ向かって繰り返し行う第1の工程を行い、その後、
前記複数の小領域のそれぞれにおける、前記第1の方向の逆方向の側の端部を始点として、かつ、前記複数の小領域のそれぞれにおける、前記第1の方向の側の端部を終点として、前記第2の方向の逆方向に沿った前記マルチビームの一括した偏向を、前記第1の方向の逆方向の側の端部から前記第1の方向の側の端部へ向かって繰り返し行う第2の工程を行うことにより、
前記基板に前記マルチビームを照射することに起因して前記基板から放出される2次電子を検出し、
前記第1の方向の逆方向にN/M・pで得られる距離の前記ステージの移動が完了するまでに、前記N×N’個の小領域群から前記第1の方向にN個離れた、前記第1の方向に前記ピッチpで並ぶ新たなN×N’個の小領域群に前記マルチビームを一括して偏向し直すことでトラッキングリセットを行う荷電粒子ビーム検査方法であって、
前記Nの値と前記Mの値として、前記Nの値と前記Mの値との間の最大公約数が1になる組み合わせの値を用いる荷電粒子ビーム検査方法。
【請求項12】
前記荷電粒子ビームで照射可能な測定用画素サイズをPS、前記第2の方向又は前記第2の方向の逆方向における第2ビーム整定時間Ofs_vを含む、前記第2の方向又は前記第2の方向の逆方向のビームスキャン時間をTvとしたときに、
前記ステージの移動速度Vは
V=PS/(2Tv)
である請求項11記載の荷電粒子ビーム検査方法。
【請求項13】
前記荷電粒子ビームで照射可能な測定用画素サイズをPS、前記荷電粒子ビームのスキャン周波数をfとしたときに、
前記第2の方向又は前記第2の方向の逆方向のビームスキャン時間Tvは
Tv=(p/PS)×(p/M/PS)×(1/f)+(p/M/PS)×Ofs_v
である請求項11記載の荷電粒子ビーム検査方法。
【請求項14】
前記第1の工程で取得された第1の2次電子画像と、前記第2の工程で取得された第2の2次電子画像と、を平均した平均2次電子画像を取得する請求項11記載の荷電粒子ビーム検査装置。
【請求項15】
第1の方向に基板面上において同一ピッチpでN列(Nは2以上の整数)かつ前記第1の方向と直交する第2の方向にN’列(N’は1以上の整数)並ぶ複数の荷電粒子ビームによって構成されるマルチビームを用いて、基板の検査領域が前記第1の方向にp/M(Mは2以上の整数)で得られるサイズかつ前記第2の方向に所定のサイズで分割された複数の小領域のうち、前記第1の方向に前記ピッチpでN個かつ前記第2の方向にN’個並ぶ前記基板上のN×N’個の小領域群に前記マルチビームを一括して偏向して、前記基板を載置するステージが前記第1の方向の逆方向にN/M・pで得られる距離を連続移動する間、前記ステージの連続移動に追従するように前記マルチビームをトラッキング偏向しながら、
前記マルチビームのそれぞれを、前記複数の小領域のそれぞれにおいて、
前記複数の小領域のそれぞれにおける、前記第1の方向の逆方向の側の端部を始点として、かつ、前記複数の小領域のそれぞれにおける、前記第1の方向の側の端部を終点として、前記第2の方向に沿った前記マルチビームの一括した偏向を、前記第1の方向の逆方向の側の端部から前記第1の方向の側の端部へ向かって繰り返し行う第1の工程を行い、その後、
前記第1の方向の逆方向に沿った前記マルチビームの一括した偏向を、繰り返し行う第2の工程を行い、その後、
前記第1の方向の逆方向に沿った前記マルチビームの一括した偏向を、繰り返し行う第3の工程を行い、その後、
前記複数の小領域のそれぞれにおける、前記第1の方向の逆方向の側の端部を始点として、かつ、前記複数の小領域のそれぞれにおける、前記第1の方向の側の端部を終点として、前記第2の方向の逆方向に沿った前記マルチビームの一括した偏向を、前記第1の方向の逆方向の側の端部から前記第1の方向の側の端部へ向かって繰り返し行う第4の工程を行うことにより、
前記基板に前記マルチビームを照射することに起因して前記基板から放出される2次電子を検出し、
前記第1の方向の逆方向にN/M・pで得られる距離の前記ステージの移動が完了するまでに、前記N×N’個の小領域群から前記第1の方向にN個離れた、前記第1の方向に前記ピッチpで並ぶ新たなN×N’個の小領域群に前記マルチビームを一括して偏向し直すことでトラッキングリセットを行う荷電粒子ビーム検査方法であって、
前記Nの値と前記Mの値として、前記Nの値と前記Mの値との間の最大公約数が1になる組み合わせの値を用いる荷電粒子ビーム検査方法。
【請求項16】
前記第2の工程の前記マルチビームの一括した偏向は、前記第2の方向の逆方向の側から前記第2の方向の側へと向かって、繰り返し行われる請求項15記載の荷電粒子ビーム検査方法。
【請求項17】
前記第2の工程の前記マルチビームの一括した偏向は、前記第2の方向の側から前記第2の方向の逆方向の側へと向かって、繰り返し行われる請求項15記載の荷電粒子ビーム検査方法。
【請求項18】
前記荷電粒子ビームで照射可能な測定用画素サイズをPS、
前記第1の方向又は前記第1の方向の逆方向における第1ビーム整定時間Ofs_hを含む、前記第1の方向又は前記第1の方向の逆方向のビームスキャン時間をTh、
前記第2の方向又は前記第2の方向の逆方向における第2ビーム整定時間Ofs_vを含む、前記第2の方向又は前記第2の方向の逆方向のビームスキャン時間をTvとしたときに、
前記ステージの移動速度Vは
V=PS/(2×(M×Th+Tv))
である請求項15記載の荷電粒子ビーム検査方法。
【請求項19】
前記荷電粒子ビームで照射可能な測定用画素サイズをPS、前記荷電粒子ビームのスキャン周波数をfとしたときに、
前記第1の方向又は前記第1の方向の逆方向のビームスキャン時間Thは
Th=(p/PS)×(p/M/PS)×(1/f)+(p/PS)×Ofs_h
であり、
前記第2の方向又は前記第2の方向の逆方向のビームスキャン時間Tvは
Tv=(p/PS)×(p/M/PS)×(1/f)+(p/M/PS)×Ofs_v
である請求項15記載の荷電粒子ビーム検査方法。
【請求項20】
前記第1の工程で取得された第1の2次電子画像と、前記第2の工程で取得された第2の2次電子画像と、前記第3の工程で取得された第3の2次電子画像と、前記第4の工程で取得された第4の2次電子画像と、を平均した平均2次電子画像を取得する請求項15記載の荷電粒子ビーム検査方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、荷電粒子ビーム検査装置及び荷電粒子ビーム検査方法に関する。例えば、電子線によるマルチビームを照射して放出されるパターンの2次電子画像を取得してパターンを検査する検査装置に関する。
【背景技術】
【0002】
近年、大規模集積回路(LSI)の高集積化及び大容量化に伴い、半導体素子に要求される回路線幅はますます狭くなってきている。これらの半導体素子は、回路パターンが形成された原画パターン(マスク或いはレチクルともいう。以下、マスクと総称する)を用いて、いわゆるステッパと呼ばれる縮小投影露光装置でウェハ上にパターンを露光転写して回路形成することにより製造される。
【0003】
そして、多大な製造コストのかかるLSIの製造にとって、歩留まりの向上は欠かせない。しかし、液浸露光とマルチパターニング技術によって既に20nmを切る加工寸法が実現され、さらにはEUV(Extreme Ultraviolet)露光の実用化により10nmを切る微細加工が実現されようとしている。また、NIL(NanoImprintingLithography)やDSA(Directed Self―Assembly,自己組織化リソグラフィ)など、露光機を使う以外の微細加工技術の実用化も進んでいる。近年、半導体ウェハ上に形成されるLSIパターン寸法の微細化に伴って、パターン欠陥として検出しなければならない寸法も極めて小さいものとなっており、同じ面積であっても検査しなければならないパターン数も膨大なものとなっている。よって、半導体ウェハ上に転写された超微細パターンの欠陥を検査する検査装置の高精度化と高速化が必要とされている。その他、歩留まりを低下させる大きな要因の一つとして、半導体ウェハ上に超微細パターンをフォトリソグラフィ技術で露光、転写する際に使用されるマスクのパターン欠陥があげられる。このため、LSI製造に使用される転写用マスクの欠陥を検査する検査装置の高精度化が必要とされている。
【0004】
検査手法としては、拡大光学系を用いて半導体ウェハ等のウェハやリソグラフィマスク等のマスクといった被検査試料の上に形成されているパターンを所定の倍率で撮像した光学画像と、設計データ、あるいは被検査試料上の同一パターンを撮像した光学画像と比較することにより検査を行う方法が知られている。例えば、検査方法として、同一マスク上の異なる場所の同一パターンを撮像した光学画像データ同士を比較する「die to die(ダイ-ダイ)検査」や、パターン設計されたCADデータをマスクにパターン描画する時に描画装置が入力するための装置入力フォーマットに変換した描画データ(設計パターンデータ)を検査装置に入力して、これをベースに設計画像データ(参照画像)を生成して、この設計画像データと、パターンを撮像した測定データとなる光学画像とを比較する「die to database(ダイ-データベース)検査」がある。かかる検査装置における検査方法では、検査対象基板はステージ(試料台)上に載置され、ステージが動くことによって光束が被検査試料上を走査し、検査が行われる。検査対象基板には、光源及び照明光学系によって光束が照射される。検査対象基板を透過あるいは反射した光は光学系を介して、センサ上に結像される。センサで撮像された画像は測定データとして比較回路へ送られる。比較回路では、画像同士の位置合わせの後、測定データと参照データとを適切なアルゴリズムに従って比較し、一致しない場合には、パターン欠陥有りと判定する。
【0005】
上述したパターン検査装置では、レーザ光を検査対象基板に照射して、その透過像或いは反射像を撮像することにより、光学画像を取得する。これに対して、直線上に同一ピッチで配列されるビーム列が複数列並ぶようなアレイ配列の複数の電子ビームで構成されるマルチビームを検査対象基板に照射して、検査対象基板から放出される各ビームに対応する2次電子を検出して、パターン像を取得する検査装置の開発も進んでいる。かかるマルチビームを含む電子ビームを用いたパターン検査装置では、検査対象基板の小領域毎に走査して2次電子を検出する。その際、ビームを走査している間は検査対象基板の位置を固定し、走査終了後に次の小領域へと検査対象基板の位置を移動させる、いわゆるステップアンドリピート動作が行われる。直線上に同一ピッチで配列されるビーム列が複数列並ぶようなアレイ配列のマルチビームを用いることで、限られた領域内に多数のビームを配置できるので、一度に多数の小領域の走査を同時に行うことが可能になる。そのため、スループットの向上が期待されている。しかしながら、ステップアンドリピート動作では、ステージの移動毎にステージ位置が安定するまでの整定時間(オーバーヘッド時間)が必要になる。1回の走査範囲(小領域)は小さいため、基板全体を走査するには、ステージのステップ回数が膨大な回数になる。よって、ステップ回数に整定時間を乗じた時間だけ、走査に要しない無駄な時間が発生してしまう。マルチビームを用いて基板上を走査する場合でも、基板1枚について、例えば、80時間以上の走査に要しない時間が発生してしまうという試算もある。
【0006】
そこで、検査装置のスループットの向上を図るべく、ステージの移動方式をステップアンドリピート動作方式からステップ毎の整定時間が必要ない連続移動方式に変えることが検討されている。しかしながら、アレイ配列されたマルチビームで走査を行う場合、連続移動方式では、整定時間は不要にできるが、代わりに、同じ小領域が、移動方向に並ぶ複数のビームの走査範囲内に順に送られてくるため、すでにパターン像を取得済の小領域について無駄な走査を繰り返すことになってしまう。そのため、やはりスループットの向上には繋がらない。かかる無駄な走査を繰り返すことがないようにするためには、既に走査された小領域を飛び越えて次の小領域の走査を行う必要があるため、マルチビームを偏向する振り幅を大きくする必要がある。しかしながら、ビーム偏向の振り幅を大きくすると、電子光学系の収差の影響が大きくなり、十分に各ビームを小さく絞ることが困難になり、いわゆるボケが生じてしまう。
【0007】
これを抑制するために開示された技術として、下記の技術がある。すなわち、第1の方向に基板面上において同一ピッチpでN列(Nは2以上の整数)かつ第1の方向と直交する第2の方向にN’列(N’は1以上の整数)並ぶ複数の荷電粒子ビームによって構成されるマルチビームを用いて、基板の検査領域が第1の方向にp/M(Mは2以上の整数)で得られるサイズかつ第2の方向に所定のサイズで分割された複数の分割小領域のうち、第1の方向にピッチpでN個かつ第2に方向にN’個並ぶ基板上のN×N’個の分割小領域群にマルチビームを一括して偏向する。ステージが第1の方向の逆方向にN/M・pで得られる距離を連続移動する間、ステージの連続移動に追従するようにマルチビームをトラッキング偏向する。そして、ステージの連続移動に追従するようにマルチビームがトラッキング偏向されている間に、かかるN×N’個の分割小領域群を走査するように、マルチビームを一括して偏向する。
【0008】
上記の技術によれば、第1の方向におけるビーム偏向の振り幅を小さくすることができる。そのため、電子光学系の収差の影響を小さくすることが出来る。
【0009】
ここで、被検査試料の種類によっては、被検査試料の帯電により、パターン像が白くなったり、又は逆に黒くなったりしてしまう。そのため、パターン欠陥の有無の判定が困難になってしまうことがある。そこで、被検査試料上の、例えば上記小領域(分割小領域も含む)についてマルチビームを異なる方向にスキャンして複数のパターン像を取得し、その後複数のパターン像を平均化した画像を用いて検査を行うことが考えられる。このような平均化した画像の取得は、ステージが連続移動しない場合には容易に行うことが出来る。次に、上述のように、ステージの移動方式が連続移動方式である場合を考える。この場合、ビームスキャンを行う際に、ステージの連続移動に伴いステージに意図しない振動が加わり、被検査試料の特定の箇所がビームスキャン可能な領域から飛び出してしまうという問題があった。また、この問題は、上述の小領域の端でビームスキャンを行う場合に、特に大きなものとなっていた。さらに、上記のステージに加わる意図しない振動は、ステージの移動方向又はステージの移動方向の逆方向で特に発生しやすいものとなっていた。
【先行技術文献】
【特許文献】
【0010】
【文献】特開2018-017571号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
そこで、本発明の一態様は、ステージの移動方向に複数のビームが並ぶマルチビームを用いてステージを連続移動させながらおこなうパターン検査において、意図しないステージの振動の影響を除去しつつ、異なる方向にビームスキャンして取得した画像を平均化する検査装置及び検査方法を提供する。
【課題を解決するための手段】
【0012】
本発明の一態様の荷電粒子ビーム検査装置は、基板を載置する、移動可能なステージと、ステージを第1の方向の逆方向に連続移動させるステージ制御回路と、第1の方向に基板面上において同一ピッチpでN列(Nは2以上の整数)かつ第1の方向と直交する第2の方向にN’列(N’は1以上の整数)並ぶ複数の荷電粒子ビームによって構成されるマルチビームを用いて、基板の検査領域が第1の方向にp/M(Mは2以上の整数)で得られるサイズかつ第2の方向に所定のサイズで分割された複数の小領域のうち、第1の方向にピッチpでN個かつ第2の方向にN’個並ぶ基板上のN×N’個の小領域群にマルチビームを一括して偏向して、ステージが第1の方向の逆方向にN/M・pで得られる距離を連続移動する間、ステージの連続移動に追従するようにマルチビームをトラッキング偏向すると共に、第1の方向の逆方向にN/M・pで得られる距離のステージの移動が完了するまでに、N×N’個の小領域群から第1の方向にN個離れた、第1の方向にピッチpで並ぶ新たなN×N’個の小領域群にマルチビームを一括して偏向し直すことでトラッキングリセットを行う第1の機能と、ステージの連続移動に追従するようにマルチビームがトラッキング偏向されている間に、マルチビームのそれぞれを、複数の小領域のそれぞれにおいて、複数の小領域のそれぞれにおける、第1の方向の逆方向の側の端部を始点として、かつ、複数の小領域のそれぞれにおける、第1の方向の側の端部を終点として、第2の方向に沿ったマルチビームの一括した偏向を、第1の方向の逆方向の側の端部から第1の方向の側の端部へ向かって繰り返し行う第1の工程を行い、その後、複数の小領域のそれぞれにおける、第1の方向の逆方向の側の端部を始点として、かつ、複数の小領域のそれぞれにおける、第1の方向の側の端部を終点として、第2の方向の逆方向に沿ったマルチビームの一括した偏向を、第1の方向の逆方向の側の端部から第1の方向の側の端部へ向かって繰り返し行う第2の工程を行うことにより、N×N’個の小領域群を走査するように、マルチビームを一括して偏向する第2の機能の2つの機能を持つ偏向器と、基板にマルチビームを照射することに起因して基板から放出される2次電子を検出する検出器と、を備え、Nの値とMの値として、Nの値とMの値との間の最大公約数が1になる組み合わせの値を用いることを特徴とする荷電粒子ビーム検査装置である。
【0013】
上述の荷電粒子ビーム検査装置において、荷電粒子ビームで照射可能な測定用画素サイズをPS、第2の方向又は第2の方向の逆方向における第2ビーム整定時間Ofs_vを含む、第2の方向又は第2の方向の逆方向のビームスキャン時間をTvとしたときに、ステージの移動速度VはV=PS/(2Tv)であることが好ましい。
【0014】
上述の荷電粒子ビーム検査装置において、荷電粒子ビームで照射可能な測定用画素サイズをPS、荷電粒子ビームのスキャン周波数をfとしたときに、第2の方向又は第2の方向の逆方向のビームスキャン時間TvはTv=(p/PS)×(p/M/PS)×(1/f)+(p/M/PS)×Ofs_vである請求項1記載の荷電粒子ビーム検査装置。
【0015】
上述の荷電粒子ビーム検査装置において、第1の工程で取得された第1の2次電子画像と、第2の工程で取得された第2の2次電子画像と、を平均した平均2次電子画像を取得する平均画像取得回路をさらに備えることが好ましい。
【図面の簡単な説明】
【0016】
図1】実施の形態1におけるパターン検査装置の構成を示す構成図である。
図2】実施の形態1における成形アパーチャアレイ部材の構成を示す概念図である。
図3】実施の形態1におけるスキャン動作の一例を説明するための概念図である。
図4】実施の形態1におけるマルチビームの照射領域と測定用画素との一例を示す図である。
図5】実施の形態1の比較例におけるスキャン動作の細部の一例を説明するための概念図である。
図6】実施の形態1におけるスキャン動作の細部の一例を説明するための概念図である。
図7】実施の形態1におけるビーム本数と分割数との関係の一例を示す図である。
図8】実施の形態1におけるサブ領域と走査領域との関係を示す図である。
図9】実施の形態1の第1の態様におけるスキャン動作の一例を示す模式図である。
図10】実施の形態1の第1の態様におけるスキャン動作の一例を示す模式図である。
図11】実施の形態1の第2の態様におけるスキャン動作の一例を示す模式図である。
図12】実施の形態1の第2の態様におけるスキャン動作の他の一例を示す模式図である。
図13】実施の形態1の第2の態様におけるスキャン動作の他の一例を示す模式図である。
図14】実施の形態1の第2の態様におけるスキャン動作の他の一例を示す模式図である。
図15】実施の形態1の他の比較例におけるスキャン動作の一例を示す模式図である。
図16】実施の形態1の他の比較例におけるスキャン動作の一例を示す模式図である。
図17】実施の形態1における検査方法の要部工程の一部を示すフローチャート図である。
図18】実施の形態1におけるスキャン動作の細部の他の一例を説明するための概念図である。
図19】実施の形態1におけるスキャン動作におけるサブ領域と対応ビームとの関係の一例を説明するための概念図である。
図20】実施の形態1におけるスキャン動作の他の一例を説明するための概念図である。
図21】実施の形態1における比較回路の内部構成を示す図である。
図22】実施の形態1におけるグリッドとフレーム領域との関係の一例を示す図である。
図23】実施の形態1におけるパターン検査装置の他の構成を示す構成図である。
【発明を実施するための形態】
【0017】
以下、実施の形態では、荷電粒子ビームの一例として、電子ビームを用いた場合について説明する。但し、これに限るものではない。イオンビーム等のその他の荷電粒子ビームを用いても構わない。
【0018】
実施の形態1.
図1は、実施の形態1におけるパターン検査装置の構成を示す構成図である。図1において、基板に形成されたパターンを検査する検査装置100は、荷電粒子ビーム検査装置の一例である。検査装置100は、電子光学画像取得機構150a、及び制御系回路160(制御部)を備えている。電子光学画像取得機構150aは、電子ビームカラム102(電子鏡筒)、検査室103、検出回路106、ストライプパターンメモリ123、及びレーザ測長システム122を備えている。電子ビームカラム102内には、電子銃(照射源)201、電磁レンズ202、成形アパーチャアレイ基板203、縮小レンズ205、電磁レンズ206、電磁レンズ(対物レンズ)207、偏向器208、一括ブランキング偏向器212、制限アパーチャ基板213、ビームセパレーター214、偏向器218、電磁レンズ224,226、及びマルチ検出器222が配置されている。
【0019】
検査室103内には、少なくともXY平面上を移動可能なXYステージ(試料台、ステージの一例)105が配置される。XYステージ105上には、検査対象となるチップパターンが形成された基板(被検査試料)101が配置される。基板101は、例えばシリコンウェハ等である。基板101は、例えば、パターン形成面を上側に向けてXYステージ105に配置される。また、XYステージ105上には、検査室103の外部に配置されたレーザ測長システム122から照射されるレーザ測長用のレーザ光を反射するミラー216が配置されている。マルチ検出器222は、電子ビームカラム102の外部で検出回路106に接続される。検出回路106は、ストライプパターンメモリ123に接続される。
【0020】
制御系回路160では、コンピュータである制御計算機110が、バス120を介して、位置回路107、展開回路111、ステージ制御回路114、レンズ制御回路124、ブランキング制御回路126、偏向制御回路128、画像記憶装置132、比較回路108、磁気ディスク装置等の記憶装置109、モニタ117、メモリ118、プリンタ119、参照回路112、整定時間記憶装置140、スキャン周波数記憶装置141、平均画像取得回路144、移動速度計算回路146、スキャン時間計算回路148、スキャン時間記憶装置149に接続されている。また、XYステージ105は、ステージ制御回路114の制御の下に駆動機構142により駆動される。駆動機構142では、例えば、X方向、Y方向、θ方向に駆動する3軸(X-Y-θ)モータの様な駆動系が構成され、XYステージ105が移動可能となっている。これらの、図示しないXモータ、Yモータ、θモータは、例えばステップモータを用いることが出来る。XYステージ105は、XYθ各軸のモータによって水平方向及び回転方向に移動可能である。そして、XYステージ105の移動位置はレーザ測長システム122により測定され、位置回路107に供給される。レーザ測長システム122は、ミラー216からの反射光を受光することによって、レーザ干渉法の原理でXYステージ105の位置を測長する。
【0021】
電子銃201には、図示しない高圧電源回路が接続され、電子銃201内の図示しないフィラメントと引出電極間への高圧電源回路からの加速電圧の印加と共に、所定の引出電極の電圧の印加と所定の温度のカソード(フィラメント)の加熱によって、カソードから放出された電子群が加速させられ、電子ビームとなって放出される。縮小レンズ205、及び対物レンズ207は、例えば電磁レンズが用いられ、共にレンズ制御回路124によって制御される。また、ビームセパレーター214もレンズ制御回路124によって制御される。一括ブランキング偏向器212は、少なくとも2極の電極群により構成され、ブランキング制御回路126によって制御される。偏向器208は、それぞれ少なくとも4極の電極群により構成され、偏向制御回路128によって制御される。
【0022】
基板101が複数のチップ(ダイ)パターンが形成された半導体ウェハである場合には、かかるチップ(ダイ)パターンのパターンデータが検査装置100の外部から入力され、記憶装置109に格納される。なお、基板101が露光用フォトマスクである場合には、かかる露光用フォトマスクにマスクパターンを形成する基になる設計パターンデータが検査装置100の外部から入力され、記憶装置109に格納される。
【0023】
ここで、図1では、本実施形態を説明する上で必要な構成を記載している。検査装置100にとって、通常、必要なその他の構成を備えていても構わない。
【0024】
図2は、実施の形態1における成形アパーチャアレイ部材の構成を示す概念図である。図2において、成形アパーチャアレイ基板203には、2次元状(行列状)の横(x方向)N列×縦(y方向)N’段(Nは2以上の整数、N’は1以上の整数)の穴(開口部)22がx,y方向(x:第1の方向、y:第2の方向)に所定の配列ピッチLで形成されている。なお、マルチビームの縮小倍率がa倍(マルチビーム径を1/aに縮小して基板101に照射する場合)、基板101上でのx,y方向に対するマルチビームのビーム間ピッチをpとする場合、配列ピッチLは、L=(a×p)の関係となる。図2の例では、N=5、N’=5の5×5本のマルチビーム形成用の穴22が形成される場合を示している。次に検査装置100における電子光学画像取得機構150aの動作について説明する。
【0025】
電子銃201(放出源)から放出された電子ビーム200は、電磁レンズ202によってほぼ垂直に成形アパーチャアレイ基板203全体を照明される。成形アパーチャアレイ基板203には、図2に示すように、複数の穴22(開口部)が形成され、電子ビーム200は、すべての複数の穴22が含まれる領域を照明する。複数の穴22の位置に照射された電子ビーム200の各一部が、かかる成形アパーチャアレイ基板203の複数の穴22をそれぞれ通過することによって、マルチ1次電子ビーム(マルチビーム)20が形成される。
【0026】
形成されたマルチビーム20は、電磁レンズ(縮小レンズ)205、及び電磁レンズ206によってそれぞれ偏向させられ、中間像及びクロスオーバーを繰り返しながら、マルチビーム20の各ビームのクロスオーバー位置に配置されたビームセパレーター214を通過して対物レンズ207に進む。そして、対物レンズ207は、マルチビーム20を基板101にフォーカス(合焦)する。対物レンズ207により基板101(試料)面上に焦点が合わされた(合焦された)マルチビーム20は、偏向器208によって一括して偏向され、各ビームの基板101上のそれぞれの照射位置に照射される。なお、一括ブランキング偏向器212によって、マルチビーム20全体が一括して偏向された場合には、制限アパーチャ基板213の中心の穴から位置がはずれ、制限アパーチャ基板213によって遮蔽される。一方、一括ブランキング偏向器212によって偏向されなかったマルチビーム20は、図1に示すように制限アパーチャ基板213の中心の穴を通過する。かかる一括ブランキング偏向器212のON/OFFによって、ブランキング制御が行われ、ビームのON/OFFが一括制御される。このように、制限アパーチャ基板213は、一括ブランキング偏向器212によってビームOFFの状態になるように偏向されたマルチビーム20を遮蔽する。そして、ビームONになってからビームOFFになるまでに形成された、制限アパーチャ基板213を通過したビーム群により、検査用(画像取得用)のマルチビーム20が形成される。
【0027】
基板101の所望する位置にマルチビーム20が照射されると、かかるマルチビーム20が照射されたことに起因して基板101からマルチビーム20の各ビームに対応する、反射電子を含む2次電子の束(マルチ2次電子ビーム300)が放出される。
【0028】
基板101から放出されたマルチ2次電子ビーム300は、対物レンズ207を通って、ビームセパレーター214に進む。
【0029】
ここで、ビームセパレーター214はマルチビーム20の中心ビームが進む方向(電子軌道中心軸)に直交する面上において電界と磁界を直交する方向に発生させる。電界は電子の進行方向に関わりなく同じ方向に力を及ぼす。これに対して、磁界はフレミング左手の法則に従って力を及ぼす。このため電子の侵入方向によって電子に作用する力の向きを変化させることができる。ビームセパレーター214に上側から侵入してくるマルチビーム20には、電界による力と磁界による力が打ち消し合い、マルチビーム20は下方に直進する。これに対して、ビームセパレーター214に下側から侵入してくるマルチ2次電子ビーム300には、電界による力と磁界による力がどちらも同じ方向に働き、マルチ2次電子ビーム300は斜め上方に曲げられ、マルチビーム20から分離する。
【0030】
斜め上方に曲げられ、マルチビーム20から分離したマルチ2次電子ビーム300は、偏向器218によって、さらに曲げられ、電磁レンズ224,226によって、屈折させられながらマルチ検出器222に投影される。マルチ検出器222は、投影されたマルチ2次電子ビーム300を検出する。マルチ検出器222には、反射電子及び2次電子が投影されても良いし、反射電子は途中で発散してしまい残った2次電子が投影されても良い。マルチ検出器222は、例えば図示しない2次元センサを有する。そして、マルチ2次電子ビーム300の各2次電子が2次元センサのそれぞれ対応する領域に衝突して、電子を発生し、2次電子画像データを画素毎に生成する。マルチ検出器222にて検出された強度信号は、検出回路106に出力される。
【0031】
図3は、実施の形態1におけるスキャン動作の一例を説明するための概念図である。図3において、基板101の検査領域30は、例えば、y方向に向かって所定の幅で短冊状の複数のストライプ領域32に仮想分割される。基板101として、例えば、露光用マスク基板について適用すると好適である。例えば、一回のマルチビーム20全体の照射で照射可能な照射領域34の幅の自然数倍と同じ幅で短冊状の複数のストライプ領域32に仮想分割される。図3の例では、照射領域34と同じ幅で短冊状の複数のストライプ領域32に仮想分割される。まず、XYステージ105を移動させて、第1番目のストライプ領域32の左端から照射領域34の例えばサイズ1つ分、第1番目のストライプ領域32よりも外側の位置に一回のマルチビーム20の照射で照射可能な照射領域34が位置するようにトラッキング領域33を調整し、スキャン動作が開始される。実施の形態1では、XYステージ105を-x方向(第1の方向の逆方向の一例)に例えば等速で連続移動させ、かかる連続移動に追従するように照射領域34を移動させながら所望のトラッキング領域33内のピッチpで配置されるサブ領域群を走査し、終了後に照射領域34をx方向(第1の方向の一例)の次のトラッキング領域33に移動させることでトラッキングリセットを行う。かかる動作を繰り返すことで、x方向にストライプ領域32を順に走査していく。第1番目のストライプ領域32をスキャンする際には、XYステージ105を例えば-x方向に移動させることにより、相対的にx方向へとスキャン動作を進めていく。第1番目のストライプ領域32のマルチビーム照射が終了したら、ステージ位置を-y方向に移動させて、第2番目のストライプ領域32の右端からさらに照射領域34の例えばサイズ1つ分右側の位置に照射領域34が相対的にy方向に位置するように調整し、今度は、XYステージ105を例えばx方向に移動させることにより、-x方向に向かって同様にマルチビーム照射を行う。第3番目のストライプ領域32では、x方向に向かってマルチビーム照射し、第4番目のストライプ領域32では、-x方向に向かってマルチビーム照射するといったように、交互に向きを変えながら走査することで検査時間を短縮できる。但し、かかる交互に向きを変えながら走査する場合に限らず、各ストライプ領域32を描画する際、同じ方向に向かって走査を進めるようにしても構わない。成形アパーチャアレイ基板203の各穴22を通過することによって形成されたマルチビーム20によって、最大で各穴22と同数の複数のビーム(1次電子ビーム)に応じた2次電子の束によるマルチ2次電子ビーム300が同時に検出される。
【0032】
図4は、実施の形態1におけるマルチビームの照射領域と測定用画素との一例を示す図である。図4において、各ストライプ領域32は、例えば、マルチビームのビームサイズでメッシュ状の複数のメッシュ領域に分割される。かかる各メッシュ領域が、測定用画素36(単位照射領域)となる。そして、照射領域34内に、N×N’本の1回のマルチビーム20の照射で照射可能な複数の測定用画素28(黒く塗られた1ショット時のビームの照射位置)が示されている。言い換えれば、隣り合う測定用画素28間のx,y方向のピッチpが基板101上におけるマルチビーム20の各ビーム間のピッチとなる。図4の例では、隣り合う4つの測定用画素28のうち1つの測定用画素28を矩形の4隅の1つとして、当該測定用画素28を起点にx,y方向にp×pで囲まれた領域(以降p×p領域27とする)をx方向に分割数M(Mは2以上の整数)で割った、x方向にp/M、-y方向にpのサイズの矩形領域で1つのグリッド29(サブ領域;小領域)を構成する。図4の例では、各グリッド29(個別ビームスキャン領域)は、3×9画素で構成される場合を示している。
【0033】
図5は、実施の形態1の比較例におけるスキャン動作の細部の一例を説明するための概念図である。図5の例では、実施の形態1の比較例として、N×N’本のマルチビーム20のうち、y方向に1段分のN本のマルチビームを示している。「段」とは、グリッド29又はp×p領域が、y方向に並ぶ数のことである。例えば、「1段」とは、「グリッド29又はp×p領域が、y方向に1個分並んでいる」ということを示している。ここでは、同一ピッチpでx方向に並ぶN=5本のマルチビームを示している。実施の形態1の比較例では、同一ピッチpでx方向に並ぶN=5本のマルチビームの各ビームが、当該ビームの測定用画素28を起点にx,y方向にp×pで囲まれたp×p領域27をすべて走査した後に、次のp×pで囲まれたp×p領域27を走査する場合を示している。実施の形態1の比較例では、各ビームがp×pで囲まれた領域を走査する間(t=t’~t’の期間)にXYステージ105がN・pだけ移動するようにステージ速度を制御する。その際、偏向器208の偏向動作により各ビームが当該p×pで囲まれた領域を走査できるように、偏向器208によってトラッキング偏向を行う。そして、x方向に連続してN個並ぶp×pで囲まれたp×p領域27の走査が終了した時点(t=t’)で、走査領域が重ならないように、N=5本のマルチビームをx方向に一括して偏向することでトラッキングリセットを行う。かかる動作を繰り返すことで連続移動するステージ上の領域を走査領域が重ならないようにマルチビームで走査することができる。図5の例では、(N-1)・p(=4p)だけx方向(或いは-x方向)にマルチビームを偏向する必要がある。よって、実施の形態1の比較例では、x方向(或いは-x方向)におけるビーム偏向の振り幅が(N-1)・pだけ必要となる。他方、y方向(或いは-y方向)におけるビーム偏向の振り幅はpだけ必要となる。ビーム本数Nが多くなると、かかるビーム偏向の振り幅が非常に大きくなってしまう。そのため、上述したように、電子光学系の収差の影響が大きくなってしまう。
【0034】
図6は、実施の形態1におけるスキャン動作の細部の一例を説明するための概念図である。図6の例では、実施の形態1として、N×N’本のマルチビーム20のうち、y方向に1段分のN本のマルチビームを示している。ここでは、図5と同様、同一ピッチpでx方向に並ぶN=5本のマルチビームを示している。実施の形態1では、隣り合う4つの測定用画素28のうち1つの測定用画素28を矩形の4隅の1つとして、当該測定用画素28を起点にx,y方向にp×pで囲まれたp×p領域27をx方向に分割数Mで分割する。よって、x方向にp/M、-y方向にpのサイズ(所定のサイズ)の矩形領域で1つのグリッド29(サブ領域;小領域)を構成する。図6の例では、分割数M=3の場合を示している。実施の形態1では、同一ピッチpでx方向に並ぶN=5本のマルチビームの各ビームが、当該ビームの測定用画素28を起点にx方向にp/M、y方向にpのサイズ(所定のサイズ)のグリッド29(サブ領域)を走査した後に、x方向にN個分離れた次のグリッド29を走査する場合を示している。
【0035】
図6において、実施の形態1では、各ビームが(p/M)×pで囲まれたグリッド29を走査する間(t=t~tの期間)に、図5の比較例と同じステージ速度の場合、XYステージ105がN/M・pだけ移動する。その際、偏向器208の第2の機能による偏向動作により各ビームが当該(p/M)×pで囲まれたグリッド29を走査できるように、x方向にピッチpでN個並ぶ(p/M)×pのサイズのグリッド29をトラッキング領域33として、偏向器208が第1の機能によるトラッキング偏向を行う。そして、偏向器208の第2の機能により、x方向にピッチpでN個並ぶ(p/M)×pのサイズのグリッド29の走査が終了した時点(t=t)で、走査領域が重ならないように、偏向器208が第1の機能を使って、N=5本のマルチビームをx方向にN個のグリッド29分だけ離れた位置に一括して偏向することでトラッキングリセットを行う。図6の例では、偏向器208が第1の機能を使って、5個のグリッド29分離れた位置に5本のマルチビームを一括して偏向する。その際、偏向器208の第2の機能による偏向位置は、グリッド29内の最終画素36から最初の画素28にリセットされることは言うまでもない。t=t~tの期間、t=t~tの期間、・・・と、かかる動作を繰り返すことで、ステージを連続移動させる場合でも同じストライプ領域32上で走査領域が重ならないようにマルチビームで走査することができる。図6の例では、(N-1)/M・p(=4p/M)だけx方向にマルチビームを偏向する必要がある。よって、実施の形態1では、x方向におけるビーム偏向の振り幅を(N-1)/M・pに抑制できる。但し、x方向のビーム本数Nと分割数Mとの関係を制御しないと走査漏れ(歯抜け)或いは重複走査のグリッド29(サブ領域)が発生してしまう。実施の形態1では、かかる走査方法を適用するために、x方向のビーム本数Nと分割数Mとの間の最大公約数が1になる組み合わせの値を用いる。かかる条件にすることで、走査漏れ(歯抜け)或いは重複走査を回避できる。
【0036】
図7は、実施の形態1におけるビーム本数と分割数との関係の一例を示す図である。図7では、N=7本のx方向のビームを用いて、分割数Mを変えた場合のスキャン動作を示している。また、図7では、トラッキングリセットを行う毎に、図示のわかりやすさのため、ビームが別の段をスキャンしたものとして示している。なお、図7では、便宜上、p×pで囲まれたp×p領域27のy方向のサイズを狭めて示している。図7(a)では、分割数M=1、すなわち、p×pで囲まれたp×p領域27を分割しない場合を示している。図7(a)では、トラッキングリセットを行う場合、ビーム偏向の振り幅は、6pと大きくなってしまう。図7(b)では、分割数M=2、すなわち、p×pで囲まれたp×p領域27を2分割する場合を示している。図7(b)では、トラッキングリセットを行う場合、ビーム偏向の振り幅は、3pに低減できる。図7(c)では、分割数M=3、すなわち、p×pで囲まれたp×p領域27を3分割する場合を示している。図7(c)では、トラッキングリセットを行う場合、ビーム偏向の振り幅は、2pに低減できる。図7(d)では、分割数M=4、すなわち、p×pで囲まれたp×p領域27を4分割する場合を示している。図7(d)では、トラッキングリセットを行う場合、ビーム偏向の振り幅は、(3/2)pに低減できる。図7(e)では、分割数M=5、すなわち、p×pで囲まれたp×p領域27を5分割する場合を示している。図7(e)では、トラッキングリセットを行う場合、ビーム偏向の振り幅は、(6/5)pに低減できる。図7(f)では、分割数M=6、すなわち、p×pで囲まれたp×p領域27を6分割する場合を示している。図7(f)では、トラッキングリセットを行う場合、ビーム偏向の振り幅は、pに低減できる。このように、分割数Mを大きくすることで、ビーム偏向の振り幅をより小さくできる。
【0037】
ここで、p×pで囲まれたp×p領域27がM分割されたサブ領域(グリッド29)を1本のビームが走査する場合、x方向にビーム本数Nのマルチビーム20を用いて走査すると、M個ごとに配置されるN個のサブ領域(グリッド29)が同時に走査されることになる。ここで、M×N個の連続するサブ領域(グリッド29)群を1つの所定範囲とする。マルチビーム20のうちx方向に1番目のビームが1つの所定範囲分移動してしまうと、走査し損ねたサブ領域は走査されることなくそのまま残ってしまう。ここで、トラッキングリセットを行う場合のサブ領域を飛び越す数(移動量)をDとすると、マルチビーム20のうちx方向に1番目のビームが1つの所定範囲分移動する間に、M×N/D回のトラッキングサイクル動作を行うことになる。よって、M個毎に1個ずつしか走査されていなかったサブ領域が重複無くかつ漏れ無くすべて走査されるためには、分割数Mとトラッキングサイクル動作の回数とが同一になる、すなわち、M=M×N/Dである必要がある。よって、D=Nになる。したがって、実施の形態1では、トラッキングリセットを行う場合のサブ領域を飛び越す数Dは、x方向のビーム本数Nと同じ値になる。また、その際のビームの振り幅は、(N-1)p/Mとなる。
【0038】
M個ごとに配置されるN個のサブ領域(グリッド29)が同時に走査され、トラッキングリセットを行う場合のサブ領域を飛び越す数をN個分にする場合、1つの所定範囲において走査範囲が重複しないようにするためには、以下の関係が必要である。
0,M,2M,3M,・・・,(N-1)M,NM
0,N,2N,3N,・・・,(M-1)N,MN
【0039】
かかる2つの数列が途中で同じ値にならないようにする必要がある。よって、x方向のビーム本数Nと分割数Mとの間の最大公約数が1になる組み合わせの値(ビーム本数Nと分割数Mとの間で互いに素の関係)が必要となる。図7(a)~図7(f)の例において、分割数M=7では、途中で同じ値になってしまう。具体的にはトラッキングリセットを行う際、移動後のサブ領域は、すでに隣のビームで走査された後なので、重複してしまいNGである。
【0040】
また、ビーム本数Nの値として、図7(a)~図7(f)の例に示したように、素数を用いるとさらに好適である。ビーム本数Nを素数(例えば、2,3,5,7,11,13,17,23,・・・)にすることで、分割数Mの自由度を飛躍的に大きくできる。
【0041】
図8は、実施の形態1におけるサブ領域29と走査領域との関係を示す図である。図8は、ビームピッチp×pで囲まれた領域がx方向に3分割された図を示す。図8に示すように、マルチビーム20の各ビームが対応するサブ領域(グリッド29)を走査する場合に、隣接するサブ領域(グリッド29)と一部が重なる(オーバーラップする)ように各ビームの走査領域31を設定すると好適である。隣接するサブ領域(グリッド29)は、マルチビーム20のうち、異なるビームで走査される。そのため、光学系の収差の影響によりビーム間ピッチpが等ピッチからずれる。よって、かかるずれる分を吸収できるマージン幅αを設けると好適である。よって、実際に走査する場合の走査領域31は、サブ領域(グリッド29)よりもx方向に両端のうち少なくとも一端側にマージン幅αを加えた領域にすると好適である。なお、かかるマージンを付加することにより、走査終了位置がマージン幅α分だけx方向に移動することになる。両側にマージン幅αを設ければ、さらに、走査開始位置もマージン幅α分だけ-x方向に移動することになる。図8では、x方向にマージン幅αを加えた場合を示しているが、y方向にも同様にマージン幅αを加えるとさらに好適である。
【0042】
図7において説明したように、分割数Mを大きくすることで、ビームの振り幅を小さくできる。よって、ビームの振り幅を小さくする観点からは分割数は大きい方が望ましい。一方、分割数Mを大きくするとサブ領域(グリッド29)の数が増えるのでオーバーラップする部分の数が多くなり、無駄な画像データが増えてしまう。これによりデータ量が増えてしまう。よって、データ量低減の観点からは分割数は小さい方が望ましい。よって、電子光学系の収差の影響が無視できるビームの振り幅が得られる分割数Mのうちの最小値を選択するとより好適である。
【0043】
図9は、実施の形態1の第1の態様におけるスキャン動作の一例を示す模式図である。なお、実際のスキャンは図4に示したようなそれぞれの測定用画素28についてビームをスキャンして行うのだが、ここでは理解のため矢印により模式化してスキャン動作を示している。なお、図9では、紙面右方向であるx方向を第1の方向、紙面左方向である-x方向を第1の方向の逆方向(ステージ移動方向)、紙面上方向であるy方向を第2の方向、紙面下方向である-y方向を第2の方向の逆方向としている。
【0044】
図9(a)には、スキャン動作の第1の工程を示している。第1の工程では、ビームをy方向に沿って偏向する。ここで、第1の工程でのビームの偏向は、グリッド29の-x方向の側の端部29a(例えば、端部29aの最下部)を始点として、またグリッド29のx方向の側の端部29b(例えば、端部29bの最上部)を終点として、おこなわれる。また、第1の工程でのビームの偏向は、グリッド29の-x方向の側の端部29aからグリッド29のx方向の側の端部29bへ向かって、繰り返し行われる。そのため、図9(a)でのビームのスキャンの一例としては、まず(1)から(2)へとスキャンされ、次に(3)から(4)へとスキャンされ、次に(5)から(6)へとスキャンされる。例えば(1)から(2)へのスキャンは、グリッド29内の、-x方向の側の端部29aに設けられた画素28のスキャンである。例えば(5)から(6)へのスキャンは、グリッド29内の、x方向の側の端部29bに設けられた画素28のスキャンである。そして、(3)から(4)へのスキャンは、グリッド29内の、-x方向の側の端部29aとx方向の側の端部29bの間に設けられた画素28のスキャンである。なお、一連のスキャンの間、XYステージ105は-x方向に動き続けるため、グリッド29もさらに-x方向に動き続ける。
【0045】
図9(b)には、スキャン動作の第2の工程を示している。第2の工程では、ビームを-y方向に沿って偏向する。ここで、第2の工程でのビームの偏向は、グリッド29の-x方向の側の端部29a(例えば、端部29aの最上部)を始点として、またグリッド29のx方向の側の端部29b(例えば、端部29bの最下部)を終点として、おこなわれる。また、第2の工程でのビームの偏向は、グリッド29の-x方向の側の端部29aからグリッド29のx方向の側の端部29bへ向かって、繰り返し行われる。そのため、図9(b)でのビームのスキャンの一例としては、まず(19)から(20)へとスキャンされ、次に(21)から(22)へとスキャンされ、次に(23)から(24)へとスキャンされる。例えば、(19)から(20)へのスキャンは、グリッド29内の-x方向の側の端部29aに設けられた画素28のスキャンである。例えば、(23)から(24)へのスキャンは、グリッド29内の、x方向の側の端部29bに設けられた画素28のスキャンである。そして、(21)から(22)へのスキャンは、グリッド29内の、-x方向の側の端部29aとx方向の側の端部29bの間に設けられた画素28のスキャンである。なお、一連のスキャンの間、XYステージ105は-x方向に動き続けるため、グリッド29もさらに-x方向に動き続ける。
【0046】
上記の第1の工程及び第2の工程を順に行うことにより、スキャン動作が行われる。
【0047】
図10は、実施の形態1の第1の態様におけるスキャン動作の他の一例を示す模式図である。紙面上方向であるy方向を第2の方向の逆方向、紙面下方向である-y方向を第2の方向としている点が図9と異なっている。また、図10(a)において、ビームを-y方向に沿って偏向している点が、図9(a)と異なっている。また、図10(b)において、ビームを+y方向に沿って偏向している点が、図9(b)と異なっている。
【0048】
y方向又は-y方向における第2ビーム整定時間Ofs_vを含む、y方向又は-y方向のビームスキャン時間をTvとしたときに、XYステージ105の移動速度VはV=PS/(2Tv)である。これは、以下のようにして導かれる。まず、1本のビームが担当するグリッド29の面積は、(p/M)×pである。この(p/M)×pであるグリッド29におけるビームスキャンが開始されてから完了するまでにXYステージ105が移動する距離は、段落0035に記載したとおりN/M・pである。次に、測定用画素28のx方向及びy方向におけるサイズをPSとして、y方向のビームスキャンに必要な時間をTvとする。この場合、y方向のスキャン時間は(p/(M×PS))×Tvで求められる。すると、図9及び図10にて示したように、y方向において極性を変えて(y方向及び-y方向)2回スキャンを行うため、((p/(M×PS))×Tv×2)×V=N/M・pという式が成立する。よって、V=PS/(2Tv))である。なお、上述のXYステージ105の移動速度Vは、例えば、移動速度計算回路146により計算される。
【0049】
次に、y方向又は-y方向のビームスキャン時間Tvは、Tv=(p/PS)×(p/M/PS)×(1/f)+(p/M/PS)×Ofs_vである。ここで、fはビームスキャンに用いられるスキャン周波数である。(p/PS)×(p/M/PS)は、グリッド29内における測定用画素28の個数である。よって、(p/PS)×(p/M/PS)×(1/f)の項は、グリッド29内においてそれぞれの測定用画素28にビームを照射するために必要な時間に該当する項である。次に、(p/M/PS)×Ofs_vは、同一の方向にスキャンするためにビームを戻す時間の項である。よって、これらの和として、Tv=(p/PS)×(p/M/PS)×(1/f)+(p/M/PS)×Ofs_vが導出される。なお、スキャン周波数は、例えば、スキャン周波数記憶装置141に保存されている。
【0050】
図11は、実施の形態1の第2の態様におけるスキャン動作の一例を示す模式図である。なお、図11では、紙面右方向であるx方向を第1の方向、紙面左方向である-x方向を第1の方向の逆方向(ステージ移動方向)、紙面上方向であるy方向を第2の方向、紙面下方向である-y方向を第2の方向の逆方向としている。
【0051】
図11(a)には、スキャン動作の第1の工程を示している。第1の工程では、ビームをy方向に沿って偏向する。ここで、第1の工程でのビームの偏向は、グリッド29の-x方向の側の端部29a(例えば、端部29aの最下部)を始点として、またグリッド29のx方向の側の端部29b(例えば、端部29bの最上部)を終点として、おこなわれる。また、第1の工程でのビームの偏向は、グリッド29の-x方向の側の端部29aからグリッド29のx方向の側の端部29bへ向かって、繰り返し行われる。そのため、図11(a)でのビームのスキャンの一例としては、まず(1)から(2)へとスキャンされ、次に(3)から(4)へとスキャンされ、次に(5)から(6)へとスキャンされる。例えば(1)から(2)へのスキャンは、グリッド29内の、-x方向の側の端部29aに設けられた画素28のスキャンである。例えば(5)から(6)へのスキャンは、グリッド29内の、x方向の側の端部29bに設けられた画素28のスキャンである。そして、(3)から(4)へのスキャンは、グリッド29内の、-x方向の側の端部29aとx方向の側の端部29bの間に設けられた画素28のスキャンである。なお、一連のスキャンの間、XYステージ105は-x方向に動き続けるため、グリッド29もさらに-x方向に動き続ける。
【0052】
図11(b)には、スキャン動作の第2の工程を示している。第2の工程では、ビームを-x方向に沿って偏向する。ここで、第2の工程でのビームの偏向は、グリッド29の-y方向の側の端部29c(例えば、端部29cの右端)を始点として、またグリッド29のy方向の側の端部29d(例えば、端部29dの左端)を終点として、おこなわれる。また、第2の工程でのビームの偏向は、グリッド29の-y方向の側の端部29cからグリッド29のy方向の側の端部29dへ向かって、繰り返し行われる。そのため、図11(b)でのビームのスキャンの一例としては、まず(7)から(8)へとスキャンされ、次に(9)から(10)へとスキャンされ、次に(11)から(12)へとスキャンされる。なお、一連のスキャンの間、XYステージ105は-x方向に動き続けるため、グリッド29もさらに-x方向に動き続ける。
【0053】
図11(c)には、スキャン動作の第3の工程を示している。第3の工程では、ビームをx方向に沿って偏向する。ここで、第2の工程でのビームの偏向は、グリッド29の-y方向の側の端部29c(例えば、端部29cの左端)を始点として、またグリッド29のy方向の側の端部29d(例えば、端部29dの右端)を終点として、おこなわれる。また、第3の工程でのビームの偏向は、グリッド29のy方向側の端部29dからグリッド29の-y方向の側の端部29cへと向かって、繰り返し行われる。そのため、図11(c)でのビームのスキャンの一例としては、まず(13)から(14)へとスキャンされ、次に(15)から(16)へとスキャンされ、次に(17)から(18)へとスキャンされる。なお、一連のスキャンの間、XYステージ105は-x方向に動き続けるため、グリッド29もさらに-x方向に動き続ける。
【0054】
図11(d)には、スキャン動作の第4の工程を示している。第4の工程では、ビームを-y方向に沿って偏向する。ここで、第4の工程でのビームの偏向は、グリッド29の-x方向の側の端部29a(例えば、端部29aの最上部)を始点として、またグリッド29のx方向の側の端部29b(例えば、端部29bの最下部)を終点として、おこなわれる。また、第4の工程でのビームの偏向は、グリッド29の-x方向の側の端部29aからグリッド29のx方向の側の端部29bへ向かって、繰り返し行われる。そのため、図11(d)でのビームのスキャンの一例としては、まず(19)から(20)へとスキャンされ、次に(21)から(22)へとスキャンされ、次に(23)から(24)へとスキャンされる。例えば、(19)から(20)へのスキャンは、グリッド29内の-x方向の側の端部29aに設けられた画素28のスキャンである。例えば、(23)から(24)へのスキャンは、グリッド29内の、x方向の側の端部29bに設けられた画素28のスキャンである。そして、(21)から(22)へのスキャンは、グリッド29内の、-x方向の側の端部29aとx方向の側の端部29bの間に設けられた画素28のスキャンである。なお、一連のスキャンの間、XYステージ105は-x方向に動き続けるため、グリッド29もさらに-x方向に動き続ける。
【0055】
上記の第1の工程、第2の工程、第3の工程及び第4の工程を順に行うことにより、スキャン動作が行われる。
【0056】
図12は、実施の形態1の第2の態様におけるスキャン動作の他の一例を示す模式図である。図11(b)と図11(c)ではスキャンがグリッド29の-y方向側の端部29cからグリッド29のy方向の側の端部29dへと向かって、繰り返し行われるのに対し、図12(b)と図12(c)ではグリッド29のy方向側の端部29dからグリッド29の-y方向の側の端部29cへと向かって、繰り返し行われる点が異なっている。
【0057】
図13は、実施の形態1の第2の態様におけるスキャン動作の他の一例を示す模式図である。紙面上方向であるy方向を第2の方向の逆方向、紙面下方向である-y方向を第2の方向としている点が図11と異なっている。また、図13(a)において、ビームを-y方向に沿って偏向している点が、図11(a)と異なっている。また、図13(d)において、ビームを+y方向に沿って偏向している点が、図11(d)と異なっている。
【0058】
図14は、実施の形態1の第2の態様におけるスキャン動作の他の一例を示す模式図である。図13(b)と図13(c)ではグリッド29の-y方向側の端部29cからグリッド29のy方向の側の端部29dへと向かって、スキャンが繰り返し行われるのに対し、図14(b)と図14(c)ではグリッド29のy方向側の端部29dからグリッド29の-y方向の側の端部29cへと向かって、スキャンが繰り返し行われる点が異なっている。
【0059】
x方向又は-x方向における第1ビーム整定時間Ofs_hを含む、x方向又は-x方向のビームスキャン時間をTh、y方向又は-y方向における第2ビーム整定時間Ofs_vを含む、y方向又は-y方向のビームスキャン時間をTvとしたときに、XYステージ105の移動速度VはV=PS/(2×(M×Th+Tv))である。これは、以下のようにして導かれる。まず、1本のビームが担当するグリッド29の面積は、(p/M)×pである。この(p/M)×pであるグリッド29におけるビームスキャンが開始されてから完了するまでにXYステージ105が移動する距離は、段落0035に記載したとおりN/M・pである。次に、測定用画素28のx方向及びy方向におけるサイズをPSとして、x方向のビームスキャンに必要な時間をTh、y方向のビームスキャンに必要な時間をTvとする。この場合、x方向のスキャン時間は(p/PS)×Thで求められる。また、y方向のスキャン時間は(p/(M×PS))×Tvで求められる。すると、図11ないし図14にて示したように、x方向において極性を変えて(x方向及び-x方向)2回スキャンを行い、y方向において極性を変えて(y方向及び-y方向)2回スキャンを行うため、((p/(M×PS))×Tv×2+(p/PS)×Th×2)×V=N/M・pという式が成立する。よって、V=PS/(2×(M×Th+Tv))である。なお、上述のXYステージ105の移動速度Vは、例えば、移動速度計算回路146により計算される。
【0060】
次に、x方向又は-x方向のビームスキャン時間Thは、Th=(p/PS)×(p/M/PS)×(1/f)+(p/PS)×Ofs_hである。ここで、fはビームスキャンに用いられるスキャン周波数である。(p/PS)×(p/M/PS)は、グリッド29内における測定用画素28の個数である。よって、(p/PS)×(p/M/PS)×(1/f)の項は、グリッド29内においてそれぞれの測定用画素28にビームを照射するために必要な時間に該当する項である。次に、(p/PS)×Ofs_hは、同一の方向にスキャンするためにビームを戻す時間の項である。よって、これらの和として、Th=(p/PS)×(p/M/PS)×(1/f)+(p/PS)×Ofs_hが導出される。なお、スキャン周波数は、例えば、スキャン周波数記憶装置141に保存されている。
【0061】
同様に、y方向又は-y方向のビームスキャン時間Tvは、Tv=(p/PS)×(p/M/PS)×(1/f)+(p/M/PS)×Ofs_vである。
【0062】
なお、第1ビーム整定時間Ofs_h及び第2ビーム整定時間Ofs_vは、整定時間記憶装置140に保存されている。第1ビーム整定時間Ofs_h及び第2ビーム整定時間Ofs_vは、例えば、オペレーターにより制御計算機110を用いて入力され、整定時間記憶装置140に保存されていても良い。また、ビームスキャン時間Th及びビームスキャン時間Tvは、上述の式に基づいて、例えば、スキャン時間計算回路148により計算される。計算されたビームスキャン時間Th及びビームスキャン時間Tvは、例えば、スキャン時間記憶装置149に保存されていてもよい。
【0063】
図15は、実施の形態1の他の比較例におけるスキャン動作の一例を示す模式図である。
【0064】
図15(a)は、例えば図11(a)に示したような第1の工程で、ビームを-x方向に沿ってスキャンするものである。この場合は、特に、図15(a)の(1)、(3)及び(5)のような、グリッド29のx方向の側の端部29bでのスキャンにおいて、グリッド29が、トラッキング領域33からXYステージ105の移動方向に対応する-x方向に飛び出してしまうと、グリッド29のx方向の側の端部29bにビームが照射されないため、検査が出来なくなってしまう。一方、図15(b)はビームをx方向に沿ってスキャンするものである。この場合は、特に、図15(b)の(2)、(4)及び(6)のような、グリッド29の-x方向の側の端部29aでのスキャンにおいて、グリッド29が、トラッキング領域33からXYステージ105の移動方向に対応する-x方向に飛び出してしまうと、グリッド29の-x方向の側の端部29aにビームが照射されないため、検査が出来なくなってしまう。この問題を回避するためには、第1の工程において、y方向又は-y方向に沿ってビームスキャンを行うことが好ましい。
【0065】
図15(c)は、例えば図11(d)に示したような第4の工程で、ビームを-x方向に沿ってスキャンするものである。この場合は、特に、(20)、(22)及び(24)のような、グリッド29の-x方向の側の端部29aでのスキャンにおいて、グリッド29が、トラッキング領域33からXYステージ105の移動方向の逆方向に対応するx方向に飛び出してしまうと、グリッド29の-x方向の側の端部29aにビームが照射されないため、検査が出来なくなってしまう。一方、図15(d)は、ビームをx方向に沿ってスキャンするものである。この場合は、特に、(19)、(21)及び(23)のような、グリッド29のx方向の側の端部29bでのスキャンにおいて、グリッド29が、トラッキング領域33からXYステージ105の移動方向の逆方向に対応するx方向に飛び出してしまうと、グリッド29のx方向の側の端部29bにビームが照射されないため、検査が出来なくなってしまう。この問題を回避するためには、第4の工程において、y方向又は-y方向にビームスキャンを行うことが好ましい。
【0066】
以上より、x方向又は-x方向に沿ったビームスキャンは、第2の工程又は第3の工程において行うことが好ましい。そして、y方向又は-y方向に沿ったビームスキャンは、第1の工程又は第4の工程において行うことが好ましい。
【0067】
図16は、実施の形態1の他の比較例におけるスキャン動作の一例を示す模式図である。図16(a)では、例えば図11(a)に示したような第1の工程で、ビームをy方向に沿ってスキャンしている。ただし、例えば図11(a)と異なり、グリッド29のx方向の側の端部29bを始点とし、グリッド29の-x方向の側の端部29aを終点として、スキャンがおこなわれる。この場合、特に図16(a)の(1)及び(2)のような、グリッド29のx方向の側の端部29bでのスキャンにおいて、グリッド29が、トラッキング領域33からXYステージ105の移動方向に対応する-x方向に飛び出してしまうと、グリッド29のx方向の側の端部29bにビームが照射されないため、検査が出来なくなってしまう。
【0068】
図16(b)では、例えば図11(d)に示したような第4の工程で、ビームを-y方向に沿ってスキャンしている。ただし、例えば図11(d)と異なり、グリッド29のx方向の側の端部29bを始点とし、グリッド29の-x方向の側の端部29aを終点として、スキャンがおこなわれる。この場合、特に図16(b)の(23)及び(24)のような、グリッド29の-x方向の側の端部29aでのスキャンにおいて、グリッド29が、トラッキング領域33からXYステージ105の移動方向の逆方向に対応するx方向に飛び出してしまうと、グリッド29の-x方向の側の端部29aにビームが照射されないため、検査が出来なくなってしまう。
【0069】
以上より、第1の工程におけるビームスキャンは、グリッド29の-x方向の側の端部29aを始点として、またグリッド29のx方向の側の端部29bを終点として、行われることが好ましい。グリッド29は、ビームスキャンの最中であっても、連続して-x方向に動き続ける。そのため、ビームスキャンを-x方向からx方向へ行うと、グリッド29のx方向側の端をスキャンする時には、すでにグリッド29がより-x方向側に移動している。よって、このときに、XYステージ105に加わる意図しない振動によりグリッド29がトラッキング領域33から飛び出し検査が出来なくなるおそれが少なくなる。
【0070】
同様に、第4の工程におけるビームスキャンは、グリッド29の-x方向の側の端部29aを始点として、またグリッド29のx方向の側の端部29bを終点として、行われることが好ましい。グリッド29は、ビームスキャンの最中であっても、連続して-x方向に動き続ける。そのため、ビームスキャンを-x方向からx方向へ行うと、グリッド29の-x方向側の端をスキャンする時には、グリッド29は、まだ、よりx方向側の位置にある。よって、このときに、XYステージ105に加わる意図しない振動によりグリッド29がトラッキング領域33から飛び出し検査が出来なくなるおそれが少なくなる。
【0071】
図17は、実施の形態1における検査方法の要部工程の一部を示すフローチャート図である。図17では、検査方法の要部工程のうち、走査開始から終了までの工程を示している。図17において、実施の形態1における検査方法は、基板搬送工程(S102)と、検査位置移動工程(S104)と、ステージ移動工程(等速移動開始)(S106)と、サブ領域走査工程(第1の工程)(S108a)と、サブ領域走査工程(第2の工程)(S108b)と、サブ領域走査工程(第3の工程)(S108c)と、サブ領域走査工程(第4の工程)(S108d)と、判定工程(S110)と、トラッキングリセット工程(S112)と、判定工程(S114)と、ストライプ移動工程(S116)と、いう一連の各工程を実施する。
【0072】
基板搬送工程(S102)として、図示しない搬送機構を用いて、基板101を検査室103内に搬送し、XYステージ105上に載置する。
【0073】
検査位置移動工程(S104)として、ステージ制御回路114の制御の基、駆動機構142は、検査位置がマルチビーム20の照射可能位置に入るようにXYステージ105を移動させる。まずは、ストライプ領域32の左端側(例えば、照射領域34のサイズ2つ分外側)にマルチビーム20の照射領域34が位置するようにXYステージ105を移動させる。
【0074】
ステージ移動工程(等速連続移動開始)(S106)として、ステージ制御回路114の制御のもと、駆動機構142は、XYステージ105を例えば-x方向に移動速度Vで等速移動させる。これにより、等速連続移動が開始される。
【0075】
図11乃至図14で示した態様の場合、サブ領域走査工程(第1の工程)(S108a)、サブ領域走査工程(第2の工程)(S108b)、サブ領域走査工程(第3の工程)(S108c)及びサブ領域走査工程(第4の工程)(S108d)として、電子光学画像取得機構150aは、基板101の検査領域となるストライプ領域32がx方向にp/M(Mは2以上の整数)で得られるサイズかつy方向にp(所定のサイズ)で分割された複数のグリッド29(サブ領域;小領域)をN×N’個のグリッド29群毎に走査する。具体的には、複数のグリッド29のうち、x方向にピッチpでN個かつy方向にN’個並ぶ基板101上のN×N’個のグリッド29群にN×N’本のマルチビーム20を一括して偏向してトラッキングを開始し、XYステージ105が-x方向にN/M・pで得られる距離を連続移動する間、XYステージ105の連続移動に追従するようにマルチビーム20をトラッキング偏向しながら、かかるN×N’個のグリッド29群を走査する。そして、第1の工程で第1の2次電子画像を取得し、第2の工程で第2の2次電子画像を取得し、第3の工程で第3の2次電子画像を取得し、第4の工程で第4の2次電子画像を取得する。また、平均画像取得回路144を用いて、第1の2次電子画像、第2の2次電子画像、第3の2次電子画像及び第4の2次電子画像から平均2次電子画像を取得する。取得された平均2次電子画像は、例えば、画像記憶装置132に保存される。なお、図9及び図10で示した態様の場合、サブ領域走査工程(第1の工程)(S108a)及びサブ領域走査工程(第2の工程)(S108b)を行う。そして、第1の工程で第1の2次電子画像を取得し、第2の工程で第2の2次電子画像を取得する。そして、平均画像取得回路144を用いて、第1の2次電子画像及び第2の2次電子画像から平均2次電子画像を取得する。
【0076】
図18は、実施の形態1におけるスキャン動作の細部の他の一例を説明するための概念図である。マルチビーム20は、x方向(第1の方向)に基板101面上において同一ピッチpでN列(Nは2以上の整数)かつx方向と直交するy方向(第2の方向)に同一ピッチp(所定のサイズ)でN’列(N’は1以上の整数)並ぶ複数の電子ビームによって構成される。図18の例では、かかるN×N’本のマルチビーム20として、基板101面上において同一ピッチpでx方向及びy方向に並ぶ5×5本のマルチビームを示している。なお、y方向のピッチはx方向と異なっていても構わない。隣り合う4つの測定用画素28のうち1つの測定用画素28を矩形の4隅の1つとして、当該測定用画素28を起点にx,y方向にp×pで囲まれたp×p領域27をx方向に分割数Mで分割する。よって、x方向にp/M、-y方向にpのサイズの矩形領域で1つのグリッド29(サブ領域;小領域)を構成する。よって、図18の例では、分割数M=3の場合を示している。図18の例では、5×5本のマルチビームの各ビームが、それぞれ対応するグリッド29(サブ領域)を走査すると共に、走査した後に、x方向にN個(ここでは5個)分離れた次のグリッド29を走査する場合を示している。
【0077】
まず、偏向制御回路128による制御の基、偏向器208の第1の機能は、マルチビーム20を用いて、基板101のストライプ領域32(検査領域)がx方向にp/M(Mは2以上の整数)で得られるサイズかつy方向にpのサイズで分割された複数のグリッド29のうち、x方向にピッチpでN個かつy方向にN’個並ぶ基板101上のN×N’個のグリッド29群にマルチビーム20を一括して偏向する。ここでは、マルチビーム20の照射領域34内の複数のグリッド29のうちx方向にピッチpで並ぶN×N’個のグリッド29群をトラッキング領域33として偏向する。主偏向器208は、トラッキング領域33の基準位置(例えば中心)にマルチビーム20を一括して偏向する。そして、主偏向器208は、XYステージ105の連続移動に追従するようにマルチビーム20をトラッキング偏向する。
【0078】
偏向制御回路128による制御の基、偏向器208の第2の機能は、マルチビーム20の各ビームが、対応するグリッド29の、例えばx方向に1番目かつy方向に最終番目の画素36に位置するように、マルチビーム20を一括して偏向する。実際には、対応するグリッド29にマージンを加えた走査領域31の例えばx方向に1番目かつy方向に最上段目の画素36に位置するように、マルチビーム20を一括して偏向する。そして、XYステージ105の連続移動に追従するようにマルチビーム20がトラッキング偏向されている間に、トラッキング領域33として設定されているN×N’個のグリッド29(具体的には走査領域31)群を走査するように、マルチビーム20を一括して偏向する。そして、各ショット時に、各ビームは、担当グリッド29内の同じ位置に相当する1つの測定用画素36を照射することになる。図18の例では、各ビームは、1ショット目に担当グリッド29内の最上段の左から1番目の測定用画素36を照射する。そして、偏向器208によってマルチビーム20全体を一括して-y方向に1測定用画素36分だけビーム偏向位置をシフトさせ、2ショット目に担当グリッド29内の上から2段目の左から1番目の測定用画素36を照射する。かかる走査を繰り返し、最下段の左から1番目の測定用画素36の照射の終了した後、偏向器208によってマルチビーム20全体を一括してx方向に1測定用画素36分シフトさせながら最上段の左から2番目の測定用画素36までビーム偏向位置をシフトさせる。かかる動作を繰り返し、XYステージ105が-x方向にN/M・pで得られる距離を連続移動する間に、1つのビームで1つのグリッド29内のすべての測定用画素36を順に照射していく。かかる動作が、N×N’本のマルチビーム20で同時に行われる。1回のショットでは、成形アパーチャアレイ基板203の各穴22を通過することによって形成されたマルチビーム20によって、最大で各穴22と同数の複数のショットに応じた2次電子の束によるマルチ2次電子ビーム300が一度に検出される。マルチビーム20が担当するグリッド29内のすべての測定用画素36をスキャンするまで、XYステージ105の移動によって偏向位置がずれないように、偏向器208の第1の機能は、XYステージ105の移動に追従するように、マルチビーム20を偏向する(トラッキング動作する)。
【0079】
検出工程として、マルチ検出器222は、基板101にマルチビーム20を照射することに起因して基板101から放出される2次電子を検出する。各ビームは、それぞれ対応する1つのグリッド29を走査することになる。マルチビーム20のショットにより、その都度、照射された測定用画素36から2次電子が上方に放出される。このように、基板101にマルチビーム20を照射することに起因して基板101から放出される2次電子をマルチ検出器222が検出する。マルチ検出器222は、各測定用画素36から上方に放出されたマルチ2次電子ビーム300を測定用画素36毎に検出する。
【0080】
判定工程(S110)として、制御計算機110は、マルチビーム20が、それぞれ担当するグリッド29(具体的には走査領域31)内のすべての測定用画素36をスキャンすると、対象のストライプ領域32中のすべてのグリッド29の走査が終了したかどうかを判定する。対象のストライプ領域32中のすべてのグリッド29の走査が終了した場合には、判定工程(S114)に進む。対象のストライプ領域32中のすべてのグリッド29の走査が終了していない場合には、トラッキングリセット工程(S112)に進む。
【0081】
トラッキングリセット工程(S112)として、偏向器208の第2の機能である偏向動作によって、マルチビーム20により、それぞれ担当するグリッド29(具体的には走査領域31)内のすべての測定用画素36がスキャンされると、偏向器208は、第1の機能を用いて、-x方向にN/M・pで得られる距離のXYステージ105の移動が完了するまでに、N×N’個のグリッド29群からx方向にN個離れた、x方向にピッチpで並ぶ新たなN×N’個のグリッド29(具体的には走査領域31)群にマルチビーム20を一括して偏向し直すことでトラッキングリセットを行う。
【0082】
図18の例では、x方向に5個離れた新たなN×N’個のグリッド29(具体的には走査領域31)群を新たなトラッキング領域33に設定し直す。そして、偏向器208は、第1の機能を用いて、XYステージ105の連続移動に追従するようにマルチビーム20をトラッキング偏向する。また、トラッキングリセットの際、偏向器208は第2の機能を用いて、マルチビーム20の各ビームが、対応するグリッド29(具体的には走査領域31)の、例えばx方向に1番目かつy方向に最終番目の画素36に位置するように、マルチビーム20を一括して偏向する。
【0083】
そして、かかるトラッキング開始からトラッキングリセットまでのトラッキングサイクル、及びトラッキング中の走査を繰り返す。言い換えれば、上述したように、XYステージ105の連続移動に追従するようにマルチビーム20がトラッキング偏向されている間に、トラッキング領域33として設定されているN×N’個のグリッド29(具体的には走査領域31)群を走査する。かかる動作を繰り返すことで、ストライプ領域32のすべての画素36を走査できる。
【0084】
なお、ここでは1ショット目、2ショット目、・・・とショットを区切って説明したが、マルチビーム20は、画素36毎にビームをON/OFFせずに照射し続けながら偏向位置を移動させるラスタースキャン動作を行ってもよい。また、y方向に並ぶ各画素列を同じ方向に走査する場合に限るものではない。x方向に1列目の画素列は-y方向に走査した後、2列目の画素列をy方向(逆方向)に走査しても構わない。
【0085】
図19は、実施の形態1におけるスキャン動作におけるサブ領域と対応ビームとの関係の一例を説明するための概念図である。図19の例では、x,y方向に同一ピッチpで配列される5×5本のマルチビーム20を用いる場合を示している。また、分割数M=3の場合を示している。また、図19の例では、ストライプ領域32の幅(y方向サイズ)は、照射領域34のサイズに合わせて分割されている。よって、ストライプ領域32は、x方向サイズがp/M(=p/3)、y方向サイズがpの複数のグリッド29に分割される。かかる複数のグリッド29は、図19の例では、y方向に5段に分割され、各段のx方向に複数のグリッド29は、同じ段を担当するx方向にN個(=5個)のマルチビーム20が走査することになる。図19に示すように、各段の5本ずつのビーム(1~5)が、n回目のトラッキングサイクル中に走査するグリッド29をそれぞれ1-(n)、2-(n)、3-(n)、4-(n)、5-(n)で示している。n回目のトラッキングをリセットする際、N個(=5個)先のグリッド29に偏向器208で偏向し直すため、5個先のグリッド29がn+1回目のトラッキングサイクルで走査するグリッド29になる。n+1回目のトラッキングサイクル中に走査するグリッド29をそれぞれ1-(n+1)、2-(n+1)、3-(n+1)、4-(n+1)、5-(n+1)で示している。同様の動作を繰り返すことですべてのグリッド29を走査できる。
【0086】
例えば、最上段の1番目のビームがn回目のトラッキングサイクル中に走査するグリッド29を含むp×pのp×p領域27には、3分割された残りの2つのグリッド29が存在する。1-(n)のグリッド29にx方向(右側)に隣接するグリッドは、3番目のビームによってn-1回目のトラッキングサイクル中に走査されることになる。さらにx方向(右側)に隣接するグリッドは、5番目のビームによってn-2回目のトラッキングサイクル中に走査されることになる。かかる3回のトラッキングサイクルによって、当該p×p領域27内の走査が完了する。y方向の各段において同様である。
【0087】
例えば、最上段の2番目のビームがn回目のトラッキングサイクル中に走査するグリッド29を含むp×pのp×p領域27には、3分割された残りの2つのグリッド29が存在する。2-(n)のグリッド29にx方向(右側)に隣接するグリッドは、4番目のビームによってn-1回目のトラッキングサイクル中に走査されることになる。さらにx方向(右側)に隣接するグリッドは、1番目のビームによってn+1回目のトラッキングサイクル中に走査されることになる。かかる3回のトラッキングサイクルによって、当該p×pのp×p領域27内の走査が完了する。y方向の各段において同様である。
【0088】
例えば、最上段の3番目のビームがn回目のトラッキングサイクル中に走査するグリッド29を含むp×pのp×p領域27には、3分割された残りの2つのグリッド29が存在する。3-(n)のグリッド29にx方向(右側)に隣接するグリッドは、5番目のビームによってn-1回目のトラッキングサイクル中に走査されることになる。さらにx方向(右側)に隣接するグリッドは、2番目のビームによってn+1回目のトラッキングサイクル中に走査されることになる。かかる3回のトラッキングサイクルによって、当該p×pのp×p領域27内の走査が完了する。y方向の各段において同様である。
【0089】
例えば、最上段の4番目のビームがn回目のトラッキングサイクル中に走査するグリッド29を含むp×pのp×p領域27には、3分割された残りの2つのグリッド29が存在する。4-(n)のグリッド29にx方向(右側)に隣接するグリッドは、1番目のビームによってn+2回目のトラッキングサイクル中に走査されることになる。さらにx方向(右側)に隣接するグリッドは、3番目のビームによってn+1回目のトラッキングサイクル中に走査されることになる。かかる3回のトラッキングサイクルによって、当該p×pのp×p領域27内の走査が完了する。y方向の各段において同様である。
【0090】
例えば、最上段の5番目のビームがn回目のトラッキングサイクル中に走査するグリッド29を含むp×pのp×p領域27には、3分割された残りの2つのグリッド29が存在する。5-(n)のグリッド29にx方向(右側)に隣接するグリッドは、2番目のビームによってn+2回目のトラッキングサイクル中に走査されることになる。さらにx方向(右側)に隣接するグリッドは、4番目のビームによってn+1回目のトラッキングサイクル中に走査されることになる。かかる3回のトラッキングサイクルによって、当該p×pのp×p領域27内の走査が完了する。y方向の各段において同様である。
【0091】
よって、分割数M=3で、N=5本のマルチビームを用いてストライプ領域32を走査する場合、ストライプ領域32の走査開始側の端部よりも外側に5番目のビームが少なくともトラッキングサイクル2回分手前側のグリッド29を走査できる位置からスキャン動作を開始することになる。
【0092】
以上のようにマルチビーム20を用いて走査することで、シングルビームで走査する場合よりも高速にスキャン動作(測定)ができる。
【0093】
判定工程(S114)として、制御計算機110は、すべてのストライプ32の走査が終了したかどうかを判定する。すべてのストライプ32の走査が終了した場合には、電子光学画像取得処理を終了する。すべてのストライプ32の走査が終了していない場合には、ストライプ移動工程(S116)に進む。
【0094】
ストライプ移動工程(S116)として、ステージ制御回路114の制御の基、駆動機構142は、次のストライプ領域32の左端側(例えば、照射領域34のサイズ1つ分外側)にマルチビーム20の照射領域34が位置するようにXYステージ105を移動させる。そして、上述した各工程を繰り返す。
【0095】
図20は、実施の形態1におけるスキャン動作の他の一例を説明するための概念図である。図20に示すように、基板101の検査領域330には、例えば、x,y方向に向かってアレイ状にそれぞれ所定の幅で複数のチップ332(ダイ)が形成される。ここでは、検査対象の基板101として、半導体基板(例えばウェハ)に適応すると好適である。各チップ332は、例えば、30mm×25mmのサイズで基板101上に形成される。パターン検査は、チップ332毎に実施されることになる。各チップ332の領域は、例えば、一回のマルチビーム20全体の照射で照射可能な照射領域34と同じy方向幅で複数のストライプ領域32に仮想分割される。各ストライプ領域32のスキャン動作は、上述した内容と同様で構わない。上述したように、実施の形態1では、XYステージ105を-x方向に連続移動させることで相対的に照射領域34をx方向に連続移動させながら各ストライプ領域32をマルチビーム20により走査していく。すべてのストライプ領域32の走査が終了したら、ステージ位置を-y方向に移動させて、y方向に同じ次の段のストライプ領域32をマルチビーム20により同様に走査していく。かかる動作を繰り返し、1つのチップ332の領域の走査が終了したら、XYステージ105を移動させて、次のチップ332の上端のストライプ領域32に対して同様にスキャン動作を行う。かかる動作を繰り返すことで、すべてのチップ332について走査していく。
【0096】
以上のように、電子光学画像取得機構150aは、XYステージ105を連続移動させながら複数の電子ビームによるマルチビーム20を用いて、図形パターンが形成された基板101上を走査し、マルチビーム20が照射されたことに起因して基板101から放出される、マルチ2次電子ビーム300を検出する。走査(スキャン)の仕方、及びマルチ2次電子ビーム300の検出の仕方は上述した通りである。マルチ検出器222によって検出された各測定用画素36からの2次電子の検出データは、測定順に検出回路106に出力される。検出回路106内では、図示しないA/D変換器によって、アナログの検出データがデジタルデータに変換され、ストライプパターンメモリ123に格納される。そして、1つのストライプ領域32分(或いはチップ332分)の検出データが蓄積された段階で、ストライプパターンデータ(或いはチップパターンデータ)として、位置回路107からの各位置を示す情報と共に、比較回路108に転送される。
【0097】
一方、マルチビームスキャン及び2次電子検出工程と並行或いは前後して、参照画像が作成される。
【0098】
参照画像作成工程として、展開回路111及び参照回路112といった参照画像作成部は、基板101が半導体基板の場合には、半導体基板に露光用マスクのマスクパターンを露光転写する際の基板上の露光イメージが定義された露光イメージデータに基づいて、複数の画素36で構成されるグリッド29以下のサイズの後述するフレーム領域の測定画像(電子光学画像)に対応する領域の参照画像を作成する。露光イメージデータの代わりに、複数の図形パターンを基板101に露光転写する露光用マスクを形成するための元になる描画データ(設計データ)を用いても良い。展開回路111及び参照回路112といった参照画像作成部は、基板101が露光用マスクの場合には、複数の図形パターンを基板101に形成するための元になる描画データ(設計データ)に基づいて、複数の画素36で構成されるフレーム領域の測定画像(電子光学画像)に対応する領域の参照画像を作成する。
【0099】
具体的には、以下のように動作する。まず、展開回路111は、記憶装置109から制御計算機110を通して描画データ(或いは露光イメージデータ)を読み出し、読み出された描画データ(或いは露光イメージデータ)に定義された各フレーム領域の各図形パターンを2値ないしは多値のイメージデータに変換して、このイメージデータが参照回路112に送られる。
【0100】
ここで、描画データ(或いは露光イメージデータ)に定義される図形は、例えば長方形や三角形を基本図形としたもので、例えば、図形の基準位置における座標(x、y)、辺の長さ、長方形や三角形等の図形種を区別する識別子となる図形コードといった情報で各パターン図形の形、大きさ、位置等を定義した図形データが格納されている。
【0101】
かかる図形データとなる描画データ(或いは露光イメージデータ)が展開回路111に入力されると図形ごとのデータにまで展開し、その図形データの図形形状を示す図形コード、図形寸法などを解釈する。そして、所定の量子化寸法のグリッドを単位とするマス目内に配置されるパターンとして2値ないしは多値の設計画像データを展開し、出力する。言い換えれば、設計データを読み込み、検査領域を所定の寸法を単位とするマス目として仮想分割してできたマス目毎に設計パターンにおける図形が占める占有率を演算し、nビットの占有率データを出力する。例えば、1つのマス目を1画素として設定すると好適である。そして、1画素に1/2(=1/256)の分解能を持たせるとすると、画素内に配置されている図形の領域分だけ1/256の小領域を割り付けて画素内の占有率を演算する。そして、8ビットの占有率データとして参照回路112に出力する。かかるマス目は、測定用画素36と同サイズにすればよい。
【0102】
次に、参照回路112は、送られてきた図形のイメージデータである設計画像データに適切なフィルタ処理を施す。検出回路106から得られた光学画像としての測定データは、電子光学系によってフィルタが作用した状態、言い換えれば連続変化するアナログ状態にあるため、画像強度(濃淡値)がデジタル値の設計側のイメージデータである設計画像データにもフィルタ処理を施すことにより、測定データに合わせることができる。このようにしてフレーム領域の測定画像(光学画像)と比較する設計画像(参照画像)を作成する。作成された参照画像の画像データは比較回路108に出力され、比較回路108内に出力された参照画像は、それぞれメモリに格納される。
【0103】
図21は、実施の形態1における比較回路の内部構成を示す図である。図21において、比較回路108内には、磁気ディスク装置等の記憶装置50,52、分割部56、位置合わせ部58、及び比較部60が配置される。分割部56、位置合わせ部58、及び比較部60といった各「~部」は、処理回路を含み、その処理回路には、電気回路、コンピュータ、プロセッサ、回路基板、量子回路、或いは、半導体装置等が含まれる。また、各「~部」は、共通する処理回路(同じ処理回路)を用いてもよい。或いは、異なる処理回路(別々の処理回路)を用いても良い。分割部56、位置合わせ部58、及び比較部60内に必要な入力データ或いは演算された結果はその都度図示しないメモリに記憶される。
【0104】
転送されたストライプパターンデータ(或いはチップパターンデータ)は、位置回路107からの各位置を示す情報と共に、記憶装置50に一時的に格納される。同様に、参照画像データは、設計上の各位置を示す情報と共に、記憶装置52に一時的に格納される。
【0105】
次に、分割部56は、ストライプパターンデータ(或いはチップパターンデータ)をフレーム領域(単位検査領域)毎に分割し、複数のフレーム画像(検査画像)を生成する。
【0106】
図22は、実施の形態1におけるグリッドとフレーム領域との関係の一例を示す図である。上述したように、各グリッド29は、それぞれ1つのビームによって走査される。別のビームで走査されるグリッド29とつなぎ目の誤差が生じないように、上述したように、各グリッド29は、当該グリッド29よりも大きい走査領域31毎に走査される。得られる2次電子画像もビーム毎にその特性がずれる可能性があるので、1つの単位検査領域の画像は1本のビームによって得られた画像を用いることが望ましい。そこで、実施の形態1では、単位検査領域となるフレーム領域35毎に、測定されたストライプパターンデータ(或いはチップパターンデータ)を分割して、複数のフレーム画像を作成する。同様に、フレーム領域35毎に参照画像を作成する。その場合に、フレーム領域35は、1本のビームによって走査される範囲に設定する。そのため、フレーム領域35は、グリッド29サイズ以下に設定される。例えば、グリッド29の自然数分の1のサイズに設定されると良い。このように、分割部56は、検出された2次電子画像を走査領域31のサイズ以下の検査画像に分割する。
【0107】
次に、位置合わせ部58は、画素36より小さいサブ画素単位で、フレーム画像(測定画像)と参照画像を位置合わせする。例えば、最小2乗法で位置合わせを行えばよい。
【0108】
そして、比較部60は、当該フレーム画像(検査画像)と当該フレーム画像(平均2次電子画像)に対応する参照画像とを比較する。例えば、比較部60は、当該フレーム画像と参照画像とを画素36毎に比較する。比較部60は、所定の判定条件に従って画素36毎に両者を比較し、例えば形状欠陥といった欠陥の有無を判定する。例えば、画素36毎の階調値差が判定閾値よりも大きければ欠陥と判定する。或いは、形状欠陥検査よりも検査精度を落として、パターンの断線或いはショートの有無を検査してもよい。例えば、パターンのエッジペアを検出して、エッジペア間の距離を測定する。これにより、ラインパターンの幅寸法及びラインパターン間のスペース部分の距離を測定できる。同様に参照画像から得られた距離との差が判定閾値よりも大きければ欠陥と判定する。ライン方向に複数個所のエッジペア間を測定することで、パターンの断線及び/或いはショートの有無を検査できる。そして、比較結果が出力される。比較結果は、記憶装置109、モニタ117、メモリ118、或いはプリンタ119より出力されればよい。
【0109】
以上のように、実施の形態1によれば、XYステージ105の移動方向に複数のビームが並ぶマルチビーム20を用いてXYステージ105を連続移動させながらおこなうパターン検査においてビーム偏向の振り幅を小さくできる。よって、光学系の収差の影響を抑制できる。さらに、マルチビーム20を用いることでパターン検査においてスループットを向上できる。
【0110】
図23は、実施の形態1におけるパターン検査装置の他の構成を示す構成図である。図1に示した電子光学画像取得機構150aでは、偏向器208を備えている。これに対して、図23に示した電子光学画像取得機構150bは、主偏向器208と副偏向器209を備えている。例えば、上記の第1の機能を主偏向器208が担い、上記の第2の機能を副偏向器209が担う。
【0111】
例えば、図23の構成に係る検査装置は、基板を載置する、移動可能なステージと、ステージを第1の方向の逆方向に連続移動させるステージ制御回路と、第1の方向に基板面上において同一ピッチpでN列(Nは2以上の整数)かつ第1の方向と直交する第2の方向にN’列(N’は1以上の整数)並ぶ複数の荷電粒子ビームによって構成されるマルチビームを用いて、基板の検査領域が第1の方向にp/M(Mは2以上の整数)で得られるサイズかつ第2の方向に所定のサイズで分割された複数の小領域のうち、第1の方向にピッチpでN個かつ第2の方向にN’個並ぶ基板上のN×N’個の小領域群にマルチビームを一括して偏向して、ステージが第1の方向の逆方向にN/M・pで得られる距離を連続移動する間、ステージの連続移動に追従するようにマルチビームをトラッキング偏向すると共に、第1の方向の逆方向にN/M・pで得られる距離のステージの移動が完了するまでに、N×N’個の小領域群から第1の方向にN個離れた、第1の方向にピッチpで並ぶ新たなN×N’個の小領域群にマルチビームを一括して偏向し直すことでトラッキングリセットを行う第1の偏向器(主偏向器208)と、ステージの連続移動に追従するようにマルチビームがトラッキング偏向されている間に、マルチビームのそれぞれを、複数の小領域のそれぞれにおいて、複数の小領域のそれぞれにおける、第1の方向の逆方向の側の端部を始点として、かつ、複数の小領域のそれぞれにおける、第1の方向の側の端部を終点として、第2の方向に沿ったマルチビームの一括した偏向を、第1の方向の逆方向の側の端部から第1の方向の側の端部へ向かって繰り返し行う第1の工程を行い、その後、第1の方向の逆方向に沿ったマルチビームの一括した偏向を、繰り返し行う第2の工程を行い、その後、第1の方向に沿ったマルチビームの一括した偏向を、繰り返し行う第3の工程を行い、その後、複数の小領域のそれぞれにおける、第1の方向の逆方向の側の端部を始点として、かつ、複数の小領域のそれぞれにおける、第1の方向の側の端部を終点として、第2の方向の逆方向に沿ったマルチビームの一括した偏向を、第1の方向の逆方向の側の端部から第1の方向の側の端部へ向かって繰り返し行う第4の工程を行うことにより、
N×N’個の小領域群を走査するように、マルチビームを一括して偏向する第2の偏向器(副偏向器209)と、基板にマルチビームを照射することに起因して基板から放出される2次電子を検出する検出器と、を備え、Nの値とMの値として、Nの値とMの値との間の最大公約数が1になる組み合わせの値を用いることを特徴とする検査装置である。
【0112】
以上の説明において、一連の「~回路」は、処理回路を含み、その処理回路には、電気回路、コンピュータ、プロセッサ、回路基板、量子回路、或いは、半導体装置等が含まれる。また、各「~回路」は、共通する処理回路(同じ処理回路)を用いてもよい。或いは、異なる処理回路(別々の処理回路)を用いても良い。プロセッサ等を実行させるプログラムは、磁気ディスク装置、磁気テープ装置、FD、或いはROM(リードオンリメモリ)等の記録媒体又はに記録されればよい。また、本実施形態の一連の「記憶装置」は、例えば、磁気ディスク装置、磁気テープ装置、FD、或いはROM、フラッシュメモリ、等である。
【0113】
以上、具体例を参照しつつ実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。上述した例では、XYステージ105を等速で連続移動させる場合を示したが、これに限るものではない。制御のし易さからは等速連続移動が望ましいが、加減速を伴う連続移動であっても構わない。また、走査時のXYステージ105の連続移動方向(実施の形態では-x方向)のビーム本数Nと分割数Mとの大小関係は、両値の間での最小公約数が1であれば、どちらが大きくても構わない。
【0114】
また、グリッド29(走査領域31)内を走査する場合のビームの照射順序は、任意で構わない。但し、偏向器208によりマルチビーム20全体が一括して偏向されるので、各グリッド29間では、同じ照射順序になる。
【0115】
また、上述した例では、ビームの配列が直交格子の場合を示しているが、これに限るものではない。例えば、斜行格子でも構わない。或いは、x方向に並ぶビーム列がy方向に隣り合う各段においてx方向に若干ずれて配置されても良い。例えば、x方向に並ぶビーム列の先頭同士が凸凹に配置されても良い。
【0116】
また、上述したグリッド29(サブ領域;小領域)の形状は、長方形である場合に限るものではない。x方向にp/Mのピッチで配置され、y方向に等ピッチで配置されれば、その他の形状であっても良い。グリッド29(サブ領域;小領域)の形状が、例えば、平行四辺形であっても良い。かかる場合、グリッド29の形状に合わせて走査領域31も平行四辺形に設定すると良い。平行四辺形の場合。回路パターンはx方向に水平、或いは/及び直交ラインが多いので、斜めにビームを走査することで回路パターンと平行に走査することが避けやすくなり、帯電の影響を避けられる。
【0117】
また、マルチビーム20の配列ピッチについては、x方向とy方向で異なるピッチであっても良い。例えば、x方向に等ピッチpで配列され、y方向に等ピッチp’で配列されても良い。
【0118】
また、装置構成や制御手法等、本発明の説明に直接必要しない部分等については記載を省略したが、必要とされる装置構成や制御手法を適宜選択して用いることができる。
【0119】
その他、本発明の要素を具備し、当業者が適宜設計変更しうる全ての電子ビーム検査装置及び電子ビーム検査方法は、本発明の範囲に包含される。
【符号の説明】
【0120】
20 マルチビーム
22 穴
27 領域(p×p領域)
28,36 画素
29 グリッド
30,330 検査領域
31 走査領域
32 ストライプ領域
33 トラッキング領域
34 照射領域
35 フレーム領域
50,52 記憶装置
56 分割部
58 位置合わせ部
60 比較部
100 検査装置
101 基板
102 電子ビームカラム
103 検査室
106 検出回路
107 位置回路
108 比較回路
109 記憶装置
110 制御計算機
111 展開回路
112 参照回路
114 ステージ制御回路
117 モニタ
118 メモリ
119 プリンタ
122 レーザ測長システム
120 バス
123 ストライプパターンメモリ
124 レンズ制御回路
126 ブランキング制御回路
128 偏向制御回路
132 画像記憶装置
140 整定時間記憶装置
141 スキャン周波数記憶装置
144 平均画像取得回路
146 移動速度計算回路
148 スキャン時間計算回路
149 スキャン時間記憶装置
150a 電子光学画像取得機構
150b 電子光学画像取得機構
160 制御系回路
200 電子ビーム
201 電子銃
202 電磁レンズ
203 成形アパーチャアレイ基板
205 電磁レンズ(縮小レンズ)
206 電磁レンズ
207 電磁レンズ(対物レンズ)
208 偏向器(主偏向器)
209 副偏向器
212 一括ブランキング偏向器
214 ビームセパレーター
216 ミラー
222 マルチ検出器
224,226 投影レンズ
228 偏向器
300 マルチ2次電子
332 チップ
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23