(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-08-05
(45)【発行日】2024-08-14
(54)【発明の名称】フォアライン堆積診断および制御のための方法およびシステム
(51)【国際特許分類】
H01L 21/205 20060101AFI20240806BHJP
G01N 5/02 20060101ALI20240806BHJP
H01L 21/31 20060101ALI20240806BHJP
【FI】
H01L21/205
G01N5/02 A
H01L21/31 B
(21)【出願番号】P 2023503239
(86)(22)【出願日】2021-09-22
(86)【国際出願番号】 US2021051531
(87)【国際公開番号】W WO2022093445
(87)【国際公開日】2022-05-05
【審査請求日】2023-03-15
(32)【優先日】2020-10-27
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】390040660
【氏名又は名称】アプライド マテリアルズ インコーポレイテッド
【氏名又は名称原語表記】APPLIED MATERIALS,INCORPORATED
【住所又は居所原語表記】3050 Bowers Avenue Santa Clara CA 95054 U.S.A.
(74)【代理人】
【識別番号】110002077
【氏名又は名称】園田・小林弁理士法人
(72)【発明者】
【氏名】モラディアン, アラ
(72)【発明者】
【氏名】ヒルケン, マーティン エー.
(72)【発明者】
【氏名】チュー, ツウォミン
(72)【発明者】
【氏名】サンチェス, エロール アントニオ シー.
(72)【発明者】
【氏名】マラス サンカラトディ, ビンドゥサガール
(72)【発明者】
【氏名】リウ, パトリシア エム.
(72)【発明者】
【氏名】スリヴァスタヴァ, スレンドラ シン
【審査官】鈴木 智之
(56)【参考文献】
【文献】特開2007-311393(JP,A)
【文献】特開2019-114783(JP,A)
【文献】米国特許出願公開第2007/0189356(US,A1)
【文献】特開2006-005118(JP,A)
【文献】特開平07-122536(JP,A)
【文献】国際公開第2020/178945(WO,A1)
【文献】特開2020-123602(JP,A)
【文献】特許第6737944(JP,B1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/205
G01N 5/02
H01L 21/31
(57)【特許請求の範囲】
【請求項1】
フォアライン診断および制御のためのシステムであって、
処理チャンバの排気口に結合されたフォアラインと、
前記フォアライン中の堆積ビルドアップを測定するために配置された第1のセンサと、
前記第1のセンサに結合されたビルドアップモニタであって、前記ビルドアップモニタが、トレーニング済み機械学習(ML)モデルを備え、前記堆積ビルドアップを示す出力を生成するように構成され、示された前記堆積ビルドアップがビルドアップしきい値にあるかまたはビルドアップしきい値を上回るときに、修正アクションをトリガする、ビルドアップモニタと
を備え
、
前記第1のセンサが、
超音波トランスデューサ、
圧電センサ、
圧力センサ、または
圧力制御弁
のうちの少なくとも1つを備える、システム。
【請求項2】
前記圧力制御弁
が、位置センサ
を備える、請求項1に記載のシステム。
【請求項3】
前記ビルドアップモニタが開ループコントロールを備える、請求項1に記載のシステム。
【請求項4】
前記ビルドアップモニタが複数のセンサに結合されている、請求項1に記載のシステム。
【請求項5】
前記トレーニング済み機械学習モデルが、
半導体処理チャンバの以前の動作からの第1のセンサデータを含むデータベースから、第1のセンサトレーニングデータを受信することと、
前記フォアラインの清浄な表面
と、前記フォアライン上に堆積された材料の複数の堆積厚さのうちの1つとを区別するために、前記第1のセンサトレーニングデータを分類することと、
前記分類に基づいて、前記トレーニング済み機械学習モデルのためのモデルパラメータを生成することと
を含むプロセスを介してトレーニングされる、請求項1に記載のシステム。
【請求項6】
前記修正アクションが、ユーザに対するアラートを生成すること、前記半導体処理チャンバの動作を停止すること、または前記半導体処理チャンバに洗浄動作を開始させることのうちの1つを含む、請求項5に記載のシステム。
【請求項7】
前記トレーニング済み機械学習モデルが、さらに、洗浄動作中に前記フォアラインの温度の変化を監視する
ためにトレーニングされる、請求項6に記載のシステム。
【請求項8】
フォアライン堆積診断のための方法を実行するための命令を含む、コンピュータ可読媒体であって、前記方法が、
複数のセンサの少なくとも1つから、センサデータを受信することと、
堆積ビルドアップを示す出力を生成するように構成されたトレーニング済み機械学習(ML)モデルを備える、ビルドアップモニタに前記センサデータを与えることと、
前記センサデータがビルドアップしきい値にあるかまたはビルドアップしきい値を上回ることが示されたときに、前記出力に基づいて修正アクションを生成することと
を含
み、
前記複数のセンサが、
超音波トランスデューサ、
圧電センサ、
圧力センサ、または
圧力制御弁
のうちの少なくとも1つを含む、コンピュータ可読媒体。
【請求項9】
前記複数のセンサが
、熱センサを含む、請求項8に記載のコンピュータ可読媒体。
【請求項10】
前記圧力制御弁
が、位置センサを含む、請求項8に記載のコンピュータ可読媒体。
【請求項11】
前記圧力センサが前記圧力制御弁に隣接して配置されている、請求項10に記載のコンピュータ可読媒体。
【請求項12】
前記複数のセンサがポンプとチャンバ排気口との間に配置されている、請求項8に記載のコンピュータ可読媒体。
【請求項13】
前記修正アクションが、前記センサデータを監視するように構成された開ループコントロールによって少なくとも部分的に生成される、請求項12に記載のコンピュータ可読媒体。
【請求項14】
前記トレーニング済みMLモデルが、
半導体処理チャンバの以前の動作からのセンサデータを含むデータベースから、センサトレーニングデータを受信することと、
フォアラインの清浄な表面
と、前記フォアライン上に堆積された材料の複数の堆積厚さのうちの1つとを区別するために、前記センサトレーニングデータを分類することと、
前記分類に基づいて、前記トレーニング済み機械学習モデルのためのモデルパラメータを生成することと
を含むプロセスを介してトレーニングされる、請求項12に記載のコンピュータ可読媒体。
【請求項15】
前記トレーニング済み機械学習(ML)モデルが、教師ありモデルと、教師なしモデルとのうちの1つを含む、請求項14に記載のコンピュータ可読媒体。
【請求項16】
処理システムのフォアライン中の堆積ビルドアップを監視するための方法であって、
処理システムのフォアラインに結合された1つまたは複数のセンサから、センサデータを受信することと、
ビルドアップを推定するために、トレーニング済み機械学習モデルを用いて前記センサデータを処理することと、
前記トレーニング済み機械学習モデルの前記推定されたビルドアップに対応する修正アクションをトリガすることと
を含
み、
前記1つまたは複数のセンサが、
超音波トランスデューサ、
圧電センサ、
圧力センサ、または
圧力制御弁
のうちの少なくとも1つを含む、方法。
【請求項17】
前記トレーニング済み機械学習モデルが、
1つまたは複数の処理システムの以前の動作からのセンサデータを含む、センサトレーニングデータを受信することと、
前記フォアラインの清浄な表面
と、前記フォアライン上に堆積された材料の複数の堆積厚さのうちの1つとを区別するために、前記センサトレーニングデータを分類することと、
前記分類に基づいて、前記トレーニング済み機械学習モデルのためのモデルパラメータを生成することと
を含むプロセスを介してトレーニングされる、請求項16に記載の方法。
【請求項18】
前記トレーニング済み機械学習モデルが、さらに、前記フォアラインの温度の変化を検出するためにトレーニングされる、請求項17に記載の方法。
【請求項19】
前記圧力制御弁
が、位置センサ
を含む、請求項17に記載の方法。
【請求項20】
前記修正アクションが、前記処理システムの動作を停止すること、洗浄動作を開始すること、またはユーザにアラートすることのうちの1つを含む、請求項17に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、一般に、フォアライン(foreline)診断および制御に関し、より詳細には、予測フォアライン診断に関する。
【背景技術】
【0002】
半導体基板は、デバイスおよびマイクロデバイスの製造を含む、多種多様な適用例のために処理される。これらのプロセスは、処理チャンバ内の温度、圧力、および前駆体流量を含む、いくつかの処理条件の下で、基板上に高品質の膜を生成することができる。プロセスパラメータの変動により膜厚さおよびプロファイルの変動が生じ得る。
【0003】
膜堆積の目的は、堆積される材料の大部分を基板上に堆積することであるが、処理チャンバ部品、チャンバ排気口、およびフォアライン部品もコーティングされ得る。ウエハごとのプロセス条件を維持するために、チャンバ部品およびフォアライン部品から意図しないコーティングをエッチングするために洗浄レシピが実行される。しかしながら、洗浄プロセスを行っても、フォアライン中に意図しないコーティング、時には可燃性のコーティングが生じ得る。
【0004】
従来の手法では、フォアライン中の堆積の量を測定することなしに、あらゆるウエハの後に、または一定数のウエハの後に洗浄レシピが実行される。これにより、洗浄リソースおよび時間の浪費になり得る、あまりに頻繁な洗浄が行われるか、または十分に洗浄が行われず、その結果、プロセスパラメータの信頼できない変化と、フォアライン中の潜在的に危険な堆積とが生じ得る。
【0005】
必要とされるものは、従来の手法の欠点を克服するためのシステムおよび方法である。
【発明の概要】
【0006】
本開示は、一般に、フォアライン診断および制御のためのシステム、装置、および方法に関する。チャンバ排気口に結合されたフォアラインは、いくつかの実施形態では、チャンバ排気口と軽減(abatement)システムとの間に配置される1つまたは複数のセンサを計装される。その1つまたは複数のセンサは、フォアライン中の圧力をコンダクタンスのインジケータとして測定するために配置される。センサは、フォアラインが洗浄サイクルを必要とするときに、または予防保守が実行されるべきであるときに信号を与えるように構成されたトレーニング済み機械学習モデルに結合される。いくつかの実施形態では、トレーニング済み機械学習は、洗浄または予防保守がいつ必要とされるかを予測する。
【0007】
一実施形態では、処理チャンバの排気口に結合されたフォアラインと、フォアライン中の堆積ビルドアップ(build-up)を測定するために配置された第1のセンサと、第1のセンサに結合されたビルドアップモニタであって、そのビルドアップモニタが、トレーニング済み機械学習(ML)モデルを備え、堆積ビルドアップを示す出力を生成し、示された堆積ビルドアップがビルドアップしきい値にあるかまたはビルドアップしきい値を上回るときに、修正アクションをトリガするように構成された、ビルドアップモニタとを含む、フォアライン診断および制御のためのシステムが開示される。
【0008】
別の実施形態では、コンピュータ可読媒体は、フォアライン堆積診断のための方法を実行するための命令を含む。本方法は、複数のセンサの少なくとも1つからのビルドアップデータを受信することと、堆積ビルドアップを示す出力を生成するように構成されたトレーニング済み機械学習(ML)モデルを備えるビルドアップモニタに、ビルドアップデータを与えることと、ビルドアップデータがビルドアップしきい値にあることが示されたときに、出力に基づいて修正アクションを生成することとを含む。
【0009】
別の実施形態では、半導体処理システムのフォアラインに結合された1つまたは複数のセンサからのセンサデータを受信することと、ビルドアップを推定するために、トレーニング済み機械学習モデルを用いてセンサデータを処理することと、トレーニング済み機械学習モデルの推定されたビルドアップに対応する修正アクションをトリガすることとを含む、処理システムのフォアライン中の堆積ビルドアップを監視するための方法が開示される。
【0010】
本開示の上記で具陳した特徴が詳細に理解され得るように、上記で簡潔に要約した本開示のより詳細な説明は、それらのうちのいくつかが添付の図面に示されている実施形態を参照することによって得られ得る。しかしながら、添付の図面は、例示的な実施形態のみを示し、したがって、それの範囲を限定するものと見なされるべきでなく、他の等しく効果的な実施形態が可能であり得ることに留意されたい。
【図面の簡単な説明】
【0011】
【
図1】いくつかの実施形態による、フォアライン堆積および診断制御のためのシステムを示す図である。
【
図2】いくつかの実施形態による、フォアライン洗浄システムを含む、フォアライン堆積および診断制御のためのシステムを示す図である。
【
図3】いくつかの実施形態による、フォアライン診断および制御のための方法を示す図である。
【
図4】いくつかの実施形態による、フォアライン診断および制御のための方法を実行するための処理システムを示す図である。
【発明を実施するための形態】
【0012】
理解を容易にするために、図に共通である同等の要素を指定するために、可能な場合は、同等の参照番号が使用されている。一実施形態の要素および特徴は、さらなる具陳なしに、他の実施形態中に有利に組み込まれ得ることが企図される。
【0013】
以下では、本開示の実施形態を参照する。しかしながら、本開示は、具体的に説明する実施形態に限定されないことを理解されたい。代わりに、以下の特徴および要素の任意の組合せは、異なる実施形態に関するか否かにかかわらず、本開示を実装し、実施することが企図される。さらに、本開示の実施形態は他の可能なソリューションおよび/または従来技術に勝る利点を達成し得るが、所与の実施形態によって特定の利点が達成されるか否かは本開示を限定しない。したがって、以下の態様、特徴、実施形態および利点は単に例示的なものであり、請求項中に明示的に具陳されている場合を除いて、添付の特許請求の範囲の要素または限定と見なされない。同様に、「本開示」への言及は、本明細書で開示するいかなる発明的主題の一般化としても解釈されないものとし、請求項中に明示的に具陳されている場合を除いて、添付の特許請求の範囲の要素または限定と見なされないものとする。
【0014】
フォアラインに沿って配置された1つまたは複数のセンサからの累積履歴プロセスおよび洗浄データ、ならびにリアルタイムデータを使用して処理システムフォアライン中の堆積ビルドアップを監視するためのシステム、装置、および方法が開示される。
【0015】
半導体デバイスを製造することの一部として処理チャンバ中で実行されるエピタキシプロセス、化学気相堆積(CVD)プロセス、プラズマ強化化学蒸着(PECVD)、エッチングプロセス、洗浄プロセス、または他のプロセスなどによる半導体基板の処理中に、チャンバ部品上に、ならびにチャンバに結合されたフォアライン中にビルドアップが生じる。
【0016】
本発明者らは、フォアライン中のビルドアップパターンが、そのフォアラインとともに使用されるセンサによって直接的におよび/または間接的に検出され得ることを発見した。複数の処理サイクル、およびビルドアップパターンにわたってセンサデータを収集することによって、フォアライン(またはチャンバ)洗浄が必要とされること、またはPMが必要とされることのアラートをユーザに示すしきい値が、トレーニングデータを用いてトレーニング済み機械学習(ML)アルゴリズムを使用して開発され得る。識別されたパターンは、フォアライン上で実行されるべきである、処理チャンバの動作を停止すること、または洗浄、または予防保守(PM)など、修正アクションを与えるためのしきい値を開発するために、ならびにこれらがいつ必要とされ得るかを予測するために、トレーニング済み機械学習モデルによって使用され得る。
【0017】
トレーニング済みMLモデルによって監視される洗浄およびPMのためのしきい値を与えることによって、工場操業をより効率的にスケジュールするために、個々の処理チャンバおよび処理チャンバのグループの処理パラメータに基づいて洗浄/PMサイクルが予測的に決定され得る。さらに、洗浄およびPM関係の化学物質、交換部品、および労働力資源のインベントリがより効率的にスケジュールされ得る。
フォアライン堆積診断および制御の例示的なシステム
【0018】
図1は、いくつかの実施形態による、フォアライン堆積および診断制御のためのシステム100を示す。処理チャンバ103は、処理チャンバ103の排気口(図示せず)を介してフォアライン106に結合され、それにより、処理チャンバ103がポンプ109に結合され、ポンプ109は軽減システム112に結合される。
【0019】
処理チャンバ103は、エピタキシチャンバ、化学気相堆積(CVD)チャンバ、プラズマ強化CVD(PECVD)チャンバ、エッチングチャンバ、研磨ステーション、または任意の手段によって1つまたは複数の材料を基板に堆積するかまたは基板から除去する任意の処理チャンバであり得る。当業者によって理解されるように、処理チャンバ103など、処理チャンバは、堆積またはエッチングのために使用されるときに、処理チャンバに投入されたガスおよび材料をつかさどる1つまたは複数のレシピによって制御される。処理チャンバ103の動作中に、基板上に堆積されないか、または基板からエッチングされない材料は、チャンバ部品上、フォアライン106内、ならびにポンプ109および軽減システム112内に堆積される。本明細書で開示するシステムおよび方法は、フォアライン中の堆積を診断し、様々なアルゴリズムおよび方法を介して、フォアライン洗浄および/またはフォアライン予防保守(PM)がいつ実行されるべきであるかを示そうとする。
【0020】
フォアライン106の長さに沿って、処理チャンバ103、ポンプ109を分離し、フォアライン106内の圧力を制御するために働く、いくつかの弁が配置され得る。(以下でさらに説明する)フォアライン洗浄およびPM動作中に処理チャンバ103を分離するために、処理チャンバ103から下流にチャンバ分離弁115が配置され得る。チャンバ分離弁115から下流で、フォアライン106に圧力制御弁118が結合され得る。
【0021】
圧力制御弁(PCV)118は、フォアライン106中のガスの伝導性を制御することによってそのようなガスの圧力を制御するための回転板と、回転板の回転角を感知するための位置センサとを備える。PCV118の角度は回転板の角度の指示であり、その指示は、以下で説明するように、フォアライン106内の圧力および/または伝導性のインジケータとして使用され得、複数の測定された角度は、圧力および/または伝導性の変化のインジケータであり得る。以下で説明するように、伝導性の変化はフォアライン106内の堆積ビルドアップのインジケータであり得る。
【0022】
PCV118から下流で、フォアライン106は、フォアライン106からポンプ109を分離するポンプ分離弁121に結合される。ポンプ分離弁121から下流で、フォアラインはポンプ109に結合される。
【0023】
当業者によって諒解されるであろうように、いくつかの実施形態では、チャンバ分離弁115とポンプ分離弁121の一方または両方がPCVであり得る。この文脈におけるPCVは分離弁として働き得る。
【0024】
フォアライン106に沿って、センサ124~133が点在している。センサ124は処理チャンバ103とチャンバ分離弁115との間に位置し、センサ127はチャンバ分離弁115とPCV118との間に位置し、センサ130はPCV118とポンプ分離弁121との間に位置し、センサ133はポンプ分離弁121とポンプ109との間に位置する。
【0025】
いくつかの実施形態では、センサ124~133のうちの1つまたは複数が、フォアライン内のビルドアップを直接的にまたは間接的に測定するために配置される。いくつかの実施形態では、センサ124~133のうちの1つまたは複数が、超音波信号のトランスデューサおよび受信機を備える超音波センサであり得る。センサ124~133のうちの1つまたは複数として与えられる超音波トランスデューサは、フォアライン106内に配置される必要なしに、フォアライン106内のビルドアップを検出し得るが、いくつかの実施形態では、このタイプのセンサはフォアライン106内に位置し得る。フォアライン106の外側に配置されるとき、超音波トランスデューサは、フォアライン106を構成するパイプの中空部分など、フォアライン106の内部空間中に結合されたフォアラインの壁を通して超音波信号を供給する。フォアライン106が清浄である(すなわちビルドアップがない)とき、超音波信号は、受信機によって検出されるように、(場合によっては、フォアライン中のガスによって減速させられた)音速でフォアライン106を通って進行し得る。しかしながら、フォアライン中にビルドアップが存在するとき、このビルドアップにより超音波信号の進行速度が遅くなり、それにより、トランスデューサにおける超音波信号の生成と、受信機におけるこの信号の受信とにかかる時間量が増加する。堆積が増大し続けるにつれて、超音波信号が受信機に到達するのにかかる時間量は増加する。その上、フォアライン106中に堆積された異なる材料は超音波信号の速度に対して異なる影響を及ぼすが、追加の堆積ビルドアップがこの信号をますます減速させることだけは変わらない。
【0026】
いくつかの実施形態では、センサ124~133のうちの1つまたは複数が、水晶振動子マイクロバランス(quartz crystal microbalance)(QCM)センサなど、圧電センサであり得る。QCMセンサは、石英構成要素に対する質量のナノグラム変化を検出することが可能な水晶振動子に基づく質量敏感圧電デバイスである。実施形態では、石英構成要素上に材料が堆積するにつれて、質量の増加の結果として、石英構成要素はより低い速度で振動する。フォアライン106の内側、たとえば、センサ124~133のうちの1つまたは複数によって示された位置に配置されたとき、QCMセンサ上に堆積ビルドアップが生じるにつれて、そのセンサによって生成される信号はビルドアップと相関して変化する。
【0027】
いくつかの実施形態では、センサ124~133のうちの1つまたは複数が、フォアライン106内の圧力を測定するためにフォアライン106に結合された圧力センサであり得る。フォアライン106中に材料が堆積するにつれて、フォアライン106の(ビルドアップによる)減少する体積を通って進行する同じ体積のガスによる圧力変化がビルドアップのインジケータとして検出され得る。
【0028】
センサ124~133の複数の実施形態について上記で説明したが、当業者は、センサ124~133のうちの1つまたは複数が複数のセンサタイプを含み得ることを諒解しよう。たとえば、センサは、圧力センサ、UTセンサ、および/またはQCMセンサのうちの1つまたは複数を含み得る。
【0029】
実施形態では、PCV118は、さらに、フォアライン106中のビルドアップを示すためにセンサとして利用され得る。これらの実施形態では、フォアライン106内でビルドアップが増加するにつれて、PCV118は、ガスのターゲット伝導性を維持するためにプレートの角度を増加させることが必要とされ得る。前の角度に対する角度の増加は、フォアライン106中のビルドアップの増加を示し得、(たとえば、洗浄またはPMの後の)角度の減少はビルドアップがより少ないかまたはないことを示し得る。
【0030】
上記で説明したセンサタイプのうちの1つまたは複数が、ビルドアップの増加または減少を示すデータを与えるためにPCV118とともに使用され得る。たとえば、センサ127がビルドアップの変化を検出すると、PCV118は応答して、それの角度を変更し得る。全体として、これらの信号は、システム100がフォアライン堆積ビルドアップにどのように反応しているかについてのデータを与える。
【0031】
コントローラ136は、センサ124~133の各々に、ならびにPCV118に結合され、いくつかの実施形態では、チャンバ分離弁115およびポンプ分離弁121にも結合される。コントローラ136は、さらに、処理レシピに関するデータを受信し、フォアライン106の状態に関する信号を処理チャンバに与えるために、処理チャンバ103に結合される。
【0032】
コントローラ136は、トレーニングデータ139とMLモデル141とを備える、トレーニング済み機械学習(ML)モデル144を含む。トレーニングデータ139は、処理チャンバ103中の処理に関するデータ(たとえば特徴)に関する時系列データを含む、処理動作中に1つまたは複数の処理チャンバセンサによって生成されるレシピデータ、および処理チャンバセンサデータなど、処理チャンバ103中の処理に関するデータ(たとえば特徴)から構成される。トレーニングデータ139はデータベースまたは他のデータストレージシステムに記憶され得る。トレーニングデータは、ビルドアップの時系列表現を含む、フォアライン106中のビルドアップの直接的なインジケータまたは間接的なインジケータのいずれかである、センサ124~133からのデータ(すなわち、ビルドアップセンサについてのビルドアップに関するデータ、および圧力センサについての圧力に関するデータのうちの少なくとも1つ)、PCV118からのデータ、チャンバ分離弁115からのデータ、およびポンプ分離弁121からのデータ(たとえば、伝導率、角度データなど)のうちの1つまたは複数をさらに含む。いくつかの実施形態では、トレーニングデータ139はポンプ109からの動作データを含み得る。トレーニングデータは、時間に伴う各データソースの動作データの差を示す、各上述のデータソースからの時系列データであり得る。いくつかの実施形態では、トレーニングデータは、履歴データ、合成データ、トレーニングの目的のために開発者によって作成されるデータ、またはこれらの何らかの組合せであり得る。いくつかの実施形態では、トレーニングデータは、処理チャンバレシピ、フォアライン106中に堆積され得る材料、堆積材料の堆積特性、またはMLモデル141をトレーニングするために好適な任意の他のグループ化に基づいてグループ化され得る。トレーニングデータ144は、センサおよび弁からインシトゥで受信され、MLモデル141をリアルタイムでトレーニングし、それにより、連続的に更新されたトレーニング済みMLモデル144を与える、データをさらに含み得る。
【0033】
トレーニングデータ144から、フォアライン106の1つまたは複数のパラメータが、トレーニング済みMLモデル141によって推定または推論され得る。たとえば、フォアライン106中の材料の堆積速度は、超音波センサによって検出される超音波信号の飛行時間(time-of-flight)データ、QCMセンサの共振周波数の偏移率(rate of shift)、または1つもしくは複数の圧力センサからのフォアライン106の1つのセグメントにわたる差圧の変化率から導出され得る。フォアライン106の1つまたは複数のセグメント内の堆積速度は、トレーニング済みMLモデル141によって推論/推定され、前に測定された堆積速度に対する決定を行うための測度として扱われるか、または1つもしくは複数のしきい値と比較され得る。トレーニング済みMLモデル141によって推定または推論され得るフォアライン106の別の例示的なパラメータはフォアライン106の健全性(たとえば伝導能力)である。トレーニング済みMLモデル141は、PCV118の位置とPCV118におけるフォアライン106の温度との組合せ、および超音波センサ、QCMセンサ、または他のセンサからの信号から、健全な状態に対して部分的に詰まっている状態を推定/推論し得る。推論/推定された状態は、フォアライン106が健全である(すなわち、フォアラインを動作させるために適切なレベルでガスを伝導する)か否かを、またはフォアライン106が洗浄もしくはPMを必要とすることを決定するために、フォアライン106の前に測定された状態と、または1つもしくは複数のしきい値と比較され得る。
【0034】
いくつかの実施形態では、MLモデル141は、処理チャンバによって実行される特定の処理レシピについて、フォアライン中に堆積される特定の材料について、またはこれらの組合せについてトレーニングされ得る。
【0035】
MLモデル141は教師ありMLモデルまたは教師なしMLモデルまたはこれらの組合せであり得る。MLモデル141が教師ありモデルである実施形態では、サポートベクターマシン(SVM)、回帰モデル、またはトレーニングデータ139を受信し、フォアライン106中の堆積レベルを示すかまたは予測する連続的な出力を与えることが可能な、任意の教師あり学習モデルが使用され得る。MLモデルが教師なしモデルである実施形態では、ニューラルネットワーク、または、フォアライン106中の堆積ビルドアップを示すかまたは予測するクラスタ化または分類された出力を与えるためにMLモデル141をトレーニングするためにトレーニングデータ139を受信することが可能な任意の教師なし学習モデルが使用され得る。
【0036】
トレーニング中に、MLモデル141は、トレーニングデータ139に基づいてフォアライン106中のビルドアップの1つまたは複数のしきい値を作り出すためにトレーニングされ、それらのしきい値は、フォアライン洗浄が必要とされること、PMが必要とされること、または何らかの他のインジケータを示す。この文脈におけるしきい値は、フォアライン106中の1つまたは複数のセンサによって与えられるデータによって決定される、フォアライン106中の堆積レベル、フォアライン106中の堆積速度、健全な状態(十分に開いている)に対して詰まっている/部分的に詰まっているフォアライン106であり得る。たとえば、処理チャンバのためのレシピと、そのレシピを使用した基板の適切な処理のために必要とされるフォアラインについての条件とが与えられると、そのレシピと処理チャンバとフォアラインセンサとからのトレーニングデータが時間に伴ってコンパイルされ得る。このトレーニングデータは、満たされるかまたは超えた場合にフォアラインの洗浄またはPMの必要を示す、システムの適切な動作についての1つまたは複数のしきい値を識別するために、MLモデルをトレーニングするために使用される。トレーニングされると、トレーニング済みMLモデルは、フォアラインの状態がいつ洗浄またはPMを必要とするかのインジケータを与えるために「生の」処理データを受信し得る。この文脈では、インジケータは、洗浄が必要とされることをシグナリングするしきい値領域を満たすかまたは超える、教師なしモデルからの1つまたは複数の分類であり得る。教師ありモデルでは、モデルの1つまたは複数の次元がしきい値を満たしたかまたは超えたときに、洗浄の必要が示され得る。その上、トレーニング済みMLモデルは、リソースと工場操業との効率的なスケジューリングを可能にするために、洗浄またはPMがいつ必要とされるかを予測的に示し得る。
【0037】
いくつかの実施形態では、トレーニング済みMLモデル144は、トレーニングデータを用いてMLモデル141をトレーニングすることの結果として、所与のレシピおよび関係するプロセスパラメータに基づいて、所与の時間におけるフォアライン106中の所与の堆積ビルドアップを予測し得る。予測実施形態では、コントローラは、たとえば、工場スケジューリング、処理チャンバ103の保守スケジュールに適応させるために、フォアライン106の洗浄またはPMをいつ実行するべきであるかを予測し、リソース購入および供給決定を通知し得る。
【0038】
いくつかの実施形態では、コントローラ136は、洗浄、PM、または他のアクションをいつ実行するべきであるかを示すセンサおよび弁データについてのしきい値を含む開ループコントローラである。追加の実施形態では、コントローラ136は開ループ制御方法とトレーニング済み機械学習モデル144との組合せであり得る。
【0039】
動作中に、センサ124~133、弁115~121のうちの1つまたは複数が、およびいくつかの実施形態ではプロセスチャンバ103が、トレーニング済みMLモデル144にプロセスデータを与える。トレーニング済みMLモデル144は、これらの入力を受信し、トレーニング済み機械学習モデルに従ってそれらを処理し、1つまたは複数の出力を与え、出力が1つまたは複数のしきい値に達したかまたは超えたときに、フォアライン洗浄またはPMを実行するべきであることのインジケータを生成する。いくつかの実施形態では、コントローラ136は、フォアライン106から処理チャンバを分離し、(以下でさらに説明する)フォアライン洗浄を実行するために洗浄システムに信号を与えるか、または洗浄を実行させるためのインジケータをシステム100のユーザに与え得る。
RPSフォアライン洗浄システムを用いたフォアライン堆積診断および制御の例示的なシステム
【0040】
図2は、いくつかの実施形態による、フォアライン洗浄システムを含む、フォアライン堆積および診断制御のためのシステム200を示す。システム200はシステム100と同様であるが、フォアライン洗浄システム210と、フォアライン洗浄分離弁215と、以下で説明する改変とが追加されている。いくつかの実施形態では、フォアライン洗浄210は、それの完全な開示はその全体が参照により本明細書に組み込まれる、2019年12月10日にカリフォルニア州サンタクララのApplied Materialsに対して発行された、Hilkeneらによる米国特許第10、500、614号「TEMPERATURE CONTROLLED REMOTE PLASMA CLEAN FOR EXHAUST DEPOSIT REMOVAL」に開示されているフォアライン洗浄システムと同様である。
【0041】
フォアライン洗浄210を含む、フォアライン堆積診断および制御の実施形態では、センサ124~133のうちの1つまたは複数が熱センサを含み得る。いくつかの実施形態では、フォアライン洗浄210は、プラズマを作り出し、ビルドアップを除去するために、そのプラズマをフォアライン106に与えるための遠隔プラズマ源(RPS)を含む。いくつかの実施形態では、RPSはNF3とアルゴンとの混合ガスからプラズマを生成する。フォアライン106中のビルドアップとのプラズマ反応により発熱反応(exothermic reaction)が生じ得るので、洗浄プロセス中に生成された熱は、フォアライン106中に残っているビルドアップの量のインジケータになり得る。プラズマとの反応によりビルドアップが除去されるにつれて、生成される熱が無視できる量になり、それにより洗浄サイクルが完了したことが示されるまで、生成される熱の量は減少する。
【0042】
図2の実施形態では、トレーニング済みMLモデル144は、フォアライン洗浄210によって実行される洗浄サイクル中にフォアライン中のビルドアップを監視するためのパラメータおよびしきい値をさらに含み得る。パラメータおよびしきい値を作り出すためのトレーニングデータ139は、センサ124~133のうちの1つまたは複数の中に含まれる熱センサからのデータを含む。このトレーニングデータ139は、トレーニング済みMLモデル144を生成するために、MLモデル141をトレーニングするために与えられる。
フォアライン診断および制御のための例示的な方法
【0043】
図3は、いくつかの実施形態による、フォアライン診断および制御のための方法300を示す。
【0044】
305において、方法300は、半導体処理システムのフォアラインに結合された1つまたは複数のセンサからのセンサデータを受信する一方、310において、方法300は、フォアライン中のビルドアップを推定するために、トレーニング済み機械学習モデルを用いてセンサデータを処理する。実施形態では、トレーニング済み機械学習モデルは、1つまたは複数の半導体処理システムの以前の動作からのセンサデータを含む、データベースからのセンサトレーニングデータを受信し、フォアラインの清浄な表面のうちの1つと、フォアライン上に堆積された材料の複数の堆積厚さのうちの1つとを区別するために、センサトレーニングデータを分類し、その分類することに基づいて、トレーニング済み機械学習モデルのためのモデルパラメータを生成するプロセスを介してトレーニングされる。いくつかの実施形態では、トレーニング済み機械学習モデルは、さらに、フォアラインの温度の変化を検出するためにトレーニングされる。この文脈における分類することは教師ありMLまたは教師なしMLを指し得ることを理解されたい。
【0045】
315において、方法300は、トレーニング済み機械学習モデルの推定されたビルドアップに対応する修正アクションをトリガする。修正アクションは、処理システムの動作を停止すること、半導体処理システムまたはフォアライン中の洗浄動作を開始すること、または半導体処理システムもしくはフォアラインに対して予防保守を行うようユーザにアラートすることのうちの1つまたは複数を含み得る。信号は、トレーニング済み機械学習モデルが、しきい値が満たされたかまたは超えられたことを示したときに応答して生成され得る。
フォアライン診断および制御のための例示的な処理システム
【0046】
図4は、
図3のフォアライン診断および制御のための方法、ならびに
図1および
図2に関して説明したそのような方法を実行することが可能なシステムなど、本明細書で説明した方法を実行し得る、いくつかの実施形態による、フォアライン診断および制御のための処理システム400を示す。
【0047】
処理システム400の処理デバイス401は、データバス416に接続された中央処理ユニット(CPU)402を含む。CPU402は、たとえば、メモリ408またはストレージ410に記憶されたコンピュータ実行可能命令を処理し、たとえば、
図3に関して本明細書で説明した方法を処理システム400に実行させるように構成される。CPU402は、単一のCPUと、複数のCPUと、複数の処理コアを有する単一のCPUと、コンピュータ実行可能命令を実行することが可能な処理アーキテクチャの他の形態とを表すために含まれている。
【0048】
処理システム400は入出力(I/O)デバイス412とインターフェース404とをさらに含み、インターフェース404は、処理デバイス401が、たとえば、半導体処理システムおよび関係するサポートシステム、キーボード、ディスプレイ、マウスデバイス、ペン入力、および処理システム400との対話を可能にする他のデバイスなど、入出力デバイス412とインターフェースすることを可能にする。処理システム400は物理接続およびワイヤレス接続によって外部I/Oデバイス(たとえば外部ディスプレイデバイス)と接続し得ることに留意されたい。
【0049】
処理デバイス401は、処理システム401に、外部ネットワーク414へのアクセスと、それによる外部計算デバイスへのアクセスとを与えるネットワークインターフェース406をさらに含む。
【0050】
処理デバイス401はメモリ408をさらに含み、メモリ408は、この例では、受信モジュール418と、処理モジュール420と、トリガモジュール422と、トレーニングモジュール424と、
図1および/または
図2に示されているシステム上で実行され得る、
図3において説明した動作を実行するための分類モジュール426とを含む。
図4には示されていないが、他の態様がメモリ408中に含まれ得る。
【0051】
簡単のために
図4では単一のメモリ408として示されているが、メモリ408に記憶されている様々な態様は、処理システム400からリモートであるメモリを含む異なる物理メモリに記憶され得るが、バス416など内部データ接続を介してすべてCPU402によってアクセス可能であり得ることに留意されたい。
【0052】
ストレージ410は、
図1~3に関して説明したように、ビルドアップデータ428と、センサデータ430と、MLモデルデータ432と、トレーニング済みML学習モデルデータ434と、モデルパラメータデータ436と、センサトレーニングデータ438と、修正アクションデータ440とを含む。
図4には示されていないが、他の態様がストレージ410中に含まれ得る。
【0053】
メモリ408と同様に、簡単のために
図4では単一のストレージ410が示されているが、ストレージ410に記憶されている様々な態様は、異なる物理ストレージに記憶され得るが、バス416など内部データ接続を介して、またはネットワークインターフェース406など外部接続を介してすべてCPU402にとってアクセス可能であり得る。当業者は、処理システム400の1つまたは複数の要素がリモートに位置し、ネットワーク414を介してアクセスされ得ることを諒解しよう。
追加の考慮事項
【0054】
先行する説明は、本明細書で説明した様々な実施形態を当業者が実施することを可能にするために与えられている。本明細書で説明した例は、請求項に記載された範囲、適用可能性、または実施形態を限定するものではない。これらの実施形態に対する様々な改変は当業者に容易に明らかになり、本明細書で定義された一般原理は他の実施形態に適用され得る。たとえば、本開示の範囲から逸脱することなく、説明した要素の機能および構成の変更が行われ得る。様々な例では、必要に応じて、様々な手順または構成要素が省略、代用、または追加され得る。たとえば、説明した方法は、説明した順序とは異なる順序で実行され得、様々なステップが追加されるか、省略されるか、または組み合わせられ得る。また、いくつかの例に関して説明した特徴はいくつかの他の例において組み合わせられ得る。たとえば、本明細書に記載した任意の数の態様を使用して、装置が実装され得るか、または方法が実施され得る。さらに、本開示の範囲は、本明細書に記載された本開示の様々な態様に加えて、またはそれらの態様以外の、他の構造、機能、または構造および機能を使用して実施されるそのような装置または方法をカバーするものである。本明細書で開示した本開示の任意の態様は、1つの請求項の1つまたは複数の要素によって実施され得ることを理解されたい。
【0055】
本明細書で使用する際、「例示的な(exemplary)」という単語は「例、実例、または例示として働くこと」を意味する。本明細書で「例示的な」として説明したいかなる態様も、必ずしも他の態様に勝る好ましいまたは有利な態様として解釈されるとは限らない。
【0056】
本明細書で使用する際、項目のリスト「のうちの少なくとも1つ」に言及するフレーズは、単一要素を含む、それらの項目の任意の組合せを指す。一例として、「a、b、またはcのうちの少なくとも1つ」は、a、b、c、a-b、a-c、b-c、およびa-b-c、ならびに複数の同じ要素をもつ任意の組合せ(たとえば、a-a、a-a-a、a-a-b、a-a-c、a-b-b、a-c-c、b-b、b-b-b、b-b-c、c-c、およびc-c-c、またはa、b、およびcの任意の他の順序付け)をカバーするものである。
【0057】
本明細書で使用する際、「決定すること(determining)」という用語は多種多様な行為を包含する。たとえば、「決定すること」は、計算すること、算出すること、処理すること、導出すること、調査すること、ルックアップすること(たとえば、テーブル、データベースまたは別のデータ構造の中をルックアップすること)、確認することなどを含み得る。また、「決定すること」は、受信すること(たとえば、情報を受信すること)、アクセスすること(たとえば、メモリ中のデータにアクセスすること)などを含み得る。また、「決定すること」は、解決すること、選択すること、選定すること、確立することなどを含み得る。
【0058】
本明細書で開示した方法は、それらの方法を達成するための1つまたは複数のステップまたは行為を含む。方法ステップおよび/または行為は、請求項の範囲から逸脱することなく、互いに交換され得る。言い換えれば、ステップまたは行為の特定の順序が指定されない限り、特定のステップおよび/または行為の順序および/または使用は、請求項の範囲から逸脱することなく変更され得る。さらに、上記で説明した方法の様々な動作は、対応する機能を実行することが可能な任意の好適な手段によって実行され得る。手段は、限定はしないが、回路、特定用途向け集積回路(ASIC)、またはプロセッサを含む、様々なハードウェアおよび/またはソフトウェア構成要素および/またはモジュールを含み得る。一般に、図中に示されている動作がある場合、それらの動作は、同様の番号付けがなされた対応する動作のミーンズプラスファンクション構成要素を有し得る。
【0059】
以下の請求項は、本明細書で示した実施形態に限定されるものではなく、それらの請求項の文言に合致する全範囲を与えられるべきである。請求項内では、単数の要素への言及は、そのように明記されていない限り、「唯一の」を意味するものではなく、むしろ「1つまたは複数の」を意味するものである。別段に明記されていない限り、「いくつかの」という用語は1つまたは複数を指す。いかなる請求項要素も、その要素が「のための手段」というフレーズを使用して明確に具陳されているか、または、方法クレームの場合、その要素が「ためのステップ」というフレーズを使用して具陳されていない限り、米国特許法第112(f)条の規定の下で解釈されるべきでない。当業者に知られているかまたは後で知られることになる、本開示全体にわたって説明した様々な態様の要素のすべての構造的および機能的均等物は、参照により本明細書に明示的に組み込まれ、請求項によって包含されるものである。その上、本明細書で開示したいかなるものも、そのような開示が請求項に明示的に記載されているかどうかにかかわらず、公に供されるものではない。
【0060】
上記は本開示の実施形態に関するが、本開示の他のおよびさらなる実施形態が、本開示の基本的な範囲から逸脱することなく考案され得、本開示の範囲は以下の請求項によって決定される。