(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-08-16
(45)【発行日】2024-08-26
(54)【発明の名称】ユーザ選定装置、ユーザ選定方法、及びプログラム
(51)【国際特許分類】
G06Q 50/00 20240101AFI20240819BHJP
【FI】
G06Q50/00 300
(21)【出願番号】P 2021127414
(22)【出願日】2021-08-03
【審査請求日】2023-10-04
(73)【特許権者】
【識別番号】000004226
【氏名又は名称】日本電信電話株式会社
(73)【特許権者】
【識別番号】598121341
【氏名又は名称】慶應義塾
(74)【代理人】
【識別番号】110004381
【氏名又は名称】弁理士法人ITOH
(74)【代理人】
【識別番号】100107766
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100124844
【氏名又は名称】石原 隆治
(72)【発明者】
【氏名】藤村 滋
(72)【発明者】
【氏名】中平 篤
(72)【発明者】
【氏名】大橋 盛徳
(72)【発明者】
【氏名】岸上 順一
(72)【発明者】
【氏名】前田 至剛
【審査官】田川 泰宏
(56)【参考文献】
【文献】特開2017-004225(JP,A)
【文献】特開2014-002482(JP,A)
【文献】特開2020-086521(JP,A)
【文献】特開2019-148943(JP,A)
【文献】特開2019-200449(JP,A)
【文献】中国特許出願公開第112380456(CN,A)
【文献】米国特許出願公開第2018/0349961(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G06Q 10/00-99/00
(57)【特許請求の範囲】
【請求項1】
あるコミュニティに属するユーザに対し、拡散投稿を行うことで広く影響を与える可能性が高いユーザを選定するためのユーザ選定装置であって、
SNSによる投稿を蓄積する投稿データベースを参照することにより、第一のユーザの投稿を第二のユーザが拡散投稿することで、第三のユーザが当該投稿にインタラクションを行ったかどうかのデータに基づいて、前記第三のユーザがインタラクションを行う条件をモデル化したユーザ影響モデルを構築するユーザ影響モデル構築部と、
前記コミュニティ内の複数のユーザに影響を与えたい話題を入力として受け取り、前記ユーザ影響モデルを利用して、拡散投稿を行うことで前記コミュニティ内の複数のユーザに影響力を与える可能性が高いユーザを算出するユーザ影響力算出部と
を備えるユーザ選定装置。
【請求項2】
前記ユーザ影響モデル構築部は、前記第一のユーザのフォロワー数、前記第一のユーザと前記第三のユーザの間でのインタラクションの回数、前記第二のユーザのフォロワー数、前記第二のユーザと前記第三のユーザの間でのインタラクションの回数、前記第一のユーザが投稿した投稿に付与された評価値、及び、前記第三のユーザが当該投稿にインタラクションを行ったかどうかのデータに基づいて前記ユーザ影響モデルを構築する
請求項1に記載のユーザ選定装置。
【請求項3】
前記ユーザ影響モデル構築部は、ロジスティック回帰モデルにより前記ユーザ影響モデルを構築する
請求項1又は2に記載のユーザ選定装置。
【請求項4】
前記ユーザ影響力算出部は、前記話題についての投稿を実施したユーザ、及び、拡散投稿を実施するユーザ候補の両者をお気に入りユーザとして設定しているユーザ群における各ユーザについて、前記ユーザ影響モデルを利用して影響力を算出し、当該影響力の前記ユーザ群についての和を前記ユーザ候補の影響力として算出する処理を、前記ユーザ候補となる各ユーザに対して実行し、影響力の高い順にユーザを出力する
請求項1ないし3にうちいずれか1項に記載のユーザ選定装置。
【請求項5】
前記ユーザ影響力算出部は、ユーザに付与されたメタデータを活用することで、特定のユーザ層に限定したユーザへの影響力を算出する
請求項1ないし4のうちいずれか1項に記載のユーザ選定装置。
【請求項6】
前記第一のユーザの投稿を前記第二のユーザが拡散投稿することにより、フィードフォワードループ構造が形成される
請求項1ないし5のうちいずれか1項に記載のユーザ選定装置。
【請求項7】
あるコミュニティに属するユーザに対し、拡散投稿を行うことで広く影響を与える可能性が高いユーザを選定するためのユーザ選定装置が実行するユーザ選定方法であって、
SNSによる投稿を蓄積する投稿データベースを参照することにより、第一のユーザの投稿を第二のユーザが拡散投稿することで、第三のユーザが当該投稿にインタラクションを行ったかどうかのデータに基づいて、前記第三のユーザがインタラクションを行う条件をモデル化したユーザ影響モデルを構築するユーザ影響モデル構築ステップと、
前記コミュニティ内の複数のユーザに影響を与えたい話題を入力として受け取り、前記ユーザ影響モデルを利用して、拡散投稿を行うことで前記コミュニティ内の複数のユーザに影響力を与える可能性が高いユーザを算出するユーザ影響力算出ステップと
を備えるユーザ選定方法。
【請求項8】
コンピュータを、請求項1ないし6のうちいずれか1項に記載のユーザ選定装置の各部として機能させるためのプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ある特定の話題がコミュニティ内で広く興味関心を集めている状態を作り出すための技術に関連するものである。
【背景技術】
【0002】
ある特定の話題がコミュニティ内で広く興味関心を集めている状態を作り出すための従来技術として、注目度の高いユーザに情報発信を依頼するという方法が知られている。この方法では、例えば、SNS(ソーシャルネットワークサービス)におけるフォロワー数が多いユーザに情報発信を依頼する。また、情報自体の質が高い方がユーザの興味関心を引く可能性が高いことは自明であり、そのような観点から、一例として、特許文献1には、評価に関する質を高める方法が開示されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
従来技術においては、複数経路で同じ情報が伝わることで人は影響を受けやすくなるという観点を考慮していない。そのため、この観点を考慮することでコミュニティ内でより興味関心を引く効果を高められると考えられる。また、人は自身と関係性の強いユーザから発信された情報のほうが興味関心を引かれやすいということが知られている。つまり、複数経路で自身と関係性の強いユーザから同一の情報を見ることにより、興味関心を引く効果をさらに高められることが考えられる。
【0005】
しかし、従来技術においては、コミュニティ内に存在するユーザの中でどのユーザが多くの人に対し、複数経路で同じ情報を伝える効果が高いユーザであるかを特定する手段がなかった。
【0006】
本発明は上記の点に鑑みてなされたものであり、情報を拡散することで、ネットワーク内に大きな影響を与えることができるユーザを選定するための技術を提供することを目的とする。
【課題を解決するための手段】
【0007】
開示の技術によれば、あるコミュニティに属するユーザに対し、拡散投稿を行うことで広く影響を与える可能性が高いユーザを選定するためのユーザ選定装置であって、
SNSによる投稿を蓄積する投稿データベースを参照することにより、第一のユーザの投稿を第二のユーザが拡散投稿することで、第三のユーザが当該投稿にインタラクションを行ったかどうかのデータに基づいて、前記第三のユーザがインタラクションを行う条件をモデル化したユーザ影響モデルを構築するユーザ影響モデル構築部と、
前記コミュニティ内の複数のユーザに影響を与えたい話題を入力として受け取り、前記ユーザ影響モデルを利用して、拡散投稿を行うことで前記コミュニティ内の複数のユーザに影響力を与える可能性が高いユーザを算出するユーザ影響力算出部と
を備えるユーザ選定装置が提供される。
【発明の効果】
【0008】
開示の技術によれば、情報を拡散することで、ネットワーク内に大きな影響を与えることができるユーザを選定することが可能となる。
【図面の簡単な説明】
【0009】
【
図1】本発明の実施の形態における装置構成図である。
【
図2】ユーザ選定装置の動作を説明するためのフローチャートである。
【
図5】フィードフォワードループ構造の例を示す図である。
【発明を実施するための形態】
【0010】
以下、図面を参照して本発明の実施の形態(本実施の形態)を説明する。以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。
【0011】
(実施の形態の概要)
まず、本実施の形態の概要を説明する。本実施の形態では、ユーザAを示すノード、ユーザBを示すノード、ユーザCを示すノードからなる3ノードのフィードフォワードループ構造に基づいて、あるユーザAが投稿した情報が、ユーザBによって拡散投稿される。つまり、ユーザAが投稿した情報を原投稿のまま、もしくはユーザBの所感を沿えて拡散する投稿が行われ、それをここでの興味関心を引きたいターゲットユーザCが閲覧したものとする。すなわち、フィードフォワードループ構造とは、ターゲットユーザCに対し複数のユーザからほぼ同一の情報が伝達されたことを示す最小の構造に相当する。
【0012】
ここで、通常SNS(ソーシャルネットワークサービス)においては、お気に入りに登録しているユーザ(フォローしているユーザ)の情報が自身のホーム画面に表示されることから、ユーザCはユーザAとユーザBをお気に入りに登録していると仮定することでユーザCが上記の様な閲覧を行う可能性が高いと考える。
【0013】
ここまでの状況下において、当該の投稿に対して、ユーザCがインタラクションを行ったか否かのデータに基づいて、例えば、高評価フラグを付与する等の行為を行ったか否かのデータに基づいて、ユーザCが特定条件下においてインタラクションを行うか、つまりは興味関心を引かれたかの度合いを算出するためのユーザ影響モデルを構築する。
【0014】
当該モデルを用いて、ある話題に関して、広くコミュニティ内の複数のユーザに影響を与えうるユーザの影響力ランキングを構築し、その話題の投稿を依頼すべきユーザを特定することを可能とする。
【0015】
上記の方法により、情報を拡散することで、ネットワーク内に大きな影響を与えることができるユーザを特定することが可能となる。以下、上記の動作を実現する装置の構成と動作を詳細に説明する。
【0016】
(装置構成例)
図1に、本実施の形態におけるユーザ選定装置100の構成例を示す。ユーザ選定装置100は、多数の端末10を接続するネットワーク200に接続されている。ネットワーク200は例えばインターネットである。なお、「端末」を「ユーザ」と呼んでもよい。
【0017】
ネットワーク200上では、SNSサービスが提供され、各端末10によりSNSサービスが利用されている。当該SNSサービスは、投稿配信、投稿評価(「いいね」等)、拡散投稿等を行うことを可能とするよく知られた一般的なSNSサービスである。拡散投稿の具体例としてリツイート(登録商標)がある。なお、拡散投稿をRTと略記してもよい。
【0018】
図1に示すように、ユーザ選定装置100は、投稿収集部110、投稿データベース120、ユーザ影響モデル構築部130、ユーザ影響モデル保管部140、ユーザ影響力算出部150、問い合わせ受付・結果出力部160を備える。各部の動作については後述する。
【0019】
ユーザ選定装置100は、1つのコンピュータで実現されてもよいし、複数のコンピュータがネットワーク接続されて実現されてもよい。また、ユーザ選定装置100は、クラウド上の仮想マシンであってもよい。
【0020】
また、投稿収集部110、投稿データベース120、ユーザ影響モデル保管部140はいずれもユーザ選定装置100の外部に備えられていてもよい。また、ユーザ影響力算出部150内に問い合わせ受付・結果出力部160が含まれていてもよい。
【0021】
(ユーザ選定装置100の動作例)
以下、
図2のフローチャートに示す手順に沿ってユーザ選定装置100の動作例を説明する。
【0022】
<S101:投稿収集>
S101において、投稿収集部110が、ネットワーク200上のSNSサービスから投稿を収集し、投稿データベース120の形式に従う形で整理を行い、投稿データベース120に投稿内容を蓄積する。
【0023】
投稿データベース120の形式の例を
図3に示す。
図3に示すように、投稿データベース120は、投稿ID、投稿ユーザ、投稿ユーザのフォロワー数、投稿内容、RTフラグ(拡散投稿かどうかを示すフラグ)、RT元投稿ID(拡散投稿された元の投稿のID)、投稿ユーザのフォローリスト、「いいね」をしたユーザリストの項目を有する。
【0024】
<S102:中間生成データベースを生成>
S102において、ユーザ影響モデル構築部130は、ユーザ影響モデルの構築のために使用するデータを投稿データベース120から抽出し、別のデータベース(中間生成データベースと呼ぶ)に保管する。
図4に中間生成データベースの形式の例を示す。具体的には下記のようにして中間生成データベースを生成する。
【0025】
ユーザ影響モデル構築部130は、例えば、1日1回深夜にバッチ処理を行うような形で、投稿データベース120から、あるユーザAが投稿した情報が、別のユーザBにより拡散投稿されたケースにおいて、ユーザAとユーザBの両者をお気に入りユーザに登録しているユーザCが当該拡散投稿された投稿に対して高評価を付与したか否かが判明した場合に、
図4に示した各数値を投稿データベース200から充足する形で1行として保管していく。
【0026】
図4に加えて
図5を参照して例を説明する。
図5は、ユーザA、ユーザB、ユーザCの3つのノードを有するフィードフォワードループ構造の例を示す。ここでは、
図4のレコードの一行目を例にとって説明する。
図5における1~5の番号は、
図4での1~5の番号に対応する。
【0027】
図4一行目のユーザ名aaのユーザが
図5のユーザCであるとする。このとき、
図4の「RTユーザ」(拡散投稿をしたユーザ)が
図5のユーザBであり、「RT元ユーザ」(拡散された投稿を投稿したユーザ)がユーザAである。
【0028】
図4の一行目の例において、ユーザAが投稿した情報が、別のユーザBにより拡散投稿され、AとBの両者をお気に入りユーザに登録しているユーザC(ユーザ名aa)が当該投稿に対して高評価を付与している。
【0029】
この場合、高評価というインタラクションが有なので、「インタラクションの有無」は「TRUE」になる。そして、3に示すユーザB(RTユーザ)のフォロワー数、4に示すユーザCとユーザB(RTユーザ)との間のインタラクション数、1に示すユーザA(RT元ユーザ)のフォロワー数、2に示すユーザCとユーザA(RT元ユーザ)との間のインタラクション数、及び5に示す拡散投稿された投稿のいいねの数が投稿データベース120から抽出され、中間生成データベースに格納される。
【0030】
なお、2に示すユーザAとユーザCとの間のインタラクション数とは、例えば、直近n日間において、ユーザCがユーザAの投稿に対していいねを行った回数である。4に示すユーザBとユーザCとの間のインタラクション数も同様であり、例えば、直近n日間において、ユーザCがユーザBの投稿に対していいねを行った回数である。。
【0031】
投稿データベース120から、上記に示した条件に該当するデータを全て中間生成データベースに記録した後、S103に進む。
【0032】
<S103:ユーザ影響モデル構築>
S103において、ユーザ影響モデル構築部130は、中間生成データベース(
図4)に記録されたデータを用いて、中間生成データベースにおける1~5の各項目の値を説明変数とし、インタラクションの有無に関して、TRUEを1、FALSEを0の形で目的変数とし、ロジスティック回帰を適用して、最尤推定法によって各項目の重みパラメータを得る。このユーザ影響モデルはユーザ毎に算出する。
【0033】
具体的には、ユーザaaについてのユーザ影響モデルは下記の数式で表される。
【0034】
【数1】
上記の数式において、各変数の意味は下記のとおりである。
【0035】
y_aa…ユーザaaに対する影響度
a…RTユーザのフォロワー数
b…RTユーザとのインタラクション数
c…RT元ユーザのフォロワー数
d…RT元ユーザとのインタラクション数
e…RTされた投稿のいいねの数
k_n…最尤推定の結果得られたパラメータ
上記のようなユーザ影響モデルがユーザ毎にユーザ影響モデル保管部140に保管される。
【0036】
ユーザ影響モデル保管部140は、ユーザ影響モデルを保管し、ユーザ影響力算出部150の求めに応じて、指定されたユーザのユーザ影響モデルを出力する機能を有する。
【0037】
<S104:問い合わせ受信>
S104において、問合せ受付・結果出力部160は、広くコミュニティに属するユーザの興味関心を引かせたい話題に関する投稿を問い合わせという形で入力として受信する。
【0038】
コミュニティに属するユーザとは、例えば、あるSNSサービスを利用しているユーザである。例えば、ある者が、投稿Xに対して広くコミュニティに属するユーザの興味関心を引かせたい場合に、その者は、ユーザ選定装置100に対して、「投稿X」を問い合わせとして送信し、ユーザ選定装置100の問合せ受付・結果出力部160はこの問い合わせを受信する。
【0039】
<S105:ユーザ選定、選定結果出力>
S105において、ユーザ影響力算出部150は、問い合わせ受付・結果出力部160から、拡散投稿を実施するユーザ、及び広くコミュニティに属するユーザの興味関心を引かせたい話題に関する投稿を入力という形で受け取る。なお、"拡散投稿を実施するユーザ"とは特定のユーザではなく、拡散投稿を実施する候補となる任意のユーザである。
【0040】
その後、ユーザ影響力算出部150は、当該投稿を実施したユーザ、及び、拡散投稿を実施するユーザの両者をお気に入りユーザとして設定しているユーザ群を抽出する。そして、当該ユーザ群に属するユーザごとのユーザ影響モデルをユーザ影響力保管部140に問い合わせた上で、当該ユーザ影響モデルに従い数値を算出する、ことをユーザ群に属するユーザごとに繰り返し、その数値の和を、そのユーザ(拡散投稿を実施するユーザ)のユーザ影響力(ユーザ影響度と呼んでもよい)として問い合わせ受付・結果出力部160に出力する。
【0041】
具体的には、「広くコミュニティに属するユーザの興味関心を引かせたい話題に関する投稿」が「投稿X」であるとした場合に、
図5の構造を例にとって説明すると、「拡散投稿を実施するユーザ」が「ユーザB」に対応し、「投稿Xを実施したユーザ」が「ユーザA」に対応し、「ユーザ群」に属するあるユーザが「ユーザC」に対応する。
【0042】
この場合、ユーザCに対するユーザ影響モデル(数1の式)において、a、b、c、d、eはそれぞれ、ユーザBのフォロワー数、ユーザCとユーザBとの間のインタラクション数、ユーザAのフォロワー数、ユーザCとユーザAとの間のインタラクション数、投稿Xのいいねの数、として、投稿データベース120から得ることができる。
【0043】
上記のa、b、c、d、eと学習済みのモデルパラメータを使用して、数1の式を計算することにより、ユーザ群に属するあるユーザであるユーザCに対する、拡散投稿を行うあるユーザであるユーザBの影響力を算出できる。
【0044】
上記の計算をユーザ群に属する各ユーザに対して行って、結果の和をとることにより、ユーザB(拡散投稿を行うあるユーザ)のユーザ影響力を算出できる。これは、
図5において、Cを特定せずに、Cへの影響度の総和をBの影響力とすることを意味する。
【0045】
上記の和まで含めた計算式を下記に示す。下記の計算式による計算は上記の説明における計算と同じである。
【0046】
【数2】
上記の式における各変数の意味は下記のとおりである。なお、「トピック」は「投稿」と言い換えてもよい。また、ユーザiは上記の説明におけるユーザCに対応し、ユーザaaは上記の説明におけるユーザBに対応し、トピックTを投稿したユーザは上記の説明におけるユーザAに対応する。
【0047】
Infl_aa…ユーザaaの影響力
T…トピック
i…ユーザ
a…ユーザaaのフォロワー数
b…ユーザaaとiとのインタラクション数
Tc…トピックTを投稿したユーザのフォロワー数
Td…トピックTを投稿したユーザとiとのインタラクション数
Te…トピックTの投稿のいいね数
k_n…ユーザ影響モデル保管部140が保管している最尤推定の結果得られているパラメータ
なお、上述のユーザ群に関しては、ユーザにメタデータ(一例として、年齢や性別、もちろんこれに限らない)が付与されている場合には、例えば、「当該投稿を実施したユーザ、及び、拡散投稿を実施するユーザの両者をお気に入りユーザとして設定しているユーザ群」のうち、20代女性のみを上記における影響モデルに従い数値を算出する際のユーザ群とすることで、特定のユーザ層に対してのユーザ影響力を算出することも可能である。
【0048】
問合せ受付・結果出力部160は、当該コミュニティに属するユーザごとに、拡散投稿を実施するユーザの候補として、当該投稿と合わせてユーザ影響力算出部150の入力として問い合わせを行い、ユーザごとのユーザ影響力を出力として受け取る。このユーザ影響力を数値の降順にしてまとめ、拡散投稿の実施を依頼すべきユーザとして結果を出力する。
【0049】
一例として、拡散投稿を実施するユーザの候補としてユーザ1、ユーザ2、ユーザ3が存在し、ユーザ1についてユーザ影響力として100が得られ、ユーザ2についてユーザ影響力として1500が得られ、ユーザ3についてユーザ影響力として300が得られた場合、問合せ受付・結果出力部160は、ユーザ2、ユーザ3、ユーザ1の順で出力を行う。この出力を受信した者は、例えば、ユーザ2に対して、当該投稿を拡散投稿することを依頼する。
【0050】
なお、上記の例では、広くコミュニティに属するユーザの興味関心を引かせたい話題に関する投稿という形で問い合わせを入力する例を示したが、これは一例である。話題という粒度で入力を受付け、投稿データベース120における投稿内容を検索することにより以降の処理で利用する投稿を定めることとしてもよい。
【0051】
なお、「投稿」は「話題」の具体例であることから、「話題」の意味に「投稿」が含まれることとしてもよい。
【0052】
(ハードウェア構成例>
ユーザ選定装置100は、例えば、コンピュータにプログラムを実行させることにより実現できる。このコンピュータは、物理的なコンピュータであってもよいし、クラウド上の仮想マシンであってもよい。
【0053】
すなわち、ユーザ選定装置100は、コンピュータに内蔵されるCPUやメモリ等のハードウェア資源を用いて、ユーザ選定装置100で実施される処理に対応するプログラムを実行することによって実現することが可能である。上記プログラムは、コンピュータが読み取り可能な記録媒体(可搬メモリ等)に記録して、保存したり、配布したりすることが可能である。また、上記プログラムをインターネットや電子メール等、ネットワークを通して提供することも可能である。
【0054】
図6は、上記コンピュータのハードウェア構成例を示す図である。
図6のコンピュータは、それぞれバスBSで相互に接続されているドライブ装置1000、補助記憶装置1002、メモリ装置1003、CPU1004、インタフェース装置1005、表示装置1006、入力装置1007、出力装置1008等を有する。
【0055】
当該コンピュータでの処理を実現するプログラムは、例えば、CD-ROM又はメモリカード等の記録媒体1001によって提供される。プログラムを記憶した記録媒体1001がドライブ装置1000にセットされると、プログラムが記録媒体1001からドライブ装置1000を介して補助記憶装置1002にインストールされる。但し、プログラムのインストールは必ずしも記録媒体1001より行う必要はなく、ネットワークを介して他のコンピュータよりダウンロードするようにしてもよい。補助記憶装置1002は、インストールされたプログラムを格納すると共に、必要なファイルやデータ等を格納する。
【0056】
メモリ装置1003は、プログラムの起動指示があった場合に、補助記憶装置1002からプログラムを読み出して格納する。CPU1004は、メモリ装置1003に格納されたプログラムに従って、ユーザ選定装置100に係る機能を実現する。インタフェース装置1005は、ネットワークに接続するためのインタフェースとして用いられる。表示装置1006はプログラムによるGUI(Graphical User Interface)等を表示する。入力装置1007はキーボード及びマウス、ボタン、又はタッチパネル等で構成され、様々な操作指示を入力させるために用いられる。出力装置1008は演算結果を出力する。
【0057】
(実施の形態の効果)
本実施の形態に係る技術により、情報を拡散することで、ネットワーク内に大きな影響を与えることができるユーザを選定することが可能となる。これにより、当該選定されたユーザに対して拡散投稿の依頼を行うことが可能となる。
【0058】
(実施の形態のまとめ)
本明細書には、少なくとも下記各項のユーザ選定装置、ユーザ選定方法、及びプログラムが開示されている。
(第1項)
あるコミュニティに属するユーザに対し、拡散投稿を行うことで広く影響を与える可能性が高いユーザを選定するためのユーザ選定装置であって、
SNSによる投稿を蓄積する投稿データベースを参照することにより、第一のユーザの投稿を第二のユーザが拡散投稿することで、第三のユーザが当該投稿にインタラクションを行ったかどうかのデータに基づいて、前記第三のユーザがインタラクションを行う条件をモデル化したユーザ影響モデルを構築するユーザ影響モデル構築部と、
前記コミュニティ内の複数のユーザに影響を与えたい話題を入力として受け取り、前記ユーザ影響モデルを利用して、拡散投稿を行うことで前記コミュニティ内の複数のユーザに影響力を与える可能性が高いユーザを算出するユーザ影響力算出部と
を備えるユーザ選定装置。
(第2項)
前記ユーザ影響モデル構築部は、前記第一のユーザのフォロワー数、前記第一のユーザと前記第三のユーザの間でのインタラクションの回数、前記第二のユーザのフォロワー数、前記第二のユーザと前記第三のユーザの間でのインタラクションの回数、前記第一のユーザが投稿した投稿に付与された評価値、及び、前記第三のユーザが当該投稿にインタラクションを行ったかどうかのデータに基づいて前記ユーザ影響モデルを構築する
第1項に記載のユーザ選定装置。
(第3項)
前記ユーザ影響モデル構築部は、ロジスティック回帰モデルにより前記ユーザ影響モデルを構築する
第1項又は第2項に記載のユーザ選定装置。
(第4項)
前記ユーザ影響力算出部は、前記話題についての投稿を実施したユーザ、及び、拡散投稿を実施するユーザ候補の両者をお気に入りユーザとして設定しているユーザ群における各ユーザについて、前記ユーザ影響モデルを利用して影響力を算出し、当該影響力の前記ユーザ群についての和を前記ユーザ候補の影響力として算出する処理を、前記ユーザ候補となる各ユーザに対して実行し、影響力の高い順にユーザを出力する
第1項ないし第3項にうちいずれか1項に記載のユーザ選定装置。
(第5項)
前記ユーザ影響力算出部は、ユーザに付与されたメタデータを活用することで、特定のユーザ層に限定したユーザへの影響力を算出する
第1項ないし第4項のうちいずれか1項に記載のユーザ選定装置。
(第6項)
前記第一のユーザの投稿を前記第二のユーザが拡散投稿することにより、フィードフォワードループ構造が形成される
第1項ないし第5項のうちいずれか1項に記載のユーザ選定装置。
(第7項)
あるコミュニティに属するユーザに対し、拡散投稿を行うことで広く影響を与える可能性が高いユーザを選定するためのユーザ選定装置が実行するユーザ選定方法であって、
SNSによる投稿を蓄積する投稿データベースを参照することにより、第一のユーザの投稿を第二のユーザが拡散投稿することで、第三のユーザが当該投稿にインタラクションを行ったかどうかのデータに基づいて、前記第三のユーザがインタラクションを行う条件をモデル化したユーザ影響モデルを構築するユーザ影響モデル構築ステップと、
前記コミュニティ内の複数のユーザに影響を与えたい話題を入力として受け取り、前記ユーザ影響モデルを利用して、拡散投稿を行うことで前記コミュニティ内の複数のユーザに影響力を与える可能性が高いユーザを算出するユーザ影響力算出ステップと
を備えるユーザ選定方法。
(第8項)
コンピュータを、第1項ないし第6項のうちいずれか1項に記載のユーザ選定装置の各部として機能させるためのプログラム。
【0059】
以上、本実施の形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
【符号の説明】
【0060】
10 端末
100 ユーザ選定装置
110 投稿収集部
120 投稿データベース
130 ユーザ影響モデル構築部
140 ユーザ影響モデル保管部
150 ユーザ影響力算出部
160 問い合わせ受付・結果出力部
200 ネットワーク
1000 ドライブ装置
1001 記録媒体
1002 補助記憶装置
1003 メモリ装置
1004 CPU
1005 インタフェース装置
1006 表示装置
1007 入力装置
1008 出力装置