IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東ソー株式会社の特許一覧

特許7540167疎水性MFI型ゼオライト、その製造方法、及びその用途
<>
  • 特許-疎水性MFI型ゼオライト、その製造方法、及びその用途 図1
  • 特許-疎水性MFI型ゼオライト、その製造方法、及びその用途 図2
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-08-19
(45)【発行日】2024-08-27
(54)【発明の名称】疎水性MFI型ゼオライト、その製造方法、及びその用途
(51)【国際特許分類】
   C01B 39/38 20060101AFI20240820BHJP
   B01J 20/18 20060101ALI20240820BHJP
   B01J 20/30 20060101ALI20240820BHJP
   B01D 15/00 20060101ALI20240820BHJP
   B01J 29/40 20060101ALN20240820BHJP
【FI】
C01B39/38 ZAB
B01J20/18 B
B01J20/30
B01D15/00 A
B01J29/40 Z
【請求項の数】 8
(21)【出願番号】P 2020040794
(22)【出願日】2020-03-10
(65)【公開番号】P2021143078
(43)【公開日】2021-09-24
【審査請求日】2023-02-15
(73)【特許権者】
【識別番号】000003300
【氏名又は名称】東ソー株式会社
(72)【発明者】
【氏名】岡庭 宏
【審査官】▲高▼橋 真由
(56)【参考文献】
【文献】中国特許出願公開第105329914(CN,A)
【文献】国際公開第2019/132482(WO,A1)
【文献】特開2017-114755(JP,A)
【文献】特開2021-080132(JP,A)
【文献】特開平04-210235(JP,A)
【文献】特開2011-073913(JP,A)
【文献】特開2018-154538(JP,A)
【文献】特開2019-150822(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C01B 39/38
B01J 20/18
B01J 20/30
B01D 15/00
B01J 29/40
JSTPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
25℃、相対湿度60%における水分吸着量が(8g/ゼオライト100g)以下、かつ25℃、0.01kPaにおけるトルエン吸着量が(5g/ゼオライト100g)以上、かつSiO/Alモル比が20~39の範囲であることを特徴とする疎水性MFIゼオライト(但し、フレームワークにホウ素を含むマイクロ細孔とメソ細孔を複合したZSM-5ゼオライトを除く)
【請求項2】
ナトリウム、カリウム、セシウム、鉄、銅、銀、白金、ルテニウム、ロジウム、パラジウム及びイリジウムからなる群より選ばれる1種以上の金属を含有することを特徴とする請求項1に記載の疎水性MFIゼオライト。
【請求項3】
母材となるゼオライトを500℃~900℃の温度で水蒸気と接触させることを特徴とし、前記母材となるゼオライトがアンモニアタイプである請求項1または請求項2に記載の疎水性MFIゼオライトの製造方法。
【請求項4】
母材となるゼオライトが有機構造指向剤を使用せずに結晶化したゼオライトであることを特徴とする請求項3に記載の疎水性MFIゼオライトの製造方法。
【請求項5】
母材となるゼオライトが有機構造指向剤を使用して結晶化したゼオライトであって、500℃~900℃の温度で水蒸気と接触させる方法が有機構造指向剤を熱分解処理する工程で水蒸気と接触させる方法であることを特徴とする請求項3に記載の疎水性MFIゼオライトの製造方法。
【請求項6】
請求項1または請求項2に記載の疎水性MFIゼオライトを含有する有機化合物吸着剤。
【請求項7】
請求項6に記載の有機化合物吸着剤を、少なくとも1種の有機化合物を含む流体と接触させ、流体から該有機化合物を除去する有機化合物の除去方法。
【請求項8】
請求項1または請求項2に記載の疎水性MFIゼオライトを含有する有機化合物転化触媒。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、疎水性MFIゼオライト、その製造方法、及びその用途に関する。本発明の疎水性MFIゼオライトは、例えば、水蒸気を含む混合ガスから有機化合物を選択的に吸着除去する、または吸着回収する用途や、水との競争反応プロセスに使用する触媒用途に有用である。
【背景技術】
【0002】
塗装設備、印刷設備、工業製品の洗浄設備等から排出される有機化合物は、浮遊粒子状物質や光化学オキシダント等の大気汚染の原因とされており、排出量の削減が求められている。そして、該有機化合物の削減のために、種々の有機化合物吸着剤が開発されている。
【0003】
近年、ゼオライトを用いた有機化合物吸着剤が提案されている。一般にSiO/Alモル比が低いゼオライトは水分吸着量が高いために、相対的に有機化合物の吸着量が低下したり、吸着した有機化合物および水分を加熱除去して吸着剤を再生する際に多くのエネルギーを要する。このため、水分吸着量が少ない、即ち一般に疎水性が高いとされるSiO/Alモル比が高いゼオライトが使用されている。
【0004】
疎水性が高いMFIゼオライトとして、特許文献1に、SiO/Alモル比が100~1500のMFI型ゼオライトを疎水化する方法が提案されている。しかしながら、SiO/Alモル比が100~1500のMFI型ゼオライトを得るためには、高価な有機構造指向剤を使用して合成する、または、低SiO/Alモル比のMFI型ゼオライトを酸処理によりSiO/Alモル比を高める必要があった。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2017-114755号
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明は、従来の低SiO/Alモル比のゼオライトでは得られなかった、高い疎水性と高い有機化合物吸着能を兼ね備えた疎水性MFIゼオライトを提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明者らは、上記課題を解決するために鋭意検討した結果、特定の疎水性MFIゼオライトが上記課題を解決できることを見出し、本発明を完成するに至った。
【0008】
すなわち、本発明は、
25℃、相対湿度(以下、「RH」ともいう。)60%における水分吸着量が(8g/ゼオライト100g)以下、かつ25℃、0.01kPaにおけるトルエン吸着量が(5g/ゼオライト100g)以上、かつSiO/Alモル比が20~100の範囲であることを特徴とする疎水性MFIゼオライト、その製造方法、及びその用途に係る。
【0009】
以下、本発明について詳細に説明する。
【0010】
本発明の一つの態様は、25℃、RH60%における水分吸着量が(8g/ゼオライト100g)以下、かつ25℃、0.01kPaにおけるトルエン吸着量が(5g/ゼオライト100g)以上、かつSiO/Alモル比が20~100の範囲であることを特徴とする疎水性MFIゼオライトである。
【0011】
本発明において、水分吸着量は、温度25℃、平衡圧力がP/P=0.6、P=1.90kPa(RH60%)における水の平衡吸着量をゼオライト100g当りの質量に換算したものであり、トルエン吸着量は、温度25℃、平衡圧力P=0.01kPaにおける平衡吸着量をゼオライト100g当りの質量に換算したものである。水分吸着量が低いものほど「疎水性が高い」、トルエン吸着量が高いものほど「有機化合物吸着能が高い」と評価できる。そして、本発明は、25℃、RH60%における水分吸着量が(8g/ゼオライト100g)以下、かつ25℃、0.01kPaにおけるトルエン吸着量が(5g/ゼオライト100g)以上であることで、高い疎水性と高い有機化合物吸着能を兼ね備えることを特徴とする。さらに、25℃、RH60%における水分吸着量は(6g/ゼオライト100g)以下であることが好ましく、(5g/ゼオライト100g)以下であることがより好ましい。該水分吸着量の下限は限定されず、低い方が好ましい。25℃、0.01kPaにおけるトルエン吸着量は(6g/ゼオライト100g)以上であることが好ましく、(7g/ゼオライト100g)以上であることがより好ましい。該トルエン吸着量の上限は限定されず、高い方が好ましい。
【0012】
本発明の疎水性ゼオライトは、国際ゼオライト学会(International Zeolite Association)によりMFI構造に分類された構造を有するゼオライトである。
【0013】
本発明の疎水性MFIゼオライトは、生産性の向上及び廃酸の低減の観点から、SiO/Alモル比が20~100の範囲であり、20~80の範囲であることが好ましい。
【0014】
本発明の疎水性MFIゼオライトは、有機化合物吸着剤として使用する際のより高い吸着選択性及び耐熱性の観点、並びに、吸着した有機化合物の酸化分解などの機能付与の観点から、ナトリウム、カリウム、セシウム、鉄、銅、銀、白金、ルテニウム、ロジウム、パラジウム及びイリジウムからなる群より選ばれた1種以上の金属を含有することができる。
【0015】
金属成分を含有させる方法は特に限定されず、イオン交換法、含浸法、蒸発乾固法などが使用できる。イオン交換法としては、ゼオライトと所望のイオンを含有する溶液とをゼオライト中のイオン量が所望の濃度になるまで接触させる方法が挙げられる。回分法、流通法など一般的なイオン交換法が適用可能である。
【0016】
本発明において、成形体やハニカム構造体の有機化合物吸着剤を製造する際には、ゼオライト粉末に金属を含有させた後に成形体やハニカム構造体とすることも、ゼオライト粉末を成形体やハニカム構造体とした後に金属を含有させることも、いずれでも可能である。
【0017】
次に本発明の疎水性MFIゼオライトの製造方法について説明する。
【0018】
該製造方法としては、本発明の疎水性MFIゼオライトが製造できれば、特に制限はないが、母材となるゼオライトを500℃~900℃の温度で水蒸気と接触させる製造方法が挙げられる。当該製造方法については、母材となるゼオライトを水蒸気処理することによって疎水性を高めることを目的とする。当該製造方法によって得られる疎水性MFIゼオライトについては、その25℃、RH60%における水分吸着量が、母材となるゼオライトの同水分吸着量より少ないことを特徴とする。
【0019】
母材となるゼオライトとしては、SiO/Alモル比が20~100の合成ゼオライトが好適に使用できる。
【0020】
母材となるゼオライトの製造方法としては、例えば、シリカ源、アルミナ源、及びアルカリ源の混合物について、必要に応じて有機構造指向剤を添加(以下、「原料混合物」ともいう。)したうえで、原料混合物を水熱下で結晶化することが挙げられる。
【0021】
シリカ源としては、例えば、コロイダルシリカ、無定型シリカ、珪酸ナトリウム、テトラエチルオルトシリケート、アルミノシリケートゲル等が挙げられる。
【0022】
アルミナ源としては、例えば、硫酸アルミニウム、アルミン酸ナトリウム、水酸化アルミニウム、塩化アルミニウム、アルミノシリケートゲル、金属アルミニウム等が挙げられる。シリカ源及びアルミナ源は、他の原料と十分均一に混合できる形態のものが好ましい。
【0023】
アルカリ源としては、例えば、ナトリウム、カリウム、アンモニウムの水酸化物、ハロゲン化物、硫酸塩、硝酸塩、炭酸塩などの各種の塩、アルミン酸塩中、珪酸塩中、アルミノシリケートゲル中のアルカリ成分等が挙げられる。
【0024】
有機構造指向剤としては、例えばテトラプロピルアンモニウムヒドロキシド、テトラプロピルアンモニウムブロミド等が挙げられる。
【0025】
ゼオライトの結晶化はオートクレーブを使用することができ、結晶化の温度(水熱下の温度)は100℃以上250℃以下、好ましくは110℃以上200℃以下、より好ましくは120℃以上190℃以下とすることができる。結晶化時間は12時間以上84時間以内、好ましくは14時間以上72時間以内、より好ましくは16時間以上48時間以内とすることができる。結晶化は静置、撹拌下のいずれでも行うことができる。
【0026】
結晶化終了後は、固液分離を行い、余剰のアルカリ溶液を純水、温水などで洗浄することができる。また、洗浄後は乾燥することができる。乾燥温度としては、例えば、80℃以上200℃以下、好ましくは90℃以上190℃以下が挙げられる。有機構造指向剤を含む場合は、乾燥後に熱分解処理によって除去することができる。
【0027】
母材となるゼオライトとしては、OSDAフリー合成と呼ばれる有機構造指向剤を添加せずに合成したゼオライト、他構造ゼオライトを構造転換して合成したゼオライト、ドライゲルコンバージョンなどにより合成したゼオライト等も好適に使用できる。高価な有機構造指向剤を添加せずに合成したMFI型ゼオライトを用いることが経済的に好ましい。
【0028】
本発明において、母材となるゼオライトとしては、結晶化終了後に得られた構造指向剤を含有したままのゼオライトを使用することができるし、製造時に用いられた構造指向剤を除去したゼオライトを使用することもできるし、構造志向剤を除去した後、酸性溶液と接触させることにより、脱アルミニウムしてSiO/Alモル比を20~100としたゼオライトを使用することができる。
【0029】
本発明の疎水性MFIゼオライトは、母材となるゼオライトを好ましくは10~100容量%、より好ましくは10~80容量%の水蒸気と、500℃~900℃、より好ましくは600~850℃の温度で、30分から5時間の時間接触させることにより好適に製造することができる。水蒸気の濃度が10容量%~80容量%のとき、より優れた疎水性を発現することができる。また、接触させる温度が600℃~850℃のとき、より優れた疎水性及びより高い結晶度を発現することができる。
【0030】
母材となるゼオライトが有機構造指向剤を使用して結晶化したゼオライトの場合、該ゼオライトを、有機構造指向剤を熱分解処理後、または有機構造指向剤を熱分解処理する工程で、上述の条件で水蒸気と接触させることで、本発明の疎水性MFIゼオライトを製造することができる。
【0031】
母材となるゼオライトとしては、細孔構造を維持するために、合成時に存在するアルカリ金属を除去したプロトンタイプ、またはアンモニアタイプのゼオライトであることが好ましい。アルカリ金属を含有したゼオライトを使用する際には、該ゼオライトを、上述の水蒸気接触条件の中でより低温、水蒸気がより低濃度、またはより短時間の条件で水蒸気と接触させることが好ましい。
【0032】
本発明の疎水性MFIゼオライトを含有する有機化合物吸着剤は、特に揮発性有機化合物吸着剤として優れた効果を有する。該有機化合物吸着剤により、湿度が高い雰囲気中、又は水中の有機化合物を、水分の影響を低減して吸着除去する、または吸着回収することが可能となる。従って、該有機化合物吸着剤は、少なくとも1種の有機化合物を含む流体と接触させ、流体から該有機化合物を除去する有機化合物の除去方法として有用であり、例えば、塗装設備、印刷設備、工業製品の洗浄設備等から排出される排ガス、又は排水中の有機化合物の吸着除去/回収に使用される吸着剤や、自動車排ガス中の有機炭化水素成分を吸着除去する吸着剤として有用に使用できる。
【0033】
本発明の疎水性MFIゼオライトを含有する触媒は、水が共存、または副生する反応系中で炭化水素の反応をおこなう際に、ゼオライト触媒上への反応物の吸着過程が水との競争吸着となる反応において、水による反応阻害を低減する触媒として有用に使用できる。
【0034】
本発明の疎水性MFIゼオライトは、有機化合物吸着剤、または触媒として、製造されたままの粉体状態で使用することができるが、ビーズやペレット、三つ葉状など所望の形状に成形した成形体として使用したり、本発明の疎水性MFIゼオライト粉体をスラリー化してハニカム状の基材に塗布したハニカム構造体として使用することができる。
【0035】
本発明の疎水性MFIゼオライトは、有機化合物吸着剤、または触媒として使用する際に、他のゼオライトと混合して使用することができる。
【発明の効果】
【0036】
従来のゼオライトでは得られなかった、高い疎水性と高い有機化合物吸着能を兼ね備え、かつ、低SiO/Alモル比である疎水性MFIゼオライトを提供することができる。
【図面の簡単な説明】
【0037】
図1】実施例および比較例の25℃における水の吸着等温線
図2】実施例の25℃におけるトルエンの吸着等温線
【実施例
【0038】
以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらに限定されるものではない。
【0039】
<水分吸着量及びトルエンの吸着量の測定>
吸着量の測定は、定容量式吸着測定装置(BELSORP MAXII:マイクロトラックベル社製)を使用した。各実施例及び比較例で用いた試料は350℃で2時間、10Pa以下の真空下で前処理した。吸着温度は25℃で測定した。
【0040】
実施例1
市販のアンモニアタイプMFI型ゼオライト(HSZ-820NHA:東ソー製、SiO/Alモル比23)10gを、700℃、20容量%水蒸気雰囲気で2時間熱処理(水蒸気と接触)することにより本発明の疎水性MFIゼオライトを得た。SiO/Alモル比は23であった。また、25℃における水分吸着量およびトルエン吸着量を図1、2、および表1にそれぞれ示した。
【0041】
実施例2
市販のアンモニアタイプMFI型ゼオライト(HSZ-840NHA:東ソー製、SiO/Alモル比39)10gを、650℃、20容量%水蒸気雰囲気で2時間熱処理(水蒸気と接触)することにより本発明の疎水性MFIゼオライトを得た。SiO/Alモル比は39であった。また、25℃における水分吸着量およびトルエン吸着量を図1、2、および表1にそれぞれ示した。
【0042】
比較例1
実施例1で原料として使用した市販のアンモニアタイプMFI型ゼオライト(HSZ-820NHA:東ソー製、SiO/Alモル比23)の25℃における水分吸着量を図1、および表1にそれぞれ示した。
【0043】
比較例2
実施例2で原料として使用した市販のアンモニアタイプMFI型ゼオライト(HSZ-840NHA:東ソー製、SiO/Alモル比39)の25℃における水分吸着量を図1、および表1にそれぞれ示した。
【0044】
【表1】
【0045】
図1図2および表1から明らかなように、本発明の疎水性MFIゼオライトは高い疎水性と高い有機化合物吸着性能を兼ね備えていた。
図1
図2