(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-08-26
(45)【発行日】2024-09-03
(54)【発明の名称】光導波路素子、光変調器、光変調モジュール、及び光送信装置
(51)【国際特許分類】
G02F 1/01 20060101AFI20240827BHJP
G02F 1/035 20060101ALN20240827BHJP
【FI】
G02F1/01 F
G02F1/035
(21)【出願番号】P 2020198518
(22)【出願日】2020-11-30
【審査請求日】2023-08-24
(73)【特許権者】
【識別番号】000183266
【氏名又は名称】住友大阪セメント株式会社
(74)【代理人】
【識別番号】110001081
【氏名又は名称】弁理士法人クシブチ国際特許事務所
(72)【発明者】
【氏名】岡橋 宏佑
【審査官】百瀬 正之
(56)【参考文献】
【文献】国際公開第2020/202609(WO,A1)
【文献】特開2008-004697(JP,A)
【文献】特開2018-206894(JP,A)
【文献】特開平05-291364(JP,A)
【文献】特開2014-187073(JP,A)
【文献】特開2019-152732(JP,A)
【文献】米国特許出願公開第2020/0064706(US,A1)
【文献】特開2019-129173(JP,A)
【文献】特開2020-166158(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02F 1/00-1/125
G02F 1/21-7/00
H01L 21/447-21/449
H01L 21/60-21/607
(57)【特許請求の範囲】
【請求項1】
光導波路と、導体ワイヤが接合される接合エリアを含む電極パッドと、を基板に備える光導波路素子であって、
前記基板上において前記接合エリアを囲む位置に段差を形成する中間層を、前記基板と前記電極パッドとの間に備
え、
前記中間層は、感光性永久膜で構成される、
光導波路素子。
【請求項2】
光導波路と、導体ワイヤが接合される接合エリアを含む
複数の電極パッドと、を基板に備える光導波路素子であって、
前記基板上において前記接合エリアを囲む位置に段差を形成する中間層を、前記基板と前記電極パッドとの間に備
え、
隣接する前記電極パッドの間隔は、10μm以下である、
光導波路素子。
【請求項3】
前記電極パッドを複数備え、
隣接する前記電極パッドの間隔は、10μm以下である、
請求項1に記載の光導波路素子。
【請求項4】
前記電極パッドは、1辺が300μm以下である、
請求項1ないし3のいずれか一項に記載の光導波路素子。
【請求項5】
前記中間層が形成する段差は、その平面視形状が、前記接合エリアの周囲を囲む円、複数の円弧、矩形、複数の直線、又は複数の屈曲ラインの形状部分を含む、
請求項1
ないし4のいずれか一項に記載の光導波路素子。
【請求項6】
前記中間層が形成する前記段差は、前記基板の面から測った前記電極パッドの下面の高さが、接合エリアに対応する部分において、当該接合エリアの周囲の部分の高さよりも低くなるように形成されている、
請求項1
ないし5のいずれか一項に記載の光導波路素子。
【請求項7】
前記中間層は、前記接合エリアの周囲に配された凸部を有する、
請求項
6に記載の光導波路素子。
【請求項8】
前記中間層は、前記接合エリアの全範囲に亘って開口する貫通穴又は凹部を有する、
請求項
6に記載の光導波路素子。
【請求項9】
前記中間層が形成する前記段差は、前記基板の面から測った前記電極パッドの下面の高さが、接合エリアに対応する部分において、当該接合エリアの周囲の部分の高さよりも高くなるように形成されている、
請求項1
ないし5のいずれか一項に記載の光導波路素子。
【請求項10】
前記中間層は、その上面が前記接合エリアの全範囲に延在する、
請求項9に記載の光導波路素子。
【請求項11】
前記中間層は、前記中間層の上面に突出する凸部を有し、
前記凸部は、その最上面が前記電極パッドの前記接合エリアの全範囲に延在する、
請求項
9に記載の光導波路素子。
【請求項12】
前記中間層は、前記接合エリアの周囲を囲む位置に溝を有する、
請求項
9に記載の光導波路素子。
【請求項13】
前記電極パッドは、前記中間層の全体を覆って形成されている、
請求項1ないし
12のいずれか一項に記載の光導波路素子。
【請求項14】
前記中間層は、厚さが1.0μm以上である、請求項1ないし
13のいずれか一項に記載の光導波路素子。
【請求項15】
光の変調を行う光変調素子である請求項1ないし
14のいずれか一項に記載の光導波路素子と、
前記光導波路素子を収容する筐体と、
前記光導波路素子に光を入力する光ファイバと、
前記光導波路素子が出力する光を前記筐体の外部へ導く光ファイバと、
を備える光変調器。
【請求項16】
光の変調を行う光変調素子である請求項1ないし
14のいずれか一項に記載の光導波路素子と、前記光導波路素子を駆動する駆動回路と、を備える光変調モジュール。
【請求項17】
請求項
15に記載の光変調器または請求項
16に記載の光変調モジュールと、
前記光導波路素子に変調動作を行わせるための電気信号を生成する電子回路と、
を備える光送信装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光導波路素子、光変調器、光変調モジュール、及び光送信装置に関する。
【背景技術】
【0002】
高速/大容量光ファイバ通信システムにおいては、基板上に形成された光導波路と、光導波路を伝搬する光波を制御する制御電極と、で構成される光導波路素子としての光変調素子を組み込んだ光変調器が多く用いられている。中でも、電気光学効果を有するLiNbO3(以下、LNともいう)を基板に用いた光変調素子は、光の損失が少なく且つ広帯域な光変調特性を実現し得ることから、高速/大容量光ファイバ通信システムに広く用いられている。
【0003】
特に、光ファイバ通信システムにおける変調方式は、近年の伝送容量の増大化の流れを受け、QPSK(Quadrature Phase Shift Keying)やDP-QPSK(Dual Polarization - Quadrature Phase Shift Keying)等、多値変調や、多値変調に偏波多重を取り入れた伝送フォーマットが主流となっており、基幹光伝送ネットワークにおいて用いられるほか、メトロネットワークにも導入されつつある。
【0004】
近年のインターネットサービスの普及加速は通信トラフィックのより一層の増大を招き、光通信システムについての、継続的な高速大容量化の検討が今も進められている。その一方で、装置の小型化に対する要求は不変であり、光変調素子そのものの小型化が必要とされる。例えば、OIF(OPTICAL INTERNETWORKING FORUM)が発行するHB-CDM(High Bandwidth Coherent Driver Modulator)に関する実装合意書(Inplementatioon Agreement、IA#OIF-HB-CDM-01.0)に規定されている筐体サを用いる場合には、内部に収容する光変調素子のサイズを、従来に比して約1/3程度まで低減する必要がある。
【0005】
光変調素子の小型化の一つの策として、例えば、リブ型導波路を用いた光変調素子(以下、リブ型光変調素子)が検討されている(例えば、特許文献1参照)。リブ型導波路は、LNを用いた基板を薄く加工したあと、ドライエッチング等により所望のストライプ状部分(リブ)を残して他の部分を更に薄く(例えば、基板厚さ10μm以下まで)加工することで、当該リブ部分の実効屈折率を他の部分より高めて光導波路としたものである。リブ型光変調素子では、Ti等の金属拡散を用いて作製された光導波路を用いる光変調素子に比べて、光の閉じ込め部分が上記リブ部分に限定されるため、光と電気との相互作用を効率的に発生させることができる。その結果、当該相互作用部分の長さを短くして、光変調素子の小型化を図ることが可能となる。
【0006】
一方で、光変調素子の小型化が進めば、光変調素子が形成される基板面積が縮小され、基板上に形成される電極パッド(ボンディング電極パッド)のサイズの縮小や電極パッド間の間隔の縮小も求められることとなる。電極パッド間隔の縮小は、電極パッドのパターンニング精度を向上すべく電極パッドの上限厚さを制限することとなり、電極パッドの厚さが薄いほど、導体ワイヤを電極パッド上にボンディングする際のボンディング強度は低くなる。このため、ボンディング位置を、電極パッドからはみ出ることなく電極パッド上により精度良く定めることのできる技術の実現が必要となり得る。
【0007】
特許文献2には、半導体素子の矩形電極パッドの4つの辺のそれぞれの中央に、半導体素子の面方向に突出する微小な凸部又は当該面方向に窪んだ微小な凹部を形成することが記載されている。この半導体素子では、ワイヤボンディング装置のワークの中央に電極パッドの中央を位置決めする際に、ワイヤボンディング装置が備える拡大顕微鏡のワークエリア画像において、十字カーソル(クロスヘア・カーソル)の縦線及び横線が、それぞれ、電極パッドの対向する左右二辺及び上下二辺に設けられた凸部又は凹部のペアを通過するように、ワークの位置が調整される。これにより、この半導体素子では、ワイヤボンディングの位置が精度良く調整され得る。
【0008】
また、特許文献3には、半導体素子において、電極パッド(ボンディングバッド)がそれぞれ形成されるシリコン基板表面上の2つの位置において、当該シリコン基板表面をエッチングすることで平面視が十字形状等の凹部パターンを形成することが記載されている。この半導体素子では、2か所の凹部パターン上にそれぞれ電極パッドが形成され、当該凹部パターンにより電極パッドの表面に形成される段差が、ワイヤボンディング装置が結線場所を把握するための基準点として用いられる。
【0009】
しかしながら、特許文献2に記載の半導体素子では、電極パッドのそれぞれにおいて基板面方向に凸部又は凹部を形成するため、凸部を形成した場合には電極パッドの間隔を狭める際の支障となり、凹部を形成した場合にはボンディング可能領域が削られることとなって電極パッド面積の縮小を制限し得る。また、特許文献3に記載の半導体素子では、基板エッチングのためにパターンニング工程ほかいくつかの工程が必要となり、プロセス工数の大幅な増大につながり得る。特に、上述したような10μm以下の厚さまで薄板化された基板に凹部パターンを形成した場合には、基板エッチングによる凹部形成は、基板強度の低下を招き、デバイスとしての信頼性にも影響を与え得る。
【先行技術文献】
【特許文献】
【0010】
【文献】特開2011-75917号公報
【文献】特開2000-12603号公報
【文献】特許第4352579号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
上記背景より、光導波路素子において、電極パッドのサイズや間隔を縮小した場合にも、基板エッチングを伴うことなく良好なボンディング位置精度を実現し得る技術の実現が求められている。
【課題を解決するための手段】
【0012】
本発明の一の態様は、光導波路と、導体ワイヤが接合される接合エリアを含む電極パッドと、を基板に備える光導波路素子であって、前記基板上において前記接合エリアを囲む位置に段差を形成する中間層を、前記基板と前記電極パッドとの間に備え、前記中間層は、感光性永久膜で構成される。
本発明の他の態様は、光導波路と、導体ワイヤが接合される接合エリアを含む複数の電極パッドと、を基板に備える光導波路素子であって、前記基板上において前記接合エリアを囲む位置に段差を形成する中間層を、前記基板と前記電極パッドとの間に備え、隣接する前記電極パッドの間隔は、10μm以下である。
本発明の他の態様によると、前記電極パッドを複数備え、隣接する前記電極パッドの間隔は、10μm以下である。
本発明の他の態様によると、前記電極パッドは、1辺が300μm以下である。
本発明の他の態様によると、前記中間層が形成する段差は、その平面視形状が、前記接合エリアの周囲を囲む円、複数の円弧、矩形、複数の直線、又は複数の屈曲ラインの形状部分を含む。
本発明の他の態様によると、前記中間層が形成する前記段差は、前記基板の面から測った前記電極パッドの下面の高さが、接合エリアに対応する部分において、当該接合エリアの周囲の部分の高さよりも低くなるように形成されている。
本発明の他の態様によると、前記中間層は、前記接合エリアの周囲に配された凸部を有する。
本発明の他の態様によると、前記中間層は、前記接合エリアの全範囲に亘って開口する貫通穴又は凹部を有する。
本発明の他の態様によると、前記中間層が形成する前記段差は、前記基板の面から測った前記電極パッドの下面の高さが、接合エリアに対応する部分において、当該接合エリアの周囲の部分の高さよりも高くなるように形成されている。
本発明の他の態様によると、前記中間層は、その上面が前記接合エリアの全範囲に延在する。
本発明の他の態様によると、前記中間層は、前記中間層の上面に突出する凸部を有し、前記凸部は、その最上面が前記電極パッドの前記接合エリアの全範囲に延在する。
本発明の他の態様によると、前記中間層は、前記接合エリアの周囲を囲む位置に溝を有する。
本発明の他の態様によると、前記電極パッドは、前記中間層の全体を覆って形成されている。
本発明の他の態様によると、前記中間層は、厚さが1.0μm以上である。
本発明の他の態様は、光の変調を行う光変調素子である上記いずれかの光導波路素子と、前記光導波路素子を収容する筐体と、前記光導波路素子に光を入力する光ファイバと、前記光導波路素子が出力する光を前記筐体の外部へ導く光ファイバと、を備える光変調器である。
本発明の他の態様は、光の変調を行う光変調素子である上記いずれかの光導波路素子と、前記光導波路素子を駆動する駆動回路と、を備える光変調モジュールである。
本発明の更に他の態様は、上記の光変調器または光変調モジュールと、前記光導波路素子に変調動作を行わせるための電気信号を生成する電子回路と、を備える光送信装置である。
【発明の効果】
【0013】
本発明によれば、光導波路素子において、電極パッドのサイズや間隔を縮小した場合にも、基板エッチングを伴うことなく良好なボンディング位置精度を実現し得る。
【図面の簡単な説明】
【0014】
【
図1】本発明の第1の実施形態に係る光変調器の構成を示す図である。
【
図2】
図1に示す光変調器に用いられる光変調素子の構成を示す図である。
【
図3】
図2に示す光変調素子のA部の部分詳細図である。
【
図6】
図4に示すB部におけるボンディング位置ずれの例を示す図である。
【
図9】
図8に示すC部のIX-IX断面矢視図である。
【
図13】
図12に示すE部のXIII-XIII断面矢視図である。
【
図17】
図16に示すG部のXVII-XVII断面矢視図である。
【
図19】
図18に示すH部のXIV-XIV断面矢視図である。
【
図21】
図20に示すJ部のXXI-XXI断面矢視図である。
【
図23】
図22に示すK部のXXIII-XXIII断面矢視図である。
【
図25】本発明の第2の実施形態に係る光変調モジュールの構成を示す図である。
【
図26】本発明の第3の実施形態に係る光送信装置の構成を示す図である。
【発明を実施するための形態】
【0015】
以下、図面を参照して、本発明の実施の形態を説明する。
[1.第1の実施形態]
図1は、本発明の第1の実施形態に係る光導波路素子である光変調素子104を用いた光変調器100の構成を示す図である。光変調器100は、筐体102と、当該筐体102内に収容された光変調素子104と、中継基板106と、を有する。光変調素子104は、例えばDP-QPSK変調器である。筐体102は、最終的にはその開口部に板体であるカバー(不図示)が固定されて、その内部が気密封止される。
【0016】
光変調器100は、また、光変調素子104の変調に用いる高周波電気信号を入力するための信号ピン108と、光変調素子104の動作点の調整に用いる電気信号を入力するための信号ピン110と、を有する。
【0017】
さらに、光変調器100は、筐体102内に光を入力するための入力光ファイバ114と、光変調素子104により変調された光を筐体102の外部へ導く出力光ファイバ120と、を筐体102の同一面に有する。
【0018】
ここで、入力光ファイバ114及び出力光ファイバ120は、固定部材であるサポート122及び124を介して筐体102にそれぞれ固定されている。入力光ファイバ114から入力された光は、サポート122内に配されたレンズ130によりコリメートされた後、レンズ134を介して光変調素子104へ入力される。ただし、これは一例であって、光変調素子104への光の入力は、従来技術に従い、例えば、入力光ファイバ114を、サポート122を介して筐体102内に導入し、当該導入した入力光ファイバ114の端面を光変調素子104の基板230(後述)の端面に接続することで行うものとすることもできる。
【0019】
光変調器100は、また、光変調素子104から出力される2つの変調された光を偏波合成する光学ユニット116を有する。光学ユニット116から出力される偏波合成後の光は、サポート124内に配されたレンズ118により集光されて出力光ファイバ120へ結合される。
【0020】
中継基板106は、当該中継基板106に形成された導体パターン(不図示)により、信号ピン108から入力される高周波電気信号および信号ピン110から入力される動作点調整用等の電気信号を、光変調素子104へ中継する。中継基板106上の上記導体パターンは、例えばワイヤボンディングにより、光変調素子104の電極の一端を構成する電極パッド(後述)にそれぞれ接続される。また、光変調器100は、所定のインピーダンスを有する終端器112を筐体102内に備える。
【0021】
図2は、
図1に示す光変調器100の筐体102内に収容される光変調素子104の構成の一例を示す図である。光変調素子104のサイズは、例えば、図示左右方向の長さが10mm以上20mm以下、図示上下方向の幅が2mm以上5mm以下である。光変調素子104は、基板230上に形成された光導波路(図示太線の点線)で構成され、例えば200GのDP-QPSK変調を行う。基板230は、例えば、20μm以下(例えば2μm)の厚さに加工され薄板化された、電気光学効果を有するXカットのLN基板である。LN基板は、MgO(酸化マグネシウム)がドープされていてもよい。
【0022】
また、上記光導波路は、薄板化された基板230の表面に形成された帯状に延在する凸部で構成される凸状光導波路(例えば、リブ型光導波路又はリッジ型光導波路)である。ここで、LN基板は、応力が加わると光弾性効果により屈折率が局所的に変化し得るため、基板全体の機械強度を補強すべく、一般的にはSi(シリコン)基板やガラス基板、LN等の支持板に接着される。本実施形態では、後述するように、基板230は、接着層500を介して支持板502に接着されている(例えば、
図5参照)。
【0023】
基板230は、例えば矩形であり、図示上下方向に延在して対向する図示左右の2つの辺280a、280b、および図示左右方向に延在して対向する図示上下の辺280c、280dを有する。なお、
図2においては、図示右上部に示す座標軸に示すとおり、
図2の紙面の奥へ(オモテ面からウラ面へ)向かう法線方向をX方向、図示右方向をY方向、図示下方向をZ方向とする。これらの座標軸は、例えば、LN基板である基板230の結晶軸であるX軸、Y軸、Z軸に対応する。
【0024】
光変調素子104は、基板230の図示左方の辺280aの図示下側において入力光ファイバ114からの入力光(図示右方を向く矢印)を受ける入力導波路232と、入力された光を同じ光量を有する2つの光に分岐する分岐導波路234と、を含む。また、光変調素子104は、分岐導波路234により分岐されたそれぞれの光を変調する2つの変調部である、いわゆるネスト型マッハツェンダ型光導波路240a、240bを含む。
【0025】
ネスト型マッハツェンダ型光導波路240a、240bは、それぞれ、一対の並行導波路を成す2つの導波路部分に一つずつ設けられた2つのマッハツェンダ型光導波路244a、246a、および244b、246bを含む。これにより、ネスト型マッハツェンダ型光導波路240a、240bは、分岐導波路234により2つに分岐された入力光のそれぞれをQPSK変調した後、変調後の光(出力)をそれぞれの出力導波路248a、248bから図示左方へ出力する。
【0026】
これら2つの出力光は、その後、基板230の外に配された光学ユニット116により偏波合成されて一つの光ビームにまとめられる。以下、光変調素子104の基板230上に形成された入力導波路232、分岐導波路234、並びにネスト型マッハツェンダ型光導波路240a、240b及びこれらに含まれるマッハツェンダ型光導波路244a、246a、244b、246b等々の光導波路を、総称して光導波路232等ともいうものとする。上述したように、これらの光導波路232等は、基板230上に帯状に延在する凸部により構成される凸状光導波路である。
【0027】
基板230上には、ネスト型マッハツェンダ型光導波路240a、240bを構成する合計4つのマッハツェンダ型光導波路244a、246a、244b、246bのそれぞれに変調動作を行わせるための、高周波電気信号が入力される信号電極250a、250b、250c、250dが設けられている。ここで、信号電極250a、250b、250c、250dに入力される高周波電気信号とは、例えばマイクロ波帯の電気信号である。
【0028】
信号電極250a、250b、250c、250dの図示右方は、基板230の図示右側の辺280bまで延在し、それぞれ電極パッド252a、252b、252c、252dに接続されている。また、信号電極250a、250b、250c、250dの図示左方は、図示下方へ折れ曲がって基板230の辺280dまで延在し、電極パッド252e、252f、252g、252hに接続されている。
【0029】
なお、信号電極250a、250b、250c、250dは、従来技術に従い、基板230上に形成されたグランド導体パターン(不図示)と共に、例えば、所定のインピーダンスを有するコプレーナ伝送線路を構成している。グランド導体パターンは、例えば、光導波路232等の上には形成されないように設けられ、グランド導体パターンのうち光導波路232等により分割されて形成される複数の領域間は、例えばワイヤボンディング等により互いに接続されるものとすることができる。
【0030】
図示右側の辺280bに配された電極パッド256a、252b、252c、252dは、ワイヤボンディングにより中継基板106と接続される。また、図示下側の辺280dに配された電極パッド252e、252f、252g、252hは、ワイヤボンディングにより、終端器112に搭載された4つの終端抵抗(不図示)にそれぞれ接続される。これにより、信号ピン108から中継基板106を介して電極パッド256a、252b、252c、252dに入力される高周波電気信号は、進行波となって信号電極250a、250b、250c、250dを伝搬し、マッハツェンダ型光導波路244a、246a、244b、246bを伝搬する光波をそれぞれ変調する。
【0031】
ここで、信号電極250a、250b、250c、250dが基板230内に形成する電界と、マッハツェンダ型光導波路244a、246a、244b、246bを伝搬する導波光と、の相互作用をより強めて高速変調動作をより低電圧で行い得るように、基板230は、20μm以下の厚さ、好適には10μm以下の厚さに形成される。本実施形態では、例えば、基板230の厚さは1.2μm、光導波路232等を構成する凸部の高さは0.7μmである。
【0032】
光変調素子104には、また、いわゆるDCドリフトによるバイアス点の変動を補償して動作点を調整するためのバイアス電極254a、254b、254cが設けられている。バイアス電極254aは、ネスト型マッハツェンダ型光導波路240a、240bのバイアス点変動の補償に用いられる。また、バイアス電極254bおよび254cは、それぞれ、マッハツェンダ型光導波路244a、246a、および244b、246bのバイアス点変動の補償に用いられる。
【0033】
バイアス電極254aは、基板230の図示上側の辺280cまで延在し、電極パッド256a、256b、256c、256dに接続されている。また、バイアス電極254bは、基板230の図示上側の辺280cまで延在し、電極パッド256e、256f、256g、256hに接続されている。同様に、バイアス電極254cは、基板230の図示上側の辺280cまで延在し、電極パッド256j、256k、256m、256nに接続されている。
【0034】
これらの電極パッド256a、256b、256c、256d、256e、256f、256g、256h、256j、256k、256m、256nは、それぞれ、中継基板106を介して信号ピン110のいずれかと接続され、これらの信号ピン110を介して、筐体102の外部に設けられるバイアス制御回路と接続される。これにより、バイアス制御回路によりバイアス電極254a、254b、254cが駆動されて、対応する各マッハツェンダ型光導波路に対しバイアス点変動を補償するように動作点が調整される。
【0035】
以下、信号電極250a、250b、250c、250dを、総称して信号電極250ともいう。また、バイアス電極254a、254b、254cを、総称してバイアス電極254ともいう。また、信号電極250の電極パッド252a、252b、252c、252d、252e、252f、252g、252hを総称して電極パッド252ともいう。また、バイアス電極254の電極パッド256a、256b、256c、256d、256e、256f、256g、256h、256j、256k、256m、256nを総称して電極パッド256ともいう。
【0036】
図3は、
図2に示す光変調素子104のA部の部分詳細図である。
図3には、バイアス電極254a、254b、254cの電極パッド256a、256b、256c、256d、256e、256f、256g、256h、256j、256k、256m、256nが、それぞれの電極パッド256に接続された導体ワイヤ(図示太線)と共に示されている。
【0037】
本実施形態では、電極パッド256は、基板230上に配された中間層の上に形成されている。ここで、中間層と、その上に形成された電極パッド256と、で構成される部分を、ボンディング部と称するものとする。また、導体ワイヤを接合すべき電極パッド256の表面のエリアを、接合エリアと称するものとする。
【0038】
本実施形態に係る光変調素子104は、特に、基板230上において電極パッド256の接合エリアを囲む位置に段差を形成する中間層を、基板230と電極パッド256との間に備える。これにより、中間層の上に形成される電極パッド256の上面には、上記中間層の段差に沿って、接合エリアを囲む位置に段差が形成される。
【0039】
以下、
図3に示す電極パッド256のいくつかを例にとり、それらの電極パッド256を含むそれぞれのボンディング部の構成について説明する。
【0040】
[1.1 B部の構成]
まず、ボンディング部の第1の構成例として、
図3に示すB部の構成について説明する。
図4は、B部の部分詳細図である。
図4では、電極パッド256aに導体ワイヤ310がボンディングされている。
【0041】
電極パッド256aは、基板230上に形成された中間層300aの上に形成されている。中間層300aの素材は、非金属でも金属でもよい。本実施形態では、中間層300aは、熱硬化性樹脂である。中間層300aを構成する熱硬化性樹脂は、例えば、フォトレジストであって、カップリング剤(架橋剤)を含み、熱により架橋反応が進行して硬化する、いわゆる感光性永久膜であるものとすることができる。
【0042】
中間層300aは、基板230上において接合エリアを囲む位置に段差を形成する。この段差は、基板230の面から測った電極パッド256aの下面の高さが、接合エリアに対応する部分において、当該接合エリアの周囲の部分の高さよりも低くなるように形成されている。
【0043】
具体的には、中間層300aは、平面視が矩形を成し、且つ電極パッド256aより大きなサイズで形成されている。そして特に、中間層300aは、接合エリアの全範囲に亘って開口する貫通穴400aを有する。ここで、電極パッド256aの接合エリアは円形であり、これに応じて、貫通穴400aの開口は、平面視が円形に形成されている。ただし、円形の接合エリアは一例であって、接合エリアは円形以外の他の任意の形状、例えば矩形や多角形であってもよい。これらの場合には、貫通穴400aの開口の形状は、接合エリアの平面視形状に合わせて、例えば矩形や多角形で形成され得る。
【0044】
図5は、
図4に示すB部のV-V断面矢視図である。基板230は、接着層500を介して支持板502に固定されている。ここで、支持板502は、例えばガラス基板、LN基板、Si基板等で構成される。
【0045】
基板230上には、その中央部に貫通穴400aを有する中間層300aが形成されており、貫通穴400aの内周が、基板230上において接合エリアを囲む位置に形成された段差を構成する。貫通穴400aにより、電極パッド256aの下面は、接合エリアの周囲の部分においては中間層300aの上面に接し、接合エリアに対応する部分においては当該上面より低い基板230の面に接することとなる。すなわち、中間層300aの貫通穴400aの内周が構成する段差は、基板230の面から測った電極パッド256aの下面の高さが、接合エリアに対応する部分において、当該接合エリアの周囲の部分の高さよりも低くなるように形成されている。
【0046】
この貫通穴400aの存在により、電極パッド256aの上面には、貫通穴400aに対応する位置に接合エリアを画定する窪み304aが形成される。具体的には、窪み304aの底面の範囲が、接合エリアに対応している。
【0047】
この窪み304aは、電極パッド256aの上面への導体ワイヤ310のボンディング作業においてボンディング位置を目視等で定める際のターゲットとして機能し、当該ワイヤボンディング作業におけるボンディング位置の設定精度を向上させ得る。また、この窪み304aは、貫通穴400aの開口サイズにより電極パッド256aのサイズに応じた大きさに設定され得るので、電極パッド256aのサイズや間隔を縮小した場合にも、ボンディング作業における良好なボンディング位置精度を実現して製造歩留まりを向上し得る。
【0048】
また、接合エリアを画定する窪み304aは基板230上に配された中間層300aの形状(B部においては貫通穴400aの形状)に沿って形成されるので、上述した従来技術とは異なり、基板230のエッチングを伴うことなく良好なボンディング位置精度を実現し得る。
【0049】
また、本実施形態のように樹脂で構成される中間層300aを用いる場合には、当該樹脂により基板230と電極パッド256の金属との間の熱膨張係数差に起因する応力が緩和され得るので、光変調素子104の機械強度や長期信頼性の観点で有利である。また、このような樹脂による中間層300aは、金属による中間層に比べてその厚さを容易に厚く形成できるので、窪み304aの深さを容易に制御して、上記ターゲットとしての窪み304aの良好な視認性を確保することができる。当該視認性の観点では、中間層300aの厚さは、1.0μm以上であることが望ましい。
図5に示すB部の例では、中間層300aは、2.0μmの厚さで形成されている。
【0050】
また、B部の構成によれば、接合エリアの外縁は窪み304aの内周が形成する段差により確定される。このため、例えば導体ワイヤ310のボンディング位置が窪み304aの範囲を超えてずれた場合には、
図6に示すように、窪み304aが形成する上記段差により、電極パッド256a上における導体ワイヤ溶融部の表面形状が崩れたり傾いたりし得る。このため、光変調素子104においては、ボンディング作業後におけるボンディング位置ずれの検査精度を、平坦な電極パッドを用いる場合に比べて向上することができる。
【0051】
ここで、窪み304aのサイズ(すなわち、接合エリアのサイズ)は、ボンディング位置精度を高める観点からは、例えば電極パッド256a上における導体ワイヤ310の溶融部のサイズ(例えば、ボールボンディングでは導体ワイヤ先端に形成する溶融ボールのサイズ)の1.2倍以上1.5倍以下であることが望ましい。
【0052】
なお、本実施形態では、中間層300aに貫通穴400aを設けることで、基板230の面から測った電極パッド256aの下面の高さが、接合エリアに対応する部分において、当該接合エリアの周囲の部分の高さよりも低くなるように段差が形成されるものとしたが、そのような段差を形成する中間層300aの構成は、これには限られない。
【0053】
例えば、貫通穴400aを備える中間層300aに代えて、
図7に示すように、基板230の面まで貫通しない凹部402aを有する中間層300a-1を用いてもよい。中間層300a-1の素材は、非金属でも金属でもよく、例えば中間層300aと同様の熱硬化性樹脂である。
図7に示す構成においては、接合エリアに対応する電極パッド256aの下面部分にも、基板230との間に中間層300a-1が配される。このため、例えばワイヤボンディングの際には、ワイヤボンダのツールから基板230に加わる応力が中間層300a-1により緩和され得る。このような応力の緩和は、本実施形態のように基板230が20μm以下の厚さの薄板として構成される場合には、基板230における機械的損傷等を防止する観点から有利である。
【0054】
[1.2 C部の構成]
次に、ボンディング部の第2の構成例として、
図3に示すC部の構成について説明する。
図8は、電極パッド256bを含むC部の部分詳細図である。
【0055】
電極パッド256bは、基板230上に形成された中間層300bの上に形成されている。中間層300bの素材は、非金属でも金属でもよく、例えば中間層300aと同様の熱硬化性樹脂である。
【0056】
中間層300bは、
図5に示すB部の中間層300aと同様の構成を有し、基板230上において電極パッド256bの接合エリアを囲む位置に段差を形成する。ただし、中間層300bが形成する上記段差は、中間層300aが形成する段差とは異なり、基板230の面から測った電極パッド256aの下面の高さが、接合エリアに対応する部分において、当該接合エリアの周囲の部分の高さよりも高くなるように形成されている。
【0057】
具体的には、中間層300bは、中間層300aと同様の構成を有するが、貫通穴400aを有さず、電極パッド256bの接合エリアを囲む位置に溝404aを有する点が異なる。ここで、電極パッド256bの接合エリアは円形であり、これに応じて溝404aは、円形の接合エリアを囲むように、平面視が円環状に形成されている。ただし、円形の接合エリアは一例であって、接合エリアは円形以外の他の任意の形状、例えば矩形や多角形であってもよい。これらの場合には、溝404aの平面視の形状は、接合エリアの平面視形状に合わせて、例えば矩形や多角形で形成され得る。
【0058】
図9は、
図8に示すC部のIX-IX断面矢視図である。溝404aは、中間層300bの上面に開口し、中間層300bを貫通して基板230に達している。この円環状の溝404aの内周により、中間層300bは、電極パッド256bの接合エリアを囲む位置に段差を形成する。
【0059】
溝404aにより、電極パッド256aの下面は、接合エリアの周囲の部分においては溝404aの底面である基板230の面に接し、接合エリアに対応する部分においては当該底面より高い中間層300bの上面に接することとなる。すなわち、中間層300bが溝404aの内周により形成する上記段差は、基板230の面から測った電極パッド256bの下面の高さが、接合エリアに対応する部分において、当該接合エリアの周囲の部分の高さよりも高くなるように形成される。
【0060】
この溝404aの存在により、電極パッド256bの上面には、溝404aに対応する位置に接合エリアを画定する円環状の窪み304bが形成される。具体的には、電極パッド256bの上面のうち、窪み304bで囲まれた部分(詳細には、円環状の窪み304bの内周で囲まれた部分)が、接合エリアに対応している。
【0061】
この窪み304bが囲む範囲は、B部における窪み304aと同様に、電極パッド256bの上面への導体ワイヤ310のボンディング作業においてボンディング位置を目視等で定める際のターゲットとして機能し、当該ワイヤボンディング作業におけるボンディング位置の設定精度を向上させ得る。また、この窪み304bは、電極パッド256bのサイズに応じた大きさに設定され得るので、電極パッド256bのサイズや間隔を縮小した場合にも、ボンディング作業における良好なボンディング位置精度の実現を支援して製造歩留まりを向上し得る。
【0062】
また、接合エリアを画定する窪み304bは基板230上に配された中間層300bの形状(溝404aの形状)に沿って形成されるので、従来技術とは異なり、基板230のエッチングを伴うことなく良好なボンディング位置精度を実現し得る。
【0063】
また、特に、
図9に示すC部の構成では、電極パッド256bの接合エリアの下面は溝や凹部を構成しない中間層300bの最上面と接し得るので、電極パッド256bの接合エリアの下部における中間層300bの厚さを
図7に示す構成に比べて厚くすることができる。このため、C部の構成では、ワイヤボンダのツールから基板230に加わる応力を、
図7に示す構成に比べてより緩和して、ボンディング作業時の基板230の割れ等の機械損傷をより効果的に防止することができる。
【0064】
[1.3 D部の構成]
次に、ボンディング部の第3の構成例として、
図3に示すD部の構成について説明する。
図10は、電極パッド256cおよび256dを含むD部の部分詳細図である。また、
図11は、
図10に示すD部のXI-XI断面矢視図である。
【0065】
D部は、
図4および
図5に示すB部の構成の変形例であり、2つの電極パッド256cおよび256dにまたがって中間層300cが形成されている。すなわち、基板230上に形成された中間層300cは、B部の中間層300aと同様の構成を有するが、その上に2つの電極パッド256cおよび256dが形成されている点が異なる。中間層300cの素材は、非金属でも金属でもよく、例えば中間層300aと同様の熱硬化性樹脂である。
【0066】
そして、中間層300cには、電極パッド256c及び256dの接合エリアに対応するそれぞれの位置に、
図4及び
図5に示す中間層300aと同様の、これら接合エリアの全範囲にそれぞれ開口する貫通穴400b及び400cが設けられている。
【0067】
この貫通穴400bおよび400cの存在により、電極パッド256cおよび256dの上面には、それぞれ、貫通穴400bおよび400cに対応する位置に、接合エリアを画定する窪み304cおよび304dが形成される。
【0068】
D部の構成においては、上述したC部における効果に加えて、中間層300cが2つの電極パッド256c及び256dにまたがって形成されることからパターニング工程が容易になると共に、電極パッド256毎に中間層300aを設ける構成に比べて電極パッド256c及び256dの互いの間隔をより狭く近接して形成することができる。また、中間層300cは、中間層300aに比べて広い面積で形成されるので、基板230に対する中間層300cの固着強度が向上し、長期信頼性の点で有利である。
【0069】
[1.4 E部の構成]
次に、ボンディング部の第4の構成例として、
図3に示すE部の構成について説明する。
図12は、電極パッド256eを含むE部の部分詳細図である。また、
図13は、
図12に示すE部のXIII-XIII断面矢視図である。
【0070】
E部は、
図4および
図5に示すB部の構成の変形例である。電極パッド256eの下に形成される中間層300dは、
図4に示すB部の中間層300aと同様の構成を有するが、そのサイズが電極パッド256eのサイズよりも小さく、電極パッド256eが中間層300eの全体を覆って形成されている。中間層300dの素材は、非金属でも金属でもよく、例えば中間層300aと同様の熱硬化性樹脂である。
【0071】
中間層300dは、
図4に示すB部の中間層300aが備える貫通穴400aと同様の貫通穴400eを有する。これにより、電極パッド256eの上面には、貫通穴400eに対応する位置に、接合エリアを画定する窪み304eが形成される。これにより、E部においても、上述したB部における効果と同様の効果が得られることとなり、基板230のエッチングを伴うことなく良好なボンディング位置精度が実現され得る。
【0072】
これに加え、E部の構成においては、中間層300dの全体が電極パッド256eにより覆われることから、例えば樹脂で構成される中間層300dから発生し得るガスが、長期動作において筐体102の内室へ漏出するのが抑制され、筐体102内における光変調素子104の環境雰囲気の変化が防止される。
【0073】
[1.5 F部の構成]
次に、ボンディング部の第5の構成例として、
図3に示すF部の構成について説明する。
図14は、電極パッド256gを含むF部の部分詳細図である。また、
図15は、
図14に示すF部のXV-XV断面矢視図である。
【0074】
電極パッド256gは、基板230上に形成された中間層300eの上に形成されている。中間層300eの素材は、非金属でも金属でもよく、例えば中間層300aと同様の熱硬化性樹脂である。
【0075】
中間層300eは、中間層300aと同様に、基板230上において接合エリアを囲む位置に段差を形成する。この段差は、基板230の面から測った電極パッド256gの下面の高さが、接合エリアに対応する部分において、当該接合エリアの周囲の部分の高さよりも低くなるように形成されている。
【0076】
具体的には、中間層300eは、その平面視形状が、電極パッド256gの接合エリアの周囲を囲む円環である。円環状に形成された中間層300eにより、電極パッド256gの下面は、接合エリアの周囲の部分においては中間層300eの上面に接し、接合エリアに対応する部分においては当該上面より低い基板230の面に接することとなる。すなわち、円環状に形成された中間層300eの内周側壁が形成する段差は、接合エリアを囲む円であり、基板230の面から測った電極パッド256gの下面の高さが、接合エリアに対応する部分において、当該接合エリアの周囲の部分の高さよりも低くなるように形成されている。
【0077】
これにより、電極パッド256gの上面には、中間層300eが形成する円環の内部に対応する範囲に、接合エリアを画定する窪み304fが形成される。具体的には、窪み304fの底面が、接合エリアに対応する。
【0078】
この窪み304fは、B部における窪み304aと同様に、電極パッド256gの上面への導体ワイヤ310のボンディング作業においてボンディング位置を目視等で定める際のターゲットとして機能し、当該ワイヤボンディング作業におけるボンディング位置の設定精度を向上させ得る。また、この窪み304fは、電極パッド256gのサイズに応じた大きさに設定され得るので、電極パッド256gのサイズや間隔を縮小した場合にも、ボンディング作業における良好なボンディング位置精度を実現して製造歩留まりを向上し得る。
【0079】
また、接合エリアを画定する窪み304fは基板230上に配された中間層300eの形状に沿って形成されるので、従来技術とは異なり、基板230のエッチングを伴うことなく良好なボンディング位置精度を実現し得る。
【0080】
また、特に、
図15に示すF部の構成では、中間層300gは単純な円環として形成されるので、中間層300gのパターンニング工程が容易になる。また、中間層300gが樹脂で構成される場合には、平面視が矩形に形成される中間層300dに比べて電極パッド256gの下部に残存する樹脂の量が低減されるので、長期動作における中間層300gから筐体102内へのガス漏出をより抑制することができる。
【0081】
なお、F部についての上述の説明では、中間層300eは円環状に形成されているものとして説明したが、中間層300eは、平面視矩形の外形を円形に修正した中間層300dの変形例であるということもできる。すなわち、中間層300eは、平面視が円形に形成されて、その中央に円形開口の貫通穴が形成されたもの、として定義することもできる。
【0082】
ここで、
図4ないし
図15に示す中間層300a、300b、300c、300d、300eは、基板230上において接合エリアを囲む位置に平面視が円形の段差を形成するものとしたが、このような段差の平面視形状は、円形には限られない。
【0083】
このような中間層が形成する段差は、接合エリアの周囲を囲む一つ又は複数の任意の形状部分を含むものとすることができる。例えば、段差は、その平面視形状が、接合エリアの周囲を囲む複数の円弧、矩形、複数の直線、又は複数の屈曲したライン(屈曲ライン)の形状部分を含むものとすることができる。
【0084】
[1.6 G部の構成]
次に、ボンディング部の第6の構成例として、
図3に示すG部の構成について説明する。G部は、中間層により形成される段差の平面視形状が、接合エリアの周囲を囲む複数の円弧で構成される例であり、段差が円形に構成される
図14に示すF部の変形例である。
【0085】
図16は、電極パッド256hを含むG部の部分詳細図である。また、
図17は、
図16に示すG部のXVII-XVII断面矢視図である。電極パッド256hは、基板230上に形成された中間層300fの上に形成されている。中間層300fは、平面視形状が円弧状である2つの中間層300f-1および300f-2で構成されている。そして、中間層300f-1及び300f-2の円弧状の内周側壁が、電極パッド256hの接合エリアの周囲を囲む段差を構成している。中間層300fの素材は、非金属でも金属でもよく、例えば中間層300aと同様の熱硬化性樹脂である。
【0086】
接合エリアを囲む複数の円弧状の段差を形成する中間層300fにより、電極パッド256hの下面は、接合エリアの周囲部分の殆どが中間層300fの上面に接し、接合エリアに対応する部分においては当該上面より低い基板230の面に接することとなる。すなわち、中間層300gの内周側壁が形成する段差は、基板230の面から測った電極パッド256gの下面の高さが、接合エリアに対応する部分において、当該接合エリア周囲の部分の高さよりも低くなるように形成されている。
【0087】
これにより、電極パッド256hの上面には、中間層300gの2つの円弧状段差が囲む範囲に、接合エリアを画定する窪み304gが形成される。具体的には、窪み304gの底面が、接合エリアに対応する。
【0088】
この窪み304gは、B部における窪み304aと同様に、電極パッド256hの上面への導体ワイヤ310のボンディング作業においてボンディング位置を目視等で定める際のターゲットとして機能し、当該ワイヤボンディング作業におけるボンディング位置の設定精度を向上させ得る。
【0089】
なお、G部の構成では、中間層300fは2つの円弧状部分に分割して構成されるものとしたが、円弧状部分の数はこれには限られない。中間層300fは、3以上の任意の数に分割された円弧状部分で構成されていてもよい。また、ボンディング位置を定める際のターゲットとして窪み304gを有効に機能させる観点からは、中間層300fが形成する接合エリアの周囲を囲う段差の長さの合計(すなわち、中間層300fを構成する円弧部分の内周の長さの合計)は、例えば接合エリアの全周の1/2以上であることが望ましい。
【0090】
[1.7 H部の構成]
次に、ボンディング部の第7の構成例として、
図3に示すH部の構成について説明する。H部は、中間層により形成される段差の平面視形状が、接合エリアの周囲を囲む矩形で構成される例であり、段差が円形に構成される
図14に示すF部の変形例である。
【0091】
図18は、電極パッド256jを含むH部の部分詳細図である。また、
図19は、
図18に示すH部のXIX-XIX断面矢視図である。電極パッド256jは、基板230上に形成された中間層300gの上に形成されている。中間層300gは、平面視矩形の枠状に形成されているほかは、中間層300fと同様の構成を有する。矩形枠状の中間層300gは、当該矩形枠の内周部により、基板230の面から測った電極パッド256jの下面の高さが、接合エリアに対応する部分において、当該接合エリアの周囲の部分の高さよりも低くなるように、接合エリアを囲む位置に段差を形成する。
【0092】
これにより、電極パッド256jの上面には、中間層300gが形成する矩形枠の内部に対応する範囲に、接合エリアを画定する窪み304hが形成される。具体的には、窪み304hの底面が、接合エリアに対応する。
【0093】
この窪み304hは、B部における窪み304aと同様に、電極パッド256jの上面への導体ワイヤ310のボンディング作業においてボンディング位置を目視等で定める際のターゲットとして機能し、当該ワイヤボンディング作業におけるボンディング位置の設定精度を向上させ得る。
【0094】
[1.8 J部の構成]
次に、ボンディング部の第8の構成例として、
図3に示すJ部の構成について説明する。G部は、中間層により形成される段差の平面視形状が、接合エリアの周囲を囲む複数の屈曲ラインで構成される例であり、段差が矩形枠状に構成される
図18に示すH部の変形例である。G部では、上記屈曲ラインは、平面視矩形の接合エリアを四隅から囲む4つのL字状のラインである。
【0095】
図20は、電極パッド256kを含むJ部の部分詳細図である。また、
図21は、
図20に示すJ部のXXI-XXI断面矢視図である。電極パッド256kは、基板230上に形成された中間層300hの上に形成されている。中間層300hは、平面視形状がL字状の4つの部分である中間層300h-1、300h-2、300h-3、および300h-4で構成されている。そして、中間層300hのそれぞれのL字状部分の内周側壁が、電極パッド256kの接合エリアの周囲を囲む段差を構成している。中間層300hの素材は、非金属でも金属でもよく、例えば中間層300aと同様の熱硬化性樹脂である。
【0096】
接合エリアを囲む複数のL字状の段差を形成する中間層300hにより、電極パッド256kの下面は、接合エリアの周囲部分の殆どが中間層300hの上面に接し、接合エリアに対応する部分においては当該上面より低い基板230の面に接することとなる。すなわち、中間層300hの内周側壁が形成する段差は、基板230の面から測った電極パッド256kの下面の高さが、接合エリアに対応する部分において、当該接合エリア周囲の部分の高さよりも低くなるように形成されている。
【0097】
これにより、電極パッド256kの上面には、中間層300hの4つのL字状段差が囲む範囲に、接合エリアを画定する窪み304jが形成される。具体的には、窪み304jの底面が、接合エリアに対応する。
【0098】
この窪み304jは、B部における窪み304aと同様に、電極パッド256kの上面への導体ワイヤ310のボンディング作業においてボンディング位置を目視等で定める際のターゲットとして機能し、当該ワイヤボンディング作業におけるボンディング位置の設定精度を向上させ得る。
【0099】
なお、J部の構成では、段差の平面視形状が含む屈曲ラインの例として、平面視矩形の接合エリアを四隅から囲む4つのL字状ラインを示したが、段差が含む屈曲ラインはL字形状には限られない。段差の上記屈曲ラインは、接合エリアの平面視形状に応じて、L字のように一つの屈曲点を含んで90度に開く2つの直線部分で構成されるものに限らず、任意の数の屈曲点を含み且つそれぞれが任意の角度で開く複数の直線部分又は曲線部分で構成されていてもよい。
【0100】
[1.9 K部の構成]
次に、ボンディング部の第8の構成例として、
図3に示すK部の構成について説明する。
図22は、電極パッド256mを含むK部の部分詳細図である。また、
図23は、
図22に示すK部のXXIII-XXIII断面矢視図である。
【0101】
電極パッド256mは、基板230上に形成された中間層300jの上に形成されている。中間層300jの素材は、非金属でも金属でもよく、例えば中間層300aと同様の熱硬化性樹脂である。
【0102】
中間層300jは、基板230上において接合エリアを囲む位置に段差を形成する。この段差は、基板230の面から測った電極パッド256mの下面の高さが、接合エリアに対応する部分において、当該接合エリアの周囲の部分の高さよりも高くなるように形成されている。
【0103】
具体的には、中間層300jは、その上面の平面視形状が、電極パッド256mの接合エリアの全範囲に延在する円形である。この中間層300jにより、電極パッド256mの下面は、接合エリアに対応する部分においては中間層300jの上面に接し、接合エリアの周囲の部分においては当該上面より低い基板230の面に接することとなる。すなわち、中間層300jの外周側壁が形成する段差は、基板230の面から測った電極パッド256mの下面の高さが、接合エリアに対応する部分において、当該接合エリアの周囲の部分の高さよりも高くなるように形成されている。
【0104】
これにより、電極パッド256mの上面には、中間層300jの上部に、接合エリアを画定する凸部600が形成される。具体的には、凸部600の上面が、接合エリアに対応する。
【0105】
この凸部600は、B部における窪み304aと同様に、電極パッド256mの上面への導体ワイヤ310のボンディング作業においてボンディング位置を目視等で定める際のターゲットとして機能し、当該ワイヤボンディング作業におけるボンディング位置の設定精度を向上させ得る。
[1.10 M部の構成]
次に、ボンディング部の第9の構成例として、
図3に示すM部の構成について説明する。M部は、
図22に示すK部の変形例であり、中間層の平面視形状が、円形ではなく矩形で形成されている。
【0106】
図24は、電極パッド256nを含むM部の部分詳細図である。なお、M部の断面は
図23に示すK部の断面と同じであるので、図示を省略する。電極パッド256nは、基板230上に形成された中間層300kの上に形成されている。中間層300kの素材は、非金属でも金属でもよく、例えば中間層300aと同様の熱硬化性樹脂である。
【0107】
中間層300kは、中間層300jと同様に、その上面が接合エリアの全範囲に延在するが、その平面視が矩形である点が中間層300jと異なる。これにより、中間層300kは、基板230上において接合エリアを囲む位置に段差を形成する。この段差は、基板230の面から測った電極パッド256nの下面の高さが、接合エリアに対応する部分において、当該接合エリアの周囲の部分の高さよりも高くなるように形成される。
【0108】
これにより、電極パッド256nの上面には、
図24に示す凸部600と同様の、接合エリアを画定する凸部が形成される。
【0109】
上記凸部は、B部における窪み304aと同様に、電極パッド256nの上面への導体ワイヤ310のボンディング作業においてボンディング位置を目視等で定める際のターゲットとして機能し、当該ワイヤボンディング作業におけるボンディング位置の設定精度を向上させ得る。
【0110】
なお、
図22に示すK部の中間層300jおよび
図24に示すM部の中間層300kのように接合エリアの全範囲に延在する中間層を形成する場合には、当該中間層の平面視形状は、円形及び矩形に限らず、接合エリアの形状に応じて任意の形状(例えば多角形等)とすることができる。
【0111】
以下、中間層300a、300b、300c、300d、300f、300g、300h、300j、および300kを、総称して中間層300ともいう。また、窪み304a、304b、304c、304d、304e、304f、304g、304h、304jを総称してくぼみ304ともいう。
【0112】
上記の構成を有する光変調素子104では、中間層300により接合エリアの周囲に段差が形成されることで電極パッド256の上面に接合エリアを画定する段差を有する窪み34や凸部600が形成される。これらの窪み304および凸部600は、ボンディング作業においてボンディング位置を目視等で定める際のターゲットとして機能し、ボンディング作業時のボンディング位置精度を向上する。このため、電極パッドのサイズ及び又は間隔を縮小して光変調素子104をより小型化することができる。その結果、光変調器100では、筐体102の内部に収容する部品の実装密度を向上したり、筐体102のサイズをより小さくすることが可能となる。
【0113】
なお、上述したような中間層300により電極パッド256上に接合エリアを囲む段差を形成してボンディング位置精度を向上する構成は、電極パッド256間の間隔が10μm以下である場合に好適であり、上記間隔が5μm以下の場合に特に有用である。また、上記構成は、電極パッド256のサイズの観点からは、一辺が300μm以下の電極パッドの場合に好適であり、一辺が200μm以下の場合に特に有用である。
【0114】
[2.第2の実施形態]
次に、本発明の第2の実施形態について説明する。本実施形態は、第1の実施形態に係る光変調器100が備える光変調素子104を用いた光変調モジュール1000である。
図25は、本実施形態に係る光変調モジュール1000の構成を示す図である。
図25において、
図1に示す第1の実施形態に係る光変調器100と同一の構成要素については、
図1に示す符号と同じ符号を用いて示すものとし、上述した
図1についての説明を援用する。
【0115】
光変調モジュール1000は、
図1に示す光変調器100と同様の構成を有するが、中継基板106に代えて、回路基板1006を備える点が、光変調器100と異なる。回路基板1006は、駆動回路1008を備える。駆動回路1008は、信号ピン108を介して外部から供給される例えば変調信号に基づいて、光変調素子104を駆動する高周波電気信号を生成し、当該生成した高周波電気信号を光変調素子104へ出力する。
【0116】
上記の構成を有する光変調モジュール1000は、上述した第1の実施形態に係る光変調器100と同様に、中間層300の上に形成された電極パッド256を有する光変調素子104を備える。このため、光変調モジュール1000では、光変調器100と同様に、筐体102の内部に収容する部品の実装密度を向上したり、筐体102のサイズをより小さくすることが可能となる。
【0117】
[3.第3実施形態]
次に、本発明の第3の実施形態について説明する。本実施形態は、第1の実施形態に係る光変調器100を搭載した光送信装置1100である。
図26は、本実施形態に係る光送信装置1100の構成を示す図である。この光送信装置1100は、光変調器100と、光変調器100に光を入射する光源1104と、変調器駆動部1106と、変調信号生成部1108と、を有する。なお、光変調器100及び変調器駆動部1106に代えて、上述した光変調モジュール1000を用いることもできる。
【0118】
変調信号生成部1108は、光変調器100に変調動作を行わせるための電気信号を生成する電子回路であり、外部から与えられる送信データに基づき、光変調器100に当該変調データに従った光変調動作を行わせるための高周波信号である変調信号を生成して、変調器駆動部1106へ出力する。
【0119】
変調器駆動部1106は、変調信号生成部1108から入力される変調信号を増幅して、光変調器100が備える光変調素子104の4つの信号電極250a、250b、250c、250dを駆動するための4つの高周波電気信号を出力する。尚、上述したように、光変調器100および変調器駆動部1106に代えて、例えば変調器駆動部1106に相当する回路を含む駆動回路1008を筐体102の内部に備えた、光変調モジュール1000を用いることもできる。
【0120】
上記4つの高周波電気信号は、光変調器100の信号ピン108に入力されて、光変調素子104を駆動する。これにより、光源1104から出力された光は、光変調器100により、例えばDP-QPSK変調され、変調光となって光送信装置1100から出力される。
【0121】
特に、光送信装置1100では、上述した第1の実施形態に係る光変調器100と同様に、中間層300の上に形成された電極パッド256を有する光変調素子104を備えた光変調器100又は光変調モジュール1000を用いているので、これらの光変調器100又は光変調モジュール1000のサイズをより小さくして、装置サイズをより小さくすることができる。
【0122】
なお、本発明は上記実施形態の構成およびその代替構成に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能である。
【0123】
例えば、上述した第1の実施形態では、
図2および
図3に示す光変調素子104のB部、C部、D部、E部、F部、G部、H部、J部、K部、およびM部(以下、総称してB部等ともいう)を例にとり、バイアス電極254の電極パッド256と導体ワイヤとのボンディング部の構成について説明したが、これらのボンディング部の構成は、信号電極250の電極パッド252と導体ワイヤとのボンディング部にも同様に適用することができる。例えば、信号電極250aの電極パッド252aの下部に、
図4に示す中間層300aを形成して、電極パッド252aに
図5に示す窪み304aと同様の窪みを形成して、ボンディング位置合わせのターゲットとすることができる。
【0124】
また、B部、C部、D部、E部、F部、G部、H部、J部、K部、およびM部に示すボンディング部では、電極パッド256の下部にそれぞれ異なる形状の中間層300が形成され、ワイヤボンディングを行う際のボンディング位置合わせのターゲットが、互いに異なる態様で電極パッド256の上面に形成されるものとしたが、光変調素子104における電極パッド256及び252と導体ワイヤとのボンディング部の構成は、これには限られない。光変調素子104におけるボンディング部は、電極パッド256及び252の全体において、B部等に示した任意の相異なる複数のボンディング部の構成が混在していてもよいし、B部等に示したいずれか一つのボンディング部の構成を用いてすべてのボンディング部が構成されていてもよい。
【0125】
また、B部、C部、D部、E部、F部、G部、H部、J部、K部、およびM部に示すボンディング部では、電極パッド256の下面は、少なくともその一部において基板230の面に接して形成されるものとしたが、ボンディング部の構成は、これには限られない。例えば、
図5、
図9、
図11、
図13、
図15、
図17、
図19、および
図21において電極パッド256の下面が基板230の面と接する部分にも、中間層300の一部が形成されて電極パッド256の全体が中間層300の上に形成されるものとすることができる。
【0126】
この場合、中間層300は、電極パッド256の接合エリアの周囲に配された凸部又は凹部を含むものとなる。例えば、
図9に示すC部の構成おいて電極パッド256bの下面が基板230の面と接する部分にも中間層300bの一部が形成される場合には、溝404aは、接合エリアの周囲を囲うように中間層300bに形成された円環状の凹部として構成される。すなわち、中間層300bは、接合エリアの周囲に配された凹部を有するものとなり得る。
【0127】
また、例えば、
図15に示すF部の構成おいて電極パッド256gの下面が基板230の面と接する部分にも中間層300fの一部が形成される場合には、中間層300eは、
図14に点線で示した接合エリアの周囲を囲う円環を平面視形状とする凸部を有するものとして構成され得る。すなわち、中間層300eは、接合エリアの周囲に配された凸部を有するものとなり得る。
【0128】
また、
図23に示すK部の構成おいて電極パッド256mの下面が基板230の面と接する部分にも中間層300jの一部が形成されていてもよい。この場合には、中間層300jは、
図22に点線で示した接合エリアの全範囲に延在する円を平面視形状とする凸部を有するものとして構成され得る。すなわち、中間層300jは、当該中間層300jの上面に突出する凸部であってその最上面が接合エリアの全範囲に延在する凸部を有するものとして構成され得る。
【0129】
また、
図16及び
図17に示すG部の構成では、中間層300fは、平面視が円弧形状の2つの部分により接合エリアの周囲を囲む段差を構成し、
図20および
図21に示すJ部の構成では、中間層300hは、平面視がL字形の4つの部分により接合エリアの周囲を囲む段差を構成するものとしたが、複数の部分により接合エリアの周囲を囲む中間層はこの構成には限られない。例えば、中間層は、3つ又は5つ以上の部分に分割して構成され、それらの部分の内周側壁により接合エリアの周囲を囲む段差が形成ようにすることができる。そのような分割された中間層の形状、したがって段差の平面視形状は、例えば、円形の接合エリアを囲む3つ以上の円弧や当該円形の円周に接する複数の直線形状を含んでもよい。また、例えば、接合エリアが多角形を成す領域として定義できる場合には、上記段差の平面視形状は、当該多角形の辺に沿った直線形状や、当該多角形の頂点を含み2つの辺に沿って延在する屈曲ラインの形状部分(H部の中間層300jのようなL字形の屈曲ラインは、その一例である)を含んでもよい。
【0130】
また、
図8および
図9に示すC部の中間層300bに形成する溝は円環状であるものとしたが、溝の形状はこれには限られない。このような溝は、任意の平面視形状の溝であるものとすることができる。また、溝は、一続きで形成されている必要はなく、分割されて形成されていてもよい。そのような分割された溝で形成される段差は、その平面視形状が、接合エリアの周囲を囲む複数の円弧、矩形、複数の直線、又は複数の屈曲ラインの形状部分を含んでいるものとすることができる。
【0131】
また、上述した実施形態では、中間層300は、例えばフォトレジストである熱硬化性樹脂で構成されるものとしたが、中間層300の素材は、これには限られない。上述したように、中間層300は、金属であっても非金属であってもよく、例えば樹脂で構成される場合には、熱硬化性樹脂に限らず、熱可塑性樹脂など任意の樹脂であるものとすることができる。また、例えば、中間層300を、同一の又は相異なる素材を用いて多層に構成してもよい。
【0132】
また、上述した実施形態では、基板230はXカットのLN基板であるものとしたが、基板230は、これには限られない。例えば、基板230は、ZカットのLN基板でもよい。この場合には、基板230上に形成されたバッファ層(例えばSiO2層)の上に、信号電極250及びバイアス電極254が形成され得る。
【0133】
また、基板230の材料はLN基板であるものとしたが、基板230の材料は、これには限られない。例えば、基板230は、InP、GaAs、またはSi等の半導体基板であってもよい。また、基板230は、電気光学効果を有する任意の材料(例えば、強誘電体、または高分子材料など)を用いても構成され得る。
【0134】
また、基板230は、互いに異なる材料を用いて構成された複数の基板の端面を突き合わせて接合したハイブリッド構成としてもよい。例えば、基板230を石英基板とLN基板とのハイブリッド構成とし、石英基板上に入力導波路232や出力導波路248a、248bなどを構成し、他の光導波路をLN基板上に構成してもよい。
【0135】
更に、上述した実施形態では、一例として、光導波路素子である光変調素子104における、電極パッド256を形成する部分の構成について説明したが、上述した電極パッドの形成部分の構成の適用範囲は、光導波路素子には限られない。本発明の電極パッドの形成部分の構成は、光導波路素子だけではなく、受信モジュールや光源などに用いられる基板に適用することも可能である。また、これ迄に説明した光導波路素子、光変調器、光変調モジュールおよび光送信器と、光源や受信した光変調信号を復調するための受信器を同じボード上に搭載した光送受信モジュールやそれらを同じ筐体に収容した光送受信器とすることも可能である。
【0136】
以上説明したように、上述した第1の実施形態に係る光変調器100を構成する光変調素子104は、光導波路232等と、導体ワイヤ310が接合される接合エリアを含む電極パッド256と、を基板230に備える光導波路素子である。そして、光変調素子104は、基板230上において上記接合エリアを囲む位置に段差を形成する中間層300を、基板230と電極パッド256との間に備える。
【0137】
この構成によれば、例えば光変調素子のような光導波路素子において、電極パッドのサイズや間隔を縮小した場合にも、基板エッチングを伴うことなく良好なボンディング位置精度を実現し得る。このため、ボンディングに用いる電極パッドの間隔を更に狭めて、光導波路素子をより小型に構成することが可能となる。
【0138】
また、中間層300が形成する段差は、その平面視形状が、接合エリアの周囲を囲む円、複数の円弧、矩形、複数の直線、又は複数の屈曲ラインの形状部分を含んで構成され得る。この構成によれば、さまざまな平面視形状を用いて段差を構成し得るので、中間層の設計自由度を向上することができる。
【0139】
また、光変調素子104では、中間層300が形成する上記段差は、基板230の面から測った電極パッド256の下面の高さが、接合エリアに対応する部分において当該接合エリアの周囲の部分の高さよりも低くなるように形成されている。この構成によれば、中間層300上に電極パッド256を形成した際に、接合エリアを示す窪み304を当該電極パッド256の上面に形成することができる。これにより、窪み304をボンディング位置合わせのターゲットとして用いて、ボンディング位置精度を向上することができる。
【0140】
また、中間層300は、接合エリアの周囲に配された凸部を有するものとして構成され得る。また、中間層300は、接合エリアの全範囲に亘って開口する貫通穴又は凹部を有するものとして構成され得る。これら構成によれば、中間層300を単純な3次元形状で容易に構成することができる。
【0141】
また、中間層300が形成する上記段差は、前記基板の面から測った前記電極パッドの下面の高さが、接合エリアに対応する部分において、当該接合エリアの周囲の部分の高さよりも高くなるように形成されている。この構成によれば、中間層300上に電極パッド256を形成した際に、接合エリアの外周を示す窪み304や接合エリアの範囲を示す凸部600を当該電極パッド256の上面に形成することができる。これにより、窪み304や凸部600をボンディング位置合わせのターゲットとして用いて、ボンディング位置精度を向上することができる。
【0142】
また、中間層300j、300kは、その上面が接合エリアの全範囲に延在する。その変形として、中間層300は、当該中間層300の上面に突出する凸部を有するものとし、当該凸部は、その最上面が電極パッド256の接合エリアの全範囲に延在するものとすることができる。また、中間層300bは、接合エリアの周囲を囲む位置に溝404aを有する。これらの構成によれば、中間層300を単純な3次元形状で容易に構成することができる。
【0143】
また、電極パッド256は、中間層300の全体を覆って形成されるものとすることができる。この構成によれば、例えば樹脂で構成される中間層300から筐体102の内室にガスが漏れ出てしまうのを抑制して、筐体102内における光変調素子104の環境雰囲気の変化を防止し、長期信頼性を向上することができる。
【0144】
また、中間層300は、厚さが1.0μm以上である。この構成によれば、電極パッド256上に接合エリアを示す明瞭な段差を形成することができる。
【0145】
また、中間層300は樹脂である。この構成によれば、金属では形成が困難なサブミクロン以上の厚さを有する中間層300を容易に形成して、電極パッド256上に接合エリアを示す明瞭な段差を容易に形成することができる。
【0146】
また、中間層300は、熱硬化性樹脂または熱可塑性樹脂で構成することができる。この構成によれば、幅広い種類の樹脂を用いて中間層を構成することができる。
【0147】
また、光変調器100は、光の変調を行う光導波路素子である光変調素子104と、光変調素子104を収容する筐体102と、光変調素子104に光を入力する入力光ファイバ114と、光変調素子104が出力する光を筐体102の外部へ導く出力光ファイバ120と、を備える。この構成によれば、ボンディング位置精度が向上されて更なる小型化が可能となった光変調素子104を用い、小型で特性の良好な光変調器を実現することができる。
【0148】
また、第2の実施形態に係る光変調モジュール1000は、光導波路素子である光の変調を行う光変調素子104と、当該光変調素子104を駆動する駆動回路1008と、を備える。
また、第3の実施形態に係る光送信装置1100は、光変調器100または光変調モジュール1000と、光変調素子104に変調動作を行わせるための電気信号を生成する電子回路である変調信号生成部1108と、を備える。
【0149】
これらの構成によれば、良好な特性を有する光変調モジュール1000および光送信装置1100を実現することができる。
【符号の説明】
【0150】
100…光変調器、102…筐体、104…光変調素子、106…中継基板、108、110…信号ピン、112…終端器、114…入力光ファイバ、116…光学ユニット、118、130、134…レンズ、120…出力光ファイバ、122、124…サポート、230…基板、232…入力導波路、234…分岐導波路、240a、240b…ネスト型マッハツェンダ型光導波路、244a、244b、246a、246b…マッハツェンダ型光導波路、248a、248b…出力導波路、250a、250b、250c、250d…信号電極、252a、252b、252c、252d、252e、252f、252g、252h、256a、256b、256c、256d、256e、256f、256g、256h、256j、256k、256m、256n…電極パッド、254a、254b、254c…バイアス電極、300a、300a-1、300b、300c、300d、300e、300f、300f-1、300f-2、300g、300h、300h-1、300h-2、300h-3、300h-4、300j、300k…中間層、304a、304b、304c、304d、304e、304f、304g、304h、304j…窪み、400a、400b、400c、400d、400e…貫通穴、402a…凹部、404a…溝、500…接着層、502…支持板、600…凸部、1000…光変調モジュール、1006…回路基板、1008…駆動回路、1100…光送信装置、1104…光源、1106…変調器駆動部、1108…変調信号生成部。