IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ニコンの特許一覧

特許7544127露光装置、露光方法、およびデバイス製造方法
<>
  • 特許-露光装置、露光方法、およびデバイス製造方法 図1
  • 特許-露光装置、露光方法、およびデバイス製造方法 図2
  • 特許-露光装置、露光方法、およびデバイス製造方法 図3
  • 特許-露光装置、露光方法、およびデバイス製造方法 図4
  • 特許-露光装置、露光方法、およびデバイス製造方法 図5
  • 特許-露光装置、露光方法、およびデバイス製造方法 図6
  • 特許-露光装置、露光方法、およびデバイス製造方法 図7
  • 特許-露光装置、露光方法、およびデバイス製造方法 図8
  • 特許-露光装置、露光方法、およびデバイス製造方法 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-08-26
(45)【発行日】2024-09-03
(54)【発明の名称】露光装置、露光方法、およびデバイス製造方法
(51)【国際特許分類】
   G03F 7/20 20060101AFI20240827BHJP
【FI】
G03F7/20 501
【請求項の数】 14
(21)【出願番号】P 2022543848
(86)(22)【出願日】2020-08-18
(86)【国際出願番号】 JP2020031161
(87)【国際公開番号】W WO2022038683
(87)【国際公開日】2022-02-24
【審査請求日】2023-07-10
(73)【特許権者】
【識別番号】000004112
【氏名又は名称】株式会社ニコン
(74)【代理人】
【識別番号】100161207
【弁理士】
【氏名又は名称】西澤 和純
(74)【代理人】
【識別番号】100140774
【弁理士】
【氏名又は名称】大浪 一徳
(74)【代理人】
【識別番号】100175824
【弁理士】
【氏名又は名称】小林 淳一
(72)【発明者】
【氏名】渡邉 陽司
【審査官】今井 彰
(56)【参考文献】
【文献】特開2013-124896(JP,A)
【文献】特開2004-54252(JP,A)
【文献】国際公開第2013/031901(WO,A1)
【文献】国際公開第2013/094733(WO,A1)
【文献】特開2007-122059(JP,A)
【文献】特開2009-217189(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G03F 7/20-7/24、9/00-9/02
H01L 21/027、21/30
(57)【特許請求の範囲】
【請求項1】
配列面に配置された反射面を有する複数の空間光変調素子を有する空間光変調器を照明する露光照明光学系と、
前記空間光変調器からの光を被露光基板に投影する投影光学系と、
第1検出光学系を有し、前記反射面からの光を検出する第1検出部と、
第2検出光学系を有し、前記反射面からの光を検出する検出部であって、前記第1検出部よりも検出視野が広い第2検出部と、
前記第1検出部と前記第2検出部と前記空間光変調器との位置関係を、前記空間光変調器が前記第1検出部と対向する第1位置関係と、前記空間光変調器が前記第2検出部と対向する第2位置関係との一方にする位置変更機構と、
を備える、露光装置。
【請求項2】
請求項1に記載の露光装置において、
前記位置変更機構は、前記位置関係を、前記第1位置関係、前記第2位置関係、及び前記空間光変調器が前記投影光学系に対向する第3位置関係のうちの一つにする、露光装置。
【請求項3】
請求項1または2に記載の露光装置において、
前記第1検出部は、前記配列面の像を検出し、
前記第2検出部は、前記配列面の像を検出する、露光装置。
【請求項4】
請求項3に記載の露光装置において、
前記第2検出部は、検出した前記像の光量である検出光量に基づいて、前記配列面の法線方向における前記空間光変調素子の前記反射面の位置情報、または前記空間光変調素子の前記反射面の前記配列面からの回転角度に関する位置情報を算出する演算部を備える、露光装置。
【請求項5】
請求項4に記載の露光装置において、
前記第2検出部の前記演算部は、前記第1検出部による検出結果と、前記第2検出部によって検出された前記像の光量である前記検出光量とに基づいて、前記位置情報を算出する、露光装置。
【請求項6】
請求項3から請求項5までのいずれか一項に記載の露光装置において、
前記露光照明光学系は、第1波長λ1の光で前記空間光変調器を照明し、
前記第1検出部は、前記第1波長λ1の1.5倍以上、かつ3.3倍以下の波長である第2波長λ2の光を用いて前記像の検出を行う、露光装置。
【請求項7】
請求項1から請求項6までのいずれか一項に記載の露光装置において、
前記第1検出光学系の前記空間光変調器側の開口数は、前記第2検出光学系の前記空間光変調器側の開口数よりも大きい、露光装置。
【請求項8】
請求項1から請求項7までのいずれか一項に記載の露光装置において、
前記第1検出部は、前記配列面の法線方向における前記反射面の位置情報を計測する位置計測部を有する、露光装置。
【請求項9】
請求項8に記載の露光装置において、
前記位置計測部は、前記空間光変調素子の前記反射面で反射した光を参照光と干渉させる干渉顕微鏡ユニットを含む、露光装置。
【請求項10】
請求項1から請求項9までのいずれか一項に記載の露光装置において、
前記第2検出光学系の空間光変調器側の開口数NAは、
複数の前記空間光変調素子の配置の周期をP、前記第2検出部が検出する光の波長をλ2とするとき、
λ2/(5×P) < NA < √2×λ2/(2×P)
を満足する、露光装置。
【請求項11】
請求項1から請求項10までのいずれか一項に記載の露光装置において、
前記第2検出光学系の前記空間光変調器側の検出視野の外径D[mm]と、前記第2検出光学系の空間光変調器側の開口数NAとの積が、0.5以上である、露光装置。
【請求項12】
配列面に配置された反射面を有する複数の空間光変調素子を有する空間光変調器を照明することと、
前記空間光変調器からの光を被露光基板に投影することと、
第1検出部を用いて前記反射面からの光を検出することと、
前記第1検出部よりも検出視野が広い第2検出部を用いて前記反射面からの光を検出することと、
前記第1検出部と前記第2検出部と前記空間光変調器との位置関係を、前記空間光変調器が前記第1検出部と対向する第1位置関係にすることと、
前記位置関係を、前記空間光変調器が前記第2検出部と対向する第2位置関係にすることと、
を含む、露光方法。
【請求項13】
基板の表面上にレジストを形成すること、
請求項1から請求項11までのいずれか一項に記載の露光装置を用いて露光パターンを露光すること、
前記露光パターンに基づいて、回路パターンを形成すること、
を含む、デバイス製造方法。
【請求項14】
基板の表面上にレジストを形成すること、
請求項12に記載の露光方法を用いて露光パターンを露光すること、
前記露光パターンに基づいて、回路パターンを形成すること、
を含む、デバイス製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、本発明は、露光装置、露光方法、およびデバイス製造方法に関する。
【背景技術】
【0002】
露光転写すべきパターンを形成する部材として、照射光の所定方向への反射率を可変とするデジタルミラーデバイス等の空間光変調器を用いる露光装置が提案されている(特許文献1)。
【先行技術文献】
【特許文献】
【0003】
【文献】米国特許出願公開第2019/0285988号明細書
【発明の概要】
【0004】
第1の態様によると、露光装置は、配列面に配置された反射面を有する複数の空間光変調素子を有する空間光変調器を照明する露光照明光学系と、前記空間光変調器からの光を被露光基板に投影する投影光学系と、第1検出光学系を有し、前記反射面からの光を検出する第1検出部と、第2検出光学系を有し、前記反射面からの光を検出する検出部であって、前記第1検出部よりも検出視野が広い第2検出部と、前記第1検出部と前記第2検出部と前記空間光変調器との位置関係を、前記空間光変調器が前記第1検出部と対向する第1位置関係と、前記空間光変調器が前記第2検出部と対向する第2位置関係との一方にする位置変更機構と、を備える。
第2の態様によると、露光方法は、配列面に配置された反射面を有する複数の空間光変調素子を有する空間光変調器を照明することと、前記空間光変調器からの光を被露光基板に投影することと、第1検出部を用いて前記反射面からの光を検出することと、前記第1検出部よりも検出視野が広い第2検出部を用いて前記反射面からの光を検出することと、前記第1検出部と前記第2検出部と前記空間光変調器との位置関係を、前記空間光変調器が前記第1検出部と対向する第1位置関係にすることと、前記位置関係を、前記空間光変調器が前記第2検出部と対向する第2位置関係にすることと、を含む
の態様によると、デバイス製造方法は、基板の表面上にレジストを形成すること、第1の態様または第5の態様の露光装置を用いて露光パターンを露光すること、前記露光パターンに基づいて、回路パターンを形成すること、を含む
【図面の簡単な説明】
【0005】
図1】第1実施形態の計測装置の構成を概略的に示す図。
図2】空間光変調器の構成を概略的に示す図。
図3】空間光変調素子に送信される指定位置と、空間光変調素子が実際に設定される実設定位置との関係の一例を示す図。
図4】空間光変調器による正反射光の光量の変調の原理を概略的に説明する図。
図5】空間光変調器による正反射光の光量と、空間光変調器内で交互に配置された2つの空間光変調素子群の間の反射面の高さの差との関係の一例を示す図。
図6】別の構成の空間光変調器による正反射光の光量の変調の原理を概略的に説明する図。
図7】第2実施形態の計測装置の構成を概略的に示す図。
図8】第4実施形態の露光装置の構成を概略的に示す図。
図9】第5実施形態のデバイス製造方法を概略的に示す図。
【発明を実施するための形態】
【0006】
(第1実施形態の計測装置)
図1は、第1実施形態の計測装置1の構成を概略的に示す図である。第1実施形態の計測装置1は、空間光変調器20の動作状態を計測するための装置であり、図1に一点鎖線で囲って示した検出部5を含んでいる。
【0007】
図1および以下で参照する各図に矢印で示したX方向、Y方向およびZ方向はそれぞれ直交する方向であるとともに、X方向、Y方向およびZ方向のそれぞれは各図において同一の方向を示している。以下では、各矢印の示す方向を、それぞれ+X方向、+Y方向および+Z方向と呼ぶ。また、X方向の位置をX位置、Y方向の位置をY位置、Z方向の位置をZ位置と呼ぶ。
【0008】
空間光変調器20は、保持部28により保持され、保持部28はガイド部29上を、X方向およびY方向に移動可能である。従って、空間光変調器20は、検出部5に対して、X方向およびY方向に相対的に移動可能に保持されている。保持部28とガイド部29とを合わせてまたは個々に、移動機構27とも呼ぶ。
【0009】
図2は、計測装置1による計測の対象である空間光変調器20の構成を概略的に示す図である。図2(a)は空間光変調器20を-Z方向から見た図を示し、図2(b)は図2(a)におけるAA切断線における空間光変調器20のXZ断面を示している。
【0010】
空間光変調器20の-Z側の面には、それぞれの-Z側の端部に反射面22Rを有する複数の空間光変調素子22が配置されている。複数の空間光変調素子22は、それぞれの反射面22Rが、空間光変調器20の-Z側の端部の近傍の1つのXY平面である配列面DPと概ね一致するように配置されている。一例として、複数の空間光変調素子22は、X方向、およびY方向に沿って配置されており、空間光変調素子22のX方向の配置の周期はPX、Y方向の配置の周期はPYである。
【0011】
空間光変調素子22のそれぞれは、弾性を有する不図示の保持部材を介して、空間光変調器20の筐体21に保持されている。筐体21の、各空間光変調素子22の+Z側に対向する部分には、対向電極23がそれぞれ配置されている。変調制御部24からそれぞれ対向電極23に対して制御信号Saとして所定の電圧が印加されると、各空間光変調素子22はZ方向に平行移動して、対向する対向電極23に印加された制御信号Saの電圧に応じたZ位置に設定される。変調制御部24は、外部から供給される制御信号S1に基づいて、各対向電極23に制御信号Saを送る。
【0012】
上述したように、配列面DPはXY平面の1つであるため、Z方向は配列面DPに対する法線方向である。
図2(a)に破線で示している第1領域A1および第2領域A2については、後述する。
【0013】
図3は、制御信号S1および制御信号Saにより指定された反射面22RのZ位置である指定位置(横軸)と、反射面22Rが実際に設定されたZ位置である実設定位置(縦軸)との関係である位置設定関係FRの一例を示す図である。実設定位置は、配列面DPからのZ方向の相対位置であり、実設定位置が0[nm]であれば、反射面22Rは配列面DPと一致しているものとする。
【0014】
位置設定関係FRは、空間光変調器20を構成する各部材の製造誤差、熱膨張、および帯電等により、理想的な比例関係FIからずれたものとなっている。1つの空間光変調器20においても、配列面DP内での位置が異なる空間光変調素子22においては、位置設定関係FRが異なる場合がある。
【0015】
図1を参照して、計測装置1の検出部5の構成について説明する。検出部5は、検出光源11、送光レンズ12、照明開口絞り13、分岐素子14、対物レンズ15、検出開口絞り16、結像レンズ17、撮像部18、および制御部25を含んでいる。
【0016】
このうち、送光レンズ12、照明開口絞り13、分岐素子14、および対物レンズ15は、空間光変調器20を構成する空間光変調素子22の配列面DPに対して光を照射する照明系を構成している。
また、2点鎖線で囲った部分に含まれる対物レンズ15、分岐素子14、検出開口絞り16、および結像レンズ17は、配列面DPの像を、固体撮像素子等の撮像部18の撮像面19に形成する検出光学系10を構成している。
【0017】
検出光源11から射出された照明光ILaは、送光レンズ12により略平行化され、照明開口絞り13によりその径が制限されて、照明光ILbとなる。そして、照明光ILbは、ビームスプリッタ等の分岐素子14に入射し、分岐素子14の分岐面14sで反射された後、対物レンズ15により集光される。そして、照明開口絞り13の開口径に応じた開口数(照明NA)を有する照明光束として、空間光変調器20の配列面DPに照射される。
【0018】
照明光ILbは、配列面DPの近傍に配置されている複数の反射面22R(図2参照)により反射され、その一部は検出光DLaとなって対物レンズ15に入射する。検出光DLaは、その後、分岐素子14に入射し、分岐素子14の分岐面14sを透過して、検出開口絞り16によりその径が制限されて、検出光DLbとなる。
【0019】
検出光DLbは、結像レンズ17により集光されて、撮像部18の撮像面19に入射し、撮像面19に配列面DPの像を形成する。配列面DPの像は、撮像部18により検出され、すなわち光電変換されて電気信号に変換され、像信号S2として制御部25に送信される。
撮像部18を構成する撮像画素により検出された配列面DPの像の各部の光量を、以下では「検出光量」とも呼ぶ。
【0020】
検出光源11は、一例として半導体レーザーであっても良く、発光波長域が比較的狭いLEDであっても良い。送光レンズ12、対物レンズ15は、および結像レンズ17は、図示した枚数(2枚)のレンズを含む構成に限られるものではなく、任意の枚数のレンズを含むものであっても良く、また、いずれも反射光学系を含むものであっても良い。分岐素子14は、上述のビームスプリッタに限られるものではなく、平板ガラス等から成るハーフミラーであっても良い。
【0021】
制御部25は、空間光変調器20に制御信号S1を送り、計測に際して空間光変調器20の各空間光変調素子22がそれぞれ所定のZ位置に設定されるように制御する。制御部25は、像信号S2に基づいて空間光変調器20の位置情報を算出する。従って、制御部25を、演算部であるということもできる。
【0022】
以下、図4および図5を参照して、像信号S2に基づく空間光変調器20の計測の原理について説明する。
図4は、空間光変調器20による正反射光DLa0の光量の変調の原理を概略的に説明する図である。図4(a)および図4(b)は、図2(a)に示した空間光変調器20の、第1領域A1に配置されている複数の空間光変調素子22の動作状態のそれぞれの一例を、-Z方向から見た図である。なお、第1領域A1とは、空間光変調器20の配列面DP上の任意の領域であって良い。また、第1領域A1に含まれる空間光変調素子22の数は、図2および図4に示した4×4個に限られるものではなく、他の任意の個数であっても良い。
【0023】
図4(c)は、図4(b)に示した動作状態の第1領域A1の空間光変調素子22と図1に示した対物レンズ15とを+Y方向から見た断面図である。図4(c)においては、図面の煩雑化を避けるために、空間光変調器20に-Z方向から照射される照明光ILb(図1参照)の図示を省略している。
【0024】
図4(a)から図4(c)においては、空間光変調素子22のうち、反射面22Rが配列面DPに概ね一致して配置されている素子を第1群の空間光変調素子22aと呼ぶ。そして、空間光変調素子22のうち、反射面22Rが配列面DPから+Z方向に離れて配置されている素子を第2群の空間光変調素子22bと呼ぶ。
【0025】
第1群の空間光変調素子22aの反射面22Rには22Raの符号を付し、第2群の空間光変調素子22bの反射面22Rには22Rbの符号を付している。また、第1群の空間光変調素子22aには左上から右下に延びる斜線を、第2群の空間光変調素子22bには左下から右上に延びる斜線を、それぞれ付して区別している。
【0026】
第1群の空間光変調素子22aの反射面22Raは、制御部25からの制御信号S1および変調制御部24からの制御信号Saにより、指定位置が0(配列面DP上)となるように設定されている。他方の第2群の空間光変調素子22bの反射面22Rbは、制御部25からの制御信号S1および変調制御部24からの制御信号Saにより、指定位置が配列面DPから+Z方向に指定位置差H1dだけ離れた位置となるように設定されている。
【0027】
なお、第1群の空間光変調素子22aの反射面22Ra、および第2群の空間光変調素子22bの反射面22Rbの実設定値は、それぞれの指定位置に近いが、上述したように、必ずしも一致しているわけではない。
第1群の空間光変調素子22aの反射面22Ra、および第2群の空間光変調素子22bの反射面22Rbの実設定値のZ位置の差を、位置差H1と呼ぶ。位置差H1についても、上述した指定位置差H1dとは必ずしも一致しているわけではない。
なお、図3(c)においては、位置差H1と上述した指定位置差H1dとは、その長さの違いが図面のスケールに比べて僅かであるため、同じ部分の長さを表わすものとしている。
【0028】
図4(a)から図4(c)においては、制御部25からの制御信号S1に基づいて、相互にZ方向の配置の位置差H1を有する複数の第1群の空間光変調素子22aと複数の第2群の空間光変調素子22bとが、交互に配置されている。ここで、「交互に配置」とは、XY面内で所定の方向に沿って配置される複数の空間光変調素子22において、第1群の空間光変調素子22aと第2群の空間光変調素子22bとが、互い違いに配置されていることをいう。
【0029】
図4(a)は、第1群の空間光変調素子22aと第2群の空間光変調素子22bとが、X方向およびY方向の2つの方向に沿って交互に配置、換言すれば市松格子状(チェッカーフラッグ模様状)に配置された動作状態を示している。
図4(b)は、X方向に沿っては、第1群の空間光変調素子22aと第2群の空間光変調素子22bとが交互に配置され、Y方向に沿っては第1群の空間光変調素子22aまたは第2群の空間光変調素子22bのいずれか一方が連続して配置された動作状態を示している。
【0030】
各空間光変調素子22の反射面22Rに概ね-Z方向から照明光ILb(図1参照)が照射されると、それぞれの反射面22Ra、22Rbによる反射光には、各反射面22RのZ位置である実設定位置の差、すなわち位置差H1に応じた位相差が付加される。そして、この位相差と、反射面22RのX方向の配置の周期PX、および反射面22RのY方向の配置の周期PY(図1参照)に応じて、反射光は後述する正反射光と複数の回折光とに分離され、それぞれ異なる射出角度(回折角)を持って配列面DPから射出される。
【0031】
上述したとおり、図4(c)は、図4(b)に示した動作状態の第1領域A1の空間光変調素子22からの反射光を示す図であるので、反射光は、正反射光DLa0と、X方向への+1次回折光DLapおよび-1次回折光DLam等の回折光とに分離される。
正反射光DLa0は、配列面DPに対して垂直な方向(-Z方向)に射出される。+1次回折光DLapおよび-1次回折光DLamの回折角θについては、後述する。
【0032】
図4(d)は、検出開口絞り16における正反射光DLa0、+1次回折光DLap、および-1次回折光DLam等の位置を示す図である。検出開口絞り16には、その中心16cを中心として、検出光学系10の空間光変調器20側の開口数NA2に相当する半径を有する開口部16oが設けられており、開口部16oよりも外側は、光を遮蔽する遮蔽部となっている。
図4(d)に示した距離DX、DYについては、後述する。
【0033】
図4(d)には、図4(a)に示した、Z位置が異なる第1群の空間光変調素子22aと第2群の空間光変調素子22bとが市松格子状に配置されている空間光変調素子22から発生する回折光も、併せて示している。図4(a)に示した空間光変調素子22からは、(X側次数,Y側次数)がそれぞれ、(+1次、+1次)の回折光DLapp、(+1次、-1次)の回折光DLapm、(-1次、+1次)の回折光DLamp、および(-1次、-1次)の回折光DLammが発生する。また、正反射光DLa0も発生する。
【0034】
ただし、いずれの場合であっても、空間光変調器20からの1次回折光(DLap、DLam、DLapp、DLapm、DLamp、DLamm)は、検出開口絞り16により遮蔽されるため、撮像部18に到達しない。
【0035】
一方、空間光変調器20からの正反射光DLa0は、検出開口絞り16の開口部16oを通過し、結像レンズ17を経て撮像部18に至る。そして、撮像部18の撮像面19に配列面DPの像を形成する。従って、配列面DP上の第1領域A1等の各領域からの正反射光DLa0の光量が、撮像部18に含まれる各撮像画素により、配列面DPの各領域の像の光量である検出光量として検出される。
【0036】
配列面DPに所定の波長の照明光が所定の光量(強度)で照射された際の正反射光DLa0の光量(強度)は、第1群の空間光変調素子22aと第2群の空間光変調素子22bとの実設定位置の差である位置差H1に応じて決まる。
【0037】
図5は、第1群の空間光変調素子22aと第2群の空間光変調素子22bとの位置差H1(横軸)と空間光変調器20による正反射光DLa0の強度(縦軸)との対応関係RL1、RL2を示す図である。
図5の、横軸のスケールは[nm]であり、縦軸のスケールは、位置差H1が0[nm]の場合の正反射光DLa0の強度(Intensity)が1となるように設定している。
【0038】
実線で示した対応関係RL1は、一例として正反射光DLa0の波長が546[nm]である場合の対応関係を示し、破線で示した対応関係RL2は、他の一例として正反射光DLa0の波長が193[nm]である場合の対応関係を示している。
対応関係RL1は、正反射光DLa0の波長(546[nm])をλとして、位置差H1に対して、概ね以下の式(1)で表される関係である。
RL1 = {1+cos(4π×H1/λ)}/2 …(1)
対応関係RL2についても、対応関係RL1と同様である。
【0039】
正反射光DLa0の強度は、位置差H1が0[nm]から各波長の1/4までの範囲において、位置差H1の増加に伴って単調に減少する。従って、正反射光DLa0の強度、すなわち第1領域A1等の領域の像の検出光量から、対応関係RL1(RL2)に基づいて、第1領域A1等の領域内の第1群の空間光変調素子22aと第2群の空間光変調素子22bとの位置差H1を算出することができる。
【0040】
制御部25は、撮像部18が検出した像信号S2と、上述した対応関係RL1(または対応関係RL2)とに基づいて、空間光変調器20の第1領域A1等の領域内の第1群の空間光変調素子22aと第2群の空間光変調素子22bとの位置差H1を算出する。制御部25は、対応関係RL1を記憶しておく固体メモリーまたは磁気メモリー等の記憶部25Mを備えている。位置差H1は、上述したように空間光変調素子22の反射面22Rの配列面DPの法線方向(Z方向)における位置情報に対応している。
【0041】
制御部25を含む検出部5は、上述した指定位置差H1dの値を異ならせつつ、上述した計測を複数回行い、算出された複数個の位置差H1と指定位置差H1dとに基づいて、所望の位置差H1を設定するための、指定位置差H1dを算出しても良い。
【0042】
位置差H1を一層高精度に算出するために、制御部25は、空間光変調器20の第1領域A1等の領域における、位置差H1が0[nm]の動作状態の像の光量である参照光量にも基づいて、検出光量から空間光変調素子22の位置差H1を算出しても良い。
【0043】
この参照光量の検出に際しては、制御部25は、空間光変調器20に制御信号S1を送り、各空間光変調素子22が同一のZ位置に設定されるように制御する。そして、上述した検出光量の検出と同様に、撮像部18の撮像面19に形成された空間光変調器20の配列面DPの像の光量分布を、参照光量として検出する。
【0044】
制御部25は、一例として、空間光変調器20の第1領域A1等の領域での検出光量を、上述した参照光量で除した値に基づいて、空間光変調素子22の位置差H1を算出しても良い。これにより、照明系(12~15)または検出光学系10の透過率ムラ等に起因する検出光量の検出誤差を補正することができる。
【0045】
位置差H1をさらに高精度に算出するには、対応関係RL1、RL2において、位置差H1の変化量に対して強度が大きく変化する領域を用いると良い。この領域は、一例として、強度の値が0.8以下であり、かつ0.2以上の領域に相当する。
【0046】
例えば、計測対象の空間光変調器20に、波長193[nm]の正反射光DLa0の強度を0とすることが求められている場合、空間光変調器20は、上述した位置差H1を、193/4=48.25[nm]を概ね中心とする、48±2[nm]程度の範囲に設定する必要があ
る。
【0047】
このとき、計測装置1による空間光変調器20の第1領域A1の像の検出に際して、同じく波長193[nm]の光を用いると、図5に対応関係RL2として示したように、その位置差H1に対する正反射光DLa0の強度は概ね0となる。そして、位置差H1の48 [nm]の近傍での変化に対して、正反射光DLa0の強度はほとんど変化しない。従って、
波長193[nm]の光は、48 [nm]近傍の位置差H1の値を正確に計測するには適してい
ない。
【0048】
一方、計測装置1による空間光変調器20の第1領域A1の像の検出に際して波長546[nm]の光を用いると、図5に対応関係RL2として示したように、48[nm]の位置差H1における正反射光DLa0の強度は0.7程度となる。そして、位置差H1の48[nm]の近傍での変化に対して、正反射光DLa0の強度も大きく変動する。
【0049】
従って、波長193[nm]の正反射光DLa0の強度を0とすることが求められている空間光変調器20の動作を測定する場合、一例として、546[nm]の光を照明光ILa、ILbとして用いると良い。
【0050】
なお、より一般的には、波長λ1の正反射光DLa0の強度を0とすることが求められている空間光変調器20の動作を測定する場合、波長λ1の1.5倍以上、かつ3.3倍以下の波長である波長λ2の光を照明光ILa、ILbとして用いると良い。この場合、波長λ1の正反射光DLa0の強度を0とする位置差H1において、波長λ2の光の正反射光DLa0の強度を0.2から0.8までの範囲とすることができ、位置差H1の値をより高精度に計測することができる。
【0051】
上述したように、位置差H1の高精度な計測のためには、空間光変調器20からの1次回折光を検出器18に入射させないと良い。そこで、以下では、再び図3(a)から図3(d)を参照して、検出光学系10の開口数NA2について説明する。
【0052】
図4(b)に示した動作状態の第1領域A1の空間光変調素子22からは、上述したように、正反射光DLa0と、X方向への+1次回折光DLapおよび-1次回折光DLam等の回折光とが生じる。+1次回折光DLapは、-Z方向から回折角θだけ+X方向に傾いた方向に射出される。ここで回折角θは、照明光ILbの波長をλとするとき、sin(θ)=λ/(2×PX)の関係を満たす角度である。そして、-1次回折光DLamは、-Z方向から回折角θだけ-X方向に傾いた方向に射出される。
【0053】
なお、配列面DPに照射された照明光ILbが上述したように所定の照明NAを有するため、正反射光DLa0、+1次回折光DLap、および-1次回折光DLamについても、上述の各方向を中心として所定の角度範囲に広がった方向に射出される。
【0054】
図4(d)は、上述したとおり、検出開口絞り16における正反射光DLa0、+1次回折光DLap、および-1次回折光DLam等の位置を示す図である。検出開口絞り16は、対物レンズ15の瞳面に配置されているので、図4(d)におけるX方向およびY方向の位置は、空間光変調器20から射出した光の射出角度の正弦(sin)に相当している。具体的には、中心16cから検出開口絞り16上の各点までの距離は、例えば、空間光変調器20から射出して各点に達する光の射出角度の正弦に、対物レンズ15の焦点距離を掛けた長さである。
【0055】
+1次回折光DLapおよび-1次回折光DLamの中心位置は、検出開口絞り16において、中心16cからそれぞれ+X方向および-X方向に距離DXだけ離れた位置となる。ここで距離DXは、上述した回折角θの正弦であるsin(θ)=λ/(2×PX)に相当する距離である。
【0056】
従って、検出光学系10の空間光変調器20側の開口数である開口部16oの半径NA2が、λ/(2×PX)よりも小さいと、+1次回折光DLapおよび-1次回折光DLamは、検出開口絞り16により遮蔽され、撮像部18に到達しない。
【0057】
図4(d)に示した、上述した1次回折光(DLap、DLam、DLapp、DLapm、DLamp、DLamm)のそれぞれの中心位置は、検出開口絞り16の中心16cからそれぞれ、±X方向に距離DX、±Y方向に距離DYだけ離れた位置となる。ここで距離DXは上述したとおりsin(θ)=λ/(2×PX)に相当する距離であり、距離DYは反射面22RのY方向の配置の周期PYに対してsin(θ)=λ/(2×PY)に相当する距離である。
【0058】
従って、検出光学系10の空間光変調器20側の開口数が、√[{λ/(2×PX)}+{λ/(2×PX)}]よりも小さいと、回折光(DLapp、DLapm、DLamp、DLamm)は、検出開口絞り16により遮蔽され、撮像部18に到達できない。
【0059】
反射面22RのX方向の配置の周期PXとY方向の配置の周期PYとの平均をPとするとき、検出光学系10の空間光変調器20側の開口数を、概ね、√2×λ/(2×P)より小さく設定小さく設定すると良い。これにより、上記と同様に、回折光(DLapp、DLapm、DLamp、DLamm)を、検出開口絞り16により遮蔽することができる。反射面22RのX方向の配置の周期PXとY方向の配置の周期PYは、等しくても良い。
【0060】
なお、上述したように照明光ILbが有する照明NAにより、各回折光(DLap、DLam、DLapp、DLapm、DLamp、DLamm)も、照明光ILbの照明NAの程度の角度範囲に広がっている。従って、開口部16oの半径NA2である検出光学系10の空間光変調器20側の開口数(NA2)は、上述した各値からさらに照明NAを引いた値よりも小さく設定しても良い。
【0061】
ところで、検出光学系10の空間光変調器20側の開口数NA2があまりに小さいと、検出光学系の解像が低下し、空間光変調器20の配列面DPの第1領域A1の像と第1領域A1以外の領域の像とを正確に分離して検出することが難しくなる。そこで、検出光学系10の空間光変調器20側の開口数NA2は、上述した照明光ILbの波長λ、および空間光変調素子22の配置の周期Pに対して、λ/(5×P) で定まる値よりも大きな
値に設定すると良い。
【0062】
以上より、検出光学系10の空間光変調器20側の開口数NA2は、空間光変調素子22の配置の周期をP、検出光学系10が検出する光の波長をλとするとき、以下の式(2)の関係を満たすと良い。
λ/(5×P) < NA < √2×λ/(2×P) …(2)
【0063】
計測装置1が備える検出部5は、その視野が広いほど、一回の検出で計測可能な空間光変調素子22の数が増えるため、計測時間の短縮が図れる。従って、検出部5の視野は広い程好ましい。ただし、空間光変調素子22の動作状態の計測に必要な所定の解像度を保った上で、すなわち検出光学系10の空間光変調器20側の開口数NA2を所定の値以上に保った上で、検出部5の視野を広げることは容易なことではない。
【0064】
そこで、第1実施形態の計測装置1においては、空間光変調器20上での検出部5の視野、すなわち検出光学系10の視野である検出視野の外径D[mm]と、検出光学系10の空間光変調器20側の開口数NA2との積が、一例として0.5以上となるようにしている。
【0065】
ここで、検出視野とは、空間光変調器20上において、その像が撮像部18の撮像面19により撮像される範囲であり、撮像面19の範囲を検出光学系10の結像倍率(横倍率)の絶対値だけ縮小(または拡大)した範囲に相当する。
また、検出視野の外径とは、検出視野の任意の一端から他端までの長さのうちの、最大の長さである。
【0066】
なお、検出部5の検出視野が、計測の対象である空間光変調器20の空間光変調素子22が配列された配列面DPよりも狭い場合には、上述した移動機構27を用いることにより、配列面DPの全面についての計測を行っても良い。すなわち、移動機構27により、空間光変調器20と検出光学系10との相対的な位置を移動させつつ、検出部5による複数回の計測を行なうことで、配列面DPの全面に渡っての計測を行っても良い。
【0067】
以上の説明においては、計測装置1は、Z方向に移動可能な複数の空間光変調素子22を有する空間光変調器20に対して計測を行うものとした。しかし、計測装置1の計測対象は、図6に示したように、それぞれが所定の角度範囲内で回転可能な複数の空間光変調素子22を有する、角度変調型の空間光変調器20rであっても良い。
【0068】
図6は、角度変調型の空間光変調器20rの一部と、図1に示した対物レンズ15とを+Y方向から見た断面図であり、上述した図4(c)と同様の図である。従って、以下では、図1から図4の各図に示した符号も参照して説明を行う。なお、図6においても、図4(c)と同様に、図面の煩雑化を避けるために、空間光変調器20rに-Z方向から照射される照明光ILb(図1参照)の図示を省略している。
【0069】
空間光変調素子22のそれぞれは、Y方向を回転軸として所定の角度範囲で回転可能な、弾性を有する不図示の保持部材を介して、空間光変調器20の筐体21に保持されている。空間光変調器20rの筐体21のうち、各空間光変調素子22の+Z側に対向する部分には、対向電極23a、23bがそれぞれ配置されている。不図示の変調制御部24(図1参照)からそれぞれ対向電極23a、23bに対して所定の電圧が印加されると、各空間光変調素子22は、対向する対向電極23a、23bに印加された電圧に応じて所定の角度だけ回転した角度位置に設定される。
【0070】
それぞれの空間光変調素子22の-Z側の面には、反射面22Rが形成されている。
図6に示した動作状態においては、対向電極23a、23bへの電圧の印加により、複数の空間光変調素子22のうちの一部の空間光変調素子22cは、反射面22Rcが配列面DPと平行に配置されている。一方、複数の空間光変調素子22のうちの一部の空間光変調素子22dは、反射面22Rdが配列面DPからY方向を回転中心として角度φだけ回転して配置されている。
【0071】
空間光変調素子22cに照射された照明光(図1参照)は、配列面DPに平行な反射面22Rcにより概ね-Z方向に反射され、反射光RRとして対物レンズ15に入射する。そして、検出開口絞り16の開口部16oを通過し、結像レンズ17を経て撮像部18(いずれも図1参照)に至り、撮像面19上に空間光変調素子22cの像を形成する。
【0072】
一方、角度φだけ回転した空間光変調素子22dに照射された照明光は、反射面22Rcにより-Z方向から-X方向に概ね角度2φだけ離れた方向に反射され、反射光ROとして、反射光ROとして対物レンズ15に入射する。そして、検出開口絞り16により、少なくとも一部が遮蔽される。
【0073】
なお、上述したように配列面DPに照射された照明光ILbが所定の照明NAを有するため、反射光RRおよび反射光ROについても、それぞれ上述した方向から所定の角度範囲に広がった方向に射出される。
このため、撮像部18の撮像面19において、配列面DPに対して回転した反射面22Rdを有する空間光変調素子22dに対応する部分の像の強度は、反射面22Rdの配列面DPからの回転角度に応じて低下する。
【0074】
すなわち、配列面DPの各領域の反射面22Rdの配列面DPからの回転角度φと、撮像部18に含まれる各撮像画素により配列面DPの各領域の像の光量として検出される検出光量との間には、所定の対応関係がある。
従って、計測装置1の制御部25は、撮像面19に形成され、撮像部18により検出された像の検出光量に基づいて、反射面22Rdの配列面DPからの回転角度に関する位置情報を算出することもできる。
【0075】
なお、各空間光変調素子22の回転軸は、上述したY方向と平行な軸に限らず、Z軸と交差する任意の方向と平行な回転軸であっても良い。
また、計測に際して、計測を行う所定の領域内の空間光変調素子22の反射面22Rは、すべて同じ角度だけ配列面DPから回転して配置されても良い。
【0076】
なお、上述した第1実施形態の計測装置においては、移動機構27は、固定された検出部5に対して空間光変調器20を移動させるものであるとしたが、移動機構27は、固定された空間光変調器20に対して、検出部5を移動させるものであっても良い。
すなわち、移動機構27は、配列面DPの面内方向において、空間光変調器20に対する検出光学系10を含む検出部5の相対的な位置を移動させる移動機構であれば良い。
【0077】
(第1実施形態の計測装置の効果)
(1)第1実施形態の計測装置は、それぞれが反射面22Rを有する複数の空間光変調素子22を備える空間光変調器20を計測する計測装置1において、複数の空間光変調素子22の各反射面22Rが配列される配列面DPに光を照射する照明系(12~15)と、複数の反射面22Rからの光に基づいて、配列面DPの像を形成する検出光学系10とを備えている。さらに、検出光学系10が形成した配列面DPの像を検出する撮像部18と、撮像部18が検出した像の光量である検出光量に基づいて、配列面DPの法線方向(Z方向)における空間光変調素子22の反射面22Rの位置情報、または空間光変調素子22の反射面22Rの配列面DPからの回転角度に関する位置情報を算出する制御部25と、を備えている。
この構成により、空間光変調器20に含まれる空間光変調素子22の動作状態を正確に計測することができる。
【0078】
(第2実施形態の計測装置)
以下、第2実施形態の計測装置1aについて説明する。以下の説明においては、第2実施形態の計測装置1aの構成のうち、上述した第1実施形態の計測装置1の構成と共通する部分には同一の符号を付して、適宜説明を省略する。以下の説明で参照する空間光変調器20、空間光変調素子22および反射面22Rの構成についても、上記した図2図4および図6を参照した説明のとおりである。
【0079】
図7は、第2実施形態の計測装置1aの構成を概略的に示す図である。第2実施形態の計測装置1aは、上述した第1実施形態の計測装置1と同様に空間光変調器20の動作状態を計測するための装置である。第2実施形態の計測装置1aは、空間光変調器20の反射面からの光に基づいて、空間光変調器20の配列面DPの像を検出する、第1検出部6と第2検出部5aとを有している。第2検出部5aは、第1検出部6の検出視野よりも広い検出視野を有している。
【0080】
第2実施形態の計測装置1aは、上述した第1実施形態の計測装置1と同様に、移動機構27を有している。空間光変調器20は、移動機構27を構成する保持部28により保持され、保持部28は、ガイド部29に沿ってX方向に(または、さらにY方向に)移動可能である。第2実施形態における移動機構27は、第1検出部6および第2検出部5aと空間光変調器20との位置関係を、空間光変調器20が第1検出部6と対向する第1位置関係と、空間光変調器20が第2検出部5aと対向する第2位置関係との、いずれか一方に切り替える。従って、以下では、移動機構27を位置変更機構27とも呼ぶ。
【0081】
第1検出部6は、図7の一点鎖線で囲った領域内の、検出光源31、送光レンズ32、第1分岐素子33、第2分岐素子34、対物レンズ35、結像レンズ36、参照レンズ39、参照反射面40、可動支持部41、撮像部37、および第1制御部42を含んでいる。
【0082】
第2検出部5aは、一例として、上述した第1実施形態の計測装置1に含まれる検出部5(図1参照)と同様の構成を有している。このため、第2検出部5aは、上述した検出部5の検出光学系10および制御部25と同様の、第2検出光学系10aおよび第2制御部25aを有している。なお、図7においては、第2検出部5aを構成する部材については、第2検出光学系10aと第2制御部25aとを除いて、図示を省略している。
【0083】
上述した第1実施形態の計測装置1に含まれる制御部25と同様に、第2検出部5aの第2制御部25aは、配列面DPの像を検出した検出光量に基づいて、空間光変調素子22の反射面22Rの位置情報を算出する。従って、第2制御部25aについても、演算部であるということができる。
【0084】
第1検出部6のうち、送光レンズ32、第1分岐素子33、第2分岐素子34、および対物レンズ35は、空間光変調器20を構成する空間光変調素子22の配列面DPに対して光を照射する第1照明系を構成している。
また、2点鎖線で囲った部分に含まれる対物レンズ35、第2分岐素子34、第1分岐素子33、および結像レンズ36は、配列面DPの像を固体撮像素子等の撮像部37の撮像面38に形成する第1検出光学系30を構成している。
【0085】
検出光源31から射出された照明光は、照明光路PILを通り、送光レンズ32により略平行化され、第1分岐素子33に入射し、第1分岐素子33の分岐面33sで反射された後、第2分岐素子34に入射する。そして、照明光は、第2分岐素子34の分岐面34sにより、分岐面34sを透過して検出光路PDTを通る光である検出光と、分岐面34sで反射されて参照光路PRFを通る光である参照光とに振幅分割される。
【0086】
検出光路PDTを通る検出光は、対物レンズ35により集光され、空間光変調器20の配列面DPに照射される。そして検出光は、配列面DPで反射され、再び対物レンズ35および検出光路PDTを通り、第2分岐素子34に至る。
【0087】
参照光路PRFを通る参照光は、参照レンズ39により集光され、参照反射面40に照射される。そして参照光は、参照反射面40で反射され、再び参照レンズ39および参照光路PRFを通り、第2分岐素子34に至る。
第2分岐素子34の分岐面34sを透過した検出光と、第2分岐素子34の分岐面34sで反射された参照光とは、1つの光に合成されて結像光路PIMを通り、結像レンズ36により集光されて、撮像部37の撮像面38に入射する。
【0088】
すなわち、第1検出部6を構成する部材のうち、第2分岐素子34、対物レンズ35、結像レンズ36、参照レンズ39、参照反射面40、および可動支持部41等の部材は、いわゆる干渉顕微鏡ユニットを構成している。従って、検出光路PDTと参照光路PRFとの光路長差が、検出光源31から発せられる照明光のコヒーレンス長以下である場合、撮像面38には、配列面DPの像と参照反射面40の像とが振幅的に干渉して形成される像(干渉像)が形成される。配列面DPと参照反射面40との干渉像は、撮像部37により検出され、すなわち光電変換されて電気信号に変換され、像信号S4として第1制御部42に送信される。
【0089】
参照光路PRFの進行方向である±X方向に沿った参照反射面40の位置(X位置)は、参照反射面40を保持する可動支持部41により可動である。参照反射面40のX方向への移動に伴って参照光路PRFの光路長が変化するため、配列面DPと参照反射面40との干渉像の強度が変動する。制御信号S5を可動支持部41に送り、参照反射面40のX位置を変化させつつ、撮像部37により検出された像信号S4を信号処理する。第1制御部42は、制御信号S5を可動支持部41に送り、参照反射面40のX位置を変化させつつ、撮像部37により検出された像信号S4を信号処理する。
【0090】
第1制御部42は、配列面DPに配置されている1つの空間光変調素子22の反射面22Rの像と参照反射面40の像との干渉像の強度の変化と、参照反射面40のX位置とに基づいて、その反射面22RのZ位置を計測する。
上述した干渉顕微鏡ユニット(34~36、39~41)と第1制御部42とは、空間光変調素子22の反射面22RのZ方向の位置情報を計測する位置計測部として機能する。
【0091】
なお、位置計測部の構成は、上述した干渉顕微鏡ユニット(34~36、39~41)の構成に限られるわけではない。例えば、可動支持部41により参照反射面40をX方向に移動させる代わりに、第1検出部6の全体をZ方向に移動させることにより、検出光路PDTの光路長を変化させても良い。あるいは、第1検出光学系30内に配列面DPに対する共役面を形成させ、その共役面にニプコウディスク(ニプコウフィルタ)を配置することで、第1検出光学系30を位置計測部として機能させても良い。
【0092】
第1検出部6は、1つの空間光変調素子22の反射面22RのZ位置を個別に計測するため、その分解能を高く設定しても良い。このために、第1検出光学系30の空間光変調器20側の開口数NA1は、第2検出部5aが有する第2検出光学系の空間光変調器20側の開口数NA2よりも、大きく設定しても良い。
【0093】
検出光源31は、一例としてLEDであっても良い。また、上述したニプコウディスクを用いる構成であれば、検出光源31は、レーザー光源であっても良い。送光レンズ32、対物レンズ35は、および結像レンズ36は、図示した枚数(2枚)のレンズを含む構成に限られるものではなく、任意の枚数のレンズを含むものであっても良く、また、いずれも反射光学系を含むものであっても良い。第1分岐素子33および第2分岐素子34は、上述の第1実施形態の分岐素子14と同様に、ビームスプリッタ、または平板ガラス等から成るハーフミラー等により構成される。
【0094】
計測に先立って、第1制御部42は、空間光変調器20に対し、計測対象となる空間光変調素子22の反射面22Rの位置を、所定の指定位置に設定するための制御信号S3を送る。制御信号S3は、上述した第1実施形態の計測装置1において、検出部5の制御部25から空間光変調器20に送信される制御信号S1と同様の制御信号である。
【0095】
これにより、第1制御部42を含む第1検出部6は、空間光変調素子22の反射面22Rの上述した指定位置と、計測された反射面22Rの位置、すなわち反射面22Rが実際に設定された実設定位置との差を、検出結果として検出することができる。
【0096】
第1制御部42を含む第1検出部6は、制御信号S3により、所定の反射面22Rをそれぞれ異なる複数の指定位置に設定させて、それぞれにおける反射面22Rの実設定位置を検出しても良い。これにより、第1制御部42は、図3に示した位置設定関係FRを、検出結果として検出しても良い。
【0097】
第1検出部6は、空間光変調素子22の指定位置の全範囲に渡って位置設定関係FRを検出しても良く、空間光変調素子22指定位置の一部の範囲についてのみ位置設定関係FRを検出しても良い。
【0098】
第1検出部6の中の第1制御部42は、位置設定関係FR等の検出結果を、情報信号S6として第2検出部5aの中の第2制御部25aに送信しても良い。第2検出部5aの中の第2制御部25aは、この位置設定関係FR等の検出結果も用いて、上述の位置差H1を算出しても良い。
【0099】
具体的には、上述した検出部5と同様の構成を有する第2検出部5aにおいて、計測時に指定する空間光変調素子22の反射面22Rの指定位置として、第1検出部6から受信した位置設定関係FR等の検出結果に基づいて実設定位置に補正したものを使用しても良い。
【0100】
(第2実施形態の計測装置の効果)
(2)上述した第2実施形態の計測装置1aは、配列面DPに配置された反射面22Rを有する複数の空間光変調素子22を有する空間光変調器20の反射面22Rからの光を検出する第1検出部6と、反射面22Rからの光を検出する検出部であって、第1検出部6よりも検出視野が広い第2検出部5aとを備えている。そしてさらに、第1検出部6および第2検出部5aと空間光変調器20との位置関係を、空間光変調器20が第1検出部6と対向する第1位置関係と、空間光変調器20が第2検出部5aと対向する第2位置関係との一方にする位置変更機構27を備えている。
この構成により、第1検出部6により、空間光変調素子22の配列面DP内の比較的狭い範囲に配置される空間光変調素子22を高精度に計測できるとともに、第2検出部5aにより、比較的広い範囲に配置される多数の空間光変調素子22を一括して高速に計測することができる。
【0101】
ところで、空間光変調器20に製造誤差等があると、配列面DPの所定の領域からの正反射光DLa0の強度と空間光変調素子22の位置差H1と関係である、図5に示した対応関係RL1は、上述した式(1)で表される関係から外れる場合がある。この場合、第2検出部5aによる空間光変調素子22の位置差H1の計測値に、誤差が生じてしまう恐れがある。
【0102】
第2実施形態の計測装置1aにおいては、上述したように第1検出部6により空間光変調素子22の配列面DP内の所定の空間光変調素子22の反射面22RのZ位置(実設定位置)を高精度に計測(検出)することができる。これにより、以下で説明するように、第1検出部6と第2検出部5aを用いて、正反射光DLa0の強度と空間光変調素子22の位置差H1との実際の対応関係RL1を正確に計測することができる。
【0103】
(第3実施形態の計測方法)
以下、第3実施形態の計測方法について説明する。第3実施形態の計測方法は、上述した第2実施形態の計測装置1aを用いた計測方法である。なお、以下の説明は、第2実施形態の計測装置1aについての説明も含むものである。
【0104】
上述した対応関係RL1の計測に際し、計測装置1aは始めに、位置変更機構27を用いて空間光変調器20の配列面DPの中の任意の領域である第1領域A1(図2(a)参照)を、第1検出部6に対向して配置させる。
【0105】
この状態で、第1検出部6の第1制御部42は、空間光変調器20に制御信号S3を送り、第1領域A1に配置されている空間光変調素子22のZ位置を、図4(a)または図4(b)に示したように設定する。すなわち、第1領域A1に交互に配置されている第1群の空間光変調素子22aの反射面22Raと、第2群の空間光変調素子22bの反射面22RbとのZ位置を、所定の指定位置差H1d(図2(c)参照)だけ異ならせて設定する。
【0106】
第1検出部6は、この状態の第1群の空間光変調素子22aの反射面22Raの少なくとも1つの実設定位置と、第2群の空間光変調素子22bの反射面22Rbの少なくとも1つの実設定位置とを、それぞれ計測する。そして、第1制御部42は、計測した2つの実設定位置の差である位置差H1を検出する。位置差H1は、反射面22Raと反射面22RbとのZ方向の距離情報である。
【0107】
第1検出部6の第1制御部42は、反射面22Raおよび反射面22Rbの指定位置と計測された実設定位置、または、反射面22Raと反射面22Rbとの指定位置差H1dと計測された位置差H1とを含む検出結果を、情報信号S6として第2検出部5aの中の第2制御部25aに送信する。
【0108】
続いて、計測装置1aは位置変更機構27を用いて、空間光変調器20の配列面DPの中の第1領域A1を、第2検出部5aに対向して配置させる。図7に点線で示した空間光変調器20aは、空間光変調器20が第2検出部5aに対向して配置された動作状態を示しており、点線で示した保持部28aは、その際の保持部28を表している。
【0109】
この状態で、第2検出部5aの第2制御部25aは、上記において第1検出部6の第1制御部42が送信した制御信号S3と同様の制御信号S1を空間光変調器20に送る。これにより、第1領域A1に交互に配置されている第1群の空間光変調素子22aの反射面22Raと、第2群の空間光変調素子22bの反射面22Rbとは、第1検出部6と対向した際と同様に、所定の指定位置差H1dだけZ方向に異なる位置に設定される。この際の反射面22Raと反射面22Rbとの位置差H1は、第1検出部6の第1制御部42から情報信号S6として送信された、上述した検出結果により既知である。
【0110】
第2検出部5aは、この状態における第1領域A1からの正反射光DLa0の強度、すなわち撮像面19(図1参照)に形成された第1領域A1の像の検出光量を検出する。
そして、第2検出部5aの第2制御部25aに設けられている算出部25Cは、第1検出部6が検出した空間光変調素子22の位置差H1と、第2検出部5aが検出した正反射光DLa0の強度である検出光量とに基づいて、対応関係RL1を算出する。第2制御部25aは、算出した対応関係RL1を、記憶部25Maに記憶する。
【0111】
対応関係RL1を算出は、一例として、上述した式(1)を変形した式(3)のその補正係数αまたは補正係数βの値を最適化することにより、対応関係RL1を決定しても良い。
RL1 = α+β×{1+cos(4π×H1/λ)}/2 …(3)
すなわち、位置差H1を用いて算出した式(3)または式(4)の左辺のRL1の値が、検出した検出光量の値に一致するように、式(3)の補正係数α、または補正係数βを決定することで、検出結果に基づく対応関係を決定することができる。このとき、補正係数αが0以外の値のときには補正係数βを1とし、このとき、補正係数βが1以外の値のときには補正係数αを0としても良い。
【0112】
なお、対応関係RL1は、複数組の位置差H1と基準光量との値に基づいて算出しても良い。すなわち、上記の計測を、反射面22Raと反射面22Rbとをそれぞれ異なる指定位置差H1dだけ異なるZ位置に設定して複数回行い、得られた複数組の位置差H1と基準光量との値から、上記の式(3)の補正係数αおよび補正係数βを決定しても良い。補正係数αおよび補正係数βの決定に際しては、例えば最小二乗法のような最適化手法を用いても良い。
また、対応関係RL1を複数組の位置差H1と基準光量との値に基づいて算出する場合には、上記の式(3)を用いずに、冪級数和等の他の任意の関数を用いても良い。
【0113】
以上により算出した対応関係RL1は、空間光変調器20の配列面DPの第1領域A1以外の領域に配列されている空間光変調素子22に対しても適用することができる。そして、この対応関係RL1を用いて、第1領域A1以外の例えば図2(a)に示した第2領域A2等の任意の領域に配置される空間光変調素子22の位置差H1を計測することができる。
【0114】
このために、計測装置1aは位置変更機構27を用いて、空間光変調器20の配列面DPの中の第2領域A2を、第2検出部5aに対向して配置させる。
そして、第2検出部5aの第2制御部25aは、制御信号S1を空間光変調器20に送り、第2領域A2内の空間光変調素子22のそれぞれを、上記と同様の配置で、Z方向に指定位置差H1dだけ離れて配置させる。すなわち、第2領域A2内の複数の空間光変調素子22を、図4(a)または図4(b)に示した第1領域A1内での配置と同様に配置させる。
【0115】
第2領域A2においては、図4(a)または図4(b)に示した第1群の空間光変調素子22aに相当する空間光変調素子22を第3群の空間光変調素子と呼ぶ。また、第2領域A2において、第2群の空間光変調素子22bに相当する空間光変調素子22を第4群の空間光変調素子と呼ぶ。
【0116】
第3群の空間光変調素子の反射面22Rは、第4群の空間光変調素子の反射面22Rとは、Z方向に指定位置差H1dだけ離れて配置される。
なお、第2領域A2内の空間光変調素子22については、上述した第1検出部6による位置設定関係FRの計測を行っていないため、第3群の空間光変調素子の反射面22Rと第4群の空間光変調素子の反射面22Rとの実際の位置差H1は正確には不明である。
【0117】
第2検出部5aは、この状態における第2領域A2からの正反射光DLa0の強度、すなわち撮像面19(図1参照)に形成された第2領域A2に相当する部分の像の検出光量を検出する。
第2検出部5aの第2制御部25aは、検出された検出光量と、上記で算出した対応関係RL1に基づいて、第3群の空間光変調素子の反射面22Rと第4群の空間光変調素子の反射面22RとのZ方向の距離情報である位置差H1を計測する。
【0118】
第2制御部25aを含む第2検出部5aは、上述した指定位置差H1dの値を異ならせつつ上述した計測を複数回行っても良い。そして、計測および算出された複数個の位置差H1と指定位置差H1dとの関係に基づいて、所望の位置差H1を設定するための指定位置差H1dである所望の指定位置差を算出しても良い。
【0119】
上述したとおり、第2検出部5aは、第1検出部6の検出視野よりも広い検出視野を有している。第1領域A1と第2領域A2が第2検出部5aの検出視野内に同時に存在する場合には、第2検出部5aによる第1領域A1の計測後に、位置変更機構27を用いて空間光変調器20を移動させることなく、第2領域A2の計測を行うことができる。これにより、計測時間の短縮が図れる。また、広範な第2領域A2を同時に一度に計測することにより、計測時間のさらなる短縮を図ることもできる。
【0120】
(第3実施形態の計測方法の効果)
(3)上述した第3実施形態の計測方法は、それぞれが反射面22Rを有する複数の空間光変調素子22を備える空間光変調器20を用いる計測方法において、複数の空間光変調素子22の各反射面22Rが配列される配列面DPの中の第1領域A1において交互に配置されている第1群の前記空間光変調素子22aと第2群の前記空間光変調素子22bに対し、第1群の前記空間光変調素子22aの反射面22Raと、第2群の空間光変調素子22bの反射面22Rbとを、配列面DPの法線方向(X方向)における異なる位置に設定すること、第1検出部6により、第1群の反射面22Raのうちの少なくとも1つと、第2群の反射面22Rbのうちの少なくとも1つとの法線方向の距離情報を計測すること、を備えている。そして、撮像式の第2検出部5aにより、第1領域A1に相当する部分の像の光量である基準光量を計測すること、計測した距離情報と基準光量とに基づいて、第1群の反射面22Raと第2群の反射面22Rbとの法線方向の距離と、像の光量との対応関係RL1を算出することを備えている。さらに、配列面DPの中の第1領域A1とは異なる第2領域A2に交互に配置されている第3群の空間光変調素子(22a)の反射面22Rと、第4群の空間光変調素子(22b)の反射面22Rとを、配列面DPの法線方向における異なる位置に設定すること、第2検出部5bにより、第2領域A2に相当する部分の像の光量である検出光量を計測すること、検出光量と対応関係RL1とに基づいて、第2領域A2における第3群の空間光変調素子(22a)の反射面22Rと、第4群の空間光変調素子(22b)の反射面22Rとの、法線方向における距離情報を算出すること、を備えている。
第1検出部6を用いての対応関係RL1の計測には比較的長時間を要するが、この構成においては、配列面DP内の第1領域A1について対応関係RL1を計測し、第2検出部5aを用いての他の領域(第2領域A2)の計測に際しては、この対応関係RL1を用いて計測を行うことができるため、計測時間を短縮することができる。
【0121】
(第4実施形態の露光装置)
図8は、第4実施形態の露光装置2の構成を概略的に示す図である。第4実施形態の露光装置2は、図8に破線で囲って示した上述した第2実施形態の計測装置1aと、露光部50とを備えている。第4実施形態の露光装置2が備える計測装置1aは、第2実施形態の計測装置1aについての上述した各構成および各特徴のいずれをも備えていても良い。
【0122】
第4実施形態の露光装置2が備える露光部50は、図2および図4等を参照して説明した空間光変調器20により変調された光の明暗パターンを、表面に感光物質が形成されたシリコン基板またはガラス基板等の被露光基板57上に投影する投影露光部である。
【0123】
第4実施形態の露光装置2が有する計測装置1aは、上述したように第1検出部6と第2検出部5aとを有している。そして、第2検出部の検出視野は、第1検出部6の検出視野よりも広い。第4実施形態の露光装置2においては、位置変更機構27は空間光変調器20を、第1検出部6と対向する第1位置と、第2検出部5aと対向する第2位置と、露光部50と対向する第3位置とのいずれか1つの位置に設定する。
【0124】
図8に点線で示した空間光変調器20bは、第1位置に設定された空間光変調器20を示しており、同じく点線で示した空間光変調器20aは、第2位置に設定された空間光変調器20を示している。また、点線で示した保持部28b、28aは、それぞれ第2位置、および第1位置に設定された空間光変調器20b、20aを保持する際の、保持部28の位置を表している。
【0125】
空間光変調器20が第1位置において第1検出部6と対向する位置関係を第1位置関係ともいう。空間光変調器20が第2位置において第2検出部5bと対向する位置関係を第2位置関係ともいう。また、空間光変調器20が第3位置において露光部50と対向する位置関係を第3位置関係ともいう。
【0126】
なお、位置変更機構27は、空間光変調器20を上述した第1位置と第2位置とのいずれか1つに設定するものであっても良い。この場合、空間光変調器20を上述した第1位置または第2位置から、上述した第3位置に移動させる、別の移動機構をさらに有していても良い。
【0127】
第4実施形態の露光装置2が有する露光部50は、送光レンズ52、分岐素子54、結像光学系55、投影開口絞り56、試料台58、ステージ59、および第3制御部60等を備えている。
このうち、送光レンズ52、および分岐素子14は、露光光源51から射出される露光用照明光を用いて、空間光変調器20の配列面DPを照明する露光照明光学系を構成している。分岐素子54、結像光学系55、投影開口絞り56は、空間光変調器20からの光を被露光基板57に投影する投影光学系53を構成している。
【0128】
露光光源51から射出される露光用照明光は、送光レンズ52により整形され、ビームスプリッタ等の分岐素子54に入射し、分岐素子14の分岐面54sで反射されて空間光変調器20の配列面DPに照射される。そして、露光用照明光は、配列面DPの近傍に配置されている複数の反射面22R(図2参照)により反射されて、再度分岐素子54に入射し、分岐素子14の分岐面54sを透過して、結像光学系55に入射する。
【0129】
投影光学系53の空間光変調器20側の開口数は、結像光学系55に含まれている投影開口絞り56により規定される。投影光学系53の空間光変調器20側の開口数を所定の値に設定することにより、空間光変調器20の配列面DPに配置された空間光変調素子22(図2図4参照)から生じる上述した1次回折光等は、投影開口絞り56により遮蔽される。
【0130】
従って、配列面DP内の所定の領域(第1領域A1等)に配置された空間光変調素子22に所定の変位を与えることにより、結像光学系55を透過して被露光基板57に照射される光の光量を局所的に低減させ、被露光基板57に明暗パターンを投影することができる。第3制御部60は、空間光変調器20に上述した制御信号S1および制御信号S3と同様の制御信号S8を送り、配列面DP内の所定の空間光変調素子22に所定の変位量の変位を与える。
【0131】
露光装置2において、被露光基板57はステージ59上に配置されている試料台58上に載置される。被露光基板57は試料台58によりステージ59上をX方向およびY方向に移動可能である。また、被露光基板57は、試料台58によりZ方向にも微小距離だけ移動可能であり、さらにX方向およびY方向を回転軸として微小角度だけ回転(チルト)可能である。
【0132】
被露光基板57のX方向およびY方向の位置は、試料台58に設けられているスケール板62の位置を介して位置計測部61により計測され、計測信号Scとして第3制御部60に伝達される。第3制御部60は、計測信号Scに基づいて試料台58に位置制御信号Sdを送り、被露光基板57が所定のX位置およびY位置に配置されるように制御する。
第3制御部60は、露光光源51に対して露光制御信号Sbを送り、露光光源51の発光タイミングおよび発光量を制御する。
【0133】
露光部50は、被露光基板57および試料台58を、投影光学系53に対してXY面内方向に相対的に走査しながら露光を行う走査型の露光装置であっても良い。あるいは、被露光基板57および試料台58を投影光学系53に対して固定した状態で露光を行い、露光の終了後に、被露光基板57および試料台58を投影光学系53に対して逐次移動させる、ステップアンドリピート型の露光装置であっても良い。
【0134】
露光光源51から発せられる露光用照明光の波長は、一例として、450[nm]以下の波長である。さらに一例として、露光用照明光の波長は193[nm]であっても良い。露光光源51は、露光部50の内部に組み込まれていても良く、露光部50の外部に配置されていても良い。露光用照明光は、露光光源51から光ファイバ等の導光部材を用いて、露光部50に導光されても良い。
【0135】
露光装置2においては、露光部50による被露光基板57への露光に先立って、計測装置1aを用いて空間光変調器20の動作状態を計測しても良い。空間光変調器20の動作状態の計測は、例えば上述した第3の実施形態の計測方法のように計測すれば良い。なお、第2制御部25aを含む第2検出部5aは、空間光変調器20の動作状態の計測に際し、空間光変調器20の配列面DPの各領域について、上述した所望の指定位置差の算出を行う。
【0136】
すなわち、第2制御部25aを含む第2検出部5aは、上述した指定位置差H1dの値を異ならせつつ上述した計測を複数回行なう。そして、計測および算出された複数個の位置差H1と指定位置差H1dとの関係に基づいて、所望の位置差H1を設定するための指定位置差H1dである所望の指定位置差を、空間光変調器20の配列面DPの各領域について算出する。ここで所望の位置差H1とは、例えば図2に示した空間光変調器20からの正反射光DLa0の強度を最小とする、露光用照明光の波長の1/4の長さに相当する位置差である。
【0137】
第2検出部5aにおける検出光の波長は、露光部50の露光用照明光の波長の、1.5倍以上、かつ3.3倍以下の波長としても良い。すなわち、上述したように、露光用照明光(第1波長λ1)での露光に使用する空間光変調器20に対して、第2検出部5aの検出光学系10aは、露光用照明光の1.5倍以上、かつ3.3倍以下の波長である第2波長λ2の光を用いて、配列面DPの像の検出を行っても良い。
【0138】
空間光変調器20の配列面DPの各領域について算出された所望の指定位置差は、情報信号S7として、第2検出部5aの第2制御部25aから露光制御部60に送信される。被露光基板57への露光においては、露光制御部60は、第2制御部25aから送信された配列面DPの各領域についての所望の指定位置差に基づいて、各空間光変調素子22が所望の位置差H1に配置されるように空間光変調器20に制御信号S8を送る。
【0139】
なお、空間光変調器20が角度変調型の空間光変調器20rの場合(図6参照)には、第2検出部5aの第2制御部25aは、配列面DPの各領域における反射面22Rdの配列面DPからの回転角度φとしての位置情報と、各領域の像の光量との対応関係を算出する。第2制御部25aは、情報信号S7として、この対応関係を露光制御部60に送信する。この場合、露光制御部60は、この対応関係に基づいて、空間光変調器20の各空間光変調素子22の角度位置を制御する制御信号S8を送る。
【0140】
(第4実施形態の露光装置の効果)
(4)第4実施形態の露光装置2は、配列面DPに配置された反射面22Rを有する複数の空間光変調素子22を有する空間光変調器20を照明する露光照明光学系(52、54)と、空間光変調器20からの光を被露光基板57に投影する投影光学系53と、第1検出光学系30を有し、反射面22Rからの光を検出する第1検出部6と、第2検出光学系10を有し、反射面22Rからの光を検出する検出部であって、第1検出部6よりも検出視野が広い第2検出部5aとを備えている。さらに、第1検出部6と第2検出部5aと空間光変調器20との位置関係を、空間光変調器20が第1検出部6と対向する第1位置関係と、空間光変調器20が第2検出部5aと対向する第2位置関係との一方にする位置変更機構と、を備えている。
この構成により、露光部50による空間光変調器20を用いた被露光基板57への露光の合間に、第1検出部6と第2検出部5aを用いて、短時間に高精度に空間光変調器20の動作状態を計測することができる。そして、その計測結果を用いて、露光部50による被露光基板57への高精度な露光を行うことができる。また、空間光変調器20の計測に要する時間が短時間で済むため、露光処理能力の高い、すなわち生産性の高い露光装置2を実現することができる。
【0141】
(露光装置の変形例)
上述した第4実施形態の露光装置2(図8参照)は、空間光変調器20を用いて露光を行う露光部50と、上述した第2実施形態の計測装置1aとを備えるものとした。
これに対し変形例の露光装置は、第2実施形態の計測装置1aに代えて、上述した第1実施形態の計測装置1を備えるものである。この場合、位置変更機構(または移動機構)27は空間光変調器20を、露光部50と対向する位置と計測装置1に対向する位置との間で移動可能とさせる。
変形例の露光装置においても、上述した第4実施形態の露光装置と同様の効果を得ることができる。
【0142】
(第5実施形態のデバイス製造方法)
第5実施形態のデバイス製造方法においては、上述した第4実施形態の露光装置2または変形例の露光装置を用いて、半導体集積回路、プリント基板、ディスプレイ装置等のデバイスを製造する。
図9は、第5実施形態のデバイス製造方法の工程を概略的に示す図である。
【0143】
ステップS100において、デバイスの製造対象となる半導体基板、セラミック基板、ガラス基板等の基板の表面上に、誘電体、金属、または半導体から成る膜を形成する。次に、ステップS101において、ステップS100で形成した膜の上に、フォトレジスト(レジスト)を形成する。表面上にレジストが形成された基板が、図8に示されている被露光基板57である。
【0144】
そして、ステップS102において、上述の第4実施形態の露光装置2、または変形例の露光装置を用いて、基板(被露光基板57)上のレジストに明暗パターンとしての露光パターンを露光する。そして、ステップS103において、露光パターンが露光されたレジストを現像し、レジストパターンを形成する。その後、ステップS104において、レジストパターンをマスクとして、基板WF上に形成されている膜または基板WFの表面に対して、エッチングまたはイオン注入等の加工を行う。
ステップS103およびステップS104は、レジストに形成された露光パターンに基づいて、基板上に回路パターンを形成する工程である。
【0145】
以上のステップS100からステップS104により、基板WF上に、デバイスを構成する1層の回路パターンが形成される。
従って、ステップS104の終了後に、次工程に移行し、再びステップS100からステップS104を繰り返して実行することにより、多数の層からなるデバイス(半導体集積回路、プリント基板、表示デバイス等)を製造することができる。
【0146】
(第5実施形態のデバイス製造方法の効果)
第5実施形態のデバイス製造方法は、基板(被露光基板57)の表面上にレジストを形成すること、第4実施形態の露光装置2または変形例の露光装置を用いて露光パターンを形成すること、露光パターンに基づいて、回路パターンを形成すること、を含んでいる。
これにより、高精度であって、かつ生産性の高い生産性の高い露光装置2等による基板への露光が可能となるため、高性能なデバイスを高い生産性で製造することができる。
【0147】
本発明は以上の内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。本実施形態は、上記した態様の全て又は一部を組み合わせてもよい。
【符号の説明】
【0148】
1,1a:計測装置、2:露光装置、5:検出部、6:第1検出部、5a:第2検出部、10:検出光学系、10a:第2検出光学系、14:分岐素子、15:対物レンズ、16:検出開口絞り、18:撮像部、19:撮像面、20:空間光変調器、DP:配列面、22:空間光変調素子、22R:反射面、25:制御部(演算部)、25M:記憶部、25C:演算部、27:位置変更機構(移動機構)、30:第1検出光学系、42:第1制御部、50:露光部、51:露光光源、55:結像光学系、59:ステージ、60:露光制御部
図1
図2
図3
図4
図5
図6
図7
図8
図9