(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-08-26
(45)【発行日】2024-09-03
(54)【発明の名称】CFRP構造体、CFRP構造体の製造方法、炭素繊維プリプレグおよび炭素繊維プリプレグの製造方法
(51)【国際特許分類】
C08J 5/24 20060101AFI20240827BHJP
C08J 5/06 20060101ALI20240827BHJP
B29C 70/10 20060101ALI20240827BHJP
B29C 70/18 20060101ALI20240827BHJP
B29C 70/40 20060101ALI20240827BHJP
B29K 105/12 20060101ALN20240827BHJP
【FI】
C08J5/24 CFD
C08J5/06 CFC
B29C70/10
B29C70/18
B29C70/40
B29K105:12
(21)【出願番号】P 2023077789
(22)【出願日】2023-05-10
(62)【分割の表示】P 2022505938の分割
【原出願日】2021-03-02
【審査請求日】2023-05-10
(31)【優先権主張番号】P 2020041696
(32)【優先日】2020-03-11
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2020188835
(32)【優先日】2020-11-12
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2020211943
(32)【優先日】2020-12-22
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000006035
【氏名又は名称】三菱ケミカル株式会社
(74)【代理人】
【識別番号】100165179
【氏名又は名称】田▲崎▼ 聡
(74)【代理人】
【識別番号】100142309
【氏名又は名称】君塚 哲也
(74)【代理人】
【識別番号】100140774
【氏名又は名称】大浪 一徳
(72)【発明者】
【氏名】小並 諭吉
【審査官】芦原 ゆりか
(56)【参考文献】
【文献】国際公開第2013/115337(WO,A1)
【文献】特開2018-167588(JP,A)
【文献】特開平1-163218(JP,A)
【文献】特開平1-163219(JP,A)
【文献】特開2011-241338(JP,A)
【文献】特開2008-174605(JP,A)
【文献】特開2017-205878(JP,A)
【文献】国際公開第2019/194090(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B29B 11/16,15/08-15/14
C08J 5/04-5/10,5/24
B29C 70/00-70/88
(57)【特許請求の範囲】
【請求項1】
フィラメント数3K以下のチョップド炭素繊維束で形成された炭素繊維マットを樹脂組成物で含浸させてなる炭素繊維プリプレグから成形された、炭素繊維含有量が60質量%以上のCFRPからなる、厚さ4mm以上の板。
【請求項2】
ハロゲン、リンおよびアンチモンを含有しない、請求項1に記載の板。
【請求項3】
難燃剤が添加された、請求項1に記載の板。
【請求項4】
ハロゲンを含有しない、請求項3に記載の板。
【請求項5】
前記樹脂組成物が熱硬化性樹脂組成物である、請求項1~4のいずれかに記載の板。
【請求項6】
フィラメント数3K以下のチョップド炭素繊維束で形成された炭素繊維マットを樹脂組成物で含浸させてなる炭素繊維プリプレグから成形された、炭素繊維含有量が60質量%以上のCFRPからなる、管壁の厚さ4mm以上の管。
【請求項7】
ハロゲン、リンおよびアンチモンを含有しない、請求項6に記載の管。
【請求項8】
難燃剤が添加された、請求項6に記載の管。
【請求項9】
ハロゲンを含有しない、請求項8に記載の管。
【請求項10】
前記樹脂組成物が熱硬化性樹脂組成物である、請求項6~9のいずれかに記載の管。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、主として、CFRP構造体、CFRP構造体の製造方法、炭素繊維プリプレグおよび炭素繊維プリプレグの製造方法に関する。
本願は、2020年3月11日に日本国特許庁に出願された特願2020-41696号、2020年11月12日に日本国特許庁に出願された特願2020-188835号および2020年12月22日に日本国特許庁に出願された特願2020-211943号に基づき優先権を主張し、その内容をここに援用する。
【背景技術】
【0002】
CFRP(炭素繊維強化プラスチック)は炭素繊維と樹脂とからなる複合材料であり、航空機、自動車、船舶その他各種の輸送機器の部品、スポーツ用品、レジャー用品などに幅広く使用されている。
チョップド炭素繊維束(「chopped carbon fiber bundle」であり、「chopped carbon fiber strand」、「chopped carbon fiber tow」などともいう。)を用いた炭素繊維プリプレグから、圧縮成形法によりCFRP構造体を成形することを含む、CFRP製品の製造方法が実用化されている。
チョップド炭素繊維束を用いた炭素繊維プリプレグの典型例は、SMC(シートモールディングコンパウンド)、BMC(バルクモールディングコンパウンド)およびスタンパブルシートである。
SMCは、チョップド炭素繊維束からなるマットを熱硬化性樹脂組成物で含浸させた構造を有する。スタンパブルシートは、チョップド炭素繊維束からなるマットを熱可塑性樹脂組成物で含浸させた構造を有する。
CFRPに添加し得る添加剤のひとつに難燃剤がある(特許文献1)。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
本発明の目的には、改善された難燃性を有するCFRP構造体を提供することが含まれる。
本発明の目的には、更に、改善された難燃性を有するCFRP構造体を与え得る炭素繊維プリプレグを提供することが含まれる。
その他、本発明により解決され得る様々な課題が、本明細書には明示的または黙示的に開示されている。
【課題を解決するための手段】
【0005】
本発明者等は、SMCから作製したCFRPの垂直燃焼性試験を行うことにより、炭素繊維の含有量、SMC製造に用いる炭素繊維束のフィラメント数、および、試験片厚がCFRPの難燃性に影響することを見出した。より具体的には、炭素繊維含有量がより多い方が、また、炭素繊維含有量が十分なときは、SMC製造に用いる炭素繊維束のフィラメント数がより少ない方が、また、試験片がより厚いときの方が、CFRPの難燃性が良好となる傾向を見出した。
本発明はかかる知見に基づいてなされたものであり、その実施形態には以下が含まれる。
【0006】
[1]CFRPからなる構造体であって、フィラメント数3K以下のチョップド炭素繊維束で形成された炭素繊維マットを樹脂組成物で含浸させてなる炭素繊維プリプレグから成形されたものであること、前記CFRPの炭素繊維含有量が60質量%以上であること、および、厚さ4mm未満の部分を有さないことを特徴とする、CFRP構造体。
[2]ハロゲン、リンおよびアンチモンを含有しない、[1]に記載のCFRP構造体。
[3]難燃剤が添加された、[1]に記載のCFRP構造体。
[4]ハロゲンを含有しない、[3]に記載のCFRP構造体。
[5]前記樹脂組成物が熱硬化性樹脂組成物である、[1]~[4]のいずれかに記載のCFRP構造体。
[6]前記熱硬化性樹脂組成物にビニルエステル樹脂が配合されている、[5]に記載のCFRP構造体。
[7]前記熱硬化性樹脂組成物に不飽和ポリエステル樹脂が配合されている、[5]または[6]に記載のCFRP構造体。
[8]前記熱硬化性樹脂組成物にエポキシ樹脂が配合されている、[5]に記載のCFRP構造体。
[9]臭素基を有する樹脂を含有する、[1]または[3]に記載のCFRP構造体。
[10]前記樹脂組成物に臭素基を有する熱硬化性樹脂が配合されている、[1]または[3]に記載のCFRP構造体。
[11]前記樹脂組成物に臭素化ビスフェノールA型ビニルエステル樹脂が配合されている、[1]または[3]に記載のCFRP構造体。
[12]前記樹脂組成物に臭素化ビスフェノールA型エポキシ樹脂が配合されている、[1]または[3]に記載のCFRP構造体。
[13]炭素繊維マットを樹脂組成物で含浸させてなる炭素繊維プリプレグから、圧縮成形法によって構造体を成形することを含み、前記炭素繊維マットがフィラメント数3K以下のチョップド炭素繊維束で形成されていること、前記炭素繊維プリプレグの炭素繊維含有量が60質量%以上であること、および、前記構造体が厚さ4mm未満の部分を有さないことを特徴とする、CFRP構造体の製造方法。
[14]前記炭素繊維プリプレグがハロゲン、リンおよびアンチモンを含有しない、[13]に記載の製造方法。
[15]前記樹脂組成物に難燃剤が配合されている、[13]に記載の製造方法。
[16]前記炭素繊維プリプレグがハロゲンを含有しない、[15]に記載の製造方法。
[17]前記樹脂組成物が熱硬化性樹脂組成物である、[13]~[16]のいずれかに記載の製造方法。
[18]前記熱硬化性樹脂組成物にビニルエステル樹脂が配合されている、[17]に記載の製造方法。
[19]前記熱硬化性樹脂組成物に不飽和ポリエステル樹脂が配合されている、[17]または[18]に記載の製造方法。
[20]前記熱硬化性樹脂組成物にエポキシ樹脂が配合されている、[17]に記載の製造方法。
[21]前記炭素繊維プリプレグが臭素基を有する樹脂を含有する、[13]または[15]に記載の製造方法。
[22]前記樹脂組成物に臭素基を有する熱硬化性樹脂が配合されている、[13]または[15]に記載の製造方法。
[23]前記樹脂組成物に臭素化ビスフェノールA型ビニルエステル樹脂が配合されている、[13]または[15]に記載の製造方法。
[24]前記樹脂組成物に臭素化ビスフェノールA型エポキシ樹脂が配合されている、[13]または[15]に記載の製造方法。
[25]前記炭素繊維プリプレグがシートモールディングコンパウンドである、[13]~[24]のいずれかに記載の製造方法。
[26]炭素繊維マットを樹脂組成物で含浸させてなるプリプレグであって、前記炭素繊維マットがフィラメント数3K以下のチョップド炭素繊維束で形成されていること、および、前記プリプレグの炭素繊維含有量が60質量%以上であることを特徴とする、炭素繊維プリプレグ。
[27]ハロゲン、リンおよびアンチモンを含有しない、[26]に記載の炭素繊維プリプレグ。
[28]難燃剤が添加された、[26]に記載の炭素繊維プリプレグ。
[29]ハロゲンを含有しない、[28]に記載の炭素繊維プリプレグ。
[30]前記樹脂組成物が熱硬化性樹脂組成物である、[26]~[29]のいずれかに記載の炭素繊維プリプレグ。
[31]前記熱硬化性樹脂組成物にビニルエステル樹脂が配合されている、[30]に記載の炭素繊維プリプレグ。
[32]前記熱硬化性樹脂組成物に不飽和ポリエステル樹脂が配合されている、[30]または[31]に記載の炭素繊維プリプレグ。
[33]前記熱硬化性樹脂組成物にエポキシ樹脂が配合されている、[30]に記載の炭素繊維プリプレグ。
[34]臭素基を有する樹脂を含有する、[26]または[28]に記載の炭素繊維プリプレグ。
[35]前記樹脂組成物に臭素基を有する熱硬化性樹脂が配合されている、[26]または[28]に記載の炭素繊維プリプレグ。
[36]前記樹脂組成物に臭素化ビスフェノールA型ビニルエステル樹脂が配合されている、[26]または[28]に記載の炭素繊維プリプレグ。
[37]前記樹脂組成物に臭素化ビスフェノールA型エポキシ樹脂が配合されている、[26]または[28]に記載の炭素繊維プリプレグ。
[38]シートモールディングコンパウンドである、[26]~[37]のいずれかに記載の炭素繊維プリプレグ。
[39][26]~[38]のいずれかに記載の炭素繊維プリプレグから、圧縮成形法によってCFRP構造体を成形することを含む、CFRP製品の製造方法。
[40]前記CFRP構造体が厚さ4mm未満の部分を有さない、[39]に記載の製造方法。
[41]炭素繊維含有量を有する炭素繊維プリプレグを製造する方法であって、フィラメント数3K以下のチョップド炭素繊維束を用いて炭素繊維マットを形成することと、前記炭素繊維マットを樹脂組成物で含浸させることとを含み、前記炭素繊維含有量が60質量%以上である、方法。
[42]前記樹脂組成物がハロゲン、リンおよびアンチモンを含有しない、[41]に記載の方法。
[43]前記樹脂組成物に難燃剤が添加された、[41]に記載の方法。
[44]前記樹脂組成物がハロゲンを含有しない、[43]に記載の方法。
[45]前記樹脂組成物が熱硬化性樹脂組成物である、[41]~[44]のいずれかに記載の方法。
[46]前記熱硬化性樹脂組成物にビニルエステル樹脂が配合されている、[45]に記載の方法。
[47]前記熱硬化性樹脂組成物に不飽和ポリエステル樹脂が配合されている、[45]または[46]に記載の方法。
[48]前記熱硬化性樹脂組成物にエポキシ樹脂が配合されている、[45]に記載の方法。
[49]前記樹脂組成物が臭素基を有する樹脂を含有する、[41]または[43]に記載の方法。
[50]前記樹脂組成物に臭素基を有する熱硬化性樹脂が配合されている、[41]または[43]に記載の方法。
[51]前記樹脂組成物に臭素化ビスフェノールA型ビニルエステル樹脂が配合されている、[41]または[43]に記載の方法。
[52]前記樹脂組成物に臭素化ビスフェノールA型エポキシ樹脂が配合されている、[41]または[43]に記載の方法。
[53]前記炭素繊維プリプレグがシートモールディングコンパウンドである、[41]~[52]のいずれかに記載の方法。
[54]CFRPからなる構造体であって、フィラメント数3K以下のチョップド炭素繊維束で形成された炭素繊維マットを樹脂組成物で含浸させてなる炭素繊維プリプレグから成形されたものであること、前記CFRPの炭素繊維含有量が60質量%以上であること、および、前記CFRPに難燃剤が添加されていることを特徴とする、CFRP構造体。
[55]前記樹脂組成物が熱硬化性樹脂組成物である、[54]に記載のCFRP構造体。
[56]前記熱硬化性樹脂組成物にビニルエステル樹脂が配合されている、[55]に記載のCFRP構造体。
[57]前記熱硬化性樹脂組成物に不飽和ポリエステル樹脂が配合されている、[55]または[56]に記載のCFRP構造体。
[58]前記熱硬化性樹脂組成物にエポキシ樹脂が配合されている、[55]に記載のCFRP構造体。
[59]ハロゲンを含有しない、[54]~[58]のいずれかに記載のCFRP構造体。
[60]臭素基を有する樹脂を含有する、[54]に記載のCFRP構造体。
[61]前記樹脂組成物に臭素基を有する熱硬化性樹脂が配合されている、[54]に記載のCFRP構造体。
[62]前記樹脂組成物に臭素化ビスフェノールA型ビニルエステル樹脂が配合されている、[54]に記載のCFRP構造体。
[63]前記樹脂組成物に臭素化ビスフェノールA型エポキシ樹脂が配合されている、[54]に記載のCFRP構造体。
[64]CFRPからなる構造体であって、フィラメント数3K以下のチョップド炭素繊維束で形成された炭素繊維マットを樹脂組成物で含浸させてなる炭素繊維プリプレグから成形されたものであること、前記CFRPの炭素繊維含有量が60質量%以上であること、および、前記樹脂組成物が臭素基を有する樹脂を含有することを特徴とする、CFRP構造体。
[65]前記樹脂組成物に臭素基を有する熱硬化性樹脂が配合されている、[64]に記載のCFRP構造体。
[66]前記樹脂組成物に臭素化ビスフェノールA型ビニルエステル樹脂が配合されている、[64]に記載のCFRP構造体。
[67]前記樹脂組成物に臭素化ビスフェノールA型エポキシ樹脂が配合されている、[64]に記載のCFRP構造体。
[68]厚さ4mm未満の部分と厚さ4mm以上の部分とを有する、[54]~[67]のいずれかに記載のCFRP構造体。
[69]厚さ3mm未満の部分を有さない、[54]~[68]のいずれかに記載のCFRP構造体。
【発明の効果】
【0007】
実施形態のひとつによれば、改善された難燃性を有するCFRP構造体が提供される。
実施形態の他のひとつによれば、改善された難燃性を有するCFRP構造体を与え得る炭素繊維プリプレグが提供される。
【図面の簡単な説明】
【0008】
【
図1】
図1は、CFRP構造体の一例を示す斜視図である。
【
図3】
図3は、SMC製造方法を説明するための図面である。
【発明を実施するための形態】
【0009】
本明細書において、炭素繊維マットとマトリックス樹脂組成物とからなるプリプレグまたは炭素繊維マットとマトリックス樹脂組成物とからなるCFRPの炭素繊維含有量は、炭素繊維マットに由来する炭素繊維がプリプレグまたはCFRPに占める質量比率を意味する。例えば、チョップド炭素繊維束で形成された炭素繊維マットを熱硬化性樹脂組成物で含浸させてなる炭素繊維プリプレグの硬化により得られるCFRPの場合であれば、その炭素繊維含有量は、チョップド炭素繊維束に由来する炭素繊維の質量がCFRPの質量に占める比率である。例えば、炭素繊維プリプレグを製造するときに、含浸用の樹脂組成物にミルド炭素繊維が配合された場合、この炭素繊維プリプレグの炭素繊維含有量の計算において、ミルド炭素繊維の質量は炭素繊維の質量に含めないものとする。
【0010】
本発明の実施形態のひとつはCFRP構造体に関する。
実施形態に係るCFRP構造体をなすCFRPの炭素繊維含有量は60質量%以上であり、70質量%以上であってもよい。該CFRPの炭素繊維含有量に特に上限はないが、生産効率の観点から、85質量%以下、80質量%以下あるいは75質量%以下に設定され得る。
実施形態に係るCFRP構造体は、好ましくは、厚さ4mm未満の部分を有さない。
【0011】
実施形態に係るCFRP構造体は、板状の部分、管状の部分、棒状の部分および中空の部分のうち、少なくともいずれかを有し得る。実施形態に係るCFRP構造体は、板状の部分、管状の部分、棒状の部分および中空の部分のうち、いずれにも該当しない部分を含まないことがあり得る。
【0012】
板状の部分は平坦でもよいし、曲がっていてもよい。
管状の部分は、真直ぐでもよいし、曲がっていてもよい。管状の部分の横断面形状に限定はなく、円、半円、楕円、矩形、多角形などであり得る。
管状の部分における厚さとは、管壁の厚さを意味する。
【0013】
棒状の部分は、真直ぐでもよいし、曲がっていてもよい。棒状の部分の横断面形状に限定はなく、円、半円、楕円、矩形、多角形などであり得る。
棒状の部分における厚さとは、同部分の横断面の最小幅を意味する。
中空の部分は、空洞と、それを取り囲む壁とからなる。空洞の形状に限定はない。
中空の部分における厚さとは、壁の厚さを意味する。
【0014】
図1に斜視図、
図2に平面図を示す構造体100は、実施形態に係るCFRP構造体が備え得る構造、すなわち、基板110の一方面側に複数のボス112と複数のリブ114が配置された構造を有している。全てのボス112および全てのリブ114と、基板110とは、CFRPで一体的に成形されている。
構造体100は、厚さ4mm未満の部分を有さない。別の言い方をすると、構造体100においては、基板110の厚さt
100、各ボス112の厚さt
112、各リブ114の厚さt
114が、いずれも4mm以上である。
ここでいうボス112の厚さt
112およびリブ114の厚さt
114は最小厚さ、すなわち、厚さが最も小さい部分における厚さである。例えば、抜き勾配を設ける目的で、ボス112およびリブ114の厚さが基板110から離れるにつれて小さくなるよう設計された場合には、基板110から最も離れた部分における厚さを、ボス112およびリブ114の厚さとして取り扱う。
【0015】
実施形態に係るCFRP構造体は、炭素繊維プリプレグから、例えば圧縮成形法によって、成形される。
圧縮成形法を用いて成形されたCFRP構造体を成すCFRPの炭素繊維含有量は、材料に用いた炭素繊維プリプレグの炭素繊維含有量と同等である。従って、例えば炭素繊維含有量が約60質量%のCFRPは、炭素繊維含有量が約60質量%の炭素繊維プリプレグを加圧しながら硬化させることで得ることができる。
実施形態に係るCFRP構造体の成形に用いられる炭素繊維プリプレグは、フィラメント数3K以下のチョップド炭素繊維束で形成された炭素繊維マットを樹脂組成物で含浸させる方法で製造される。この炭素繊維マットは、発明の効果が損なわれない範囲で、フィラメント数が3Kより大きいチョップド炭素繊維束を含んでもよい。この炭素繊維マットにおける、フィラメント数が3Kより大きいチョップド炭素繊維束の含有量は、好ましくは1質量%未満、より好ましくは0.7質量%以下である。
炭素繊維束のフィラメント数は1000本単位で表されることが多く、例えば、フィラメント数3Kのチョップド炭素繊維束とは、約3000本のフィラメントからなるチョップド炭素繊維束を意味する。
【0016】
炭素繊維プリプレグは、限定するものではないが、好ましくはSMC(シートモールディングコンパウンド)である。
実施形態に係るCFRP構造体の成形に使用し得るSMCの典型的な製造方法を、
図3を参照して説明すると、次の通りである。
炭素繊維パッケージPから連続炭素繊維束10が引き出され、ロータリーカッター1に送られる。
連続炭素繊維束10はロータリーカッター1により切断されてチョップド炭素繊維束20となる。
ロータリーカッター1の下方を走行する第一キャリアフィルム51の上面には、ドクターブレードを備える第一塗工機2aで第一樹脂ペースト40aを塗布することにより形成される第一樹脂ペースト層41が設けられている。
第一樹脂ペースト40aは増粘剤が添加された熱硬化性樹脂組成物からなり、その25℃における粘度は例えば10Pa・s以下である。
【0017】
連続炭素繊維束10の切断により産生したチョップド炭素繊維束20は、第一樹脂ペースト層41の上に落下して堆積し、炭素繊維マット30を形成する。
炭素繊維マット30の形成に続いて、第一キャリアフィルム51の上面側に第二キャリアフィルム52が貼り合わされることにより積層体60が形成される。貼り合わせの前に、第二キャリアフィルム52の一方の面には、ドクターブレードを備える第二塗工機2bで第二樹脂ペースト40bを塗布することによって形成される第二樹脂ペースト層42が設けられる。第二樹脂ペースト40bは、通常、第一樹脂ペーストと同一または実質的に同一の組成を有する熱硬化性樹脂組成物からなる。
積層体60の形成は、第一キャリアフィルム51と第二キャリアフィルム52の間に、第一樹脂ペースト層41、炭素繊維マット30および第二樹脂ペースト層42が挟まれるように行われる。
【0018】
炭素繊維マット30を第一樹脂ペースト40aおよび第二樹脂ペースト40bで含浸させるために、積層体60は含浸機3で加圧される。
含浸機3を通過した積層体60はボビンに巻き取られる。積層体60をボビンごと加温して一定時間保持することにより第一樹脂ペースト40aおよび第二樹脂ペースト40bが十分に増粘すれば、SMCの完成である。増粘後の樹脂ペーストの25℃における粘度は、例えば1000Pa・s以上100000Pa・s以下である。
【0019】
このSMC製造方法において、炭素繊維マット30をフィラメント数3K以下のチョップド炭素繊維束で形成するために、例えば、出発材料である連続炭素繊維束10としてフィラメント数が3K以下であるものが用いられる。
好ましい方法では、チョップする前の任意の段階で、連続炭素繊維束10に未分割部と分割部とが長手方向に沿って交互かつ周期的に設けられ、分割部において繊維束が複数のサブ束に分割(split)される。言い換えれば、連続炭素繊維束10が部分的にサブ束に分割されたうえでチョップされる。
この方法は、12K、15K、18K、24K、48K、50Kなど、連続炭素繊維束10のフィラメント数が10K以上のときに、特に好ましく採用することができる。分割部におけるサブ束の平均フィラメント数は3K以下、好ましくは2.5K以下とされる。
【0020】
フィラメント数Nの連続炭素繊維束を部分的にn本のサブ束に分割するとき、N/nがサブ束の平均フィラメント数である。
分割部の長さは通常50cm以上であり、特に上限は無いが、連続炭素繊維束の取扱い易さを考慮して、例えば3m以下、2m以下または1m以下に設定され得る。連続炭素繊維束の取扱いに支障が生じない限りにおいて、未分割部は短ければ短いほど好ましい。未分割部が連続炭素繊維束全体に占める割合は、好ましくは1%以下であり、より好ましくは0.7%以下である。
例えば、連続炭素繊維束10のフィラメント数が18Kであり、チョップする前にこれを部分的に9本のサブ束に分割するとき、炭素繊維マット30は平均フィラメント数2Kのチョップド炭素繊維束で形成される。
【0021】
連続炭素繊維束を部分的に複数のサブ束に分割する機構を備えるSMC製造装置は、例えば、国際公開WO2019/194090号に開示されている。好ましい例では、出発材料の連続炭素繊維束10が、予め別途工程で部分的に複数のサブ束に分割されていてもよい。
炭素繊維マット30を形成するフィラメント数3K以下のチョップド炭素繊維束の全てが同じフィラメント数を有する必要はない。炭素繊維マットは3K以下である様々なフィラメント数のチョップド炭素繊維束から形成され得る。
炭素繊維マット30を成すチョップド炭素繊維束20のフィラメント数は好ましくは0.5K以上、より好ましくは1K以上である。その理由は、フィラメント数が0.5以上の炭素繊維束は真直性が維持され易く、相対的に高い補強効果を示すからである。炭素繊維マットがフィラメント数1K未満または0.5K未満のチョップド炭素繊維束を含有することを許容しないものではない。
【0022】
チョップド炭素繊維束20の繊維長は、例えば5mm~100mmであり、典型的には約13mm(約0.5インチ)、約25mm(約1インチ)または約50mm(約2インチ)である。
チョップド炭素繊維束20の形状は扁平であり、限定するものではないが、典型的には、厚さが0.05mm~0.2mmであり、繊維方向と垂直な方向の最大幅が1mm~5mmである。
チョップド炭素繊維束20を平面視したとき、各末端は繊維方向に垂直に切断されていてもよいし、あるいは、繊維方向に対し90度以外の角度で切断されていてもよい。
【0023】
SMCの炭素繊維含有量は、60質量%以上であり、70質量%以上であってもよく、特に上限はないが、生産効率の観点から、85質量%以下、80質量%以下あるいは75質量%以下に設定され得る。
限定するものではないが、SMCの目付(単位面積当たり質量)は、例えば500g/m2~5000g/m2であり得る。製造すべきSMCの炭素繊維含有量が多いほど、また、炭素繊維マットを形成するチョップド炭素繊維束のフィラメント数が少ないほど、含浸速度が下がるため、目付を小さくした方が製造し易くなる。
【0024】
有利な例において、第一樹脂ペースト40aおよび第二樹脂ペースト40bに配合される熱硬化性樹脂は、ビニルエステル樹脂と不飽和ポリエステル樹脂の少なくとも一方、好ましくは両方である。
他の有利な例において、第一樹脂ペースト40aおよび第二樹脂ペースト40bに配合される熱硬化性樹脂は、エポキシ樹脂である。
【0025】
実施形態に係るCFRP構造体は、難燃化効果を有する成分を特に含有しないときですら、比較的良好な難燃性を示す。すなわち、実施形態に係るCFRP構造体は、ハロゲン(F、Cl、Br、I)、リン(P)およびアンチモン(Sb)のどれひとつとして含有しないときですら、比較的良好な難燃性を示す。
難燃化効果を有する成分とは、難燃剤およびハロゲン化樹脂である。ハロゲン化樹脂とは、分子内にハロゲン基を有する樹脂である。
ハロゲン、リンおよびアンチモンは、いずれも、代表的な難燃剤に含まれる元素である。
実施形態に係るCFRP構造体の一部または全部で厚さが3mm以下であるとき、その難燃性は厚さ4mm未満の部分を有さないときに比べ低下する。
【0026】
難燃性を補う目的、難燃性を確実に発現させる目的、または、難燃性を更に高める目的のために、実施形態に係るCFRP構造体には難燃剤が添加され得る。
実施形態に係るCFRP構造体に難燃剤を添加するには、例えば該構造体をSMCから成形する場合であれば、該SMCに用いる熱硬化性樹脂組成物に難燃剤を配合すればよい。
実施形態に係るCFRP構造体に添加し得る難燃剤に特に限定はなく、高分子材料の難燃化に従来から使用されているリン系難燃剤、ハロゲン系難燃剤、窒素系難燃剤および無機系難燃剤から適宜選択することができる。
難燃剤として知られる化合物の典型例を以下に記す。
【0027】
リン系難燃剤の例は、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリブトキシエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、芳香族ポリホスフェートなどの非ハロゲンリン酸エステルと、トリス(クロロエチル)ホスフェート、トリス(ジクロロプロピル)ホスフェート、トリス(クロロプロピル)ホスフェート、ビス(2,3-ジブロモプロピル)2,3-ジクロロプロピルホスフェート、トリス(2,3-ジブロモプロピル)ホスフェート、ビス(クロロプロピル)オクチルホスフェート、ハロゲン化アルキルポリホスフェート、ハロゲン化アルキルポリホスフォネートなどのハロゲン化リン酸エステルである。
【0028】
リン系難燃剤の他の例は、ホスフィン酸金属塩である。ここでいうホスフィン酸金属塩には、有機基を有さないホスフィン酸の金属塩だけでなく、ジフェニルホスフィン酸、モノフェニルホスフィン酸、ジアルキルホスフィン酸、モノアルキルホスフィン酸、アルキルフェニルホスフィン酸のような有機ホスフィン酸の金属塩が含まれる他、メタン(ジメチルホスフィン酸)、ベンゼン-1,4-ジ(メチルホスフィン酸)のようなジホスフィン酸の金属塩が含まれる。
ジアルキルホスフィン酸の例として、ジメチルホスフィン酸、エチルメチルホスフィン酸、ジエチルホスフィン酸、メチル-n-プロピルホスフィン酸が挙げられる。モノアルキルホスフィン酸の例として、メチルホスフィン酸、エチルホスフィン酸、n-プロピルホスフィン酸が挙げられる。アルキルフェニルホスフィン酸の例として、メチルフェニルホスフィン酸が挙げられる。
ホスフィン酸金属塩は、ホスフィン酸アルミニウム塩、ホスフィン酸亜鉛塩、ホスフィン酸カルシウム塩、ホスフィン酸マグネシウム塩などであり得るが、限定されるものではない。
リン系難燃剤の更に他の例は、赤リン、ポリリン酸アンモン、リン酸メラミン、リン酸グアニジン、リン酸グアニル尿素などである。
【0029】
ハロゲン系難燃剤の例は、ヘキサブロモベンゼン、ヘキサブロモジフェニルエーテル、トリブロモフェノール、デカブロモジフェニルエーテル、ジブロモクレジルグリシジルエーテル、デカブロモジフェニルオキシド、テトラブロモビスフェノールA、テトラブロモビスフェノールA誘導体[テトラブロモビスフェノールAエポキシオリゴマー、テトラブロモビスフェノールAカーボネートオリゴマー、テトラブロモビスフェノールAビス(ジブロモプロピルエーテル)、テトラブロモビスフェノールAビス(アリールエーテル)など]、ビス(ペンタブロモフェニル)エタン、1,2-ビス(2,4,6-トリブロモフェノキシ)エタン、2,4,6-トリス(2,4,6-トリブロモフェノキシ)-1,3,5-トリアジン、臭素化ポリフェニレンエーテル、臭素化ポリスチレン、ポリ臭素化スチレン、臭素化ポリエチレン、エチレンビステトラブロモフタルイミド、ヘキサブロモシクロドデカン、ヘキサブロモベンジルアクリレート、ペンタブロモベンジルアクリレート、臭素化エポキシ化合物(臭素化フェノール類とエピクロルヒドリンとの反応によって得られるモノエポキシ化合物)、塩素化パラフィン、塩素化ポリエチレンなどである。
【0030】
窒素系難燃剤の例は、シアヌル酸メラミンのようなメラミン化合物、グアニジン化合物、トリアジン化合物、リン酸アンモン、炭酸アンモンなどである。
無機系難燃剤の例は、三酸化アンチモン、アンチモン酸ナトリウム、水酸化アルミニウム、炭酸カルシウムなどである。
難燃剤として例示した上記の化合物は、一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。好適例において、実施形態に係るCFRP構造体に添加される難燃剤は、ハロゲンを含有しない化合物から選択される。
【0031】
実施形態に係るCFRP構造体の難燃性を補う目的、難燃性を確実に発現させる目的、または、難燃性を更に高める目的のために、難燃剤の添加に代えて、または、難燃剤の添加に加えて、ハロゲン化樹脂が実施形態に係るCFRP構造体の材料に用いられ得る。ハロゲン化樹脂の中でも、上記目的を達成するうえで特に有効なのは臭素化樹脂である。
例えば実施形態に係るCFRP構造体をSMCから成形する場合であれば、該SMCに用いる熱硬化性樹脂組成物に、臭素基を有する熱硬化性樹脂が配合され得る。
【0032】
臭素基を有する熱硬化性樹脂の好適例は、臭素化ビスフェノールA型ビニルエステル樹脂と臭素化ビスフェノールA型エポキシ樹脂である。
臭素化ビスフェノールA型ビニルエステル樹脂は、臭素化ノボラック型ビニルエステル樹脂と併用することができ、また、非臭素化ビニルエステル樹脂および非臭素化不飽和ポリエステル樹脂のいずれか一方または両方と共に熱硬化性樹脂組成物に配合することができる。
臭素化ビスフェノールA型エポキシ樹脂は、臭素化ノボラック型エポキシ樹脂と併用することができ、また、非臭素化エポキシ樹脂と共に熱硬化性樹脂組成物に配合することができる。
【0033】
変形実施形態において、実施形態に係るCFRP構造体の一部または全部の厚さを4mm未満とするとともに、その厚さ4mm未満の部分に難燃剤を添加することができる。難燃剤の添加に加えて、または難燃剤の添加に代えて、その厚さ4mm未満の部分にハロゲン化樹脂を使用してもよい。
【0034】
以下に、本発明者等が行った実験の結果を記す。
実験では、SMCを作製し、そのSMCから圧縮成形法によりCFRP板を成形し、そのCFRP板から切り出した試験片で燃焼性試験を行った。
詳細な手順は次の通りである。
【0035】
[実験1]
(SMCの作製)
通常のSMC製造装置を用いて、次の手順でSMCを作製した。
まず、ポリエチレン製の第一キャリアフィルムの片面に熱硬化性樹脂組成物ペーストを均一に塗布し、次いで、第一キャリアフィルムのその熱硬化性樹脂組成物ペーストが塗布された面上にチョップド炭素繊維束を撒いて炭素繊維マットを形成した。
熱硬化性樹脂組成物ペーストは、別途工程にて、ビニルエステル樹脂、不飽和ポリエステル樹脂、スチレン、増粘剤、重合開始剤および重合禁止剤を配合することにより調製した。チョップド炭素繊維束は、走行するキャリアフィルムの上方に設置したロータリーカッターで、連続炭素繊維束から約2.5cmの長さに切り出した。
キャリアフィルムに塗布する熱硬化性樹脂組成物ペーストの量と、ロータリーカッターへの連続炭素繊維束の供給量は、製造しようとするSMCの炭素繊維含有量を考慮して調節した。
【0036】
次いで、走行する第一キャリアフィルムに、同じ熱硬化性樹脂組成物ペーストを片面に均一に塗布したポリエチレン製の第二キャリアフィルムを重ね合わせ、ローラーで加圧することにより、熱硬化性樹脂組成物ペーストで含浸された炭素繊維マットが第一キャリアフィルムと第二キャリアフィルムの間に挟まれた積層体を得た。
この積層体を25℃で7日間保持してSMCを完成させた。
作製したSMCは下記表1に示す7種類である。
【0037】
【0038】
表1において、連続炭素繊維束のフィラメント数とは、原料に用いた連続炭素繊維束のフィラメント数である。SMC-3、SMC-6およびSMC-7の製造では、フィラメント数15Kの連続炭素繊維束を部分的にサブ束9本に分割して用いたので、サブ束の平均フィラメント数は1.7Kだった。この連続炭素繊維束において、各分割部の長さは700mm、各未分割部の長さは5mmだったので、未分割部が連続炭素繊維束全体に占める割合は0.7%であった。
表1に示すSMCの炭素繊維含有量は、200mm角のSMC片から熱硬化性樹脂組成物を有機溶剤で溶解させて取り除き、残った炭素繊維の重量を該SMC片の重量で除算する方法で求めた。
表1に示す4mm厚CFRPの炭素繊維含有量は、圧縮成形法を用いて各SMCから作製した4mm厚のCFRP片における、比重測定に基づいて求めた炭素繊維含有量である。
【0039】
(燃焼性試験)
SMC-1~SMC-7の各々から、厚さ2mm、3mmまたは4mmのCFRP板を、温度140℃で成形した。成形時間は(t+1)分間(ただし、tはmm単位で表したCFRPの厚さ)としたので、厚さ2mmのCFRP板の成形時間は3分間、厚さ3mmのCFRP板の成形時間は4分間、厚さ4mmのCFRP板の成形時間は5分間であった。
CFRP板の厚さはSMCを積層することにより調節した。
得られたCFRP板の各々から長さ125mm、幅13mmの試験片1片を切り出し、これを用いて垂直燃焼性試験を行った。
【0040】
垂直燃焼性試験の条件は、20mm垂直燃焼性試験(IEC60695-11-10 B法、ASTM D3801)を参考にした。
具体的には、試験片を垂直に保ち、下端にバーナーの火を10秒間接炎させた後、バーナーの火を取り除き、試験片に着火した火が消える迄の時間を測定した。次いで、火が消えると同時に2回目の接炎を10秒間行い、1回目と同様にして、着火した火が消える迄の時間を測定した。試験片の前処理は特に行わなかった。
【0041】
各試験片の難燃性は、次の3段階で評価した。
優:合計燃焼時間が10秒以下。
良:合計燃焼時間が30秒以下。
不良:合計燃焼時間が30秒を超える。
垂直燃焼性試験の結果は、表2に示す通りであった。
【0042】
【0043】
表2に示すように、難燃性の評価が優または良だったのは、厚さ4mmの試験片のみであった。特に、難燃性の評価が優だったのは、フィラメント数3Kの連続炭素繊維束を原料に用いたSMC-5から作製した試験片10と、部分的に9分割したフィラメント数15Kの連続炭素繊維束を原料に用いたSMC-6およびSMC-7からそれぞれ作製した試験片11および試験片12のみであった。
試験片1~試験片12を用いた燃焼性試験のいずれにおいても、滴下物は観察されなかった。
【0044】
[実験2]
熱硬化性樹脂組成物として、ビニルエステル樹脂組成物に代えてエポキシ樹脂組成物を用いたことを除き、実験1と同様にしてSMC(以下では「SMC-8」と呼ぶ)を作製した。
エポキシ樹脂組成物には、エポキシ樹脂、硬化剤、硬化助剤および増粘剤を配合した。調製したエポキシ樹脂組成物においては、ビスフェノールA型エポキシ樹脂[三菱ケミカル製jER(登録商標)827]が総質量の80%を占めた。
連続炭素繊維束には、SMC-3、SMC-6およびSMC-7に用いたものと同じく、フィラメント数15Kの連続炭素繊維束を部分的に9本のサブ束に分割したもの(平均フィラメント数1.7K)を用いた。作製したSMC-8の炭素繊維含有量は61質量%であった。また、SMC-8から作製した4mm厚のCFRP片における、比重測定に基づいて求めたチョップド炭素繊維含有量は62質量%であった。
【0045】
SMC-8から、厚さ2mm、3mmまたは4mmのCFRP板を、温度130℃で成形した。成形時間は(t×3)分間(ただし、tはmm単位で表したCFRPの厚さ)としたので、厚さ2mmのCFRP板の成形時間は6分間、厚さ3mmのCFRP板の成形時間は9分間、厚さ4mmのCFRP板の成形時間は12分間であった。
CFRP板の厚さはSMCを積層することにより調節した。
CFRP板から試験片を切り出し、実験1と同様にして垂直燃焼性試験を行ったところ、結果は表3に示す通りであった。いずれの試験片を用いた燃焼性試験においても滴下物は観察されなかった。
【0046】
【0047】
参考までに、UL94規格においては、合計燃焼時間10秒以下であることがUL94 V-0認証の必要条件であり、合計燃焼時間30秒以下であることがUL94 V-1およびV-2認証の必要条件である。
UL94規格では、また、試験片の下に置いた綿が滴下物により着火しないことが、UL94 V-0認証およびUL94 V-1認証の必要条件である。
【0048】
以上、本発明を具体的な実施形態に即して説明したが、各実施形態は例として提示されたものであり、本発明の範囲を限定するものではない。本明細書に記載された各実施形態は、発明の趣旨を逸脱しない範囲内で、様々に変形することができ、かつ、実施可能な範囲内で、他の実施形態により説明された特徴と組み合わせることができる。
【産業上の利用可能性】
【0049】
実施形態に係るCFRP構造体は、航空機、無人航空機、自動車、鉄道車両、船舶その他各種の輸送機器、産業機器、医療機器、福祉・介護用品、住宅設備機器、スポーツ用品など、様々な機器・用品において使用され得る。
【符号の説明】
【0050】
1 ロータリーカッター
2a 第一塗工機
2b 第二塗工機
3 含浸機
10 連続炭素繊維束
20 チョップド炭素繊維束
30 炭素繊維マット
40a 第一樹脂ペースト
40b 第二樹脂ペースト
41 第一樹脂ペースト層
42 第二樹脂ペースト層
51 第一キャリアフィルム
52 第二キャリアフィルム
60 積層体