(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-09-09
(45)【発行日】2024-09-18
(54)【発明の名称】液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
(51)【国際特許分類】
G02F 1/1337 20060101AFI20240910BHJP
C08G 73/10 20060101ALI20240910BHJP
【FI】
G02F1/1337 525
C08G73/10
(21)【出願番号】P 2021505114
(86)(22)【出願日】2020-03-11
(86)【国際出願番号】 JP2020010625
(87)【国際公開番号】W WO2020184629
(87)【国際公開日】2020-09-17
【審査請求日】2023-01-12
(31)【優先権主張番号】P 2019044856
(32)【優先日】2019-03-12
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000003986
【氏名又は名称】日産化学株式会社
(74)【代理人】
【識別番号】110000095
【氏名又は名称】弁理士法人T.S.パートナーズ
(74)【代理人】
【識別番号】100082887
【氏名又は名称】小川 利春
(74)【代理人】
【識別番号】100181331
【氏名又は名称】金 鎭文
(74)【代理人】
【識別番号】100183597
【氏名又は名称】比企野 健
(74)【代理人】
【識別番号】100161997
【氏名又は名称】横井 大一郎
(74)【代理人】
【識別番号】100090918
【氏名又は名称】泉名 謙治
(72)【発明者】
【氏名】堀 隆夫
(72)【発明者】
【氏名】長谷川 直史
【審査官】岩村 貴
(56)【参考文献】
【文献】国際公開第2006/003893(WO,A1)
【文献】国際公開第2015/033922(WO,A1)
【文献】国際公開第2007/055316(WO,A1)
【文献】特開2007-138138(JP,A)
【文献】特開2008-076839(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02F 1/1337
C08G 73/10
C08K 5/16
C08L 79/08
C08L 83/04
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
下記の(A)成分と(B)成分を含有することを特徴とする液晶配向剤。
(A)成分:下記式(1)で表される繰り返し単位及び下記式(2)で表される繰り返し単位からなる群から選ばれる少なくとも1種の繰り返し単位を有する重合体(A)。
(B)成分:分子内に、下記式(b)で表される部分構造を有し、窒素原子を含む塩基性部位を備えている、分子量2000以下の化合物(B)。
【化1】
式(1)中、
X
1
は下記式(4a)~(4n)、下記式(5a)及び下記式(6a)からなる群から選ばれる4価の有機基であり、Y
1は2価の有機基である。R
1は水素原子、又は炭素数1~5のアルキル基であり、Z
11、Z
12はそれぞれ独立して水素原子、置換基を有してもよい炭素数1~10のアルキル基、置換基を有してもよい炭素数2~10のアルケニル基、置換基を有してもよい炭素数2~10のアルキニル基、tert-ブトキシカルボニル基、又は9-フルオレニルメトキシカルボニル基である。
【化2】
*は結合手を表し、R
1は、炭素数1~4のアルカンジイル基を表す。m
1は、1~2の整数を表す。
【化3】
x及びyは、単結合、エーテル、カルボニル、エステル、炭素数1~5のアルカンジイル基、1,4-フェニレン、スルホニル又はアミド基である。Z
1
~Z
6
は、それぞれ独立して、水素原子、メチル基、エチル基、プロピル基、塩素原子又はベンゼン環を表す。j及びkは、0又は1である。mは1~5の整数である。*は結合手を表す。
【請求項2】
下記の(A)成分と(B)成分を含有することを特徴とする液晶配向剤。
(A)成分:下記式(1)で表される繰り返し単位及び下記式(2)で表される繰り返し単位からなる群から選ばれる少なくとも1種の繰り返し単位を有する重合体(A)。
(B)成分:分子内に、下記式(b)で表される部分構造を有し、窒素原子を含む塩基性部位を備えている、分子量2000以下の化合物(B)であり、
前記塩基性部位は、第二級アミン、又は第三級アミンから水素原子を1つ又は2つ除いた基及び含窒素複素環基からなる群より選ばれる構造である、前記化合物。
【化4】
式(1)中、X
1は4価の有機基であり、Y
1は2価の有機基である。R
1は水素原子、又は炭素数1~5のアルキル基であり、Z
11、Z
12はそれぞれ独立して水素原子、置換基を有してもよい炭素数1~10のアルキル基、置換基を有してもよい炭素数2~10のアルケニル基、置換基を有してもよい炭素数2~10のアルキニル基、tert-ブトキシカルボニル基、又は9-フルオレニルメトキシカルボニル基である。
【化5】
*は結合手を表し、R
1は、炭素数1~4のアルカンジイル基を表す。m
1は、1~2の整数を表す。
【請求項3】
上記X
1が下記式(4a)~(4n)、下記式(5a)及び下記式(6a)からなる群から選ばれる4価の有機基である、請求項
2に記載の液晶配向剤。
【化6】
x及びyは、単結合、エーテル、カルボニル、エステル、炭素数1~5のアルカンジイル基、1,4-フェニレン、スルホニル又はアミド基である。Z
1~Z
6は、それぞれ独立して、水素原子、メチル基、エチル基、プロピル基、塩素原子又はベンゼン環を表す。j及びkは、0又は1である。mは1~5の整数である。*は結合手を表す。
【請求項4】
上記重合体(A)が、上記X
1が上記式(4a)~(4n)、(5a)及び上記式(6a)からなる群から選ばれる4価の有機基であり、Y
1が2価の有機基である上記式(1)で表される繰り返し単位及び上記式(2)で表される繰り返し単位からなる群から選ばれる繰り返し単位(繰り返し単位(t))を1種以上含み、繰り返し単位(t)の含有量が、合計で、重合体(A)の全繰り返し単位に対して、5モル%以上である、請求項3に記載の液晶配向剤。
【請求項5】
上記重合体(A)が、X
1が4価の有機基であり、Y
1が窒素含有複素環、ジフェニルアミン構造及びトリフェニルアミン構造からなる群から選ばれる少なくとも一種を有するジアミンに由来する2価の有機基である上記式(1)で表される繰り返し単位及び上記式(2)で表される繰り返し単位からなる群から選ばれる繰り返し単位を1種以上含み、前記1種以上の繰り返し単位の含有量が、合計で、重合体(A)の全繰り返し単位に対して、5モル%以上である、請求項1~4のいずれか一項に記載の液晶配向剤。
【請求項6】
上記重合体(A)が、Y
1が窒素含有複素環、ジフェニルアミン構造及びトリフェニルアミン構造からなる群から選ばれる少なくとも一種を有するジアミンに由来する2価の有機基である上記式(1)で表される繰り返し単位及び上記式(2)で表される繰り返し単位からなる群から選ばれる繰り返し単位を1種以上含み、前記1種以上の繰り返し単位の含有量が、合計で、重合体(A)の全繰り返し単位に対して、5モル%以上である、請求項1~5のいずれか一項に記載の液晶配向剤。
【請求項7】
上記重合体(A)が、X
1が4価の有機基であり、Y
1が下記式(V1)~(V3)で表されるジアミンに由来する2価の有機基である上記式(1)で表される繰り返し単位及び上記式(2)で表される繰り返し単位からなる群から選ばれる繰り返し単位(繰り返し単位(a))を1種以上含み、繰り返し単位(a)の含有量が、合計で、重合体(A)の全繰り返し単位に対して、1モル%以上である、請求項1~6のいずれか一項に記載の液晶配向剤。
【化7】
Xは、単結合、-O-、-C(CH
3)
2-、-NH-、-CO-、-NHCO-、-COO-、-(CH
2)
m-、-SO
2-、-O-(CH
2)
m-O-、-O-C(CH
3)
2-、-CO-(CH
2)
m-、-NH-(CH
2)
m-、-SO
2-(CH
2)
m-、-CONH-(CH
2)
m-、-CONH-(CH
2)
m-NHCO-、又は-COO-(CH
2)
m-OCO-を表す。
X
1及びX
2はそれぞれ独立して、単結合、-(CH
2)
a-(aは1~15の整数である)、-CONH-、-NHCO-、-CON(CH
3)-、-NH-、-O-、-COO-、-OCO-又は-((CH
2)
a1-A
1)
m1-を表す。このうち、複数のa1はそれぞれ独立して1~15の整数であり、複数のA
1はそれぞれ独立して酸素原子又は-COO-を表し、m
1は1~2である。X
3は単結合、-CONH-、-NHCO-、-CON(CH
3)-、-NH-、-O-、-CH
2O-、-COO-又は-OCO-を表す。X
4は-CONH-、-NHCO-、-O-、-COO-又は-OCO-を表す。
G
1及びG
2は、それぞれ独立して、炭素数6~12の2価の芳香族基又は炭素数3~8の2価の脂環式基から選ばれる2価の環状基を表す。該環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。kは0または1を表し、m及びnは、それぞれ独立して、0~3の整数であって、m及びnの合計は1~4である。
R
1は、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基又は炭素数2~20のアルコキシアルキル基を表す。R
1を形成する任意の水素はフッ素で置換されていてもよい。
R
2は炭素数1~20のアルキル基又は炭素数2~20のアルコキシアルキル基を表し、R
2を形成する任意の水素はフッ素で置換されていてもよい。R
3はステロイド骨格を有する構造を表す。
【請求項8】
上記重合体(A)が、Y
1が下記式(V1)~(V3)で表されるジアミンに由来する2価の有機基である上記式(1)で表される繰り返し単位及び上記式(2)で表される繰り返し単位からなる群から選ばれる繰り返し単位(繰り返し単位(a))を1種以上含み、繰り返し単位(a)の含有量が、合計で、重合体(A)の全繰り返し単位に対して、1モル%以上である、請求項1~7のいずれか一項に記載の液晶配向剤。
【化8】
Xは、単結合、-O-、-C(CH
3)
2-、-NH-、-CO-、-NHCO-、-COO-、-(CH
2)
m-、-SO
2-、-O-(CH
2)
m-O-、-O-C(CH
3)
2-、-CO-(CH
2)
m-、-NH-(CH
2)
m-、-SO
2-(CH
2)
m-、-CONH-(CH
2)
m-、-CONH-(CH
2)
m-NHCO-、又は-COO-(CH
2)
m-OCO-を表す。
X
1及びX
2はそれぞれ独立して、単結合、-(CH
2)
a-(aは1~15の整数である)、-CONH-、-NHCO-、-CON(CH
3)-、-NH-、-O-、-COO-、-OCO-又は-((CH
2)
a1-A
1)
m1-を表す。このうち、複数のa1はそれぞれ独立して1~15の整数であり、複数のA
1はそれぞれ独立して酸素原子又は-COO-を表し、m
1は1~2である。X
3は単結合、-CONH-、-NHCO-、-CON(CH
3)-、-NH-、-O-、-CH
2O-、-COO-又は-OCO-を表す。X
4は-CONH-、-NHCO-、-O-、-COO-又は-OCO-を表す。
G
1及びG
2は、それぞれ独立して、炭素数6~12の2価の芳香族基又は炭素数3~8の2価の脂環式基から選ばれる2価の環状基を表す。該環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。kは0または1を表し、m及びnは、それぞれ独立して、0~3の整数であって、m及びnの合計は1~4である。
R
1は、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基又は炭素数2~20のアルコキシアルキル基を表す。R
1を形成する任意の水素はフッ素で置換されていてもよい。
R
2は炭素数1~20のアルキル基又は炭素数2~20のアルコキシアルキル基を表し、R
2を形成する任意の水素はフッ素で置換されていてもよい。R
3はステロイド骨格を有する構造を表す。
【請求項9】
上記重合体(A)が、X
1が4価の有機基であり、Y
1がp-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノアゾベンゼン、2,2’-ジメチル-4,4’-ジアミノビフェニル、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、下記式(H)で表されるジアミン及び下記式(H2)~(H3)で表されるジアミンからなる群から選ばれるジアミンに由来する2価の有機基である上記式(1)で表される繰り返し単位及び上記式(2)で表される繰り返し単位からなる群から選ばれる繰り返し単位(繰り返し単位(c))を1種以上含み、繰り返し単位(c)の含有量が、合計で、重合体(A)の全繰り返し単位に対して、5モル%以上である、請求項1~8のいずれか一項に記載の液晶配向剤。
【化9】
R
3は、-NRCO-、-COO-、-NRCONR-、又は-(CH
2)
n-(ただし、nは2~20の整数)で表される構造であり、任意の-CH
2-は-O-、-COO-、-ND-、-NRCO-、-NRCONR-、-NRCOO-、又は-OCOO-に置き換えられてもよい。Dは熱脱離性基を表し、Rは水素原子又は1価の有機基を表す。)、R
4は単結合又はベンゼン環であり、ベンゼン環上の任意の水素原子は1価の有機基で置き換えられてもよい。
【化10】
X
1は、-CO-、-O-、-COO-、-L
1-R-L
2-(L
1、L
2は、それぞれ独立に、単結合、酸素原子、又は-COO-であり、Rは-(CH
2)
n-(nは1~12の整数)である。)、又は-NRCO-(Rは水素原子又はメチル基を表す。)を表し、X
2は単結合、-NRCO-(Rは水素原子又はメチル基を表す。)又は-COO-を表す。nは1~2の整数を表す。ベンゼン環上の任意の水素原子は1価の有機基で置き換えられてもよい。
【化11】
式中、2個あるXは、それぞれ独立に、-O-、-COO-、-NHCO-、-C(=O)-、又は-(CH
2)
n-(nは1~12の整数)を表し、L
1、L
2は、それぞれ独立に、単結合、-O-、又は-COO-であり、Rは-CH
2-であるか、-(CH
2)
n-(nは2~12の整数)、又は上記-(CH
2)
n-の任意のCH
2が酸素原子で置換された基を表す。ベンゼン環上の任意の水素原子は1価の有機基で置き換えられてもよい。
【請求項10】
上記重合体(A)が、Y
1がp-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノアゾベンゼン、2,2’-ジメチル-4,4’-ジアミノビフェニル、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、下記式(H)で表されるジアミン及び下記式(H2)~(H3)で表されるジアミンからなる群から選ばれるジアミンに由来する2価の有機基である上記式(1)で表される繰り返し単位及び上記式(2)で表される繰り返し単位からなる群から選ばれる繰り返し単位(繰り返し単位(c))を1種以上含み、繰り返し単位(c)の含有量が、合計で、重合体(A)の全繰り返し単位に対して、5モル%以上である、請求項1~9のいずれか一項に記載の液晶配向剤。
【化12】
R
3は、-NRCO-、-COO-、-NRCONR-、又は-(CH
2)
n-(ただし、nは2~20の整数)で表される構造であり、任意の-CH
2-は-O-、-COO-、-ND-、-NRCO-、-NRCONR-、-NRCOO-、又は-OCOO-に置き換えられてもよい。Dは熱脱離性基を表し、Rは水素原子又は1価の有機基を表す。)、R
4は単結合又はベンゼン環であり、ベンゼン環上の任意の水素原子は1価の有機基で置き換えられてもよい。
【化13】
X
1は、-CO-、-O-、-COO-、-L
1-R-L
2-(L
1、L
2は、それぞれ独立に、単結合、酸素原子、又は-COO-であり、Rは-(CH
2)
n-(nは1~12の整数)である。)、又は-NRCO-(Rは水素原子又はメチル基を表す。)を表し、X
2は単結合、-NRCO-(Rは水素原子又はメチル基を表す。)又は-COO-を表す。nは1~2の整数を表す。ベンゼン環上の任意の水素原子は1価の有機基で置き換えられてもよい。
【化14】
式中、2個あるXは、それぞれ独立に、-O-、-COO-、-NHCO-、-C(=O)-、又は-(CH
2)
n-(nは1~12の整数)を表し、L
1、L
2は、それぞれ独立に、単結合、-O-、又は-COO-であり、Rは-CH
2-であるか、-(CH
2)
n-(nは2~12の整数)、又は上記-(CH
2)
n-の任意のCH
2が酸素原子で置換された基を表す。ベンゼン環上の任意の水素原子は1価の有機基で置き換えられてもよい。
【請求項11】
上記重合体(A)が、X
1が4価の有機基であり、Y
1がラジカル開始機能を有するジアミン及び光重合性基を末端に有するジアミンからなる群から選ばれるジアミンに由来する2価の有機基である上記式(1)で表される繰り返し単位及び上記式(2)で表される繰り返し単位からなる群から選ばれる繰り返し単位(繰り返し単位(b))を1種以上含み、繰り返し単位(b)の含有量が、合計で、重合体(A)の全繰り返し単位に対して、1モル%以上である、請求項1~10のいずれか一項に記載の液晶配向剤。
【請求項12】
上記重合体(A)が、請求項7に定義される繰り返し単位(a)および請求項11に定義される繰り返し単位(b)を含み、繰り返し単位(a)及び繰り返し単位(b)の含有量の上限値がそれぞれ、重合体(A)の全繰り返し単位に対して、99モル%以下である、請求項11に記載の液晶配向剤。
【請求項13】
上記重合体(A)が、Y
1がラジカル開始機能を有するジアミン及び光重合性基を末端に有するジアミンからなる群から選ばれるジアミンに由来する2価の有機基である上記式(1)で表される繰り返し単位及び上記式(2)で表される繰り返し単位からなる群から選ばれる繰り返し単位(繰り返し単位(b))を1種以上含み、繰り返し単位(b)の含有量が、合計で、重合体(A)の全繰り返し単位に対して、1モル%以上である、請求項1~12のいずれか一項に記載の液晶配向剤。
【請求項14】
上記液晶配向剤がさらにポリオルガノシロキサンを含み、上記ポリオルガノシロキサンがオキセタニル基及びオキシラニル基の少なくともいずれかを有する、請求項1~13のいずれか一項に記載の液晶配向剤。
【請求項15】
上記(A)成分が、2種類以上の重合体(A)からなる、請求項1~14のいずれか一項に記載の液晶配向剤。
【請求項16】
上記化合物(B)の含有量が、(A)成分100質量部あたり、0.1~40質量部である、請求項1~15のいずれか一項に記載の液晶配向剤。
【請求項17】
請求項1~16のいずれか1項に記載の液晶配向剤から得られる液晶配向膜。
【請求項18】
請求項17に記載の液晶配向膜を具備する液晶表示素子。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子に関する。
【背景技術】
【0002】
液晶表示素子には、電極構造、使用する液晶分子の物性、製造工程等が異なる種々の駆動方式が開発されており、例えばTN(twisted nematic)型、STN(super-twisted nematic)型、VA(vertical alignment)型、MVA(multi-domain vertical alignment)型、IPS(in-plane switching)型、FFS(fringe field switching)型、PSA(polymer-sustained alignment)型等の液晶表示素子が知られている。
これらの液晶表示素子は、液晶分子を配向するために液晶配向膜を具備している。液晶配向膜の材料は、耐熱性、機械的強度、液晶との親和性等の各種の特性が良好である点から、一般に、ポリアミック酸、ポリイミド、ポリシロキサン等の重合体からなる被膜が使用されている。
【0003】
近年では、液晶表示素子の高画質化に対する要求がますます高くなっている。例えば高電圧保持率を維持しつつ、蓄積電荷の少ない液晶表示素子が望まれており、特許文献1には特定の化合物を含有する液晶配向剤が開示されている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
さらに、いわゆるタッチパネル式の液晶表示素子が広く普及したことで、その表示素子にユーザーが指で強い押圧力を与えることが頻繁に行われている。このとき、液晶表示素子の内部に存在するスペーサーが液晶表示素子内で移動し、液晶配向膜をこすり付ける。スペーサーによってストレスを与えられた液晶配向膜は液晶の配向を規制することができず、液晶表示素子を、例えば、黒表示させているにも関わらず、スペーサー周辺部から光が抜け、輝点として表示されることが問題となっている。
【0006】
従来提案された液晶配向剤の構成は必ずしも上記の課題を全て達成できるものとはいえなかった。本発明は、以上のような事情に基づいてなされるものであり、その目的は、高い電圧保持率を維持しつつ、蓄積電荷の少ない、且つスペーサーによるこすり付けなど物理的摩擦が発生した際でも輝点を最小にできる液晶表示素子を提供する事である。また、このような液晶表示素子に好適な液晶配向膜及びその液晶配向剤を提供する事である。
【課題を解決するための手段】
【0007】
本発明者は、鋭意研究を進めたところ、特定の成分を含有する液晶配向剤を使用することにより、上記課題を解決可能であることを見出し、本発明を完成するに至った。具体的には下記を要旨とするものである。
【0008】
下記の(A)成分と(B)成分を含有することを特徴とする液晶配向剤。
(A)成分:下記式(1)で表される繰り返し単位及び下記式(2)で表される繰り返し単位からなる群から選ばれる少なくとも1種の繰り返し単位を有する重合体(A)。
(B)成分:分子内に、下記式(b)で表される部分構造を有し、窒素原子を含む塩基性部位を備えている、分子量2000以下の化合物(B)。
【化1】
式(1)中、X
1は4価の有機基であり、Y
1は2価の有機基である。R
1は水素原子、又は炭素数1~5のアルキル基であり、Z
11、Z
12はそれぞれ独立して水素原子、置換基を有してもよい炭素数1~10のアルキル基、置換基を有してもよい炭素数2~10のアルケニル基、置換基を有してもよい炭素数2~10のアルキニル基、tert-ブトキシカルボニル基、又は9-フルオレニルメトキシカルボニル基である。
【化2】
*は結合手を表し、R
1は、炭素数1~4のアルカンジイル基を表す。m
1は、1~2の整数を表す。
【発明の効果】
【0009】
本発明の液晶配向剤によれば、高い電圧保持率を維持しつつ、蓄積電荷の少ない、且つ、スペーサーによるこすり付けなど物理的摩擦が発生した際でも輝点を最小にできる液晶表示素子及びこれを与える液晶配向膜が得られる。
【発明を実施するための形態】
【0010】
以下に、本開示の液晶配向剤に含まれる各成分、及び必要に応じて任意に配合されるその他の成分について説明する。
<重合体(A)>
本発明の液晶配向剤は、上記式(1)で表される繰り返し単位及び上記式(2)で表される繰り返し単位からなる群から選ばれる少なくとも1種の繰り返し単位を有する重合体(A)を含有する。
上記式(2)におけるR1の炭素数1~5のアルキル基の具体例としては、メチル基、エチル基、プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基などが挙げられる。加熱によるイミド化のしやすさの観点から、R1は、水素原子又はメチル基であることが好ましい。
【0011】
上記式(2)におけるZ11、Z12の炭素数1~10のアルキル基の具体例としては、上記R1で例示した炭素数1~5のアルキル基の具体例に加えて、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。上記Z11、Z12の炭素数2~10のアルケニル基の具体例としては、ビニル基、プロペニル基、ブチニル基等が挙げられ、これらは直鎖状でも分岐状でもよい。上記Z11、Z12の炭素数2~10のアルキニル基の具体例としては、エチニル基、1-プロピニル基、2-プロピニル基等が挙げられる。
【0012】
上記Z11、Z12は置換基を有していてもよく、当該置換基としては、例えばハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子など)、水酸基、シアノ基、アルコキシ基などが挙げられる。
【0013】
残像が少ない観点において、上記Z11、Z12はそれぞれ独立して、水素原子又はメチル基であることが好ましい。
【0014】
上記式(1)及び(2)において、X1、Y1は、上記に定義した通りである。式(1)のX1としては、テトラカルボン酸二無水物、テトラカルボン酸ジエステル及びテトラカルボン酸ジエステルジハロゲン化物からなる群から選ばれる少なくとも一種(以下、これらを総称して「テトラカルボン酸誘導体」ともいう)に由来する4価の有機基が挙げられる。具体例を挙げると、芳香族テトラカルボン酸二無水物、脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、又はこれらのテトラカルボン酸ジエステル、若しくはテトラカルボン酸ジエステルジハロゲン化物に由来する4価の有機基が挙げられる。式(1)のY1はジアミンに由来する2価の有機基である。
【0015】
ここで、芳香族テトラカルボン酸二無水物とは、芳香環に結合する少なくとも1つのカ
ルボキシル基を含めて4つのカルボキシル基が分子内脱水することにより得られる酸二無
水物のことである。脂肪族テトラカルボン酸二無水物とは、鎖状炭化水素構造に結合する4つのカルボキシル基が分子内脱水することにより得られる酸二無水物のことである。但し、鎖状炭化水素構造のみで構成されている必要はなく、その一部に脂環式構造や芳香環構造を有していてもよい。脂環式テトラカルボン酸二無水物とは、脂環式構造に結合する少なくとも1つのカルボキシル基を含めて4つのカルボキシル基が分子内脱水することにより得られる酸二無水物のことである。但し、これら4つのカルボキシル基はいずれも芳香環には結合していない。また、脂環式構造のみで構成されている必要はなく、その一部に鎖状炭化水素構造や芳香環構造を有していてもよい。
【0016】
高い電圧保持率が得られ、物理的摩擦で発生する輝点を抑制できる観点において、X
1は下記式(4a)~(4n)、下記式(5a)及び下記式(6a)からなる群から選ばれる4価の有機基であることが好ましい。
【化3】
x及びyは、単結合、エーテル、カルボニル、エステル、炭素数1~5のアルカンジイル基、1,4-フェニレン、スルホニル又はアミド基である。Z
1~Z
6は、それぞれ独立して、水素原子、メチル基、エチル基、プロピル基、塩素原子又はベンゼン環を表す。j及びkは、0又は1である。mは1~5の整数である。*は結合手を表す。
【0017】
高い電圧保持率が得られ、物理的摩擦で発生する輝点を抑制できる観点において、上記式(4a)の好ましい具体例として、下記式(4a-1)~(4a-4)で表される構造が挙げられる。
【化4】
【0018】
上記式(5a)、(6a)における炭素数1~5のアルカンジイル基としては、メチレン、エチレン、1,3-プロパンジイル、1,4-ブタンジイル、1,5-ペンタンジイル等が挙げられる。
【0019】
高い電圧保持率が得られ、物理的摩擦で発生する輝点を抑制できる観点において、上記式(1)のX1は、上記式(4a)~(4h)、(4j)、(4l)、(4m)~(4n)から選ばれる4価の有機基であってもよい。
【0020】
高い電圧保持率が得られ、物理的摩擦で発生する輝点を抑制できる観点において、X1が上記式(4a)~(4n)、(5a)及び上記式(6a)からなる群から選ばれる4価の有機基であり、Y1が2価の有機基である上記式(1)で表される繰り返し単位及び上記式(2)で表される繰り返し単位からなる群から選ばれる繰り返し単位(以下、繰り返し単位(t)ともいう。)の1種以上の含有量が、合計で、重合体(A)の全繰り返し単位に対して、5モル%以上、又は10モル%以上、又は20モル%以上であってもよい。
【0021】
式(1)のY1としては、ジアミンに由来する2価の有機基が挙げられ、例えば脂肪族ジアミン、脂環式ジアミン、又は芳香族ジアミンに由来する2価の有機基が挙げられる。具体例を挙げると、脂肪族ジアミンとして、例えばメタキシリレンジアミン、エチレンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン等を;脂環式ジアミンとして、例えば1,4-シクロヘキサンジアミン、4,4’-メチレンビス(シクロヘキシルアミン)等を;
【0022】
芳香族ジアミンとしては、p-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノベンゾフェノン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノアゾベンゼン、1-(4-アミノフェニル)-1,3,3-トリメチル-1H-インダン-5-アミン、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-6-アミン、窒素含有複素環、ジフェニルアミン構造及びトリフェニルアミン構造からなる群から選ばれる少なくとも一種を有するジアミン(以下「窒素含有ジアミン」ともいう。)、3,5-ジアミノ安息香酸、2,2’-ジメチル-4,4’-ジアミノビフェニル、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサン、下記式(H)で表されるジアミン、下記式(H2)~(H3)で表されるジアミン、下記式(V-1)~(V-3)で表されるジアミン、下記式(R1)~(R5)で表されるラジカル開始機能を有するジアミン、メタクリル酸2-(2,4-ジアミノフェノキシ)エチル、2,4-ジアミノ-N,N-ジアリルアニリンなどの光重合性基を末端に有するジアミン、国際公開公報WO2014/080865号の段落[0053]に記載の光配向性構造を有するジアミン、段落[0057]に記載の炭素-炭素不飽和結合を有するジアミン、段落[0058]に記載のアゾベンゼン骨格を有するジアミン、国際公開公報WO2012/086715号の段落[0069]~[0072]に記載の光反応性を有するジアミン等を挙げることができる。
【化5】
R
3は、-NRCO-、-COO-、-NRCONR-、-(CH
2)
n-(ただし、nは2~20の整数)で表される構造であり、任意の-CH
2-は-O-、-COO-、-ND-、-NRCO-、-NRCONR-、-NRCOO-、-OCOO-に置き換えられてもよい。Dは熱脱離性基を表し、Rは水素原子又は1価の有機基を表す。R
4は単結合又はベンゼン環であり、ベンゼン環上の任意の水素原子は1価の有機基で置き換えられてもよい。
【化6】
X
1は、-CO-、-O-、-COO-、-L
1-R-L
2-(L
1、L
2は、それぞれ独立に、単結合、酸素原子又は-COO-であり、Rは-(CH
2)
n-(nは1~12の整数)である。)、又は-NRCO-(Rは水素原子又はメチル基を表す。)を表し、X
2は単結合、-NRCO-(Rは水素原子又はメチル基を表す。)又は-COO-を表す。nは1~2の整数を表す。ベンゼン環上の任意の水素原子は1価の有機基で置き換えられてもよい。
【化7】
式中、2個あるXは、それぞれ独立に、-O-、-COO-、-NHCO-、-C(=O)-又は-(CH
2)
n-(nは1~12の整数)を表し、L
1、L
2は、それぞれ独立に、単結合、-O-又は-COO-であり、Rは-CH
2-であるか、-(CH
2)
n-(nは2~12の整数)、又は上記-(CH
2)
n-の任意のCH
2が酸素原子で置換された基を表す。ベンゼン環上の任意の水素原子は1価の有機基で置き換えられてもよい。
【0023】
【化8】
Xは、単結合、-O-、-C(CH
3)
2-、-NH-、-CO-、-NHCO-、-COO-、-(CH
2)
m-、-SO
2-、-O-(CH
2)
m-O-、-O-C(CH
3)
2-、-CO-(CH
2)
m-、-NH-(CH
2)
m-、-SO
2-(CH
2)
m-、-CONH-(CH
2)
m-、-CONH-(CH
2)
m-NHCO-又は-COO-(CH
2)
m-OCO-を表す。
X
1及びX
2はそれぞれ独立して、単結合、-(CH
2)
a-(aは1~15の整数である)、-CONH-、-NHCO-、-CON(CH
3)-、-NH-、-O-、-COO-、-OCO-又は-((CH
2)
a1-A
1)
m1-を表す。このうち、複数のa1はそれぞれ独立して1~15の整数であり、複数のA
1はそれぞれ独立して酸素原子又は-COO-を表し、m
1は1~2である。X
3は単結合、-CONH-、-NHCO-、-CON(CH
3)-、-NH-、-O-、-CH
2O-、-COO-又は-OCO-を表す。X
4は-CONH-、-NHCO-、-O-、-COO-又は-OCO-を表す。
G
1及びG
2は、それぞれ独立して、フェニレン、ビフェニレン、ナフタレンなどの炭素数6~12の2価の芳香族基又はシクロプロピレン、シクロヘキシレンなどの炭素数3~8の2価の脂環式基から選ばれる2価の環状基を表す。該環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。kは0または1を表し、m及びnは、それぞれ独立して、0~3の整数であって、m及びnの合計は1~4である。
R
1は、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基又は炭素数2~20のアルコキシアルキル基を表す。R
1を形成する任意の水素はフッ素で置換されていてもよい。
R
2は炭素数1~20のアルキル基又は炭素数2~20のアルコキシアルキル基を表し、R
2を形成する任意の水素はフッ素で置換されていてもよい。R
3はステロイド骨格を有する構造を表す。
【0024】
【0025】
上記窒素含有複素環の具体例としては、ピロール、イミダゾール、ピリジン、ピリミジン、ピリダジン、ピラジン、カルバゾール、ベンゾイミダゾール、ピペリジン、ピペラジン、ピロリジン、ヘキサメチレンイミンなどが挙げられ、ジフェニルアミン構造としては、ジフェニルアミン、N-メチルジフェニルアミン又はN-tert-ブトキシカルボニルジフェニルアミンなどの構造が挙げられる。窒素含有ジアミンの具体例としては、2,6-ジアミノピリジン、3,4-ジアミノピリジン、3,5-ジアミノ-N-(ピリジン-3-イルメチル)ベンズアミド、2,4-ジアミノピリミジン、3,6-ジアミノカルバゾール、N-メチル-3,6-ジアミノカルバゾール、ビス(4-アミノフェニル)アミン、N,N-ビス(4-アミノフェニル)メチルアミン、N,N’-ビス(4-アミノフェニル)-ベンジジン、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチルベンジジン、1,4-ビス(4-アミノフェニル)-ピペラジン、4-(4-アミノフェノキシカルボニル)-1-(4-アミノフェニル)ピペリジン、4,4’-[4,4’-プロパン-1,3-ジイルビス(ピペリジン-1,4-ジイル)]ジアニリン、下記式(z-1)~(z-19)で表されるジアミン等が挙げられる。
【0026】
【化10】
【化11】
Bocはtert-ブトキシカルボニル基を表す。
【0027】
上記式(H)、(H2)、(H3)においてベンゼン環上の水素原子は、メチル基、エチル基などの炭素数1~5のアルキル基、メトキシ基などの炭素数1~5のアルコキシ基、フッ素原子などのハロゲン原子、トリフルオロメチル基などの炭素数1~5のハロゲン化アルキル基、-NR1R2(R1、R2はそれぞれ水素原子、メチル基又はtert-ブトキシカルボニル基を表す。)、シアノ基、ヒドロキシ基などの1価の有機基で置き換えてもよい。
【0028】
液晶配向性を高める観点から、上記式(H)で表されるジアミンの中でも、下記式(H-1)~(H-17)で表されるジアミンを用いてもよい。
【化12】
【化13】
(Rは水素原子、メチル基又はtert-ブトキシカルボニル基を表す。Bocは、tert-ブトキシカルボニル基を表す。)
【0029】
液晶配向性を高める観点から、上記式(H2)で表されるジアミンの中でも、下記式(H2-1)~(H2-17)で表されるジアミンを用いてもよい。
【化14】
【化15】
Rは水素原子、メチル基、又はtert-ブトキシカルボニル基を表す。*は結合手を表す。Bocはtert-ブトキシカルボニル基を表す。
【0030】
液晶配向性を高める観点から、上記式(H3)で表されるジアミンの中でも、下記式(H3-1)~(H3-4)で表されるジアミンを用いてもよい。
【化16】
【0031】
液晶配向性を高める観点から、ジアミン(V-1)~(V-3)の中でも、下記式(V2-1)~(V2-13)で表されるジアミンを用いてもよい。
【化17】
【化18】
式中、X
v1~X
v4、X
p1~X
p8は、はそれぞれ独立して、-(CH
2)
a-(aは1~15の整数である)、-CONH-、-NHCO-、-CON(CH
3)-、-NH-、-O-、-CH
2O-、-CH
2OCO-、-COO-、又は-OCO-を示し、X
v5は-O-、-CH
2O-、-CH
2OCO-、-COO-、又は-OCO-を示し、X
V6~X
V7、X
s1~X
s4はそれぞれ独立して、-O-、-COO-又は-OCO-を示す。X
a~X
fは、単結合、-O-、-NH-、又は-O-(CH
2)
m-O-を示し、R
v1~R
v4、R
1a~R
1hはそれぞれ独立して、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基または炭素数2~20のアルコキシアルキル基を示す。mは1~8の整数を表す。
【0032】
TN型、STN型又は垂直配向型の液晶表示素子用の液晶配向剤に適用する場合、液晶配向性を高める観点から、上記重合体(A)は、X1が4価の有機基であり、Y1が上記式(V1)~(V3)で表されるジアミンに由来する2価の有機基である上記式(1)で表される繰り返し単位及び上記式(2)で表される繰り返し単位からなる群から選ばれる繰り返し単位(以下、繰り返し単位(a)ともいう。)を1種以上含んでもよい。液晶配向性を高める観点から、繰り返し単位(a)の含有量は、合計で、重合体(A)の全繰り返し単位に対して、1モル%以上、又は3モル%以上、又は5モル%以上でもよい。
【0033】
PSA型の液晶表示素子用の液晶配向剤に適用する場合、液晶配向性を高める観点から、上記重合体(A)は、X1が4価の有機基であり、Y1が上記ラジカル開始機能を有するジアミン及び上記光重合性基を末端に有するジアミンからなる群から選ばれるジアミンに由来する2価の有機基である上記式(1)で表される繰り返し単位及び上記式(2)で表される繰り返し単位からなる群から選ばれる繰り返し単位(以下、繰り返し単位(b)ともいう。)を1種以上含んでもよい。液晶配向性を高める観点から、繰り返し単位(b)の含有量は、合計で、重合体(A)の全繰り返し単位に対して、1モル%以上、又は3モル%以上、又は5モル%以上でもよい。この場合において、重合体(A)は、繰り返し単位(a)を1種以上併用してよい。繰り返し単位(a)及び繰り返し単位(b)の含有量の上限値はそれぞれ、重合体(A)の全繰り返し単位に対して、99モル%以下、又は97モル%以下、又は95モル%以下でもよい。尚、この場合において、上記繰り返し単位(a)、繰り返し単位(b)以外のその他の繰り返し単位を目的に応じて含んでもよい。
【0034】
IPS型又はFFS型の液晶表示素子用の液晶配向剤に適用する場合、液晶配向性を高める観点から、上記重合体(A)は、X1が4価の有機基であり、Y1がp-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノアゾベンゼン、2,2’-ジメチル-4,4’-ジアミノビフェニル、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、上記式(H)で表されるジアミン及び上記式(H2)~(H3)で表されるジアミンからなる群から選ばれるジアミンに由来する2価の有機基である上記式(1)で表される繰り返し単位及び上記式(2)で表される繰り返し単位からなる群から選ばれる繰り返し単位(以下、繰り返し単位(c)ともいう。)を1種以上含んでもよい。液晶配向性を高める観点から、繰り返し単位(c)の含有量は、合計で、重合体(A)の全繰り返し単位に対して、5モル%以上、又は10モル%以上でもよい。
【0035】
液晶配向剤により形成した塗膜に対して光配向法により液晶配向能を付与する場合、上記重合体(A)は、X1が4価の有機基であり、Y1が上記光配向性構造を有するジアミン、上記炭素-炭素不飽和結合を有するジアミン、上記アゾベンゼン骨格を有するジアミン及び上記光反応性を有するジアミンからなる群から選ばれるジアミンに由来する2価の有機基である上記式(1)で表される繰り返し単位及び上記式(2)で表される繰り返し単位からなる群から選ばれる繰り返し単位(以下、繰り返し単位(d)ともいう。)を1種以上含んでもよい。液晶配向能を付与する観点から、繰り返し単位(d)の含有量は、合計で、重合体(A)の全繰り返し単位に対して、20モル%以上、又は30モル%以上であってもよい。また、光配向法により液晶配向能を付与し、高い電圧保持率を維持する観点から、上記重合体(A)は、X1が上記式(4a)~(4c)、(4f)~(4g)であり、Y1が2価の有機基である上記式(1)で表される繰り返し単位及び上記式(2)で表される繰り返し単位からなる群から選ばれる繰り返し単位(以下、繰り返し単位(e)ともいう。)を1種以上含んでもよい。繰り返し単位(e)の含有量は、合計で、重合体(A)の全繰り返し単位に対して、5モル%以上、又は10モル%以上であってもよい。
【0036】
蓄積電荷が少ない観点から、上記重合体(A)は、X1が4価の有機基であり、Y1が窒素含有ジアミンに由来する2価の有機基である上記式(1)で表される繰り返し単位及び上記式(2)で表される繰り返し単位からなる群から選ばれる繰り返し単位(以下、繰り返し単位(n)ともいう。)を1種以上含んでもよい。繰り返し単位(n)の含有量は、合計で、重合体(A)の全繰り返し単位に対して、5モル%以上、又は10モル%以上であってもよい。
【0037】
本発明の液晶配向剤は、1種類の重合体(A)を含有してもよく、2種類以上の重合体(A)を含有してもよい。重合体(A)が2種類以上である場合の具体例を挙げると、蓄積電荷が少なく、物理的摩擦で発生する輝点を抑制できる観点から、繰り返し単位(t)及び(a)~(e)のいずれか一つの繰り返し単位を有する重合体を少なくとも1種類以上含有する態様が挙げられる。また、蓄積電荷が少ない観点から、繰り返し単位(n)を有する重合体を少なくとも1種以上含有する態様が挙げられる。尚、重合体(A)が2種類からなる場合、第1の重合体と第2の重合体の配合比率((第1の重合体)/(第2の重合体))は、液晶配向性を高め、蓄積電荷が少なく、物理的摩擦で発生する輝点を抑制できる観点から、質量比で5/95~95/5、又は10/90~90/10、又は20/80~80/20であってもよい
【0038】
<化合物(B)>
本発明の液晶配向剤は、上記化合物(B)を含有する。上記化合物(B)は分子内に窒素原子を含む塩基性部位を有するため、焼成時における重合体(A)のイミド化率を高め、得られる液晶配向膜は高い電圧保持率を有する。また、メチロール基を分子内に有するため、重合体(A)と上記化合物(B)との間、若しくは上記化合物(B)同士のいずれかにおいて架橋反応が生じるため、得られる液晶配向膜の膜強度を高めることができる。よって本発明の液晶配向膜を具備する液晶表示素子は、スペーサーによるこすり付けなど物理的摩擦が発生した際でも輝点を最小にできる。また、上記化合物(B)は、液晶配向膜の架橋密度を高める効果が得られることから、基板由来の不純物成分を捕捉する能力に優れるため、得られる液晶配向膜は高い電圧保持率を示す液晶表示素子が得られる。また、上記化合物(B)はフェニレン部位を分子内に有するため、液晶配向膜内での電荷移動が促進され、蓄積電荷の少ない液晶配向膜を得ることができる。
【0039】
上記塩基性部位とは、共役酸のpKaが-3以上となるような部位を意味している。このpKaは、-3~15の範囲内にあることが好ましく、0~15の範囲内にあることがより好ましい。なお、このpKaは、ACD/ChemSketch(ACD/Labs 8.00 Release Product Version:8.08)により求めた計算値を意味している。
上記塩基性部位は、例えば、第二級アミン、又は第三級アミンから水素原子を1つ又は2つ除いた基及び含窒素複素環基からなる群より選ばれる構造を含んでいる。第二級アミン、又は第三級アミンとしては、脂肪族アミン、芳香族アミンなどを挙げることができる。
芳香族アミンとしては、ベンゼン環などの芳香環が少なくとも1つ窒素原子に結合した構造が挙げられる。上記ベンゼン環上の水素原子は、無置換であっても、1価の有機基で置換されていてもよく、1価の有機基としては例えばハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、メチル基などの炭素数1~5のアルキル基、メトキシ基などの炭素数1~5のアルコキシ基、ニトロ基、水酸基、アミノ基、メルカプト基、ニトロソ基、アルキルシリル基、アルコキシシリル基、シラノール基、スルフィノ基、ホスフィノ基、カルボキシル基、シアノ基、スルホ基、アシル基、「-R1-OH」基(R1は、炭素数1~4のアルカンジイル基)などが挙げられる。
【0040】
含窒素複素環は単環式であってもよく、多環式であってもよい。含窒素複素環の具体例としては、ピロール、イミダゾール、ピラゾール、トリアゾール、ピリジン、ピリミジン、ピリダジン、ピラジン、インドール、ベンゾイミダゾール、プリン、キノリン、イソキノリン、ナフチリジン、キノキサリン、フタラジン、トリアジン、チアゾール、イソチアゾール、ベンゾチアゾール、5,6,7,8-テトラヒドロキノリン、ピペリジン、ピペラジン、ピロリジン、ヘキサメチレンイミン、デカヒドロキノリン、イミダゾリン、カルバゾール等が挙げられる。
上記式(b)で表される部分構造において、R
1の炭素数1~4のアルカンジイル基としては、メチレン基、エチレン基、プロパンジイル基、ブタンジイル基等が挙げられる。架橋効果が高い観点から、中でもメチレン基が好ましい。m
1は、架橋効果が高い観点から、2であることが好ましい。
上記化合物(B)は、合成が容易である観点から、下記式(B1)、(B2-1)~(B2-2)、及び(B3-1)~(B3-3)からなる群から選ばれる少なくとも1種の化合物であることが好ましい。
【化19】
【0041】
R1は、炭素数1~4のアルカンジイル基を表す。L1は、下記式(L1-1)~(L1-3)から選ばれる2価の有機基を表す。S21a、S21bは、それぞれ独立して、下記式(2S-1)又は下記式(2S-2)で表される(m2a+2)又は(m2b+2)価の有機基を表す。S22、S32は、それぞれ独立して、単結合、-O-、-CO-、-CH2-、-CH(CH3)-、-C(CH3)2-、-(CH2)n-(nは2~20の整数を表す。)、又は上記-(CH2)n-の隣り合わないCH2が、-O-、-CO-、-CH(CH3)-、又は-C(CH3)2-で置き換えられた2価の有機基を表す。
S31aは、単結合、-O-、-CH2-、-CH(CH3)-、-C(CH3)2-、-(CH2)n-(nは2~18の整数)、-CO-、-C≡C-、-CH=CH-、フェニレン基、上記式(M-1)~(M-10)から選ばれる2価の有機基、又は上記-(CH2)n-の任意のCH2が、-O-、-CH(CH3)-、-C(CH3)2-、-CO-、フェニレン基、又は上記式(M-1)~(M-11)から選ばれる2価の有機基で置き換えられた2価の有機基を表す。
S31bは、S31aで定義した2価の有機基の他、上記式(M-11)で表される2価の有機基、-C(R32)2-m3b(Q3b)m3b-(m3bは1~2の整数を表す。R32は水素原子又は炭素数1~5のアルキル基を表す。)を表す。
R2、R31、R33は、それぞれ独立して、水素原子又は炭素数1~5のアルキル基を表す。
【0042】
Q
2a、Q
2b、Q
3a、Q
3bは、それぞれ独立して、下記式(Q-1)~(Q-17)から選ばれる1価の有機基を表す。但し、S
22、S
32がそれぞれ単結合である場合、Q
2a、Q
3aは、(Q-1)、(Q-3)、(Q-7)~(Q-13)又は(Q-17)から選ばれる1価の有機基を表す。
l
2、l
3は、それぞれ独立して、1~2の整数を表す。
m
1は、1~2の整数を表し、複数のm
1は同一でも異なってもよい。m
2a、m
2bは、それぞれ独立して、1~2の整数を表す。
【化20】
Mは、下記式(M-1)~(M-11)から選ばれる2価の有機基を表す。R
1、R
2はそれぞれ独立して、水素原子又はメチル基を表す。T
1、T
2はそれぞれ独立に、単結合、-O-、-NR-(Rは水素原子又はメチル基を表す。)、-CONR-(Rは水素原子又はメチル基を表す。)、-NRCONR-(Rは水素原子又はメチル基を表す。)、フェニレン基、-CH
2-、-CH(CH
3)-、-C(CH
3)
2-、-(CH
2)
n-(nは2~20の整数)、又は上記-(CH
2)
n-の任意のCH
2が、-CH(CH
3)-、-C(CH
3)
2-)、-O-、-NR-(Rは水素原子又はメチル基を表す。)、-CONR-(Rは水素原子又はメチル基を表す。)、-NRCONR-(Rは水素原子又はメチル基を表す。)、又はフェニレン基で置き換えられた2価の有機基を表す。また、フェニレン基上の任意の水素原子は1価の有機基で置き換えられてもよい。
T
3は、-CH
2-、-CH(CH
3)-、-C(CH
3)
2-、-(CH
2)
n-(nは2~18の整数)、フェニレン基、又は上記-(CH
2)
n-の任意のCH
2が、-O-、-CH(CH
3)-、-C(CH
3)
2-、-CONR-(Rは水素原子又はメチル基を表す。)、-NRCONR-(Rは水素原子又はメチル基を表す。)、フェニレン基で置き換えられた2価の有機基を表す。n1は、1~3の整数を表す。n3は0~1の整数を表す。
【化21】
R
1、R
2、R
3、R
4はそれぞれ独立して、水素原子又はメチル基を表す。*1は結合手を表し、*2は炭素原子と結合する結合手を表す。
【化22】
【0043】
*1は、窒素原子又は(Q
2b)と結合する結合手を表し、*2はベンゼン環と結合する結合手を表す。nは1~2の整数を表す。A
L11、A
L12はそれぞれ独立して、単結合、-O-、-CH
2-、-CH(CH
3)-、-C(CH
3)
2-、-(CH
2)
n-(nは2~20の整数を表す。)、-COO-、-OCO-、-CONR-(Rは水素原子又はメチル基を表す。)、又は上記-(CH
2)
n-の任意のCH
2が、-O-、-CH(CH
3)-、-C(CH
3)
2-、-COO-、-OCO-、-CONR-(Rは水素原子又はメチル基を表す。)で置き換えられた2価の有機基を表す。A
L12が複数存在する場合、複数のA
L12は同一でも異なってもよい。A
S11、A
S21はそれぞれ独立して、単結合、-O-、-CO-、-CH
2-、-CH(CH
3)-、-C(CH
3)
2-、-(CH
2)
n-(nは2~20の整数を表す。)、フェニレン基、又は上記-(CH
2)
n-の任意のCH
2が、-CH(CH
3)-、-C(CH
3)
2-、-O-、-CO-、フェニレン基で置き換えられた2価の有機基を表す。R
Lは水素原子、水酸基又はメチル基を表す。pは1~2の整数を表す。
【化23】
【0044】
R1、R3、R7、R8は、水素原子又はメチル基を表す。R16、R17はフェニル基を表す。*1は結合手を表し、*2は炭素原子と結合する結合手を表す。
L1におけるフェニレン基上の水素原子は、メチル基、エチル基などの炭素数1~5のアルキル基、メトキシ基などの炭素数1~5のアルコキシ基、フッ素原子などのハロゲン原子、トリフルオロメチル基などの炭素数1~5のハロゲン化アルキル基、-NR1R2(R1、R2はそれぞれ水素原子、メチル基、tert-ブトキシカルボニル基を表す。)、シアノ基、ヒドロキシ基などの1価の有機基で置き換えてもよい。
【0045】
上記式(M-1)~(M-11)で表される2価の有機基、上記式(Q-1)~(Q-17)で表される1価の有機基において、ベンゼン環、複素環上の任意の水素原子は1価の有機基で置き換えられてもよく、このような1価の有機基の具体例としては、上記L
1におけるフェニレン基上の水素原子を置換する1価の有機基として例示した構造が挙げられる。
上記式(B1)において、合成が容易である観点から、L
1は中でも下記式(L1-a-1)~(L1-a-12)、(L1-b-1)~(L1-b-3)又は(L1-c-1)~(L1-c-3)としてもよい。
【化24】
【化25】
【0046】
上記A
L11、A
L12は、合成が容易である観点から、単結合、-O-、-CH
2-、-(CH
2)
n-(nは2~20の整数を表す。)、-COO-、-OCO-、-CONR-(Rは水素原子又はメチル基を表す。)、又は上記-(CH
2)
n-の任意のCH
2が、-O-、-CONR-(Rは水素原子又はメチル基を表す。)で置き換えられた2価の有機基が好ましい。
上記S
21aは、合成が容易である観点から、中でも下記式(S
21a-1-1)~(S
21a-1-5)又は(S
21a-2-1)としてもよい。
【化26】
【0047】
*1は窒素原子と結合する結合手を表し、*2はベンゼン環と結合する結合手を表す。
上記S
21bは、合成が容易である観点から、中でも上記式(S
21a-1-1)~(S
21a-1-5)、(S
21a-2-1)、下記式(S
21b-1-1)としてもよい。但し、上記式(S
21a-1-1)~(S
21a-1-5)、(S
21a-2-1)において、*1は、(Q
2b)と結合する結合手を表し、*2はベンゼン環と結合する結合手を表す。
【化27】
【0048】
*1は、窒素原子又は(Q
2b)と結合する結合手を表し、*2はベンゼン環と結合する結合手を表す。
上記S
31aは、合成が容易である観点から、中でも単結合、下記式(S
31a-1)~(S
31a-5)としてもよい。
【化28】
*1は、窒素原子と結合する結合手を表し、*2はベンゼン環と結合する結合手を表す。Mは上記式(M-1)~(M-10)から選ばれる基を表す。
上記S
31bは、合成が容易である観点から、中でも単結合、-O-、上記式(S
31a-1)~(S
31a-5)、下記式(S
31b-1)~(S
31b-5)としてもよい。但し、上記式(S
31a-1)~(S
31a-5)において、*1は、(Q
3b)と結合する結合手を表し、*2はベンゼン環と結合する結合手を表す。
【化29】
【0049】
*1は、Q
3bと結合する結合手を表し、*2はベンゼン環と結合する結合手を表すMは上記式(M-1)~(M-10)から選ばれる基を表す。Q
3bは上記式(B3-2)と同義である。
上記R
33は、合成が容易である観点から、水素原子、メチル基又はエチル基としてもよい。
化合物(B)の好ましい具体例として、下記式(B1-1-1)~(B1-1-4)、(B1-2-1)~(B1-2-2)、(B1-3-1)~(B1-3-26)、(B2-1-1)~(B2-1-2)、(B2-2-1)~(B2-2-18)、(B3-1-1)~(B3-1-7)、(B3-2-1)~(B3-2-11)、(B3-3-1)で表される化合物を挙げることができる。
【化30】
【化31】
【化32】
【化33】
【化34】
【化35】
【化36】
【化37】
【化38】
【化39】
【化40】
【0050】
化合物(B)の好ましい含有量は、(A)成分100質量部あたり、0.1~40質量部であり、より好ましくは0.5~35質量部であり、更に好ましくは0.5~30質量部である。
【0051】
<ポリアミック酸の製造方法>
本発明における重合体(A)は、例えば上記X1の構造を有するテトラカルボン酸誘導体と、上記Y1の構造を有するジアミンとを、国際公開公報WO2013/157586に記載されるような公知の方法で反応させることにより得ることができる。
【0052】
[末端修飾剤]
本発明における重合体(A)を合成するに際して、上記の如きテトラカルボン酸誘導体及びジアミンとともに、適当な末端封止剤を用いて末端修飾型の重合体を合成することとしてもよい。
【0053】
末端修飾剤としては、例えば無水マレイン酸、無水ナジック酸、無水フタル酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物、トリメット酸無水物、下記式(m-1)~(m-6)で表される化合物、3-(3-トリメトキシシリル)プロピル)-3,4-ジヒドロフラン-2,5-ジオン、4,5,6,7-テトラフルオロイソベンゾフラン-1,3-ジオン、4-エチニルフタル酸無水物などの酸一無水物;
【化41】
二炭酸ジ-tert-ブチル、二炭酸ジアリルなどの二炭酸ジエステル化合物;アクリロイルクロリド、メタクリロイルクロリド、ニコチン酸クロリドなどのクロロカルボニル化合物;アニリン、2-アミノフェノール、3-アミノフェノール、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、シクロヘキシルアミン、n-ブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミンなどのモノアミン化合物;エチルイソシアネート、フェニルイソシアネート、ナフチルイソシアネートなどのモノイソシアネート化合物などを挙げることができる。
【0054】
末端修飾剤の使用割合は、使用するジアミンの合計100モル部に対して、20モル部以下とすることが好ましく、10モル部以下とすることがより好ましい。
【0055】
<液晶配向剤>
本発明の液晶配向剤は、重合体(A)に加えて、その他の重合体を含有していてもよい。その他の重合体の種類としては、ポリエステル、ポリアミド、ポリウレア、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン又はその誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレートなどを挙げることができる。尚、ポリオルガノシロキサンとしては、合成が容易である観点から、オキセタニル基及びオキシラニル基の少なくともいずれかを有することが好ましい。
【0056】
液晶配向剤は、液晶配向膜を作製するために用いられるものであり、均一な薄膜を形成させるという観点から、塗布液の形態をとる。本発明の液晶配向剤においても上記した重合体成分と、有機溶媒とを含有する塗布液であることが好ましい。その際、液晶配向剤中の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができる。均一で欠陥のない塗膜を形成させるという点から、1質量%以上が好ましく、溶液の保存安定性の点からは、10質量%以下が好ましい。特に好ましい重合体の濃度は、2~8質量%である。
【0057】
液晶配向剤に含有される有機溶媒は、重合体成分が均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、γ-バレロラクトン、1,3-ジメチル-2-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、N,N-ジメチルラクトアミド、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド(これらを総称して「良溶媒」ともいう)などを挙げることができる。印刷性が良好な観点から、なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N,N-ジメチルラクトアミド又はγ-ブチロラクトンを用いてもよい。印刷性が良好な観点から、本発明の液晶配向剤における良溶媒は、液晶配向剤に含まれる溶媒全体の20~99質量%、又は20~90質量%、又は30~80質量%であってもよい。
【0058】
また、液晶配向剤に含有される有機溶媒は、上記のような溶媒に加えて液晶配向剤を塗布する際の塗布性や塗膜の表面平滑性を向上させる溶媒(貧溶媒ともいう)を併用した混合溶媒を使用することが好ましい。併用する有機溶媒の具体例を下記に挙げるが、これらの例に限定されるものではない。
例えば、ジイソプロピルエーテル、ジイソブチルエーテル、ジイソブチルカルビノール(2,6-ジメチル-4-ヘプタノール)、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、プロピレングリコールモノブチルエーテル、1-(2-ブトキシエトキシ)-2-プロパノール、2-(2-ブトキシエトキシ)-1-プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、プロピレングリコールジアセテート、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸n-ブチル、乳酸イソアミル、ジエチレングリコールモノエチルエーテル、ジイソブチルケトン(2,6-ジメチル-4-ヘプタノン)などを挙げることができる。
【0059】
なかでも、印刷性が良好な観点から、貧溶媒はジイソブチルカルビノール、プロピレングリコールモノブチルエーテル、プロピレングリコールジアセテート、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセタート、ジイソブチルケトンを用いてもよい。
【0060】
印刷性が良好な観点から、良溶媒と貧溶媒との溶媒の組み合わせとしては、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジエチレングリコールジエチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルと2,6-ジメチル-4-ヘプタノン、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソプロピルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルと2,6-ジメチル-4-ヘプタノール、N-メチル-2-ピロリドンとγ-ブチロラクトンとジプロピレングリコールジメチルエーテル、N-メチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジプロピレングリコールジメチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジプロピレングリコールジメチルエーテルなどの組合せなどを挙げることができる。これら貧溶媒は、液晶配向剤に含まれる溶媒全体の1~80質量%、又は10~80質量%、又は20~70質量%であってもよい。このような溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境などに応じて適宜選択される。
【0061】
本発明の液晶配向剤は、重合体成分、(B)成分及び有機溶媒以外の成分を追加的に含有してもよい。このような追加成分としては、液晶配向膜と基板との密着性や液晶配向膜とシール材との密着性を高めるための密着助剤、液晶配向膜の強度を高めるための化合物(以下、架橋性化合物ともいう。)、液晶配向膜の誘電率や電気抵抗を調整するための誘電体や導電物質などが挙げられる。
【0062】
上記架橋性化合物として、残像の発生が少なく、膜強度の改善効果が高い観点から、オキシラニル基、オキセタニル基、保護イソシアネート基、保護イソチオシアネート基、オキサゾリン環構造を含む基、メルドラム酸構造を含む基、シクロカーボネート基及び下記式(d)で表される基からなる群から選ばれる少なくとも1種の基を有する化合物、又は下記式(e-1)~(e-8)で表される化合物から選ばれる化合物(以下、これらを総称して化合物(C)ともいう。)を用いてもよい。
【化42】
式中、R
1は、水素原子、炭素数1~3のアルキル基又は「*-CH
2-OH」であり、R
2及びR
3は、それぞれ独立に水素原子、炭素数1~3のアルキル基又は「*-CH
2-OH」である。*は結合手であることを示す。
【化43】
【0063】
オキシラニル基を有する化合物の具体例としては、特開平10-338880号公報の段落[0037]に記載の化合物や、国際公開公報WO2017/170483号に記載のトリアジン環を骨格にもつ化合物などの、2個以上のオキシラニル基を有する化合物が挙げられる。これらのうち、架橋効果が高い観点から、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4、4’-ジアミノジフェニルメタン、N,N,N’,N’-テトラグリシジル-p-フェニレンジアミン、下記式(r-1)~(r-3)で表される化合物などの窒素原子を含有する化合物を用いてもよい。
【化44】
【0064】
オキセタニル基を有する化合物の具体例としては、国際公開公報2011/132751号の段落[0170]~[0175]に記載の2個以上のオキセタニル基を有する化合物等が挙げられる。
【0065】
保護イソシアネート基を有する化合物の具体例としては、特開2014-224978号公報の段落[0046]~[0047]に記載の2個以上の保護イソシアネート基を有する化合物、国際公開公報2015/141598号の段落[0119]~[0120]に記載の3個以上の保護イソシアネート基を有する化合物等が挙げられる。これらのうち、架橋効果が高い観点から下記式(bi-1)~(bi-3)で表される化合物を用いてもよい。
【化45】
【0066】
保護イソチオシアネート基を有する化合物の具体例としては、特開2016-200798号公報に記載の、2個以上の保護イソチオシアネート基を有する化合物が挙げられる。
【0067】
オキサゾリン環構造を含む基を有する化合物の具体例としては、特開2007-286597号公報の段落[0115]に記載の、2個以上のオキサゾリン構造を含む化合物が挙げられる。
【0068】
メルドラム酸構造を含む基を有する化合物の具体例としては、国際公開公報WO2012/091088号に記載の、メルドラム酸構造を2個以上有する化合物が挙げられる。
【0069】
シクロカーボネート基を有する化合物の具体例としては、国際公開公報WO2011/155577号に記載の化合物が挙げられる。
【0070】
上記式(d)で表される基のR1、R2、R3の炭素数1~3のアルキル基としては、メチル基、エチル基、プロピル基が挙げられる。
【0071】
上記式(d)で表される基を有する化合物の具体例としては、国際公開公報WO2015/072554号や、特開2016-118753号公報の段落[0058]に記載の、上記式(d)で表される基を2個以上有する化合物、特開2016-200798号公報に記載の化合物等が挙げられる。これらのうち、架橋効果が高い観点から下記式(hd-1)~(hd-8)で表される化合物を用いてもよい。
【化46】
【0072】
上記化合物は架橋性化合物の一例であり、これらに限定されるものではない。例えば、国際公開公報2015/060357号の53頁[0105]~55頁[0116]に開示されている上記以外の成分などが挙げられる。また、本発明の液晶配向剤に含有される架橋性化合物は、1種類であってもよく、2種類以上組み合わせてもよい。
本発明の液晶配向剤における、架橋性化合物の含有量は、架橋反応が進行し目的の効果を発現し、かつ液晶配向性を高める観点から、液晶配向剤に含まれる重合体成分100質量部に対して、0.5~20質量部、又は1~15質量部としてもよい。
【0073】
上記密着助剤としては、例えば3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジエトキシメチルシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等のシランカップリング剤が挙げられる。これらシランカップリング剤を使用する場合は、液晶配向性を高める観点から、液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部、又は0.1~20質量部としてもよい。
【0074】
<液晶配向膜・液晶表示素子>
上記液晶配向剤を用いることにより、液晶配向膜を製造することができる。また、本発明に係る液晶表示素子は、上記液晶配向剤を用いて形成した液晶配向膜を具備する。本発明に係る液晶表示素子の動作モードは特に限定せず、例えばTN(Twisted Nematic)型、STN型、垂直配向型(VA-MVA型、VA-PVA型などを含む。)、面内スイッチング型(IPS型)、FFS(Fringe Field Switching)型、光学補償ベンド型(OCB型)など種々の動作モードに適用することができる。
【0075】
本発明に係る液晶表示素子は、例えば以下の工程(1-1)~(1-3)を含む工程により製造することができる。工程(1-1)は、所望の動作モードによって使用基板が異なる。工程(1-2)及び工程(1-3)は各動作モード共通である。
【0076】
[工程(1-1):塗膜の形成]
先ず、基板上に本発明の液晶配向剤を塗布し、次いで塗布面を加熱することにより基板上に塗膜を形成する。
【0077】
(1-1A)
例えばTN型、STN型又はVA型の液晶表示素子を製造する場合、まず、パターニングされた透明導電膜が設けられている基板二枚を一対として、その各透明性導電膜形成面上に、上記で調製した液晶配向剤を、好ましくはオフセット印刷法、スピンコート法、ロールコーター法又はインクジェット印刷法によりそれぞれ塗布する。基板としては、例えばフロートガラス、ソーダガラスなどのガラス;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリカーボネート、ポリ(脂環式オレフィン)などのプラスチックからなる透明基板を用いることができる。基板の一面に設けられる透明導電膜としては、酸化スズ(SnO2)からなるNESA膜(米国PPG社登録商標)、酸化インジウム-酸化スズ(In2O3-SnO2)からなるITO膜などを用いることができる。パターニングされた透明導電膜を得るには、例えばパターンなし透明導電膜を形成した後、フォト・エッチングによりパターンを形成する方法;透明導電膜を形成する際に所望のパターンを有するマスクを用いる方法;などによることができる。液晶配向剤の塗布に際しては、基板表面及び透明導電膜と塗膜との接着性をさらに良好にするために、基板表面のうち塗膜を形成する面に、官能性シラン化合物、官能性チタン化合物などを予め塗布する前処理を施しておいてもよい。
【0078】
液晶配向剤を塗布した後、塗布した液晶配向剤の液垂れ防止などの目的で、好ましくは予備加熱(プレベーク)が実施される。プレベーク温度は、好ましくは30~200℃であり、より好ましくは40~150℃であり、特に好ましくは40~100℃である。プレベーク時間は、好ましくは0.25~10分であり、より好ましくは0.5~5分である。その後、溶剤を完全に除去し、必要に応じて重合体に存在するアミック酸構造を熱イミド化することを目的として焼成(ポストベーク)工程が実施される。このときの焼成温度(ポストベーク温度)は、好ましくは80~300℃であり、より好ましくは120~250℃である。ポストベーク時間は、好ましくは5~200分であり、より好ましくは10~100分である。このようにして形成される膜の膜厚は、好ましくは0.001~1μmであり、より好ましくは0.005~0.5μmである。
【0079】
(1-1B)
IPS型又はFFS型の液晶表示素子を製造する場合、櫛歯型にパターニングされた透明導電膜又は金属膜からなる電極が設けられている基板の電極形成面と、電極が設けられていない対向基板の一面とに液晶配向剤をそれぞれ塗布し、次いで各塗布面を加熱することにより塗膜を形成する。このとき使用される基板及び透明導電膜の材質、塗布方法、塗布後の加熱条件、透明導電膜又は金属膜のパターニング方法、基板の前処理、並びに形成される塗膜の好ましい膜厚については上記(1-1A)と同様である。金属膜としては、例えばクロムなどの金属からなる膜を使用することができる。
【0080】
上記(1-1A)及び(1-1B)のいずれの場合も、基板上に液晶配向剤を塗布した後、有機溶媒を除去することによって液晶配向膜又は液晶配向膜となる塗膜が形成される。このとき、塗膜形成後に更に加熱することによって、本発明に係る液晶配向剤に配合されるポリアミック酸、ポリアミック酸エステル及びポリイミドの脱水閉環反応を進行させ、よりイミド化された塗膜としてもよい。
【0081】
[工程(1-2):配向能付与処理]
TN型、STN型、IPS型又はFFS型の液晶表示素子を製造する場合、上記工程(1-1)で形成した塗膜に液晶配向能を付与する処理を実施する。これにより、液晶分子の配向能が塗膜に付与されて液晶配向膜となる。配向能付与処理としては、例えばナイロン、レーヨン、コットンなどの繊維からなる布を巻き付けたロールで塗膜を一定方向に擦るラビング処理、塗膜に対して偏光又は非偏光の放射線を照射する光配向処理などが挙げられる。一方、VA型液晶表示素子を製造する場合には、上記工程(1-1)で形成した塗膜をそのまま液晶配向膜として使用することができるが、該塗膜に対し配向能付与処理を施してもよい。
【0082】
光配向処理により塗膜に液晶配向能を付与する場合、塗膜に照射する放射線としては、
例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができる。放射線が偏光である場合、直線偏光であっても部分偏光であってもよい。また、用いる放射線が直線偏光又は部分偏光である場合には、照射は基板面に垂直の方向から行ってもよく、斜め方向から行ってもよく、又はこれらを組み合わせて行ってもよい。非偏光の放射線を照射する場合、照射の方向は斜め方向とする。
【0083】
使用する光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマレーザーなどを使用することができる。好ましい波長領域の紫外線は、光源を、例えばフィルター、回折格子などと併用する手段などにより得ることができる。放射線の照射量は、好ましくは10~5,000mJ/cm2であり、より好ましくは30~2,000mJ/cm2である。
また、塗膜に対する光照射は、反応性を高めるために塗膜を加温しながら行ってもよい。加温の際の温度は、通常30~250℃であり、好ましくは40~200℃であり、より好ましくは50~150℃である。
【0084】
また、150~800nmの波長の光を含む紫外線を使用する場合には、上記工程で得られた光照射膜をそのまま液晶配向膜として使用することができるが、該光照射膜を焼成、水や有機溶媒による洗浄、又はこれらの組合せを実施してもよい。このときの焼成温度は、好ましくは80~300℃であり、より好ましくは80~250℃である。焼成時間は、好ましくは5~200分であり、より好ましくは10~100分である。尚、焼成の回数は1回若しくは2回以上の回数で行ってもよい。ここでの光配向処理が、液晶層と接触していない状態での光照射の処理に相当する。
【0085】
上記洗浄に使用する有機溶媒としては、特に限定されるものではないが、具体例としては、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル又は酢酸シクロヘキシルなどが挙げられる。
【0086】
なお、ラビング処理後の液晶配向膜に対して更に、液晶配向膜の一部に紫外線を照射することによって液晶配向膜の一部の領域のプレチルト角を変化させる処理や、液晶配向膜表面の一部にレジスト膜を形成した上で先のラビング処理と異なる方向にラビング処理を行った後にレジスト膜を除去する処理を行い、液晶配向膜が領域ごとに異なる液晶配向能を持つようにしてもよい。この場合、得られる液晶表示素子の視界特性を改善することが可能である。VA型の液晶表示素子に好適な液晶配向膜は、PSA(Polymer sustained alignment)型の液晶表示素子にも好適に用いることができる。
【0087】
[工程(1-3):液晶セルの構築]
(1-3A)
上記のようにして液晶配向膜が形成された基板を2枚準備し、対向配置した2枚の基板間に液晶を配置することにより液晶セルを製造する。液晶セルを製造するには、例えば以下の2つの方法が挙げられる。第一の方法は、従来から知られている方法である。先ず、それぞれの液晶配向膜が対向するように間隙(セルギャップ)を介して2枚の基板を対向配置し、2枚の基板の周辺部をシール剤で貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶を注入充填した後、注入孔を封止することにより液晶セルを製造する。第二の方法は、ODF(One Drop Fill)方式と呼ばれる手法である。液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に、例えば紫外光硬化性のシール剤を塗布し、さらに液晶配向膜面上の所定の数箇所に液晶を滴下した後、液晶配向膜が対向するように他方の基板を貼り合わせるとともに液晶を基板の全面に押し広げ、次いで基板の全面に紫外光を照射してシール剤を硬化することにより液晶セルを製造する。いずれの方法による場合でも、上記のようにして製造した液晶セルにつき、さらに、用いた液晶が等方相をとる温度まで加熱した後、室温まで徐冷することにより、液晶充填時の流動配向を除去することが望ましい。
【0088】
シール剤としては、例えば硬化剤及びスペーサーとしての酸化アルミニウム球を含有するエポキシ樹脂などを用いることができる。
【0089】
液晶としては、ネマチック液晶及びスメクチック液晶を挙げることができ、その中でもネマチック液晶が好ましく、例えばシッフベース系液晶、アゾキシ系液晶、ビフェニル系液晶、フェニルシクロヘキサン系液晶、エステル系液晶、ターフェニル系液晶、ビフェニルシクロヘキサン系液晶、ピリミジン系液晶、ジオキサン系液晶、ビシクロオクタン系液晶、キュバン系液晶などを用いることができる。また、これらの液晶に、例えばコレスチルクロライド、コレステリルノナエート、コレステリルカーボネートなどのコレステリック液晶;商品名「C-15」、「CB-15」(メルク社製)として販売されているようなカイラル剤;p-デシロキシベンジリデン-p-アミノ-2-メチルブチルシンナメートなどの強誘電性液晶などを、添加して使用してもよい。液晶はまた、異方性染料を追加で含むことができる。用語「染料」は、可視光領域、例えば、400nmないし700nm波長範囲内で少なくとも一部または全体範囲内の光を集中的に吸収または変形させることができる物質を意味することができ、用語「異方性染料」は上記可視光領域の少なくとも一部または全体範囲で光の異方性吸収が可能な物質を意味することができる。上記のような染料の使用を通じて液晶セルの色感を調節することができる。異方性染料の種類は特別に制限されないし、例えば、黒色染料(black dye)またはカラー染料(color dye)を使用することができる。異方性染料の液晶に対する割合は目的とする物性を損なわない範囲内で適切に選択され、例えば、異方性染料は液晶化合物100質量部に対して0.01~5質量部の割合で含まれることができるが、上記の割合は必要によって適正範囲に変更することができる。
【0090】
(1-3B)
PSA型液晶表示素子を製造する場合には、液晶と共に例えば下記式(w-1)~(w-5)などの光重合性化合物を注入又は滴下する点以外は上記(1-3A)と同様にして液晶セルを構築する。
【化47】
その後、一対の基板の有する導電膜間に電圧を印加した状態で液晶セルに光照射する。ここで印加する電圧は、例えば5~50Vの直流又は交流とすることができる。また、照射する光としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができるが、300~400nmの波長の光を含む紫外線が好ましい。照射光の光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマレーザーなどを使用することができる。なお、上記の好ましい波長領域の紫外線は、光源を、例えばフィルター回折格子などと併用する手段などにより得ることができる。光の照射量としては、好ましくは100mJ/cm
2以上30,000mJ/cm
2未満であり、より好ましくは100~20,000mJ/cm
2である。
【0091】
(1-3C)
光重合性基を有する化合物(重合体又は添加剤)を含む液晶配向剤を用いて基板上に塗膜を形成した場合、上記(1-3A)と同様にして液晶セルを構築し、その後、一対の基板の有する導電膜間に電圧を印加した状態で液晶セルに光照射する工程を経ることにより液晶表示素子を製造する方法を採用してもよい。この方法によれば、PSAモードのメリットを少ない光照射量で実現可能である。光重合性基を有する添加剤としては、上記式(w-1)~(w-5)で例示した構造を挙げることができ、その配合量は液晶配向剤に含まれる重合体全体の固形分に対して1~30質量%であってもよく、1~20質量%であってもよく、1~15質量%であってもよい。液晶セルに対する光照射は、電圧印加により液晶を駆動させた状態で行ってもよく、あるいは液晶を駆動させない程度に低い電圧を印加した状態で行ってもよい。印加する電圧は、例えば0.1~30Vの直流又は交流とすることができる。照射する光の条件については、上記(1-3B)の説明を適用することができる。ここでの光照射処理が、液晶層と接触した状態での光照射の処理に相当する。
【0092】
そして、液晶セルの外側表面に偏光板を貼り合わせることにより、本発明に係る液晶表示素子を得ることができる。液晶セルの外表面に貼り合わされる偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板又はH膜そのものからなる偏光板を挙げることができる。
本発明に係る液晶表示素子は、種々の装置に有効に適用することができ、例えば、時計、携帯型ゲーム、ワードプロセッサ、ノート型パソコン、カーナビゲーションシステム、カムコーダー、PDA、デジタルカメラ、携帯電話、スマートフォン、各種モニター、液晶テレビ、インフォメーションディスプレイなどの各種表示装置に用いることができる。
上記のようにして、本発明の液晶配向剤を用いることで、残像の発生が少なく、スペーサーによるこすり付けなど物理的摩擦が発生した際でも輝点を最小にできる液晶配向膜並びにこれを具備した液晶表示素子を得ることができる。また、得られる液晶表示素子は高い信頼性を有する。
【実施例】
【0093】
以下に実施例を挙げ、本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。以下における化合物の略号及び各特性の測定方法は、次のとおりである。尚、化合物(c-2)については、特開2008-052260号の合成例3に記載の方法に従って合成した。
(ジアミン)
DA-1~DA-27:下記式(DA-1)~(DA-27)で表される化合物
(テトラカルボン酸二無水物)
CA-1~CA-8:下記式(CA-1)~(CA-8)で表される化合物
(テトラカルボン酸ジエステルジハロゲン化物)
CE-1:下記式(CE-1)で表される化合物
(モノカルボン酸塩化物)
E-1: アクリロイルクロリド
(添加剤)
b-1~b-9:下記式(b-1)~(b-9)で表される化合物
(その他の添加剤)
c-1:下記式(c-1)で表される化合物
c-2:下記式(c-2)で表される化合物
F-1:N-α-(9-フルオレニルメチルオキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジン(下記式(F-1)で表される化合物)
s-1:3-グリシドキシプロピルトリエトキシシラン(下記式(s-1)で表される化合物)
s-2:3-グリシドキシプロピルメチルジエトキシシラン(下記式(s-2)で表される化合物)
M-1:3-ピコリルアミン
(有機溶媒)
NMP:N-メチル-2-ピロリドン、GBL:γ-ブチロラクトン、
BCS:ブチルセロソルブ、DIBK:ジイソブチルケトン、
NEP:N-エチル-2-ピロリドン、DAA:ジアセトンアルコール
PC:プロピレンカーボネート、DME:ジプロピレングリコールジメチルエーテル、
DPM:ジプロピレングリコールモノメチルエーテル、
PB:プロピレングリコールモノブチルエーテル、
PGDAC:プロピレングリコールジアセテート、
DEDE:ジエチレングリコールジエチルエーテル、
GVL:γ-バレロラクトン、DML:N,N-ジメチルラクトアミド
EEP:3-エトキシプロピオン酸エチル
【化48】
【化49】
Bocは、tert-ブトキシカルボニル基を表す。
【0094】
【0095】
【0096】
【0097】
Bocは、tert-ブトキシカルボニル基を表す。Fmocは、9-フルオレニルメチルオキシカルボニル基を表す。
[粘度]
溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
[分子量]
分子量はGPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として数平均分子量(Mn)と重量平均分子量(Mw)を算出した。
GPC装置:Shodex社製(GPC-101)、カラム:Shodex社製(KD803、KD805の直列)、カラム温度:50℃、溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム一水和物(LiBr・H2O)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10mL/L)、流速:1.0mL/分
検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp)約12,000、4,000、1,000)。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、1,000の4種類を混合したサンプル、及び150,000、30,000、4,000の3種類を混合したサンプルの2サンプルを別々に測定した。
【0098】
<イミド化率の測定>
ポリイミド粉末20mgをNMRサンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05%TMS(テトラメチルシラン)混合品)(0.53mL)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
イミド化率(%)=(1-α・x/y)×100
上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
【0099】
[化合物(B)の合成]
<合成例(b-1)>
下記に示す経路に従って化合物(b-1)を合成した。
【化56】
ナスフラスコに、2,5-ピリジンジカルボン酸(3.00g、18.0mmol)、4-アミノフェノール(4.11g、37.7mmol)及びN,N-ジメチルホルムアミド(DMF)(100g)を加えて、混合物を室温で撹拌した。次に、N-エチルモルホリン(4.34g、37.7mmol)及び4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(10.43g、37.7mmol)を加えて、室温で一晩撹拌した。反応溶液に水(600g)を加えて、固体を析出させ、得られた固体をメタノールで洗浄した。次に、溶媒を減圧留去して化合物(b-1-1)を4.23g得た。
4つ口フラスコに化合物(b-1-1)(2.00g、5.72mmol)、24%水酸化ナトリウム水溶液(3.81g、22.8mmol)及び純水(1.16g)を加えて、室温下において、撹拌下に、37%ホルムアルデヒド水溶液(4.68g、57.2mmol)を滴下して反応させた。反応溶液を35~40℃に昇温して撹拌した後、反応溶液の一部を取り出してLC/MSを測定し、原料のピークが消失したことより反応の終点を確認した。反応終了後、得られた反応混合物を酢酸で中和し、この後、2時間撹拌して、析出した結晶を濾過した。溶媒を減圧留去して化合物(b-1)を2.41g得た。
【0100】
<合成例(b-2)>
Scheme1において、4-アミノフェノールをチラミンに変更した以外は同様の手順で合成し、化合物(b-2)を得た。
【化57】
【0101】
<合成例(b-3)>
下記に示す経路に従って化合物(b-3)を合成した。
【化58】
ナスフラスコに4,4’-ジメトキシジフェニルアミン(3.00g、13.1mmol)、炭酸カリウム(5.43g、39.3mmol)及びN,N-ジメチルホルムアミド(DMF)(18.6g)を加えて、混合物を室温で撹拌した。次に、ヨードメタン(7.43g、52.3mmol)を加え、40~50℃に昇温して撹拌した後、反応溶液の一部を取り出してLC/MSを測定し、原料のピークが消失したことより反応の終点を確認した。反応液にテトラヒドロフラン(THF)(50g)、トルエン(10g)及び水(50g)を加え、有機層を分離した。有機層を10%の食塩水で洗浄した後、溶媒を減圧留去して、濃縮物にメタノールを加えて、化合物(b-3-1)を得た。
ナスフラスコに化合物(b-3-1)(2.00g、8.22mmol)及びジクロロメタン(12.7g)を加え、混合物を撹拌し、窒素雰囲気下で-5℃に冷却した。次に、三臭化ホウ素17%ジクロロメタン溶液(22.69g、15.4mmol)を滴下し、滴下終了後は室温下で2時間反応させた。反応溶液に氷水を加えた後、酢酸エチルを加え、有機層を抽出した。溶媒を減圧留去して、化合物(b-3-2)を得た。
4つ口フラスコに化合物(b-3-2)(1.68g、7.84mmol)、24%水酸化ナトリウム水溶液(5.20g、31.4mmol)及び純水(4.32g)を加えて、室温下において、撹拌下に、37%ホルムアルデヒド水溶液(6.35g、78.4mmol)を滴下して反応させた。反応溶液を30~40℃に昇温して撹拌した後、反応溶液の一部を取り出してLC/MSを測定し、原料のピークが消失したことより反応の終点を確認した。反応終了後、得られた反応混合物を酢酸で中和し、この後、2時間撹拌して、析出した結晶を濾過した。溶媒を減圧留去して化合物(b-3)を得た。
【0102】
<合成例(b-4)>
下記に示す経路に従って化合物(b-4)を合成した。
【化59】
ナスフラスコに、5-(3-ピリジニル)-1,3-ベンゼンジカルボン酸(CAS No.1262962-06-0)(4.38g、18.0mmol)、チラミン(5.17g、37.7mmol)及びN,N-ジメチルホルムアミド(DMF)(100g)を加えて、混合物を室温で撹拌した。次に、N-エチルモルホリン(4.34g、37.7mmol)、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(10.43g、37.7mmol)を加えて、一晩室温で撹拌した。反応溶液に水(600g)を加えて、固体を析出させ、得られた固体をメタノールで洗浄した。次に、溶媒を減圧留去して化合物(b-4-1)を得た。
次に、Scheme2において、化合物(b-3-2)を化合物(b-4-1)に変更した以外は同様の手順で合成し、化合物(b-4)を得た。
【0103】
<合成例(b-5)>
Scheme2において、化合物(b-3-2)を4,4’-(2-ピリジニルメチレン)ビスフェノール(CAS No.603-41-8)に変更した以外は同様の手順で合成し、化合物(b-5)を得た。
【化60】
【0104】
<合成例(b-6)>
Scheme2において、化合物(b-3-2)を4-[[4-(2-ピリジニル)-1-ピペラジニル]メチル]フェノール(CAS No.414887-31-3)に変更した以外は同様の手順で合成し、化合物(b-6)を得た。
【化61】
【0105】
<合成例(b-7)>
下記に示す経路に従って化合物(b-7)を合成した。
【化62】
Mameri,Samir et al.,European Journal of Inorganic Chemistry(2014)26:4326~4334に記載されているのと同様の手順に従って2,6-ビス(ヒドロキシメチル)-4-アミノフェノールを調製した。
4つ口フラスコに化合物(b-7-1)(CAS No.22100-88-5)(5.00g、18.9mmol)及びN,N-ジメチルホルムアミド(DMF)(45g)を加えて、混合物を室温下で撹拌した。次に、2,6-ビス(ヒドロキシメチル)-4-アミノフェノール(6.40g、37.8mmol)を加え、室温で撹拌した。ジオキサンを加えて固体を析出させ、得られた固体から溶媒を減圧留去して化合物(b-7)を得た。
【0106】
<合成例(b-8)>
Scheme4において、化合物(b-7-1)を3,5-ジイソシアナートピリジン(CAS No.1620557-50-7)に変更した以外は、同様の手順で合成し、化合物(b-8)を得た。
【化63】
【0107】
<合成例(b-9)>
下記に示す経路に従って化合物(b-9)を合成した。
【化64】
4つ口フラスコに4-ヒドロキシフェニルボロン酸ピナコール(7.10g、32.3mmol)、4,6-ジブロモピリミジン(2.57g、10.8mmol)、炭酸カリウム(4.45g、32.3mmol)、水(82g)及び1,4-ジオキサン(250mL)を加えて、混合物を撹拌し、反応系内を窒素置換した。次に、テトラキス(トリフェニルホスフィン)パラジウム(0.64g)を加えて、100℃で一晩加熱撹拌を行った。反応溶液にクロロホルムを加え、クロロホルム層を取り出した後、溶媒を減圧留去した。得られた濃縮物にメタノール及び水を加えて、化合物(b-9-1)を得た。
4つ口フラスコに(b-9-1)(1.00g、3.78mmol)、24%水酸化ナトリウム水溶液(2.51g、15.1mmol)及び純水(2.16g)を加えて、室温下において、撹拌下に、37%ホルムアルデヒド水溶液(3.06g、37.8mmol)を滴下して反応させた。反応溶液を30~40℃に昇温して撹拌した後、反応溶液の一部を取り出してLC/MSを測定し、原料のピークが消失したことより反応の終点を確認した。反応終了後、得られた反応混合物を酢酸で中和し、この後、2時間撹拌して、析出した結晶を濾過した。溶媒を減圧留去して化合物(b-9)を得た。
【0108】
[重合体(A)の合成]
<合成例1>
撹拌装置付き及び窒素導入管付きの四つ口フラスコに、CA-2(2.25g、8.99mmol)、DA-6(2.97g、8.99mmol)、及びDA-7(3.43g、9.01mmol)とNMP(34.6g)を加えて溶解させ、60℃で4時間反応させた。その後、CA-3(1.75g、8.92mmol)とNMP(6.99g)を加え、40℃で4時間反応させポリアミック酸溶液を得た。
このポリアミック酸溶液(40g)にNMPを加えて6.5質量%に希釈した後、イミド化触媒として無水酢酸(7.06g)、及びピリジン(2.19g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(463g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末を得た。このポリイミドのイミド化率は74%であり、数平均分子量は12,500、重量平均分子量は38,500であった。
得られたポリイミド粉末(2.0g)にNMP(18.0g)を加え、M-1をポリイミド固形分に対して1質量%となるように添加し、70℃にて12時間撹拌して溶解させ、固形分濃度が10%のポリイミド(PI-V-1)の溶液を得た。
【0109】
<合成例2>
撹拌装置付き及び窒素導入管付きの四つ口フラスコに、CA-2(1.20g、4.80mmol)、DA-8(1.46g、9.59mmol)、DA-9(1.74g、7.18mmol)、及びDA-7(2.74g、7.20mmol)とNMP(28.58g)を加えて溶解させ、60℃で2時間反応させた。その後、CA-5(1.05g、4.81mmol)とNMP(4.19g)を加え、室温で4時間反応させ、さらにCA-3(2.78g、14.18mmol)とNMP(11.1g)を加え、室温で4時間反応させポリアミック酸溶液を得た。
このポリアミック酸溶液(40g)にNMPを加えて6.5質量%に希釈した後、イミド化触媒として無水酢酸(8.90g)、及びピリジン(2.76g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(472g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥し、ポリイミド粉末を得た。このポリイミドのイミド化率は74%であり、数平均分子量は13,000、重量平均分子量は39,000であった。
得られたポリイミド粉末に固形分濃度が10質量%になるようにNMPを加え、M-1をポリイミド固形分に対して1質量%となるように添加し、70℃にて12時間撹拌して溶解させ、ポリイミド(PI-V-2)の溶液を得た。
【0110】
<合成例3>
撹拌装置付き及び窒素導入管付きの四つ口フラスコに、DA-2を5.86g(24.0mmol)、DA-10を5.46g(16.0mmol)、DA-4を1.73g(16.0mmol)、DA-1を7.69g(24.0mmol)、及びNMPを194g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-1を17.1g(76.4mmol)添加し、更に固形分濃度が12質量%になるようにNMPを加え、40℃で24時間撹拌してポリアミック酸溶液(粘度:549mPa・s)を得た。ポリアミック酸の分子量は、数平均分子量は12400、重量平均分子量33000であった。
このポリアミック酸溶液(225g)にNMPを加えて9.0質量%に希釈した後、イミド化触媒として無水酢酸(17.1g)、及びピリジン(3.54g)を加えて、55℃で3時間反応させた。この反応液をメタノール(1111g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で12時間乾燥し、ポリイミド粉末を得た。このポリイミド粉末のイミド化率は66%であり、数平均分子量は11,000、重量平均分子量は28,000であった。
得られたポリイミド粉末に固形分濃度が15質量%になるようにNMPを加え、70℃で24時間撹拌し溶解させてポリイミド(PI-I-3)の溶液を得た。
【0111】
<合成例4>
撹拌装置及び窒素導入管付きの5Lの四つ口フラスコに、DA-5を5.73g(20.0mmol)量り取り、NMPを115g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-3を2.94g(15.0mmol)添加し、NMPを19.1g加え、窒素雰囲気下23℃で1時間撹拌した。その後、DA-3を11.9g(40.0mmol)、DA-11を6.01g(40.0mmol)量り取り、NMPを172g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-3を15.9g(81.0mmol)添加し、固形分濃度が15質量%になるようにNMPを加え、s-1をポリアミック酸固形分に対して1質量%となるように添加し、窒素雰囲気下23℃で6時間撹拌してポリアミック酸(PAA-I-4)の溶液を得た。ポリアミック酸の分子量は、数平均分子量は12,000、重量平均分子量は30,000であった。
【0112】
<合成例5>
撹拌装置付きの500mLの四つ口フラスコを窒素雰囲気とし、DA-4を2.80g(25.9mmol)、DA12を1.54g(6.47mmol)、NMPを111g、及び塩基としてピリジン6.18g(78.1mmol)を加え、撹拌して溶解させた。次にこのジアミン溶液を撹拌しながらCE-1を9.89g(30.4mmol)添加し、15℃で一晩反応させた。一晩撹拌後、E-1を0.38g(4.21mmol)加えて、15℃で4時間反応させた。得られたポリアミック酸エステルの溶液を、1230gの水に撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、1230gのイソプロピルアルコール(IPA)で5回洗浄し、乾燥することで白色のポリアミック酸エステル樹脂粉末10.2gを得た。収率は、83.0%であった。また、このポリアミック酸エステルの分子量は、数平均分子量は20,786、重量平均分子量は40,973であった。
得られたポリアミック酸エステルに固形分濃度が10質量%になるようにGBLを加え、室温で24時間撹拌し溶解させて、ポリアミック酸エステル(PAE-I-5)の溶液を得た。
【0113】
<合成例6>
撹拌装置付き及び窒素導入管付きの四つ口フラスコに、DA-8を0.46g(3.00mmol)、DA-13を3.00g(15.0mmol)、DA-14を2.56g(12.0mmol)、NMPを11.0g、及びGBLを8.10g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-6を4.76g(24.0mmol)添加し、GBLを10.9g加えて、室温で2時間撹拌した。次に、GBLを10.8g加えて撹拌した後、CA-5を1.31g(6.01mmol)添加し、GBLを14.3g加えて、室温で24時間撹拌した。得られたポリアミック酸溶液の25℃における粘度は2,041mPa・sであった。また、ポリアミック酸の分子量は、数平均分子量は14,200、重量平均分子量は30,110であった。その後、s-2をポリアミック酸固形分に対して1質量%となるように添加し、NMPとGBLの混合比率が、質量比でNMP:GBL=20:80となり、固形分濃度が15質量%になるように、NMP及びGBLを添加して、ポリアミック酸(PAA-I-6)の溶液を得た。
【0114】
<合成例7~11、14~19>
下記表1に示す、ジアミン、テトラカルボン酸誘導体及び有機溶媒を使用し、それぞれ、上記合成例と同様の手順で実施することにより、下記表1に示すポリイミド(PI-V-8)~(PI-V-9)、(PI-I-11)及び(PI-V-19)、ポリアミック酸(PAA-I-7)、(PAA-I-10)、(PAA-V-14)~(PAA-V-16)、(PAA-I-17)~(PAA-I-18)の溶液を得た。表1中、括弧内の数値は、テトラカルボン酸成分については、合成に使用したテトラカルボン酸誘導体の合計量100モル部に対する各化合物の配合割合(モル部)を表し、ジアミン成分については、合成に使用したジアミンの合計量100モル部に対する各化合物の配合割合(モル部)を表す。末端修飾剤については、合成に使用したジアミンの合計量100モル部に対する配合割合(モル部)を表す。有機溶媒については、合成に使用した有機溶媒の合計量100質量部に対する各有機溶媒の配合割合(質量部)を表す。
【0115】
【0116】
[その他の重合体の合成]
<合成例12>
特開2018-054761号の段落[0091]に記載の方法に従って、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(ECETS)を用いて反応性ポリオルガノシロキサン重合体を得た。次に、特開2018-054761号の段落[0093]に記載の方法に従って、下記式(P-S1)で表されるポリオルガノシロキサンの重合体を得た。尚、数値は合成に用いた各シラン化合物の合計に対する各化合物の使用割合を示す。
【化65】
【0117】
<合成例13>
特開2018-54761号の段落[0091]に記載の方法に従って、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(ECETS)を用いて反応性ポリオルガノシロキサン重合体を得た。次に、特開2018-54761号の段落[0093]に記載の方法に従って、下記式(P-S2)で表されるポリオルガノシロキサンの重合体を得た。尚、数値は合成に用いた各シラン化合物の合計に対する各化合物の使用割合を示す。
【化66】
【0118】
<実施例1>
[液晶配向剤の調製]
合成例1で得られたポリイミド(PI-V-1)の溶液及び合成例2で得られたポリイミド(PI-V-2)の溶液を用いて、NMP及びBCSにより希釈し、更に化合物(b-1)を全ての重合体100質量部に対して10質量部となるように添加し室温で撹拌した。次いで、この得られた溶液を孔径0.5μmのフィルターでろ過することにより、重合体の成分比率が(PI-V-1):(PI-V-2)=30:70(固形分換算質量比)、溶媒組成比がNMP:BCS=60:40(質量比)、重合体固形分濃度が4.5%、重合体成分の合計100質量部に対して化合物(b-1)の配合割合が10質量部となる液晶配向剤(V1)を得た(下記の表2)。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
【0119】
<実施例2~50、比較例1~5>
下記表2~6の重合体及び添加剤を使用した以外は、実施例1と同様に実施することにより、液晶配向剤(V2)~(V11)、(I12-P)~(I29-P)、(I30-U)~(I37-U)、(V38)~(V43)、(I44-P)~(I47-P)、(V48-P)~(V49-P)、(I50-U)、(R-V1)~(R-V2)、(R-I3-P)、(R-I4-U)、(R-V5)を得た。表2中、括弧内の数値は、重合体及び添加剤についてはそれぞれ液晶配向剤の調製に使用した重合体成分の合計100質量部に対する各重合体成分又は添加剤の配合割合(質量部)を表す。有機溶媒については、液晶配向剤の調製に使用した有機溶媒の合計量100質量部に対する各有機溶媒の配合割合(質量部)を表す。
【0120】
【0121】
【0122】
【0123】
【0124】
【0125】
[液晶表示素子の作製、評価]
1-1.垂直配向型液晶表示素子の作製
40mm×30mmのITO電極付きガラス基板(縦:40mm、横:30mm、厚さ:1.1mm)を2枚準備し、純水及びイソプロピルアルコールで洗浄した。次に、各ITO面上に孔径1.0μmのフィルターで濾過した液晶配向剤(V1)~(V11)、(V38)~(V43)及び(R-V1)~(R-V2)、(R-V5)をそれぞれスピンコートし、ホットプレート上にて70℃で90秒間、熱循環型クリーンオーブンにて230℃で30分間の加熱処理をして、膜厚が100nmの膜付きのITO基板を得た。
次に、シール剤(三井化学社製XN-1500T)で周囲を塗布した。次いで、もう一方の基板の液晶配向膜が形成された側の面を内側にして、先の基板と張り合わせた後、シール材を硬化させて空セルを作製した。液晶配向剤(V1)~(V2)、(V5)~(V11)、(V38)~(V43)及び(R-V1)を用いた空セルには液晶MLC-3023(メルク社製)を減圧注入法によって注入し、液晶セルを作製した。
その後、得られた液晶セルに15Vの直流電圧を印加し、全ての画素エリアが駆動した状態で、光源に高圧水銀ランプを使用した紫外線照射装置を用いて、波長365nmのバンドパスフィルターを通した紫外線を10J/cm2照射して、評価用の液晶表示素子を得た。紫外線照射量の測定にはORC社製UV-M03AにUV-35の受光器を接続し用いた。
液晶配向剤(V3)~(V4)、(R-V2)及び(R-V5)を用いた空セルには液晶MLC-6608(メルク社製)を減圧注入法によって注入し、評価用の液晶表示素子を得た。得られた液晶表示素子を偏光顕微鏡で観察したところ、いずれも液晶は均一に配向していることが確認された。
【0126】
1-2.液晶表示素子の評価
(i)蓄積電荷の評価
上記1-1で作製した液晶表示素子に、直流2Vを重畳した30Hz、7.8Vp-pの矩形波を23℃で72時間印加し、直流電圧を切って1時間後の液晶セル内に残留した電圧(残留DC電圧)をフリッカー消去法により求めた。この値が50mV以下である時を「優良」、50mVより大きく150mV以下である時を「良」、150mVより大きい値である時を「不良」と判断した。評価結果を表7~表9に示す。
(ii)電圧保持率評価
上記1-1.で作製した液晶表示素子をLEDランプ照射下の80℃オーブン中で200時間静置した後、室温中に静置して室温まで自然冷却した。その後、60℃において1Vの電圧を60マイクロ秒の印加時間、1667ミリ秒のスパンで印加した後、印加解除から1,000ミリ秒後の電圧保持率を測定した。測定装置としては、東陽テクニカ社製を使用した。
(iii)スクラッチ耐性評価
一対のガラス基板(縦:40mm、横:30mm、厚さ:1.1mm)上に上記1-1と同様の手順で液晶配向膜を作製した。各液晶配向膜面に対して、UMT-2(ブルカー・エイエックスエス社製)を用いてスクラッチ試験を行った。
UMT-2のセンサーにはFVLを選択し、スクラッチ部先端には1.6mmのサファイア球を取り付けた。
スクラッチ部先端を液晶配向膜表面に荷重40mNで接触させた状態で、横0.5mm、縦2.0mmの範囲を、スクラッチした。この時スクラッチ部先端の移動方向は横への往復とし、移動速度は5.0mm/秒で行った。スクラッチエリアの縦方向への移動は、液晶配向膜付きの基板を縦方向に20μm/秒で移動させ行った。
スクラッチ試験後、液晶(MLC-3019)をクラッチ試験済の液晶配向膜面へ滴下した。そこへもう1枚の液晶配向膜付き基板に4μmのスペーサーを散布したものを、互いの液晶配向膜面が向かい合うように重ね合わせ、滴下した液晶を挟み込んだ。
偏光顕微鏡(ECLIPSE E600WPOL)(ニコン社製)の上下の偏光板の偏光軸が90°(クロスニコル)となるようにした状態で、スクラッチ試験を行った箇所を観察し、光が透過するかを観察した。スクラッチ試験を行った箇所について、輝点や光抜けが全く見られない状態を「良好」、スクラッチした箇所全体が光抜けとなった状態を「不良」として表7~表9に示す。
【0127】
2-1.光配向によるFFS型液晶表示素子の作製
始めに、電極付きの基板を準備した。基板は、30mm×50mmの大きさで、厚さが0.7mmのガラス基板である。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたITO電極が形成されている。第1層目の対向電極の上には第2層目として、CVD法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目としてITO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素を形成している。各画素のサイズは、縦10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されている。
【0128】
第3層目の画素電極は、中央部分が内角160°で屈曲した「くの字」形状(V-shaped)の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲した「くの字」形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字の「くの字」に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。
【0129】
次に、液晶配向剤(I12-P)~(I29-P)、(I44-P)~(I47-P)及び(R-I3-P)を孔径1.0μmのフィルターで濾過した後、上記電極付き基板と裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、スピンコート塗布にて塗布した。
液晶配向剤(I12-P)~(I29-P)及び(R-I3-P)から得られた塗膜に対しては、80℃のホットプレート上で5分間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmのポリイミド膜を得た。その後、塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を500mJ/cm2照射し、次いで230℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜付き基板を得た。
液晶配向剤(I44-P)~(I47-P)から得られた塗膜に対しては、80℃のホットプレート上で5分間乾燥させた後、塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を500mJ/cm2照射し、次いで230℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜付き基板を得た。
次に、上記一組の液晶配向膜付きガラス基板の一方にシール剤を印刷し、もう一方の基板を液晶配向膜面が向き合うように貼り合わせ、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク社製)を注入し、注入口を封止して、FFS駆動液晶表示素子を得た。その後、得られた液晶セルを120℃で1時間加熱し、一晩放置してから残像特性の評価を実施した。得られた液晶表示素子を偏光顕微鏡で観察したところ、いずれも液晶は均一に配向していることが確認された。
【0130】
2-2.液晶表示素子の評価
(i)蓄積電荷の評価
上記2-1で作製した液晶セルを用い、偏光軸が直交するように配置された2枚の偏光板の間に設置し、画素電極と対向電極とを短絡して同電位にした状態で、2枚の偏光板の下からLEDバックライトを照射しておき、2枚の偏光板の上で測定するLEDバックライト透過光の輝度が最小となるように、液晶セルの角度を調節した。次に、この液晶セルに周波数30Hzの矩形波を印加しながら、23℃の温度下でのV-T特性(電圧-透過率特性)を測定し、相対透過率が23%となる交流電圧を算出した。次に、23℃の温度下において相対透過率が23%となる交流電圧で、なおかつ周波数30Hzの矩形波を5分間印加した後、+1.0Vの直流電圧を重畳し30分間駆動させた。その後、直流電圧を切り、再び相対透過率が23%となる交流電圧で、なおかつ周波数30Hzの矩形波のみを30分間印加した。直流電圧重畳30分後の相対透過率が27%未満まで低下した場合を「優良」、27%以上29%未満まで低下した場合には「良好」、相対透過率が29%以上だった場合には「不良」と定義して評価を行った。
(ii)電圧保持率評価
40mm×30mmのITO電極付きガラス基板(縦:40mm、横:30mm、厚さ:1.1mm)を2枚準備し、上記2-1と同様の手順でITO面上に膜厚が100nmの液晶配向膜を作製した。一方の基板の液晶配向膜面に、直径4μmのビーズスペーサー(日揮触媒化成社製、真絲球、SW-D1)を塗布した。
次に、シール剤(三井化学社製XN-1500T)で周囲を塗布した。次いで、もう一方の基板の液晶配向膜が形成された側の面を内側にして、先の基板と張り合わせた後、シール材を硬化させて空セルを作製した。この空セルに液晶MLC-3019(メルク社製商品名)を減圧注入法によって注入し、液晶表示素子を作製した。次に、この液晶表示素子をLEDランプ照射下の80℃オーブン中で200時間静置した後、室温中に静置して室温まで自然冷却した。その後、1-2の(ii)と同様の手順で評価を行った。
(iii)スクラッチ耐性評価
上記2-1と同様の液晶配向膜を用いて、液晶をMLC-3019とした以外は、上記1-2の(iii)と同様の手順で行った。
【0131】
3-1.ラビング配向によるFFS型液晶表示素子の作製
先ず、上記2-1と同様の一対のガラス基板の各表面に、孔径1.0μmのフィルターで濾過した液晶配向剤(I30-U)~(I37-U)、(I50-U)、(R-I4-U)をインクジェット塗布装置(HIS-200、日立プラントテクノロジー社製)を用いて塗布した。塗布は、塗布面積が70×70mm、ノズルピッチが0.423mm、スキャンピッチが0.5mm、塗布速度が40mm/秒、塗布から乾燥までに60秒間引き置きする条件で行った。次に、80℃のホットプレート上で5分間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmのポリイミド膜を得た。このポリイミド膜をレーヨン布でラビング(ローラー直径:120mm、ローラー回転数:500rpm、移動速度:30mm/sec、押し込み長:0.3mm、ラビング方向:3層目IZO櫛歯電極に対して10°傾いた方向)した後、純水中にて1分間超音波照射をして洗浄を行い、水滴を除去した。その後、80℃で15分間乾燥して、液晶配向膜付き基板を得た。これら2枚の液晶配向膜付き基板を1組とし、基板上に液晶注入口を残した形でシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い、ラビング方向が逆平行になるようにして張り合わせた。その後、シール剤を硬化させて、セルギャップが4μmの空セルを作製した。この空セルに減圧注入法によって、液晶MLC-7026-100(メルク社製)を注入し、注入口を封止して、FFS方式の液晶表示素子を得た。その後、得られた液晶表示素子を120℃で1時間加熱し、23℃で一晩放置してから残像評価の評価に使用した。得られた液晶表示素子を偏光顕微鏡で観察したところ、いずれも液晶は均一に配向していることが確認された。
【0132】
3-2.液晶表示素子の評価
(i)蓄積電荷の評価
上記3-1で作製した液晶表示素子を用いて、液晶をMLC-7026-100とした以外は、上記2-2の(i)と同様の手順で評価を行った。
(ii)電圧保持率評価
上記3-1と同様の液晶配向膜を用いて、液晶をMLC-7026-100とした以外は、上記2-2の(ii)と同様の手順で評価を行った。
(iii)スクラッチ耐性評価
上記3-1と同様の液晶配向膜を用いて、液晶をMLC-7026-100とした以外は、上記2-2の(iii)と同様の手順で評価を行った。
【0133】
4-1.光配向によるVA型液晶表示素子の作製
上記1-1と同様のガラス基板を2枚準備し、それぞれの基板上に液晶配向剤(V48-P)又は(V49-P)をスピンコートし、ホットプレート上にて80℃で90秒間、熱循環型クリーンオーブンにて200℃で40分間の加熱処理をして、膜厚が100nmの液晶配向膜付きのITO基板を得た。
次に上記基板を直線偏光UV光に、基板表面の垂直に対して入射角40°で露光させる。加えられた露光量は、20mJ/cm2とした。露光後、2枚の基板を有するセルを、露光された配向層がセルの内側に向くように組み立て、配向方向が互いに平行になるように、基板を調整した。次に、液晶MLC-7067(メルク社製)を注入した。その後、約90℃で10分間アニーリングし、室温まで冷ましてから残像評価の評価に使用した。得られた液晶表示素子を偏光顕微鏡で観察したところ、いずれも液晶は均一に配向していることが確認された。
【0134】
4-2.液晶表示素子の評価
(i)蓄積電荷の評価
上記4-1で作製した液晶表示素子を用いて、上記1-2の(i)と同様の手順で評価を行った。評価結果を表7~表9に示す。
(ii)電圧保持率評価
上記4-1と同様の液晶配向膜を用いて、液晶をMLC-7067とした以外は、上記1-2の(ii)と同様の手順で評価を行った。評価結果を表7~表9に示す。
(iii)スクラッチ耐性評価
上記4-1と同様の液晶配向膜を用いて、液晶をMLC-7067とした以外は、上記1-2の(iii)と同様の手順で評価を行った。評価結果を表7~表9に示す。
【0135】
【0136】
【0137】
【産業上の利用可能性】
【0138】
本発明の液晶配向剤は、垂直配向型やFFS駆動方式などの種々の液晶表示素子における液晶配向膜の形成に有用である。
なお、2019年3月12日に出願された日本特許出願2019-044856号の明細書、特許請求の範囲及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。