(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-09-09
(45)【発行日】2024-09-18
(54)【発明の名称】視角制御システムおよび画像表示装置
(51)【国際特許分類】
G02B 5/30 20060101AFI20240910BHJP
G02F 1/1335 20060101ALI20240910BHJP
G02F 1/13363 20060101ALI20240910BHJP
G09F 9/00 20060101ALI20240910BHJP
H10K 50/86 20230101ALI20240910BHJP
【FI】
G02B5/30
G02F1/1335 510
G02F1/13363
G09F9/00 313
H10K50/86
(21)【出願番号】P 2022521792
(86)(22)【出願日】2021-04-20
(86)【国際出願番号】 JP2021016015
(87)【国際公開番号】W WO2021230019
(87)【国際公開日】2021-11-18
【審査請求日】2022-10-31
(31)【優先権主張番号】P 2020083971
(32)【優先日】2020-05-12
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2021035455
(32)【優先日】2021-03-05
(33)【優先権主張国・地域又は機関】JP
【前置審査】
(73)【特許権者】
【識別番号】306037311
【氏名又は名称】富士フイルム株式会社
(74)【代理人】
【識別番号】100152984
【氏名又は名称】伊東 秀明
(74)【代理人】
【識別番号】100148080
【氏名又は名称】三橋 史生
(74)【代理人】
【識別番号】100168985
【氏名又は名称】蜂谷 浩久
(74)【代理人】
【識別番号】100149401
【氏名又は名称】上西 浩史
(72)【発明者】
【氏名】吉成 伸一
(72)【発明者】
【氏名】網中 英一郎
(72)【発明者】
【氏名】西村 直弥
(72)【発明者】
【氏名】柴田 直也
(72)【発明者】
【氏名】渡邉 晋也
【審査官】沖村 美由
(56)【参考文献】
【文献】特許第4902516(JP,B2)
【文献】特開2012-256071(JP,A)
【文献】国際公開第2010/101141(WO,A1)
【文献】特開2010-139938(JP,A)
【文献】特開2011-248114(JP,A)
【文献】特開2006-139160(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 5/30
G02F 1/1335
G02F 1/13363
G09F 9/00
H10K 50/00-99/00
(57)【特許請求の範囲】
【請求項1】
偏光子と、光吸収異方性層とを有し、
前記偏光子は、吸収軸をフィルム面内に有し、
前記光吸収異方性層の透過率中心軸とフィルム法線とのなす角度θが0.1~45°であり、
前記光吸収異方性層の透過率中心軸をフィルム面に正射影した方向と、前記偏光子の吸収軸とのなす角度φが
、300~330°である、
車載用途の画像表示装置に用いられる視角制御システム。
【請求項2】
前記偏光子層と前記光吸収異方性層との間に、位相差層を有し、
前記位相差層の遅相軸と前記偏光子の吸収軸とのなす角度が0~10°である、請求項1に記載の視角制御システム。
【請求項3】
前記位相差層が、Nz係数が1.5以上のBプレートである、請求項2に記載の視角制御システム。
【請求項4】
前記位相差層の波長550nmにおける面内位相差Reが60nmよりも大きい、請求項2または3に記載の視角制御システム。
【請求項5】
請求項1~4のいずれか1項に記載の視角制御システムを含む、画像表示装置。
【請求項6】
液晶セルと、前記液晶セル上に配置された前記視角制御システムとを含む、請求項5に記載の画像表示装置。
【請求項7】
自発光型表示装置と、前記自発光型表示装置の視認側に配置された前記視角制御システムとを含む、請求項5に記載の画像表示装置。
【請求項8】
前記視角制御システムにおいて、前記偏光子に対して前記光吸収異方性層が視認側に配置される、請求項5~7のいずれか1項に記載の画像表示装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、視角制御システムおよび画像表示装置に関する。
【背景技術】
【0002】
カーナビなどの車載用ディスプレイを用いる場合、表示画面から上方向に出射される光がフロントガラスなどに映り込み、運転時に妨げになるという問題がある。このような問題を解決する目的で、例えば、特許文献1には、面内に吸収軸を有する第1偏光子と法線方向に対して二色性物質の吸収軸を0~45°に配向させた第2偏光子(光吸収異方性層)を併用する方法が提案されている。ここで、第1偏光子としては、液晶表示装置における視認側の偏光子を使用できる。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところが、上記の視角制御方法は、面内に吸収軸を有する第1偏光子の方向によって、視角制御できる方向が上下方向または左右方向に決まってしまう問題がある。
【0005】
例えば、カーナビなどの車載用途において、面内に吸収軸を有する第1偏光子の吸収軸を左右方向に配置することで上下方向の視角を狭くでき、フロントガラスへの映り込みを防止することができる。上記で述べる上下方向とは鉛直方向を意味し、左右方向とは鉛直方向に直交する水平方向を意味する。
なお、特許文献1に記載のように、第2偏光子の吸収軸の傾きを上下方向に傾けるだけでは、視角の中心が上下方向に変化するだけである。言い換えれば、上下方向のいずれか一方からは視認しづらく、他方からは視認しやすくなる。
一方で、特許文献1に記載の態様では、左右方向の特定の方向(例えば、助手席)の視認性を向上させたいというニーズに対しては応えることができない。言い換えれば、左右方向のいずれか一方からは視認しづらく、他方からは視認しやすくなるようなニーズに対しては応えることができない。
【0006】
そこで、本発明は、表示画面の上下方向の視角制御ができ(例えば、車載用途に適用した際に、フロントガラスへの映り込みを防止でき)、さらに左右方向の特定の方向(例えば、車載用途に適用した際に、助手席からの方向)の視認性を向上させる視角制御システムおよび画像表示装置を提供することを課題とする。
【課題を解決するための手段】
【0007】
本発明者らは、以下の構成により上記課題を解決できることを見出した。
【0008】
(1) 偏光子と、光吸収異方性層とを有し、
偏光子は、吸収軸をフィルム面内に有し、
光吸収異方性層の透過率中心軸とフィルム法線とのなす角度θが0.1~45°であり、
光吸収異方性層の透過率中心軸をフィルム面に正射影した方向と、偏光子の吸収軸とのなす角度φが、0°以上85°未満、95°超265°未満、または、275°超360°以下である、視角制御システム。
(2) 偏光子層と光吸収異方性層との間に、位相差層を有し、
位相差層の遅相軸と偏光子の吸収軸とのなす角度が0~10°である、(1)に記載の視角制御システム。
(3) 位相差層が、Nz係数が1.5以上のBプレートである、(2)に記載の視角制御システム。
(4) 位相差層の波長550nmにおける面内位相差Reが60nmよりも大きい、(2)または(3)に記載の視角制御システム。
(5) (1)~(4)のいずれかに記載の視角制御システムを含む、画像表示装置。
(6) 液晶セルと、液晶セル上に配置された視角制御システムとを含む、(5)に記載の画像表示装置。
(7) 自発光型表示装置と、自発光型表示装置の視認側に配置された視角制御システムとを含む、(5)に記載の画像表示装置。
(8) 視角制御システムにおいて、偏光子に対して光吸収異方性層が視認側に配置される、(5)~(7)のいずれかに記載の画像表示装置。
【発明の効果】
【0009】
本発明によれば、表示画面の上下方向の視角制御ができ(例えば、車載用途に適用した際に、フロントガラスへの映り込みを防止でき)、さらに左右方向の特定の方向(例えば、車載用途に適用した際に、助手席からの方向)の視認性を向上させる視角制御システムおよび画像表示装置を提供できる。
【図面の簡単な説明】
【0010】
【
図1】本発明の視角制御システムおよび画像表示装置を表す模式図である。
【
図2】本発明の視角制御システムの光吸収異方性層の透過率中心軸とフィルム法線とがなす角度θの定義を表す模式図である。
【
図3】本発明の視角制御システムの吸収異方性層の透過率中心軸のフィルム面に正射影した線(方向)と偏光子の吸収軸とのなす角度φの定義を表す模式図である。
【
図4】本発明の画像表示装置を観察する際の、観察方向の極角θobの定義を表す模式図である。
【
図5】本発明の画像表示装置を観察する際の、観察方向の方位角φobの定義を表す模式図である。
【
図6】本発明の視角制御システムの吸収異方性層を作製する際の、紫外光(UV光)照射の方位角φuvの定義を表す模式図である。
【
図7】本発明の視角制御システムの吸収異方性層を作製する際の、UV光照射の極角θuvの定義を表す模式図である。
【
図8】本発明の画像表示装置の自動車のダッシュボード部への設置を表す、正面から見た模式図である。
【
図9】本発明の画像表示装置の自動車のダッシュボード部への設置を表す、側面から見た模式図(断面図)である。
【
図10】本発明の画像表示装置の自動車のダッシュボード部に設置した場合の、右ハンドル自動車における観察方向と視認性への影響を表す模式図である。
【
図11】光吸収異方性層の透過率中心軸をフィルム面に正射影した方向を説明するための模式図である。
【発明を実施するための形態】
【0011】
以下、本発明について詳細に説明する。
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
また、本明細書において、平行は厳密な意味での平行を意味するのではなく、平行から±5°の範囲を意味する。
また、本明細書において、直交は厳密な意味での直交を意味するのではなく、直交から±5°の範囲を意味する。
【0012】
本明細書において、Re(λ)およびRth(λ)は、各々、波長λにおける面内の位相差および厚み方向の位相差を表し、屈折率nx、ny、およびnzと、膜厚d(μm)を用いて、以下の式(1)および式(2)で表される。
式(1) : Re(λ)=(nx-ny)×d×1000(nm)
式(2) : Rth(λ)=((nx+ny)/2-nz)×d×1000(nm)
特に記載がないとき、波長λは550nmとする。
遅相軸方位、Re(λ)、およびRth(λ)は、例えば、AxoScan OPMF-1(オプトサイエンス社製)を用いて測定することができる。
【0013】
本明細書において、Nz係数は、以下の式(3)で定義される。
式(3) : Nz=(nx-nz)/(nx-ny)
また、前述のReおよびRthの定義により、Nz係数は以下の式(4)によっても求めることができる。
式(4) : Nz=0.5+Rth/Re
特に記載がないとき、Nz係数は波長550nmにおける値とする。
【0014】
本明細書では、Bプレートとは、屈折率nx、ny、およびnzが互いに異なる値である二軸性の光学部材を意味する。
【0015】
また、本明細書において、液晶性組成物および液晶性化合物とは、硬化などにより、もはや液晶性を示さなくなったものも概念として含まれる。
【0016】
また、本明細書において、「(メタ)アクリレート」は、「アクリレート」または「メタクリレート」を表す表記であり、「(メタ)アクリル」は、「アクリル」または「メタクリル」を表す表記であり、「(メタ)アクリロイル」は、「アクリロイル」または「メタクリロイル」を表す表記である。
【0017】
[置換基S]
本明細書で用いられる置換基Sは、以下の基を表す。
置換基Sとしては、例えば、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基、炭素数1~20のシクロアルキル基、炭素数1~10のアルキルカルボニル基、炭素数1~10のアルキルオキシカルボニル基、炭素数1~10のアルキルカルボニルオキシ基、炭素数1~10のアルキルアミノ基、アルキルアミノカルボニル基、炭素数1~20のアルコキシ基、炭素数1~20のアルケニル基、炭素数1~20のアルキニル基、炭素数1~20のアリール基、複素環基(ヘテロ環基といってもよい)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基(アニリノ基を含む)、アンモニオ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキルまたはアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキルまたはアリールスルフィニル基、アルキルまたはアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリールまたはヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ホスホノ基、シリル基、ヒドラジノ基、ウレイド基、ボロン酸基(-B(OH)2)、ホスファト基(-OPO(OH)2)、スルファト基(-OSO3H)、その他の公知の置換基などが挙げられる。
なお、置換基の詳細については、特開2007-234651号公報の段落[0023]に記載される。
また、置換基Sは、下記式(W1)で表される基であってもよい。
【0018】
【0019】
式(W1)中、LWは単結合または2価の連結基を表し、SPWは2価のスペーサー基を表し、Qは後述の式(LC)におけるQ1またはQ2を表し、*は結合位置を表す。
【0020】
LWが表す2価の連結基としては、-O-、-(CH2)g-、-(CF2)g-、-Si(CH3)2-、-(Si(CH3)2O)g-、-(OSi(CH3)2)g-(gは1~10の整数を表す。)、-N(Z)-、-C(Z)=C(Z’)-、-C(Z)=N-、-N=C(Z)-、-C(Z)2-C(Z’)2-、-C(O)-、-OC(O)-、-C(O)O-、-O-C(O)O-、-N(Z)C(O)-、-C(O)N(Z)-、-C(Z)=C(Z’)-C(O)O-、-O-C(O)-C(Z)=C(Z’)-、-C(Z)=N-、-N=C(Z)-、-C(Z)=C(Z’)-C(O)N(Z”)-、-N(Z”)-C(O)-C(Z)=C(Z’)-、-C(Z)=C(Z’)-C(O)-S-、-S-C(O)-C(Z)=C(Z’)-、-C(Z)=N-N=C(Z’)-(Z、Z’、Z”は独立に、水素、炭素数1~4のアルキル基、シクロアルキル基、アリール基、シアノ基、または、ハロゲン原子を表す。)、-C≡C-、-N=N-、-S-、-S(O)-、-S(O)(O)-、-(O)S(O)O-、-O(O)S(O)O-、-SC(O)-、および、-C(O)S-、などが挙げられる。LWは、これらの基を2つ以上組み合わせた基であってもよい(以下「L-C」とも省略する)。
【0021】
SPWが表す2価のスペーサー基としては、炭素数1~50の直鎖、分岐若しくは環状のアルキレン基、または、炭素数1~20複素環基が挙げられる。
上記アルキレン基、複素環基の炭素原子は、-O-、-Si(CH3)2-、-(Si(CH3)2O)g-、-(OSi(CH3)2)g-(gは1~10の整数を表す。)、-N(Z)-、-C(Z)=C(Z’)-、-C(Z)=N-、-N=C(Z)-、-C(Z)2-C(Z’)2-、-C(O)-、-OC(O)-、-C(O)O-、-O-C(O)O-、-N(Z)C(O)-、-C(O)N(Z)-、-C(Z)=C(Z’)-C(O)O-、-O-C(O)-C(Z)=C(Z’)-、-C(Z)=N-、-N=C(Z)-、-C(Z)=C(Z’)-C(O)N(Z”)-、-N(Z”)-C(O)-C(Z)=C(Z’)-、-C(Z)=C(Z’)-C(O)-S-、-S-C(O)-C(Z)=C(Z’)-、-C(Z)=N-N=C(Z’)-(Z、Z’、Z”は独立に、水素、炭素数1~4のアルキル基、シクロアルキル基、アリール基、シアノ基、または、ハロゲン原子を表す。)、-C≡C-、-N=N-、-S-、-C(S)-、-S(O)-、-SO2-、-(O)S(O)O-、-O(O)S(O)O-、-SC(O)-、および、-C(O)S-、これらの基を2つ以上組み合わせた基で置換されていてもよい(以下「SP-C」とも省略する)。
上記アルキレン基の水素原子、および、複素環基の水素原子は、ハロゲン原子、シアノ基、-ZH、-OH、-OZH、-COOH、-C(O)ZH、-C(O)OZH、-OC(O)ZH、-OC(O)OZH、-NZHZH’、-NZHC(O)ZH’、-NZHC(O)OZH’、-C(O)NZHZH’、-OC(O)NZHZH’、 -NZHC(O)NZH’OZH’’、-SH、-SZH、-C(S)ZH、-C(O)SZH、-SC(O)ZH、で置換されていてもよい(以下、「SP-H」とも省略する)。ここで、ZH、ZH’は炭素数1~10のアルキル基、ハロゲン化アルキル基、-L-CL(Lは単結合または2価の連結基を表す。2価の連結基の具体例は、上述したLWおよびSPWと同じである。CLは架橋性基を表し、後述の式(LC)におけるQ1またはQ2で表される基が挙げられ、後述の式(P1)~(P30)で表される架橋性基が好ましい。)を表す。
【0022】
図1に示すように、本発明の画像表示装置60の一例は、視認側から、光吸収異方性層10と、位相差層20と、偏光子30と、表示パネル40とを、この順に備える。光吸収異方性層10と、位相差20と、偏光子30とは、視角制御システム50を構成する。光吸収異方性層10と、位相差層20と、偏光子30とは、表示パネル40の非視認側に配置してもよい。偏光子30は、吸収軸31をフィルム面内(フィルム面内方向)に有する。つまり、偏光子30の吸収軸31の方向は、面内方向と平行である。
図11において、光吸収異方性層の透過率中心軸をフィルム面に正射影した方向を説明するための模式図を示す。
図11に示すように、光吸収異方性層の透過率中心軸vを、フィルム面(光学異方性層の表面)に正射影した方向はv(xy)として表される。
図2に示すように、フィルム法線方向(光吸収異方性層の法線方向)13と光吸収異方性層の透過率中心軸11とのなす角度をθとする。また、
図11においても、上記角度θは、透過率中心軸vとフィルム法線方向(z軸方向)とのなす角度として表されている。
図3に、
図2の軸配置をフィルム法線方向13から見た配置を示す。偏光子の吸収軸方向と、光吸収異方性層の透過率中心軸11をフィルム面に正射影した方向(線)11bのなす角度をφとする。また、
図11においても、上記角度φは、透過率中心軸の正射影した方向v(xy)と偏光子の吸収軸方向(
図11中ではx軸方向に対応)とのなす角度として表されている。
なお、上記角度φは、視角制御システムを光吸収異方性層側から観察した際に、偏光子の吸収軸を基準として、反時計回り方向に正の角度値で表し、時計回り方向に負の角度値で表す。
【0023】
本発明において、偏光子の吸収軸の方向を、縦方向または横方向という場合があるが、通常、画像表示装置を使用する状態において、鉛直方向に近い画像表示装置の辺の方向を縦方向、水平方向に近い画像表示装置の辺の方向を横方向と言う。
【0024】
<光吸収異方性層>
本発明に用いられる光吸収異方性層については、透過率中心軸とフィルム法線(光吸収異方性層の表面に対する法線方向)とのなす角度が0.1~45°であることと、透過率中心軸をフィルム面に正射影した方向と上記偏光子の吸収軸とのなす角φが0°以上85°未満、95°超265°未満、または、275°超360°以下であること以外に特に制限はない。
ここで透過率中心軸とは、フィルム法線方向に対する傾き角度と傾き方向を変化させて透過率を測定した際に最も透過率の高い方向を透過率中心軸とする。より具体的には、AxoScan OPMF-1(オプトサイエンス社製)を用いて、波長550nmのP偏光における光吸収異方性層の透過率を測定する。より具体的には、測定の際には、透過率中心軸が傾いている方位角を最初に探し、次に、その方位角に沿った光吸収異方性層の法線方向を含む面内(透過率中心軸を含み、層表面に直交する平面)内で、光吸収異方性層表面の法線方向に対する角度である極角を0~60°まで5°毎に変更しつつ、波長550nmのP偏光を入射して、光吸収異方性層の透過率を測定する。この結果、最も透過率の高い方向を透過率中心軸とする。
光吸収異方性層10の透過率中心軸とフィルム法線のなす角度θと、透過率中心軸をフィルム面に正射影した方向と上記偏光子の吸収軸とのなす角φを調整することにより、画像表示装置の視角中心を正面から上下だけでなく、左右方向にもずらすことができる。
透過率中心軸とフィルム法線とのなす角度θは、2~25°であることが好ましい。
【0025】
本発明の画像表示装置においては、光吸収異方性層の透過率中心軸がフィルム面の法線に対して傾いており、上記光吸収異方性層の透過率中心軸をフィルム面に正射影した方向と、上記偏光子の吸収軸とのなす角φは、30~60°、120~150°、210~240°、または、300~330°が好ましい。上記角度が45°、135°、225°、または、315°に近いほど、画像表示装置の特定の方向の輝度の低減と、別の特定の方向の輝度の向上が両立できる。
例えば、車載用途の画像表示装置において、フロントガラスへの画像の映り込みを低減させることで、ドライバーの視界を確保しながら、助手席側への表示の輝度を向上させ、視認性を向上させることができる。
光吸収異方性層の透過率中心軸を制御するには、可視域に吸収を有する二色性物質を配向させる態様が好ましく、液晶性化合物の配向を利用して有機二色性物質を配向させる態様がさらに好ましい。
一例としては、少なくとも一種の有機二色性物質をフィルム法線方向(光吸収異方性層の表面に対する法線方向)に対して傾斜配向させた光吸収異方性層が挙げられる。
【0026】
有機二色性物質を所望の配向とする技術としては、有機二色性物質を利用した偏光子の作製技術、および、ゲスト-ホスト液晶セルの作製技術が挙げられる。例えば、特開平11-305036号公報および特開2002-090526号公報に記載の二色性偏光素子の作製方法、並びに、特開2002-099388号公報および特開2016-027387号公報に記載のゲストホスト型液晶表示装置の作製方法で利用されている技術を、本発明に用いられる光吸収異方性層の作製にも利用できる。
【0027】
例えば、ゲストホスト型液晶セルの技術を利用して、ホスト液晶の配向に付随させて有機二色性物質の分子を、上記のような所望の配向にすることができる。具体的には、ゲストとなる有機二色性物質と、ホスト液晶となる棒状液晶性化合物とを混合し、ホスト液晶を配向させるとともに、その液晶分子の配向に沿って有機二色性物質の分子を配向させて、その配向状態を固定することで、本発明に用いられる光吸収異方性層を作製できる。
【0028】
本発明に用いられる光吸収異方性層の光吸収特性の使用環境による変動を防止するために、有機二色性物質の配向を、化学結合の形成によって固定するのが好ましい。例えば、ホスト液晶、有機二色性物質、または、所望により添加される重合性成分の重合を進行させることで、配向を固定できる。
【0029】
また、一対の基板に、有機二色性物質とホスト液晶とを少なくとも含む液晶層を有するゲストホスト型液晶セルそのものを、本発明に用いられる光吸収異方性層として利用してもよい。ホスト液晶の配向(およびそれに付随する有機二色性物質の配向)は、基板内面に形成された配向層によって制御でき、電界などの外部刺激を与えない限り、その配向状態は維持され、本発明に用いられる光吸収異方性層の光吸収特性を一定にできる。
【0030】
また、ポリマーフィルム中に有機二色性物質を浸透させて、ポリマーフィルム中のポリマー分子の配向に沿って有機二色性物質を配向させることで、本発明に用いられる光吸収異方性層に要求される光吸収特性を満足するポリマーフィルムを作製できる。
具体的には、有機二色性物質の溶液をポリマーフィルムの表面に塗布して、有機二色性物質をフィルム中に浸透させて、光吸収異方性層を作製できる。有機二色性物質の配向は、ポリマーフィルム中のポリマー鎖の配向、その性質(ポリマー鎖またはそれが有する官能基などの化学的および物理的性質)、および、塗布方法などによって調整できる。この方法の詳細については、特開2002-090526号公報に記載されている。
【0031】
本発明に用いられる光吸収異方性層において、透過率中心軸から30°傾けた方向における波長550nmの透過率は、60%以下が好ましく、50%以下がより好ましく、45%以下がさらに好ましい。下限は特に制限されないが、20%以上の場合が多い。
これにより、透過率中心軸の方向と透過率中心軸からずれた方向との照度のコントラストを高めることが可能となり、視角を十分に狭くすることができる。
【0032】
本発明に用いられる光吸収異方性層において、透過率中心軸の方向における波長550nmの透過率は、65%以上が好ましく、75%以上がより好ましく、85%以上がさらに好ましい。上限は特に制限されないが、95%以下の場合が多い。
これにより、画像表示装置の視角中心の照度を上げて、視認性を良好とすることができる。
【0033】
(液晶性化合物)
本発明に用いられる光吸収異方性層は、液晶性化合物を含むことが好ましい。液晶性化合物を含むことで、二色性物質の析出を抑止しながら、二色性物質を高い配向度で配向させることができる。
液晶性化合物としては、低分子液晶性化合物および高分子液晶性化合物のいずれを用いることも可能であるが、高分子液晶性化合物を用いることで高配向度を得ることができ好ましい。低分子液晶性化合物および高分子液晶性化合物の両方を併用することも好ましい。ここで、「低分子液晶性化合物」とは、化学構造中に繰り返し単位を有さない液晶性化合物のことをいう。また、「高分子液晶性化合物」とは、化学構造中に繰り返し単位を有する液晶性化合物のことをいう。
【0034】
低分子液晶性化合物としては、例えば、特開2013-228706号公報に記載されている液晶性化合物が挙げられる。スメクチック性を示す低分子液晶性化合物が、配向性を高める上で好ましい。
低分子液晶性化合物は、一般的に、その形状から棒状タイプと円盤状タイプに分類できる。
棒状液晶性化合物は、可視領域で二色性を示さない液晶性化合物が好ましい。
低分子液晶性化合物は、1種単独で使用してもよいし、2種以上を併用してもよい。
【0035】
棒状液晶性化合物としては、式(LC)で表わされる液晶性化合物が好ましい。式(LC)で表わされる液晶性化合物は、液晶性を示す化合物である。液晶性は、ネマチック相であってもスメクチック相であってもよく、ネマチック相とスメクチック相の両方を示してもよく、少なくともネマチック相を示すことが好ましい。
スメクチック相としては、高次スメクチック相であってもよい。ここでいう高次スメクチック相とは、スメクチックB相、スメクチックD相、スメクチックE相、スメクチックF相、スメクチックG相、スメクチックH相、スメクチックI相、スメクチックJ相、スメクチックK相、および、スメクチックL相であり、中でもスメクチックB相、スメクチックF相、スメクチックI相、であることが好ましい。
液晶性化合物が示すスメクチック液晶相がこれらの高次スメクチック液晶相であると、配向秩序度のより高い光吸収異方性層を作製できる。また、このように配向秩序度の高い高次スメクチック液晶相から作製した光吸収異方性層はX線回折測定においてヘキサチック相やクリスタル相といった高次構造由来のブラッグピークが得られるものである。上記ブラッグピークとは、分子配向の面周期構造に由来するピークであり、周期間隔が3.0~5.0Åである光吸収異方性層を得ることができる。
【0036】
【0037】
式(LC)中、Q1およびQ2はそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~20の直鎖、分岐または環状のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルケニル基、炭素数1~20のアルキニル基、炭素数1~20のアリール基、複素環基(ヘテロ環基といってもよい)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基(アニリノ基を含む)、アンモニオ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキルまたはアリールスルホニルアミノ基、メルカプト基アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキルまたはアリールスルフィニル基、アルキルまたはアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリールまたはヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ホスホノ基、シリル基、ヒドラジノ基、ウレイド基、ボロン酸基(-B(OH)2)、ホスファト基(-OPO(OH)2)、スルファト基(-OSO3H)、または、下記式(P1)~(P-30)で表される架橋性基を表し、Q1およびQ2の少なくとも一方は、下記式で表される架橋性基であることが好ましい。
【0038】
【0039】
式(P-1)~(P-30)中、RPは水素原子、ハロゲン原子、炭素数1~10の直鎖、分岐、または環状のアルキレン基、炭素数1~20のハロゲン化アルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルケニル基、炭素数1~20のアルキニル基、炭素数1~20のアリール基、複素環基(ヘテロ環基といってもよい)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基(アニリノ基を含む)、アンモニオ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキル若しくはアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキル若しくはアリールスルフィニル基、アルキル若しくはアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリール若しくはヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ホスホノ基、シリル基、ヒドラジノ基、ウレイド基、ボロン酸基(-B(OH)2)、ホスファト基(-OPO(OH)2)、または、スルファト基(-OSO3H)を表し、複数のRPはそれぞれ同一であっても異なっていてもよい。
架橋性基の好ましい態様としては、ラジカル重合性基、および、カチオン重合性基が挙げられる。ラジカル重合性基としては、上記式(P-1)で表されるビニル基、上記式(P-2)で表されるブタジエン基、上記式(P-4)で表される(メタ)アクリル基、上記式(P-5)で表される(メタ)アクリルアミド基、上記式(P-6)で表される酢酸ビニル基、上記式(P-7)で表されるフマル酸エステル基、上記式(P-8)で表されるスチリル基、上記式(P-9)で表されるビニルピロリドン基、上記式(P-11)で表される無水マレイン酸、または、上記式(P-12)で表されるマレイミド基が好ましい。カチオン重合性基としては、上記式(P-18)で表されるビニルエーテル基、上記式(P-19)で表されるエポキシ基、または、上記式(P-20)で表されるオキセタニル基が好ましい。
【0040】
式(LC)において、S1およびS2は、それぞれ独立に、2価のスペーサー基を表し、S1およびS2の好適態様は、上記式(W1)中のSPWと同じ構造が挙げられるため、その説明を省略する。
【0041】
式(LC)中、MGは後述するメソゲン基を表す。MGが表すメソゲン基とは、液晶形成に寄与する液晶分子の主要骨格を示す基である。液晶分子は、結晶状態と等方性液体状態の中間の状態(メソフェーズ)である液晶性を示す。メソゲン基については特に制限はなく、例えば、「Flussige Kristalle in Tabellen II」(VEB Deutsche Verlag fur Grundstoff Industrie,Leipzig、1984年刊)、特に第7頁~第16頁の記載、および、液晶便覧編集委員会編、液晶便覧(丸善、2000年刊)、特に第3章の記載、を参照することができる。
MGが表すメソゲン基は、環状構造を2~10個含むのが好ましく、3~7個含むのがより好ましい。
環状構造の具体例としては、芳香族炭化水素基、複素環基、および、脂環式基などが挙げられる。
【0042】
MGが表すメソゲン基としては、液晶性の発現、液晶相転移温度の調整、原料入手性および合成適性という観点、並びに、本発明の効果がより優れるから、下記式(MG-A)または下記式(MG-B)で表される基が好ましく、式(MG-B)で表される基がより好ましい。
【0043】
【0044】
式(MG-A)中、A1は、芳香族炭化水素基、複素環基、および、脂環式基からなる群より選択される2価の基である。これらの基は、置換基Sなどの置換基で置換されていてもよい。
A1で表される2価の基は、4~15員環であることが好ましい。また、A1で表される2価の基は、単環でも、縮環であってもよい。
*は、S1またはS2との結合位置を表す。
【0045】
A1が表す2価の芳香族炭化水素基としては、フェニレン基、ナフチレン基、フルオレン-ジイル基、アントラセン-ジイル基、および、テトラセン-ジイル基などが挙げられ、メソゲン骨格の設計の多様性や原材料の入手性などの観点から、フェニレン基、または、ナフチレン基が好ましい。
【0046】
A1が表す2価の複素環基としては、芳香族および非芳香族のいずれであってもよいが、配向度がより向上するという観点から、2価の芳香族複素環基であることが好ましい。
2価の芳香族複素環基を構成する炭素以外の原子としては、窒素原子、硫黄原子および酸素原子が挙げられる。芳香族複素環基が炭素以外の環を構成する原子を複数有する場合、これらは同一であっても異なっていてもよい。
2価の芳香族複素環基の具体例としては、例えば、ピリジレン基(ピリジン-ジイル基)、ピリダジン-ジイル基、イミダゾール-ジイル基、チエニレン(チオフェン-ジイル基)、キノリレン基(キノリン-ジイル基)、イソキノリレン基(イソキノリン-ジイル基)、オキサゾール-ジイル基、チアゾール-ジイル基、オキサジアゾール-ジイル基、ベンゾチアゾール-ジイル基、ベンゾチアジアゾール-ジイル基、フタルイミド-ジイル基、チエノチアゾール-ジイル基、チアゾロチアゾール-ジイル基、チエノチオフェン-ジイル基、チエノオキサゾール-ジイル基、および、下記の構造(II-1)~(II-4)などが挙げられる。
【0047】
【0048】
式(II-1)~(II-4)中、D1は、-S-、-O-、またはNR11-を表し、R11は水素原子または炭素数1~6のアルキル基を表し、Y1は炭素数6~12の芳香族炭化水素基、または、炭素数3~12の芳香族複素環基を表し、Z1、Z2、およびZ3はそれぞれ独立に、水素原子または炭素数1~20の脂肪族炭化水素基、炭素数3~20の脂環式炭化水素基、1価の炭素数6~20の芳香族炭化水素基、ハロゲン原子、シアノ基、ニトロ基、-NR12R13またはSR12を表し、Z1およびZ2は、互いに結合して芳香環または芳香族複素環を形成してもよく、R12およびR13は、それぞれ独立に水素原子または炭素数1~6のアルキル基を表し、J1およびJ2はそれぞれ独立に、-O-、-NR21-(R21は水素原子または置換基を表す。)、-S-および-C(O)-からなる群から選択される基を表し、Eは水素原子または置換基が結合していてもよい第14~16族の非金属原子を表し、Jxは芳香族炭化水素環および芳香族複素環からなる群から選択される少なくとも1つの芳香環を有する、炭素数2~30の有機基を表し、Jyは水素原子、置換基を有していてもよい炭素数1~6のアルキル基、または、芳香族炭化水素環および芳香族複素環からなる群から選択される少なくとも1つの芳香環を有する、炭素数2~30の有機基を表し、JxおよびJyが有する芳香環は置換基を有していてもよく、JxとJyは結合して、環を形成していてもよく、D2は、水素原子、または、置換基を有していてもよい炭素数1~6のアルキル基を表す。
【0049】
式(II-2)中、Y1が炭素数6~12の芳香族炭化水素基である場合、単環でも多環でもよい。Y1が炭素数3~12の芳香族複素環基である場合、単環でも多環でもよい。
式(II-2)中、J1およびJ2が、-NR21-を表す場合、R21の置換基としては、例えば特開2008-107767号公報の段落0035~0045の記載を参酌でき、この内容は本願明細書に組み込まれる。
式(II-2)中、Eが、置換基が結合していてもよい第14~16族の非金属原子である場合、=O、=S、=NR’、または、=C(R’)R’が好ましい。R’は置換基を表し、置換基としては、例えば、特開2008-107767号公報の段落[0035]~[0045]の記載を参酌でき、-NZA1ZA2(ZA1およびZA2はそれぞれ独立に、水素原子、アルキル基またはアリール基を表す。)が好ましい。
【0050】
A1が表す2価の脂環式基の具体例としては、シクロペンチレン基およびシクロへキシレン基などが挙げられ、炭素原子は、-O-、-Si(CH3)2-、-N(Z)-(Zは、水素、炭素数1~4のアルキル基、シクロアルキル基、アリール基、シアノ基、または、ハロゲン原子を表す。)、-C(O)-、-S-、-C(S)-、-S(O)-、および-SO2-、これらの基を2つ以上組み合わせた基によって置換されていてもよい。
【0051】
式(MG-A)中、a1は2~10の整数を表す。複数のA1は同一でも異なっていてもよい。
【0052】
式(MG-B)中、A2およびA3はそれぞれ独立に、芳香族炭化水素基、複素環基および脂環式基からなる群より選択される2価の基である。A2およびA3の具体例および好適態様は、式(MG-A)のA1と同様であるので、その説明を省略する。
式(MG-B)中、a2は1~10の整数を表し、複数のA2は同一でも異なっていてもよく、複数のLA1は同一でも異なっていてもよい。a2は、本発明の効果がより優れる理由から、2以上であることがより好ましい。
式(MG-B)中、LA1は、単結合または2価の連結基である。ただし、a2が1である場合、LA1は2価の連結基であり、a2が2以上である場合、複数のLA1のうち少なくとも1つが2価の連結基である。
式(MG-B)中、LA1が表す2価の連結基としては、LWと同様のため、その説明を省略する。
【0053】
MGの具体例としては、例えば以下の構造が挙げられ、以下の構造中、芳香族炭化水素基、複素環基および脂環式基上の水素原子は、上述の置換基Sで置換されていてもよい。
【0054】
【0055】
【0056】
【0057】
メソゲン基MGの環状構造の好ましい態様としては、シクロへキシレン基、シクロペンチレン基、フェニレン基、ナフチレン基、フルオレン-ジイル基、ピリジン-ジイル基、ピリダジン-ジイル基、チオフェン-ジイル基、オキサゾール-ジイル基、チアゾール-ジイル基、および、チエノチオフェン-ジイル基などが挙げられ、環状構造の個数は、2~10個が好ましく、3~7個がより好ましい。
メソゲン構造の置換基Sの好ましい態様としては、ハロゲン原子、ハロゲン化アルキル基、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、炭素数1~10のアルコキシ基、炭素数1~10のアルキルカルボニル基、炭素数1~10のアルキルオキシカルボニル基、炭素数1~10のアルキルカルボニルオキシ基、アミノ基、炭素数1~10のアルキルアミノ基、アルキルアミノカルボニル基、上述の式(W1)においてLWが単結合であり、SPWが2価のスペーサー基であり、Qが上述の(P1)~(P30)で表される架橋性基である基、などが挙げられ、架橋性基としては、ビニル基、ブタジエン基、(メタ)アクリル基、(メタ)アクリルアミド基、酢酸ビニル基、フマル酸エステル基、スチリル基、ビニルピロリドン基、無水マレイン酸、マレイミド基、ビニルエーテル基、エポキシ基、または、オキセタニル基が好ましい。
【0058】
2価のスペーサー基S1およびS2の好ましい態様としては、上記SPWと同様のため、その説明を省略する。
スメクチック性を示す低分子液晶性化合物を用いる場合、スペーサー基の炭素数(この炭素を「SP-C」で置き変えた場合はその原子数)は、炭素数6以上が好ましく、8以上が更に好ましい。
【0059】
複数の低分子液晶性化合物を併用してもよく、2~6種を併用するのが好ましく、2~4種を併用することがより好ましい。低分子液晶性化合物を併用することで、溶解性の向上や液晶組成物の相転移温度を調整することができる。
【0060】
低分子液晶性化合物の具体例としては、以下の式(LC-1)~(LC-77)で表される化合物が挙げられるが、低分子液晶性化合物はこれらに限定されるものではない。
【0061】
【0062】
【0063】
【0064】
【0065】
【0066】
【0067】
高分子液晶性化合物としては、例えば、特開2011-237513号公報に記載されているサーモトロピック液晶性高分子が挙げられる。また、高分子液晶性化合物は、光吸収異方性層の強度(特に、耐屈曲性)が優れるという観点から、末端に架橋性基を有する繰り返し単位を有することが好ましい。架橋性基としては、例えば、特開2010-244038号公報の[0040]~[0050]段落に記載された重合性基が挙げられる。これらの中でも、反応性および合成適性の向上の観点から、アクリロイル基、メタクリロイル基、エポキシ基、オキセタニル基、または、スチリル基が好ましく、アクリロイル基またはメタクリロイル基がより好ましい。
【0068】
本発明における光吸収異方性層が高分子液晶性化合物を含む場合、高分子液晶性化合物は、スメクチック液晶相またはネマチック液晶相を示してもよく、ネマチック液晶相を示すのが好ましい。
ネマチック液晶相を示す温度範囲は、室温(23℃)~450℃が好ましく、取り扱いや製造適性の観点から、50~400℃が好ましい。
【0069】
液晶性化合物の含有量は、光吸収異方性層中の二色性物質の含有量100質量部に対して、25~2000質量部が好ましく、100~1300質量部がより好ましく、200~900質量部がさらに好ましい。液晶性化合物の含有量が上記範囲内にあることで、偏光子の配向度がより向上する。
液晶性化合物は、1種単独で含まれていてもよいし、2種以上含まれていてもよい。液晶性化合物が2種以上含まれる場合、上記液晶性化合物の含有量は、液晶性化合物の含有量の合計を意味する。
【0070】
液晶性化合物は、配向度がより優れる理由から、下記式(1L)で表される繰り返し単位(以下、「繰り返し単位(1L)」とも言う)を含む高分子液晶性化合物であることが好ましい。
【0071】
【0072】
上記式(1L)中、P1は繰り返し単位の主鎖を表し、L1は単結合または2価の連結基を表し、SP1はスペーサー基を表し、M1はメソゲン基を表し、T1は末端基を表す。
【0073】
P1が表す繰り返し単位の主鎖としては、具体的には、例えば、下記式(P1-A)~(P1-D)で表される基が挙げられ、なかでも、原料となる単量体の多様性および取り扱いが容易である観点から、下記式(P1-A)で表される基が好ましい。
【0074】
【0075】
式(P1-A)~(P1-D)において、「*」は、式(1L)におけるL1との結合位置を表す。式(P1-A)~(P1-D)において、R1、R2、R3およびR4はそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~10のアルキル基または炭素数1~10のアルコキシ基を表す。上記アルキル基は、直鎖または分岐のアルキル基であってもよいし、環状構造を有するアルキル基(シクロアルキル基)であってもよい。また、上記アルキル基の炭素数は、1~5が好ましい。
式(P1-A)で表される基は、(メタ)アクリル酸エステルの重合によって得られるポリ(メタ)アクリル酸エステルの部分構造の一単位であることが好ましい。
式(P1-B)で表される基は、エポキシ基を有する化合物のエポキシ基を開環重合して形成されるエチレングリコール単位であることが好ましい。
式(P1-C)で表される基は、オキセタン基を有する化合物のオキセタン基を開環重合して形成されるプロピレングリコール単位であることが好ましい。
式(P1-D)で表される基は、アルコキシシリル基およびシラノール基の少なくとも一方の基を有する化合物の縮重合によって得られるポリシロキサンのシロキサン単位であることが好ましい。ここで、アルコキシシリル基およびシラノール基の少なくとも一方の基を有する化合物としては、式SiR4(OR5)2-で表される基を有する化合物が挙げられる。式中、R4は、(P1-D)におけるR4と同義であり、複数のR5はそれぞれ独立に、水素原子または炭素数1~10のアルキル基を表す。
【0076】
L1は、単結合または2価の連結基である。
L1が表す2価の連結基としては、-C(O)O-、-OC(O)-、-O-、-S-、-C(O)NR3-、-NR3C(O)-、-SO2-、および、-NR3R4-などが挙げられる。式中、R3およびR4はそれぞれ独立に、水素原子、後述する置換基Wを有していてもよい炭素数1~6のアルキル基を表す。
P1が式(P1-A)で表される基である場合には、配向度がより優れる理由から、L1は-C(O)O-で表される基が好ましい。
P1が式(P1-B)~(P1-D)で表される基である場合には、配向度がより優れる理由から、L1は単結合が好ましい。
【0077】
SP1が表すスペーサー基は、液晶性を発現しやすいことや、原材料の入手性などの理由から、オキシエチレン構造、オキシプロピレン構造、ポリシロキサン構造およびフッ化アルキレン構造からなる群より選択される少なくとも1種の構造を含むことが好ましい。
ここで、SP1が表すオキシエチレン構造は、*-(CH2-CH2O)n1-*で表される基が好ましい。式中、n1は1~20の整数を表し、*は、上記式(1L)中のL1またはM1との結合位置を表す。n1は、配向度がより優れる観点から、2~10の整数であることが好ましく、2~4の整数であることがより好ましく、3であることがさらに好ましい。
また、SP1が表すオキシプロピレン構造は、配向度がより優れる理由から、*-(CH(CH3)-CH2O)n2-*で表される基が好ましい。式中、n2は1~3の整数を表し、*はL1またはM1との結合位置を表す。
また、SP1が表すポリシロキサン構造は、配向度がより優れる理由から、*-(Si(CH3)2-O)n3-*で表される基が好ましい。式中、n3は6~10の整数を表し、*はL1またはM1との結合位置を表す。
また、SP1が表すフッ化アルキレン構造は、配向度がより優れる理由から、*-(CF2-CF2)n4-*で表される基が好ましい。式中、n4は6~10の整数を表し、*はL1またはM1との結合位置を表す。
【0078】
M1が表すメソゲン基とは、液晶形成に寄与する液晶分子の主要骨格を示す基である。液晶分子は、結晶状態と等方性液体状態との中間の状態(メソフェーズ)である液晶性を示す。メソゲン基については特に制限はなく、例えば、「Flussige Kristalle in Tabellen II」(VEB Deutsche Verlag fur Grundstoff Industrie,Leipzig、1984年刊)、特に第7頁~第16頁の記載、および、液晶便覧編集委員会編、液晶便覧(丸善、2000年刊)、特に第3章の記載、を参照することができる。
メソゲン基としては、例えば、芳香族炭化水素基、複素環基、および脂環式基からなる群より選択される少なくとも1種の環状構造を有する基が好ましい。
メソゲン基は、配向度がより優れる理由から、芳香族炭化水素基を有するのが好ましく、2~4個の芳香族炭化水素基を有するのがより好ましく、3個の芳香族炭化水素基を有するのがさらに好ましい。
【0079】
メソゲン基としては、液晶性の発現、液晶相転移温度の調整、原料入手性および合成適性という観点、並びに、配向度がより優れる観点から、下記式(M1-A)または下記式(M1-B)で表される基が好ましく、式(M1-B)で表される基がより好ましい。
【0080】
【0081】
式(M1-A)中、A1は、芳香族炭化水素基、複素環基および脂環式基からなる群より選択される2価の基である。これらの基は、アルキル基、フッ化アルキル基、アルコキシ基または後述する置換基Wで置換されていてもよい。
A1で表される2価の基は、4~6員環であることが好ましい。また、A1で表される2価の基は、単環でも、縮環であってもよい。
*は、SP1またはT1との結合位置を表す。
【0082】
A1が表す2価の芳香族炭化水素基としては、フェニレン基、ナフチレン基、フルオレン-ジイル基、アントラセン-ジイル基およびテトラセン-ジイル基などが挙げられ、メソゲン骨格の設計の多様性や原材料の入手性などの観点から、フェニレン基またはナフチレン基が好ましく、フェニレン基がより好ましい。
【0083】
A1が表す2価の複素環基としては、芳香族または非芳香族のいずれであってもよいが、配向度がより向上するという観点から、2価の芳香族複素環基であることが好ましい。
2価の芳香族複素環基を構成する炭素以外の原子としては、窒素原子、硫黄原子および酸素原子が挙げられる。芳香族複素環基が炭素以外の環を構成する原子を複数有する場合、これらは同一であっても異なっていてもよい。
2価の芳香族複素環基の具体例としては、例えば、ピリジレン基(ピリジン-ジイル基)、ピリダジン-ジイル基、イミダゾール-ジイル基、チエニレン(チオフェン-ジイル基)、キノリレン基(キノリン-ジイル基)、イソキノリレン基(イソキノリン-ジイル基)、オキサゾール-ジイル基、チアゾール-ジイル基、オキサジアゾール-ジイル基、ベンゾチアゾール-ジイル基、ベンゾチアジアゾール-ジイル基、フタルイミド-ジイル基、チエノチアゾール-ジイル基、チアゾロチアゾール-ジイル基、チエノチオフェン-ジイル基、および、チエノオキサゾール-ジイル基などが挙げられる。
【0084】
A1が表す2価の脂環式基の具体例としては、シクロペンチレン基およびシクロへキシレン基などが挙げられる。
【0085】
式(M1-A)中、a1は1~10の整数を表す。a1が2以上である場合には、複数のA1は同一でも異なっていてもよい。
【0086】
式(M1-B)中、A2およびA3はそれぞれ独立に、芳香族炭化水素基、複素環基および脂環式基からなる群より選択される2価の基である。A2およびA3の具体例および好適態様は、式(M1-A)のA1と同様であるので、その説明を省略する。
式(M1-B)中、a2は1~10の整数を表し、a2が2以上である場合には、複数のA2は同一でも異なっていてもよく、複数のA3は同一でも異なっていてもよく、複数のLA1は同一でも異なっていてもよい。a2は、配向度がより優れる理由から、2以上の整数であることが好ましく、2であることがより好ましい。
式(M1-B)中、a2が1である場合には、LA1は2価の連結基である。a2が2以上である場合には、複数のLA1はそれぞれ独立に、単結合または2価の連結基であり、複数のLA1のうち少なくとも1つが2価の連結基である。a2が2である場合、配向度がより優れる理由から、2つのLA1のうち、一方が2価の連結基であり、他方が単結合であることが好ましい。
【0087】
式(M1-B)中、LA1が表す2価の連結基としては、-O-、-(CH2)g-、-(CF2)g-、-Si(CH3)2-、-(Si(CH3)2O)g-、-(OSi(CH3)2)g-(gは1~10の整数を表す。)、-N(Z)-、-C(Z)=C(Z’)-、-C(Z)=N-、-N=C(Z)-、-C(Z)2-C(Z’)2-、-C(O)-、-OC(O)-、-C(O)O-、-O-C(O)O-、-N(Z)C(O)-、-C(O)N(Z)-、-C(Z)=C(Z’)-C(O)O-、-O-C(O)-C(Z)=C(Z’)-、-C(Z)=N-、-N=C(Z)-、-C(Z)=C(Z’)-C(O)N(Z”)-、-N(Z”)-C(O)-C(Z)=C(Z’)-、-C(Z)=C(Z’)-C(O)-S-、-S-C(O)-C(Z)=C(Z’)-、-C(Z)=N-N=C(Z’)-(Z、Z’およびZ”は、それぞれ独立に、水素、炭素数1~4のアルキル基、シクロアルキル基、アリール基、シアノ基、または、ハロゲン原子を表す。)、-C≡C-、-N=N-、-S-、-S(O)-、-S(O)(O)-、-(O)S(O)O-、-O(O)S(O)O-、-SC(O)-、および、-C(O)S-などが挙げられる。なかでも、配向度がより優れる理由から、-C(O)O-が好ましい。LA1は、これらの基を2つ以上組み合わせた基であってもよい。
【0088】
M1の具体例としては、例えば以下の構造が挙げられる。なお、下記具体例において、「Ac」は、アセチル基を表す。
【0089】
【0090】
【0091】
T1が表す末端基としては、水素原子、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~10のアルキルチオ基、炭素数1~10のアルコキシカルボニルオキシ基、炭素数1~10のアルコキシカルボニル基(ROC(O)-:Rはアルキル基)、炭素数1~10のアシルオキシ基、炭素数1~10のアシルアミノ基、炭素数1~10のアルコキシカルボニルアミノ基、炭素数1~10のスルホニルアミノ基、炭素数1~10のスルファモイル基、炭素数1~10のカルバモイル基、炭素数1~10のスルフィニル基、炭素数1~10のウレイド基、および、(メタ)アクリロイルオキシ基含有基などが挙げられる。上記(メタ)アクリロイルオキシ基含有基としては、例えば、-L-A(Lは単結合または連結基を表す。連結基の具体例は上述したL1およびSP1と同じである。Aは(メタ)アクリロイルオキシ基を表す)で表される基が挙げられる。
T1は、配向度がより優れる理由から、炭素数1~10のアルコキシ基が好ましく、炭素数1~5のアルコキシがより好ましく、メトキシ基がさらに好ましい。これらの末端基は、これらの基、または、上述の架橋性基によって、さらに置換されていてもよい。
T1の主鎖の原子数は、配向度がより優れる理由から、1~20が好ましく、1~15がより好ましく、1~10がさらに好ましく、1~7が特に好ましい。T1の主鎖の原子数が20以下であることで、光吸収異方性層の配向度がより向上する。ここで、T1における「主鎖」とは、M1と結合する最も長い分子鎖を意味し、水素原子はT1の主鎖の原子数にカウントしない。例えば、T1がn-ブチル基である場合には主鎖の原子数は4であり、T1がsec-ブチル基である場合の主鎖の原子数は3である。
【0092】
繰り返し単位(1L)の含有量は、配向度がより優れる観点から、高分子液晶性化合物が有する全繰り返し単位100質量%に対して、20~100質量%が好ましい。
本発明において、高分子液晶性化合物に含まれる各繰り返し単位の含有量は、各繰り返し単位を得るために使用される各単量体の仕込み量(質量)に基づいて算出される。
繰り返し単位(1L)は、高分子液晶性化合物中において、1種単独で含まれていてもよいし、2種以上含まれていてもよい。なかでも、配向度がより優れる理由から、繰り返し単位(1L)が高分子液晶性化合物中に2種含まれているのがよい。
【0093】
高分子液晶性化合物が繰り返し単位(1L)を2種含む場合、配向度がより優れる観点から、一方(繰り返し単位A)においてT1が表す末端基がアルコキシ基であり、他方(繰り返し単位B)においてT1が表す末端基がアルコキシ基以外の基であることが好ましい。
上記繰り返し単位BにおいてT1が表す末端基は、配向度がより優れる観点から、アルコキシカルボニル基、シアノ基、または、(メタ)アクリロイルオキシ基含有基であることが好ましく、アルコキシカルボニル基、または、シアノ基であることがより好ましい。
高分子液晶性化合物中の上記繰り返し単位Aの含有量と高分子液晶性化合物中の上記繰り返し単位Bの含有量との割合(A/B)は、配向度がより優れる理由から、50/50~95/5であることが好ましく、60/40~93/7であることがより好ましく、70/30~90/10であることがさらに好ましい。
【0094】
また、高分子液晶性化合物は、繰り返し単位(1L)とももに、メソゲン基を有しない繰り返し単位を有していてもよい。メソゲン基を有しない繰り返し単位としては、式(1L)におけるM1が単結合である繰り返し単位が挙げられる。光吸収異方性層の膜強度を高める目的で、メソゲン基を有しない繰り返し単位が末端にラジカル重合性基を有することも好ましい。
高分子液晶性化合物がメソゲン基を有しない繰り返し単位を有する場合、配向度がより優れる理由から、高分子液晶性化合物が有する全繰り返し単位100質量%に対して、0質量%超30質量%以下が好ましく、10質量%超20質量%以下がより好ましい。
【0095】
高分子液晶性化合物の重量平均分子量(Mw)は、配向度がより優れる観点から、1000~500000が好ましく、2000~300000がより好ましい。高分子液晶性化合物のMwが上記範囲内にあれば、高分子液晶性化合物の取り扱いが容易になる。
特に、塗布時のクラック抑制の観点から、高分子液晶性化合物の重量平均分子量(Mw)は、10000以上が好ましく、10000~300000がより好ましい。
また、配向度の温度ラチチュードの観点から、高分子液晶性化合物の重量平均分子量(Mw)は、10000未満が好ましく、2000以上10000未満がより好ましい。
ここで、本発明における重量平均分子量および数平均分子量は、ゲル浸透クロマトグラフ(GPC)法により測定された値である。
・溶媒(溶離液):N-メチルピロリドン
・装置名:TOSOH HLC-8220GPC
・カラム:TOSOH TSKgelSuperAWM-H(6mm×15cm)を3本接続して使用
・カラム温度:25℃
・試料濃度:0.1質量%
・流速:0.35mL/min
・校正曲線:TOSOH製TSK標準ポリスチレン Mw=2800000~1050(Mw/Mn=1.03~1.06)までの7サンプルによる校正曲線を使用
【0096】
本明細書における置換基Wについて説明する。
置換基Wとしては、例えば、アルキル基(好ましくは炭素数1~20、より好ましくは炭素数1~12、さらに好ましくは炭素数1~8のアルキル基であり、例えば、メチル基、エチル基、イソプロピル基、tert-ブチル基、n-オクチル基、n-デシル基、n-ヘキサデシル基、シクロプロピル基、シクロペンチル基、および、シクロヘキシル基などが挙げられる。)、アルケニル基(好ましくは炭素数2~20、より好ましくは炭素数2~12、さらに好ましくは炭素数2~8のアルケニル基であり、例えば、ビニル基、アリール基、2-ブテニル基、および、3-ペンテニル基などが挙げられる。)、アルキニル基(好ましくは炭素数2~20、より好ましくは炭素数2~12、さらに好ましくは炭素数2~8のアルキニル基であり、例えば、プロパルギル基、および、3-ペンチニル基などが挙げられる。)、アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、さらに好ましくは炭素数6~12のアリール基であり、例えば、フェニル基、2,6-ジエチルフェニル基、3,5-ジトリフルオロメチルフェニル基、スチリル基、ナフチル基、および、ビフェニル基などが挙げられる。)、置換もしくは無置換のアミノ基(好ましくは炭素数0~20、より好ましくは炭素数0~10、さらに好ましくは炭素数0~6のアミノ基であり、例えば、無置換アミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、および、アニリノ基などが挙げられる。)、アルコキシ基(好ましくは炭素数1~20、より好ましくは炭素数1~15であり、例えば、メトキシ基、エトキシ基、および、ブトキシ基などが挙げられる。)、オキシカルボニル基(好ましくは炭素数2~20、より好ましくは炭素数2~15、さらに好ましくは2~10であり、例えば、メトキシカルボニル基、エトキシカルボニル基、および、フェノキシカルボニル基などが挙げられる。)、アシルオキシ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、さらに好ましくは2~6であり、例えば、アセトキシ基、ベンゾイルオキシ基、アクリロイル基、および、メタクリロイル基などが挙げられる。)、アシルアミノ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、さらに好ましくは炭素数2~6であり、例えば、アセチルアミノ基、および、ベンゾイルアミノ基などが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、さらに好ましくは炭素数2~6であり、例えば、メトキシカルボニルアミノ基などが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7~20、より好ましくは炭素数7~16、さらに好ましくは炭素数7~12であり、例えば、フェニルオキシカルボニルアミノ基などが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~6であり、例えば、メタンスルホニルアミノ基、および、ベンゼンスルホニルアミノ基などが挙げられる。)、スルファモイル基(好ましくは炭素数0~20、より好ましくは炭素数0~10、さらに好ましくは炭素数0~6であり、例えば、スルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、および、フェニルスルファモイル基などが挙げられる。)、カルバモイル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~6であり、例えば、無置換のカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、および、フェニルカルバモイル基などが挙げられる。)、アルキルチオ基(好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~6であり、例えば、メチルチオ基、および、エチルチオ基などが挙げられる。)、アリールチオ基(好ましくは炭素数6~20、より好ましくは炭素数6~16、さらに好ましくは炭素数6~12であり、例えば、フェニルチオ基などが挙げられる。)、スルホニル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~6であり、例えば、メシル基、および、トシル基などが挙げられる。)、スルフィニル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~6であり、例えば、メタンスルフィニル基、および、ベンゼンスルフィニル基などが挙げられる。)、ウレイド基(好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~6であり、例えば、無置換のウレイド基、メチルウレイド基、および、フェニルウレイド基などが挙げられる。)、リン酸アミド基(好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~6であり、例えば、ジエチルリン酸アミド基、および、フェニルリン酸アミド基などが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、および、ヨウ素原子などが挙げられる。)、シアノ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、アゾ基、ヘテロ環基(好ましくは炭素数1~30、より好ましくは炭素数1~12のヘテロ環基であり、例えば、窒素原子、酸素原子、硫黄原子などのヘテロ原子を有するヘテロ環基であり、例えば、エポキシ基、オキセタニル基、イミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、マレイミド基、ベンゾオキサゾリル基、ベンズイミダゾリル基、および、ベンズチアゾリル基などが挙げられる。)、シリル基(好ましくは炭素数3~40、より好ましくは炭素数3~30、さらに好ましくは炭素数3~24のシリル基であり、例えば、トリメチルシリル基、および、トリフェニルシリル基などが挙げられる。)、カルボキシ基、スルホン酸基、および、リン酸基などが挙げられる。
【0097】
(二色性物質)
本発明に用いられる光吸収異方性層は、二色性物質を含むことが好ましい。二色性物質は、特に限定されず、可視光吸収物質(二色性色素、二色性アゾ色素化合物)、発光物質(蛍光物質、燐光物質)、紫外線吸収物質、赤外線吸収物質、非線形光学物質、カーボンナノチューブ、無機物質(例えば量子ロッド)などが挙げられ、従来公知の二色性物質(二色性物質)を使用できる。
【0098】
二色性物質としては、有機二色性物質が好ましく、二色性アゾ色素化合物がより好ましい。
二色性アゾ色素化合物は、特に限定されず、従来公知の二色性アゾ色素を使用することができるが、後述の化合物が好ましく用いられる。
【0099】
本発明において、二色性アゾ色素化合物とは、方向によって吸光度が異なる色素を意味する。
二色性アゾ色素化合物は、液晶性を示してもよいし、液晶性を示さなくてもよい。
二色性アゾ色素化合物が液晶性を示す場合には、ネマチック性またはスメクチック性のいずれを示してもよい。液晶相を示す温度範囲は、室温(約20~28℃)~300℃が好ましく、取扱い性および製造適性の観点から、50~200℃であることがより好ましい。
【0100】
本発明においては、色味調整の観点から、光吸収異方性層が、波長560~700nmの範囲に極大吸収波長を有する少なくとも1種の色素化合物(以下、「第1の二色性アゾ色素化合物」とも略す。)と、波長455nm以上560nm未満の範囲に極大吸収波長を有する少なくとも1種の色素化合物(以下、「第2の二色性アゾ色素化合物」とも略す。)とを少なくとも含むことが好ましく、具体的には、後述する式(1)で表される二色性アゾ色素化合物と、後述する式(2)で表される二色性アゾ色素化合物とを少なくとも含むことがより好ましい。
【0101】
本発明においては、3種以上の二色性アゾ色素化合物を併用してもよく、例えば、光吸収異方性層を黒色に近づける観点から、第1の二色性アゾ色素化合物と、第2の二色性アゾ色素化合物と、波長380nm以上455nm未満の範囲に極大吸収波長を有する少なくとも1種の色素化合物(以下、「第3の二色性アゾ色素化合物」とも略す。)とを併用することが好ましい。
【0102】
本発明においては、耐押圧性がより良好となる観点からは、二色性アゾ色素化合物が架橋性基を有していることが好ましい。
架橋性基としては、具体的には、例えば、(メタ)アクリロイル基、エポキシ基、オキセタニル基、および、スチリル基などが挙げられ、中でも、(メタ)アクリロイル基が好ましい。
【0103】
[第1の二色性アゾ色素化合物]
第1の二色性アゾ色素化合物は、核である発色団と、発色団の末端に結合する側鎖と、を有する化合物であることが好ましい。
発色団の具体例としては、芳香族環基(例えば、芳香族炭化水素基、芳香族複素環基)、および、アゾ基などが挙げられ、芳香族環基およびアゾ基の両方を有する構造が好ましく、芳香族複素環基(好ましくはチエノチアゾール基)と2つのアゾ基とを有するビスアゾ構造がより好ましい。
側鎖としては、特に限定されず、後述の式(1)のR1、R2またはR3で表される基が挙げられる。
【0104】
第1の二色性アゾ色素化合物は、波長560~700nmの範囲に最大吸収波長を有する二色性アゾ色素化合物であり、光吸収異方性層の色味調整の観点から、波長560~650nmの範囲に最大吸収波長を有する二色性アゾ色素化合物であることが好ましく、波長560~640nmの範囲に最大吸収波長を有する二色性アゾ色素化合物であるのがより好ましい。
本明細書における二色性アゾ色素化合物の最大吸収波長(nm)は、二色性アゾ色素化合物を良溶媒中に溶解させた溶液を用いて、分光光度計によって測定される波長380~800nmの範囲における紫外可視光スペクトルから求められる。
【0105】
本発明においては、形成される光吸収異方性層の配向度がさらに向上する観点から、第1の二色性アゾ色素化合物が、下記式(1)で表される化合物であることが好ましい。
【0106】
【0107】
式(1)中、Ar1およびAr2はそれぞれ独立に、置換基を有していてもよいフェニレン基、または、置換基を有していてもよいナフチレン基を表し、フェニレン基が好ましい。
【0108】
式(1)中、R1は、水素原子、炭素数1~20の置換基を有していてもよい直鎖もしくは分岐状のアルキル基、アルコキシ基、アルキルチオ基、アルキルスルホニル基、アルキルカルボニル基、アルキルオキシカルボニル基、アシルオキシ基、アルキルカーボネート基、アルキルアミノ基、アシルアミノ基、アルキルカルボニルアミノ基、アルコキシカルボニルアミノ基、アルキルスルホニルアミノ基、アルキルスルファモイル基、アルキルカルバモイル基、アルキルスルフィニル基、アルキルウレイド基、アルキルリン酸アミド基、アルキルイミノ基、または、アルキルシリル基を表す。
上記アルキル基を構成する-CH2-は、-O-、-CO-、-C(O)-O-、-O-C(O)-、-Si(CH3)2-O-Si(CH3)2-、-N(R1’)-、-N(R1’)-CO-、-CO-N(R1’)-、-N(R1’)-C(O)-O-、-O-C(O)-N(R1’)-、-N(R1’)-C(O)-N(R1’)-、-CH=CH-、-C≡C-、-N=N-、-C(R1’)=CH-C(O)-、または、-O-C(O)-O-によって置換されていてもよい。
R1が水素原子以外の基である場合、各基が有する水素原子は、ハロゲン原子、ニトロ基、シアノ基、-N(R1’)2、アミノ基、-C(R1’)=C(R1’)-NO2、-C(R1’)=C(R1’)-CN、または、-C(R1’)=C(CN)2、によって置換されていてもよい。
R1’は、水素原子または炭素数1~6の直鎖もしくは分岐状のアルキル基を表す。各基において、R1’が複数存在する場合、互いに同一であっても異なっていてもよい。
【0109】
式(1)中、R2およびR3は、それぞれ独立に、水素原子、炭素数1~20の置換基を有していてもよい直鎖もしくは分岐状のアルキル基、アルコキシ基、アシル基、アルキルオキシカルボニル基、アルキルアミド基、アルキルスルホニル基、アリール基、アリールカルボニル基、アリールスルホニル基、アリールオキシカルボニル基、または、アリールアミド基を表す。
上記アルキル基を構成する-CH2-は、-O-、-S-、-C(O)-、-C(O)-O-、-O-C(O)-、-C(O)-S-、-S-C(O)-、-Si(CH3)2-O-Si(CH3)2-、-NR2’-、-NR2’-CO-、-CO-NR2’-、-NR2’-C(O)-O-、-O-C(O)-NR2’-、-NR2’-C(O)-NR2’-、-CH=CH-、-C≡C-、-N=N-、-C(R2’)=CH-C(O)-、または、-O-C(O)-O-、によって置換されていてもよい。
R2およびR3が水素原子以外の基である場合、各基が有する水素原子は、ハロゲン原子、ニトロ基、シアノ基、-OH基、-N(R2’)2、アミノ基、-C(R2’)=C(R2’)-NO2、-C(R2’)=C(R2’)-CN、または、-C(R2’)=C(CN)2によって置換されていてもよい。
R2’は、水素原子または炭素数1~6の直鎖もしくは分岐状のアルキル基を表す。各基において、R2’が複数存在する場合、互いに同一であっても異なっていてもよい。
R2およびR3は、互いに結合して環を形成してもよいし、R2またはR3は、Ar2と結合して環を形成してもよい。
【0110】
耐光性の観点からは、R1は電子求引性基であることが好ましく、R2およびR3は電子供与性が低い基であることが好ましい。
このような基の具体例として、R1としては、アルキルスルホニル基、アルキルカルボニル基、アルキルオキシカルボニル基、アシルオキシ基、アルキルスルホニルアミノ基、アルキルスルファモイル基、アルキルスルフィニル基、および、アルキルウレイド基などが挙げられ、R2およびR3としては、下記の構造の基などが挙げられる。なお下記の構造の基は、上記式(1)において、R2およびR3が結合する窒素原子を含む形で示す。
【0111】
【0112】
第1の二色性アゾ色素化合物の具体例を以下に示すが、これに限定されるものではない。
【0113】
【0114】
[第2の二色性アゾ色素化合物]
第2の二色性アゾ色素化合物は、第1の二色性アゾ色素化合物とは異なる化合物であり、具体的にはその化学構造が異なっている。
第2の二色性アゾ色素化合物は、二色性アゾ色素化合物の核である発色団と、発色団の末端に結合する側鎖と、を有する化合物であることが好ましい。
発色団の具体例としては、芳香族環基(例えば、芳香族炭化水素基、芳香族複素環基)、アゾ基などが挙げられ、芳香族炭化水素基およびアゾ基の両方を有する構造が好ましく、芳香族炭化水素基と2または3つのアゾ基とを有するビスアゾまたはトリスアゾ構造がより好ましい。
側鎖としては、特に限定されず、後述の式(2)のR4、R5またはR6で表される基が挙げられる。
【0115】
第2の二色性アゾ色素化合物は、波長455nm以上560nm未満の範囲に最大吸収波長を有する二色性アゾ色素化合物であり、光吸収異方性層の色味調整の観点から、波長455~555nmの範囲に最大吸収波長を有する二色性アゾ色素化合物であることが好ましく、波長455~550nmの範囲に最大吸収波長を有する二色性アゾ色素化合物であることがより好ましい。
特に、560~700nmの範囲に最大吸収波長を有する第1の二色性アゾ色素化合物と、455nm以上560nm未満の範囲に最大吸収波長を有する第2の二色性アゾ色素化合物と、を用いれば、光吸収異方性層の色味調整がより容易になる。
【0116】
第2の二色性アゾ色素化合物は、光吸収異方性層の配向度がより向上する観点から、式(2)で表される化合物であるのが好ましい。
【0117】
【0118】
式(2)中、nは1または2を表す。
式(2)中、Ar3、Ar4およびAr5はそれぞれ独立に、置換基を有していてもよいフェニレン基、置換基を有していてもよいナフチレン基または置換基を有していてもよい複素環基を表す。
複素環基としては、芳香族または非芳香族のいずれであってもよい。
芳香族複素環基を構成する炭素以外の原子としては、窒素原子、硫黄原子および酸素原子が挙げられる。芳香族複素環基が炭素以外の環を構成する原子を複数有する場合、これらは同一であっても異なっていてもよい。
芳香族複素環基の具体例としては、例えば、ピリジレン基(ピリジン-ジイル基)、ピリダジン-ジイル基、イミダゾール-ジイル基、チエニレン(チオフェン-ジイル基)、キノリレン基(キノリン-ジイル基)、イソキノリレン基(イソキノリン-ジイル基)、オキサゾール-ジイル基、チアゾール-ジイル基、オキサジアゾール-ジイル基、ベンゾチアゾール-ジイル基、ベンゾチアジアゾール-ジイル基、フタルイミド-ジイル基、チエノチアゾール-ジイル基、チアゾロチアゾール-ジイル基、チエノチオフェン-ジイル基、および、チエノオキサゾール-ジイル基などが挙げられる。
【0119】
式(2)中、R4の定義は、式(1)中のR1と同様である。
式(2)中、R5およびR6の定義はそれぞれ、式(1)中のR2およびR3と同様である。
【0120】
耐光性の観点からは、R4は電子求引性基であることが好ましく、R5およびR6は電子供与性が低い基であることが好ましい。
このような基のうち、R4が電子求引性基である場合の具体例は、R1が電子求引性基である場合の具体例と同様であり、R5およびR6が電子供与性の低い基である場合の具体例は、R2およびR3が電子供与性の低い基である場合の具体例と同様である。
【0121】
第2の二色性アゾ色素化合物の具体例を以下に示すが、これに限定されるものではない。
【0122】
【0123】
logP値は、化学構造の親水性および疎水性の性質を表現する指標である。第1の二色性アゾ色素化合物の側鎖のlogP値と、第2の二色性アゾ色素化合物の側鎖のlogP値と、の差の絶対値(以下、「logP差」ともいう。)は、2.30以下が好ましく、2.0以下がより好ましく、1.5以下がさらに好ましく、1.0以下が特に好ましい。logP差が2.30以下であれば、第1の二色性アゾ色素化合物と第2の二色性アゾ色素化合物との親和性が高まって、配列構造をより形成しやすくなるため、光吸収異方性層の配向度がより向上する。
なお、第1の二色性アゾ色素化合物または第2の二色性アゾ色素化合物の側鎖が複数ある場合、少なくとも1つのlogP差が上記値を満たすことが好ましい。
ここで、第1の二色性アゾ色素化合物および第2の二色性アゾ色素化合物の側鎖とは、上述した発色団の末端に結合する基を意味する。例えば、第1の二色性アゾ色素化合物が式(1)で表される化合物である場合、式(1)中のR1、R2およびR3が側鎖であり、第2の二色性アゾ色素化合物が式(2)で表される化合物である場合、式(2)中のR4、R5およびR6が側鎖である。特に、第1の二色性アゾ色素化合物が式(1)で表される化合物であり、第2の二色性アゾ色素化合物が式(2)で表される化合物である場合、R1とR4とのlogP値の差、R1とR5とのlogP値の差、R2とR4とのlogP値の差、および、R2とR5とのlogP値の差のうち、少なくとも1つのlogP差が上記値を満たすことが好ましい。
【0124】
ここで、logP値は、化学構造の親水性および疎水性の性質を表現する指標であり、親疎水パラメータと呼ばれることがある。logP値は、ChemBioDraw UltraまたはHSPiP(Ver.4.1.07)などのソフトウェアを用いて計算できる。また、OECD Guidelines for the Testing of Chemicals,Sections 1,Test No.117の方法などにより、実験的に求めることもできる。本発明では特に断りのない限り、HSPiP(Ver.4.1.07)に化合物の構造式を入力して算出される値をlogP値として採用する。
【0125】
[第3の二色性アゾ色素化合物]
第3の二色性アゾ色素化合物は、第1の二色性アゾ色素化合物および第2の二色性アゾ色素化合物以外の二色性アゾ色素化合物であり、具体的には、第1の二色性アゾ色素化合物および第2の二色性アゾ色素化合物とは化学構造が異なっている。光吸収異方性層が第3の二色性アゾ色素化合物を含む場合、光吸収異方性層の色味の調整が容易になるという利点がある。
第3の二色性アゾ色素化合物の最大吸収波長は、380nm以上455nm未満であり、385~454nmが好ましい。
【0126】
第3の二色性アゾ色素化合物としては、下記式(6)で表される二色性アゾ色素が好ましい。
【0127】
【0128】
式(6)中、AおよびBは、それぞれ独立に、架橋性基を表す。
式(6)中、aおよびbは、それぞれ独立に、0または1を表す。波長420nmにおける配向度に優れる観点においては、aおよびbは、ともに0であることが好ましい。
式(6)中、a=0の場合にはL1は1価の置換基を表し、a=1の場合にはL1は単結合または2価の連結基を表す。また、b=0の場合にはL2は1価の置換基を表し、b=1の場合にはL2は単結合または2価の連結基を表す。
式(6)中、Ar1は(n1+2)価の芳香族炭化水素基または複素環基を表し、Ar2は(n2+2)価の芳香族炭化水素基または複素環基を表し、Ar3は(n3+2)価の芳香族炭化水素基または複素環基を表す。
式(6)中、R1、R2およびR3は、それぞれ独立に、1価の置換基を表す。n1≧2である場合には複数のR1は互いに同一でも異なっていてもよく、n2≧2である場合には複数のR2は互いに同一でも異なっていてもよく、n3≧2である場合には複数のR3は互いに同一でも異なっていてもよい。
式(6)中、kは、1~4の整数を表す。k≧2の場合には、複数のAr2は互いに同一でも異なっていてもよく、複数のR2は互いに同一でも異なっていてもよい。
式(6)中、n1、n2およびn3は、それぞれ独立に、0~4の整数を表す。ただし、k=1の場合にはn1+n2+n3≧0であり、k≧2の場合にはn1+n2+n3≧1である。
【0129】
式(6)において、AおよびBが表す架橋性基としては、例えば、特開2010-244038号公報の[0040]~[0050]段落に記載された重合性基が挙げられる。これらの中でも、反応性および合成適性の向上の観点から、アクリロイル基、メタクリロイル基、エポキシ基、オキセタニル基、および、スチリル基が好ましく、溶解性をより向上できるという観点から、アクリロイル基およびメタクリロイル基がより好ましい。
【0130】
式(6)において、a=0の場合にはL1は1価の置換基を表し、a=1の場合にはL1は単結合または2価の連結基を表す。また、b=0の場合にはL2は1価の置換基を表し、b=1の場合にはL2は単結合または2価の連結基を表す。
【0131】
L1およびL2が表す1価の置換基としては、二色性物質の溶解性を高めるために導入される基、または、色素としての色調を調節するために導入される電子供与性や電子求引性を有する基が好ましい。
例えば、置換基としては、
アルキル基(好ましくは炭素数1~20、より好ましくは炭素数1~12、さらに好ましくは炭素数1~8のアルキル基であり、例えば、メチル基、エチル基、イソプロピル基、tert-ブチル基、n-オクチル基、n-デシル基、n-ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる。)、
アルケニル基(好ましくは炭素数2~20、より好ましくは炭素数2~12、さらに好ましくは炭素数2~8のアルケニル基であり、例えば、ビニル基、アリル基、2-ブテニル基、3-ペンテニル基などが挙げられる。)、
アルキニル基(好ましくは炭素数2~20、より好ましくは炭素数2~12、さらに好ましくは炭素数2~8のアルキニル基であり、例えば、プロパルギル基、3-ペンチニル基などが挙げられる。)、
アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、さらに好ましくは炭素数6~12のアリール基であり、例えば、フェニル基、2,6-ジエチルフェニル基、3,5-ジトリフルオロメチルフェニル基、ナフチル基、および、ビフェニル基などが挙げられる。)、
置換もしくは無置換のアミノ基(好ましくは炭素数0~20、より好ましくは炭素数0~10、さらに好ましくは炭素数0~6のアミノ基であり、例えば、無置換アミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、および、アニリノ基などが挙げられる。)、
アルコキシ基(好ましくは炭素数1~20、より好ましくは炭素数1~15であり、例えば、メトキシ基、エトキシ基、および、ブトキシ基などが挙げられる。)、
オキシカルボニル基(好ましくは炭素数2~20、より好ましくは炭素数2~15、さらに好ましくは2~10であり、例えば、メトキシカルボニル基、エトキシカルボニル基、および、フェノキシカルボニル基などが挙げられる。)、
アシルオキシ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、さらに好ましくは2~6であり、例えば、アセトキシ基およびベンゾイルオキシ基などが挙げられる。)、
アシルアミノ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、さらに好ましくは炭素数2~6であり、例えば、アセチルアミノ基およびベンゾイルアミノ基などが挙げられる。)、
アルコキシカルボニルアミノ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、さらに好ましくは炭素数2~6であり、例えば、メトキシカルボニルアミノ基などが挙げられる。)、
アリールオキシカルボニルアミノ基(好ましくは炭素数7~20、より好ましくは炭素数7~16、さらに好ましくは炭素数7~12であり、例えば、フェニルオキシカルボニルアミノ基などが挙げられる。)、
スルホニルアミノ基(好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~6であり、例えば、メタンスルホニルアミノ基、および、ベンゼンスルホニルアミノ基などが挙げられる。)、
スルファモイル基(好ましくは炭素数0~20、より好ましくは炭素数0~10、さらに好ましくは炭素数0~6であり、例えば、スルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、および、フェニルスルファモイル基などが挙げられる。)、
カルバモイル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~6であり、例えば、無置換のカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、および、フェニルカルバモイル基などが挙げられる。)、
アルキルチオ基(好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~6であり、例えば、メチルチオ基、および、エチルチオ基などが挙げられる。)、
アリールチオ基(好ましくは炭素数6~20、より好ましくは炭素数6~16、さらに好ましくは炭素数6~12であり、例えば、フェニルチオ基などが挙げられる。)、
スルホニル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~6であり、例えば、メシル基、トシル基などが挙げられる。)、
スルフィニル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~6であり、例えば、メタンスルフィニル基、および、ベンゼンスルフィニル基などが挙げられる。)、
ウレイド基(好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~6であり、例えば、無置換のウレイド基、メチルウレイド基、および、フェニルウレイド基などが挙げられる。)、
リン酸アミド基(好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~6であり、例えば、ジエチルリン酸アミド基、および、フェニルリン酸アミド基などが挙げられる。)、
ヘテロ環基(好ましくは炭素数1~30、より好ましくは1~12のヘテロ環基であり、例えば、窒素原子、酸素原子、および、硫黄原子などのヘテロ原子を有するヘテロ環基であり、例えば、イミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基などが挙げられる。)、
シリル基(好ましくは、炭素数3~40、より好ましくは炭素数3~30、さらに好ましくは、炭素数3~24のシリル基であり、例えば、トリメチルシリル基、トリフェニルシリル基などが挙げられる。)、
ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、および、ヨウ素原子などが挙げられる。)、
ヒドロキシ基、メルカプト基、シアノ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、および、アゾ基、などを用いることができる。
これらの置換基は、さらにこれらの置換基によって置換されていてもよい。また、置換基を2つ以上有する場合は、同じでも異なってもよい。また、可能な場合には互いに結合して環を形成していてもよい。
上記置換基がさらに上記置換基によって置換された基としては、例えば、アルコキシ基がアルキル基で置換された基である、RB-(O-RA)na-基が挙げられる。ここで、式中、RAは炭素数1~5のアルキレン基を表し、RBは炭素数1~5のアルキル基を表し、naは1~10(好ましくは1~5、より好ましくは1~3)の整数を表す。
これらの中でも、L1およびL2が表す1価の置換基としては、アルキル基、アルケニル基、アルコキシ基、および、これらの基がさらにこれらの基によって置換された基(例えば、上述したRB-(O-RA)na-基)が好ましく、アルキル基、アルコキシ基、および、これらの基がさらにこれらの基によって置換された基(例えば、上述したRB-(O-RA)na-基)がより好ましい。
【0132】
L1およびL2が表す2価の連結基としては、例えば、-O-、-S-、-CO-、-COO-、-OCO-、-O-CO-O-、-CO-NRN-、-O-CO-NRN-、-NRN-CO-NRN-、-SO2-、-SO-、アルキレン基、シクロアルキレン基、および、アルケニレン基、ならびに、これらの基を2つ以上組み合わせた基などが挙げられる。
これらの中でも、アルキレン基と、-O-、-COO-、-OCO-および-O-CO-O-からなる群より選択される1種以上の基と、を組み合わせた基が好ましい。
ここで、RNは、水素原子またはアルキル基を表す。RNが複数存在する場合には、複数のRNは互いに同一でも異なっていてもよい。
【0133】
二色性物質の溶解性がより向上するという観点からは、L1およびL2の少なくとも一方の主鎖の原子の数は、3個以上であることが好ましく、5個以上であることがより好ましく、7個以上であることがさらに好ましく、10個以上であることが特に好ましい。また、主鎖の原子の数の上限値は、20個以下であることが好ましく、12個以下であることがより好ましい。
一方で、光吸収異方性層の配向度がより向上するという観点からは、L1およびL2の少なくとも一方の主鎖の原子の数は、1~5個であることが好ましい。
ここで、式(6)におけるAが存在する場合には、L1における「主鎖」とは、L1と連結する「O」原子と、「A」と、を直接連結するために必要な部分を指し、「主鎖の原子の数」とは、上記部分を構成する原子の個数のことを指す。同様に、式(6)におけるBが存在する場合には、L2における「主鎖」とは、L2と連結する「O」原子と、「B」と、を直接連結するために必要な部分を指し、「主鎖の原子の数」とは、上記部分を構成する原子の数のことを指す。なお、「主鎖の原子の数」には、後述する分岐鎖の原子の数は含まない。
また、Aが存在しない場合には、L1における「主鎖の原子の数」とは、分岐鎖を含まないL1の原子の個数のことをいう。Bが存在しない場合には、L2における「主鎖の原子の数」とは、分岐鎖を含まないL2の原子の個数のことをいう。
具体的には、下記式(D1)においては、L1の主鎖の原子の数は5個(下記式(D1)の左側の点線枠内の原子の数)であり、L2の主鎖の原子の数は5個(下記式(D1)の右側の点線枠内の原子の数)である。また、下記式(D10)においては、L1の主鎖の原子の数は7個(下記式(D10)の左側の点線枠内の原子の数)であり、L2の主鎖の原子の数は5個(下記式(D10)の右側の点線枠内の原子の数)である。
【0134】
【0135】
L1およびL2は、分岐鎖を有していてもよい。
ここで、式(6)においてAが存在する場合には、L1における「分岐鎖」とは、式(6)におけるL1と連結する「O」原子と、「A」と、を直接連結するために必要な部分以外の部分をいう。同様に、式(6)においてBが存在する場合には、L2における「分岐鎖」とは、式(6)におけるL2と連結する「O」原子と、「B」と、を直接連結するために必要な部分以外の部分をいう。
また、式(6)においてAが存在しない場合には、L1における「分岐鎖」とは、式(6)におけるL1と連結する「O」原子を起点として延びる最長の原子鎖(すなわち主鎖)以外の部分をいう。同様に、式(6)においてBが存在しない場合には、L2における「分岐鎖」とは、式(6)におけるL2と連結する「O」原子を起点として延びる最長の原子鎖(すなわち主鎖)以外の部分をいう。
分岐鎖の原子の数は、3以下であることが好ましい。分岐鎖の原子の数が3以下であることで、光吸収異方性層の配向度がより向上するなどの利点がある。なお、分岐鎖の原子の数には、水素原子の数は含まれない。
【0136】
式(6)において、Ar1は(n1+2)価(例えば、n1が1である時は3価)、Ar2は(n2+2)価(例えば、n2が1である時は3価)、Ar3は(n3+2)価(例えば、n3が1である時は3価)、の芳香族炭化水素基または複素環基を表す。ここで、Ar1~Ar3はそれぞれ、n1~n3個の置換基(後述するR1~R3)で置換された2価の芳香族炭化水素基または2価の複素環基と換言できる。
Ar1~Ar3が表す2価の芳香族炭化水素基としては、単環であっても、2環以上の縮環構造を有していてもよい。2価の芳香族炭化水素基の環数は、溶解性がより向上するという観点から、1~4が好ましく、1~2がより好ましく、1(すなわちフェニレン基であること)がさらに好ましい。
2価の芳香族炭化水素基の具体例としては、フェニレン基、アズレン-ジイル基、ナフチレン基、フルオレン-ジイル基、アントラセン-ジイル基およびテトラセン-ジイル基などが挙げられ、溶解性がより向上するという観点から、フェニレン基およびナフチレン基が好ましく、フェニレン基がより好ましい。
以下に、第3の二色性アゾ色素化合物の具体例を示すが、本発明はこれらに限定されるものではない。なお、下記具体例中、nは、1~10の整数を表す。
【0137】
【0138】
【0139】
420nmの配向度に優れる観点では、第3の二色性アゾ色素化合物がラジカル重合性基を有さないことが好ましい。例えば、以下の構造が挙げられる。
【0140】
【0141】
第3の二色性アゾ色素化合物は、420nmの配向度に特に優れる点で、下記式(1-1)で表される構造を有する二色性物質であるのがより好ましい。
【0142】
【0143】
式(1-1)中、R1、R3、R4、R5、n1、n3、L1およびL2の定義はそれぞれ、式(1)のR1、R3、R4、R5、n1、n3、L1およびL2と同義である。
式(1-1)中、R21およびR22の定義はそれぞれ独立に、式(1)のR2と同義である。
式(1-1)中、n21およびn22の定義はそれぞれ独立に、式(1)のn2と同義である。
n1+n21+n22+n3≧1であり、n1+n21+n22+n3は、1~9が好ましく、1~5がより好ましい。
【0144】
以下に、二色性物質の具体例を示すが、本発明はこれらに限定されるものではない。
【0145】
【0146】
【0147】
【0148】
二色性物質の含有量は、光吸収異方性層全質量に対して、5~30質量%が好ましく、10~28質量%がより好ましく、20~26質量%がさらに好ましい。二色性物質の含有量が上記範囲内にあれば、光吸収異方性層を薄膜にした場合であっても、高配向度の光吸収異方性層を得ることができる。そのため、フレキシブル性に優れた光吸収異方性層が得られやすい。
視角中心の照度と視角中心からずれた方向の照度のコントラストを高める観点からは、光吸収異方性層において二色性物質の単位面積当たりの含有量が、0.2g/m2以上が好ましく、0.3g/m2以上がより好ましく、0.5g/m2以上がさらに好ましい。上限は特にないが、1.0g/m2以下が多い。
第1の二色性アゾ色素化合物の含有量は、光吸収異方性層中の二色性物質全体の含有量100質量部に対して、40~90質量部が好ましく、45~75質量部がより好ましい。
第2の二色性アゾ色素化合物の含有量は、光吸収異方性層中の二色性物質全体の含有量100質量に対して、6~50質量部が好ましく、8~35質量部がより好ましい。
第3の二色性アゾ色素化合物の含有量は、光吸収異方性層中の二色性アゾ色素化合物の含有量100質量に対して、3~35質量部が好ましく、5~35質量部がより好ましい。
第1の二色性アゾ色素化合物と、第2の二色性アゾ色素化合物と、および必要に応じて用いられる第3の二色性アゾ色素化合物と、の含有比は、光吸収異方性層の色味調整するために、任意に設定することができる。ただし、第1の二色性アゾ色素化合物に対する第2の二色性アゾ色素化合物の含有比(第2の二色性アゾ色素化合物/第1の二色性アゾ色素化合物)は、モル換算で、0.1~10が好ましく、0.2~5がより好ましく、0.3~0.8が特に好ましい。第1の二色性アゾ色素化合物に対する第2の二色性アゾ色素化合物の含有比が上記範囲内にあれば、配向度が高められる。
【0149】
本発明における光吸収異方性層は、例えば、上記液晶性化合物および二色性物質を含む光吸収異方性層形成用組成物を用いて作製できる。
光吸収異方性層形成用組成物は、液晶性化合物および二色性物質以外の成分を含んでいてもよく、例えば、溶媒、垂直配向剤、界面改良剤、重合性成分、および、重合開始剤(例えば、ラジカル重合開始剤)などが挙げられる。この場合、本発明における光吸収異方性層は、液状成分(溶媒など)以外の固形成分を含む。
【0150】
(界面改良剤)
界面改良剤としては、後述する実施例欄に記載の界面改良剤を用いることができる。
光吸収異方性層形成用組成物が界面改良剤を含む場合、界面改良剤の含有量は、光吸収異方性層形成用組成物中の上記二色性物質と上記液晶性化合物との合計100質量部に対して、0.001~5質量部が好ましい。
【0151】
(重合性成分)
重合性成分としては、アクリレートを含む化合物(例えば、アクリレートモノマー)が挙げられる。この場合、本発明における光吸収異方性層は、上記アクリレートを含む化合物を重合させて得られるポリアクリレートを含む。
重合性成分としては、例えば、特開2017-122776号公報の[0058]段落に記載の化合物が挙げられる。
光吸収異方性層形成用組成物が重合性成分を含む場合、重合性成分の含有量は、光吸収異方性層形成用組成物中の上記二色性物質と上記液晶性化合物との合計100質量部に対して、3~20質量部が好ましい。
【0152】
(垂直配向剤)
垂直配向剤としては、ボロン酸化合物、および、オニウム塩が挙げられる。
【0153】
ボロン酸化合物としては、式(30)で表される化合物が好ましい。
【0154】
【0155】
式(30)中、R1およびR2は、それぞれ独立に、水素原子、置換もしくは無置換の脂肪族炭化水素基、置換もしくは無置換のアリール基、または、置換もしくは無置換のヘテロ環基を表す。
R3は、(メタ)アクリル基を含む置換基を表す。
ボロン酸化合物の具体例としては、特開2008-225281号公報の[0023]~[0032]段落に記載の一般式(I)で表されるボロン酸化合物が挙げられる。
ボロン酸化合物としては、以下に例示する化合物も好ましい。
【0156】
【0157】
オニウム塩としては、式(31)で表される化合物が好ましい。
【0158】
【0159】
式(31)中、環Aは、含窒素複素環からなる第4級アンモニウムイオンを表す。X-は、アニオンを表す。L1は、2価の連結基を表す。L2は、単結合、または、2価の連結基を表す。Y1は、5または6員環を部分構造として有する2価の連結基を表す。Zは、2~20のアルキレン基を部分構造として有する2価の連結基を表す。P1およびP2は、それぞれ独立に、重合性エチレン性不飽和結合を有する一価の置換基を表す。
オニウム塩の具体例としては、特開2012-208397号公報の[0052]~[0058]段落に記載のオニウム塩、特開2008-026730号公報の[0024]~[0055]段落に記載のオニウム塩、および、特開2002-037777号公報に記載のオニウム塩が挙げられる。
【0160】
光吸収異方性層形成用組成物(光吸収異方性層)中の垂直配向剤の含有量は、液晶性化合物全質量に対して、0.1~400質量%が好ましく、0.5~350質量%がより好ましい。
垂直配向剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。垂直配向剤が2種以上を用いられる場合、それらの合計量が上記範囲であることが好ましい。
【0161】
(垂直配向に適したレベリング剤)
光吸収異方性層形成用組成物(光吸収異方性層)は、以下のレベリング剤を含むことが好ましい。光吸収異方性層形成用組成物(光吸収異方性層)がレベリング剤を含むと、光吸収異方性層の表面にかかる乾燥風による面状の荒れを抑制し、二色性物質がより均一に配向する。
レベリング剤は特に制限されず、フッ素原子を含むレベリング剤(フッ素系レベリング剤)、または、ケイ素原子を含むレベリング剤(ケイ素系レベリング剤)が好ましく、フッ素系レベリング剤がより好ましい。
【0162】
フッ素系レベリング剤としては、脂肪酸の一部がフルオロアルキル基で置換された多価カルボン酸の脂肪酸エステル類、および、フルオロ置換基を有するポリアクリレート類が挙げられる。特に、二色性物質および液晶性化合物として棒状化合物を用いる場合、二色性物質および液晶性化合物の垂直配向を促進する観点から、式(40)で表される化合物由来の繰り返し単位を含むレベリング剤が好ましい。
【0163】
【0164】
R0は、水素原子、ハロゲン原子、または、メチル基を表す。
Lは、2価の連結基を表す。Lとしては、炭素数2~16のアルキレン基が好ましく、上記アルキレン基において隣接しない任意の-CH2-は、-O-、-COO-、-CO-、または、-CONH-に置換されていてもよい。
nは、1~18の整数を表す。
【0165】
式(40)で表される化合物由来の繰り返し単位を有するレベリング剤は、さらに他の繰り返し単位を含んでいてもよい。
他の繰り返し単位としては、式(41)で表される化合物由来の繰り返し単位が挙げられる。
【0166】
【0167】
R11は、水素原子、ハロゲン原子、または、メチル基を表す。
Xは、酸素原子、硫黄原子、または、-N(R13)-を表す。R13は、水素原子、または、炭素数1~8のアルキル基を表す。
R12は、水素原子、置換基を有してもよいアルキル基、または、置換基を有していてもよい芳香族基を表す。上記アルキル基の炭素数は、1~20が好ましい。上記アルキル基は、直鎖状、分岐鎖状、および、環状のいずれであってもよい。
また、上記アルキル基の有していてもよい置換基としては、ポリ(アルキレンオキシ)基、および、重合性基が挙げられる。重合性基の定義は、上述した通りである。
【0168】
レベリング剤が、式(40)で表される化合物由来の繰り返し単位、および、式(41)で表される化合物由来の繰り返し単位を含む場合、式(40)で表される化合物由来の繰り返し単位の含有量は、レベリング剤が含む全繰り返し単位に対して、10~90モル%が好ましく、15~95モル%がより好ましい。
レベリング剤が、式(40)で表される化合物由来の繰り返し単位、および、式(41)で表される化合物由来の繰り返し単位を含む場合、式(41)で表される化合物由来の繰り返し単位の含有量は、レベリング剤が含む全繰り返し単位に対して、10~90モル%が好ましく、5~85モル%がより好ましい。
【0169】
また、レベリング剤としては、上述した式(40)で表される化合物由来の繰り返し単位に代えて、式(42)で表される化合物由来の繰り返し単位を含むレベリング剤も挙げられる。
【0170】
式(42)
【0171】
【0172】
R2は、水素原子、ハロゲン原子、または、メチル基を表す。
L2は、2価の連結基を表す。
nは、1~18の整数を表す。
【0173】
レベリング剤の具体例としては、特開2004-331812号公報の[0046]~[0052]段落に例示される化合物、および、特開2008-257205号公報の[0038]~[0052]段落に記載の化合物が挙げられる。
【0174】
光吸収異方性層形成用組成物(光吸収異方性層)中のレベリング剤の含有量は、液晶性化合物全質量に対して、0.001~10質量%が好ましく、0.01~5質量%がより好ましい。
レベリング剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。レベリング剤が2種以上を用いられる場合、それらの合計量が上記範囲であることが好ましい。
【0175】
(重合開始剤)
光吸収異方性層形成用組成物は、重合開始剤を含むことが好ましい。
重合開始剤としては特に制限はないが、感光性を有する化合物、すなわち光重合開始剤であることが好ましい。
光重合開始剤としては、各種の化合物を特に制限なく使用できる。光重合開始剤の例には、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書)、アシロインエーテル(米国特許第2448828号明細書)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書)、多核キノン化合物(米国特許第3046127号および同2951758号の各明細書)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報および米国特許第4239850号明細書)、オキサジアゾール化合物(米国特許第4212970号明細書)、o-アシルオキシム化合物(特開2016-027384号公報の[0065]段落)および、アシルフォスフィンオキシド化合物(特公昭63-040799号公報、特公平5-029234号公報、特開平10-095788号公報および特開平10-029997号公報)などが挙げられる。
このような光重合開始剤としては、市販品も用いることができ、BASF社製のイルガキュア-184、イルガキュア-907、イルガキュア-369、イルガキュア-651、イルガキュア-819、イルガキュア-OXE-01およびイルガキュア-OXE-02などが挙げられる。
【0176】
光吸収異方性層形成用組成物が重合開始剤を含む場合、重合開始剤の含有量は、光吸収異方性層形成用組成物中の上記二色性物質と上記液晶性化合物との合計100質量部に対し、0.01~30質量部が好ましく、0.1~15質量部がより好ましい。重合開始剤の含有量が0.01質量部以上であることで、光吸収異方性層の耐久性が良好となり、30質量部以下であることで、光吸収異方性層の配向度がより良好となる。
重合開始剤は、1種単独で用いても2種以上を併用してもよい。重合開始剤を2種以上含む場合、その合計量が上記範囲内であるのが好ましい。
【0177】
(溶媒)
光吸収異方性層形成用組成物は、作業性などの観点から、溶媒を含むのが好ましい。
溶媒としては、例えば、ケトン類(例えば、アセトン、2-ブタノン、メチルイソブチルケトン、シクロペンタノン、および、シクロヘキサノンなど)、エーテル類(例えば、ジオキサン、テトラヒドロフラン、2-メチルテトラヒドロフラン、シクロペンチルメチルエーテル、テトラヒドロピラン、および、ジオキソランなど)、脂肪族炭化水素類(例えば、ヘキサンなど)、脂環式炭化水素類(例えば、シクロヘキサンなど)、芳香族炭化水素類(例えば、ベンゼン、トルエン、キシレン、および、トリメチルベンゼンなど)、ハロゲン化炭素類(例えば、ジクロロメタン、トリクロロメタン、ジクロロエタン、ジクロロベンゼン、および、クロロトルエンなど)、エステル類(例えば、酢酸メチル、酢酸エチル、酢酸ブチル、および、乳酸エチルなど)、アルコール類(例えば、エタノール、イソプロパノール、ブタノール、シクロヘキサノール、イソペンチルアルコール、ネオペンチルアルコール、ジアセトンアルコール、および、ベンジルアルコールなど)、セロソルブ類(例えば、メチルセロソルブ、エチルセロソルブ、および、1,2-ジメトキシエタンなど)、セロソルブアセテート類、スルホキシド類(例えば、ジメチルスルホキシドなど)、アミド類(例えば、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、および、N-エチルピロリドンなど)、および、ヘテロ環化合物(例えば、ピリジンなど)などの有機溶媒、ならびに、水が挙げられる。これの溶媒は、1種単独で用いてもよく、2種以上を併用してもよい。
これらの溶媒のうち、溶解性に優れるという効果を活かす観点から、ケトン類(特にシクロペンタノン、シクロヘキサノン)、エーテル類(特にテトラヒドロフラン、シクロペンチルメチルエーテル、テトラヒドロピラン、ジオキソラン)、および、アミド類(特に、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、N-エチルピロリドン)が好ましい。
【0178】
光吸収異方性層形成用組成物が溶媒を含む場合、溶媒の含有量は、光吸収異方性層形成用組成物の全質量に対して、80~99質量%が好ましく、83~97質量%がより好ましく、85~95質量%がさらに好ましい。
溶媒は、1種単独で用いても2種以上を併用してもよい。溶媒を2種以上含む場合、その合計量が上記範囲内であるのが好ましい。
【0179】
<光吸収異方性層の形成方法>
光吸収異方性層の形成方法は特に限定されず、上述した光吸収異方性層形成用組成物を塗布して塗布膜を形成する工程(以下、「塗布膜形成工程」ともいう。)と、塗布膜に含まれる液晶性成分を配向させる工程(以下、「配向工程」ともいう。)と、をこの順に含む方法が挙げられる。
なお、液晶性成分とは、上述した液晶性化合物だけでなく、上述した二色性物質が液晶性を有している場合は、液晶性を有する二色性物質も含む成分である。
光吸収異方性層としては、光吸収異方性層形成用組成物を用いて得られる層であることが好ましく、光吸収異方性層形成用組成物を用いて得られる塗布膜に対して硬化処理を施して得られる層(硬化層)であることがより好ましい。
【0180】
(塗布膜形成工程)
塗布膜形成工程は、光吸収異方性層形成用組成物を塗布して塗布膜を形成する工程である。
上述した溶媒を含む光吸収異方性層形成用組成物を用いたり、光吸収異方性層形成用組成物を加熱などによって溶融液などの液状物としたものを用いたりすることにより、光吸収異方性層形成用組成物を塗布することが容易になる。
なお、光吸収異方性層形成用組成物中に含まれる各種成分の含有量は、上述した光吸収異方性層中における各成分の含有量となるように調整されることが好ましい。
光吸収異方性層形成用組成物の塗布方法としては、具体的には、例えば、ロールコーティング法、グラビア印刷法、スピンコート法、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、スプレー法、および、インクジェット法などの公知の方法が挙げられる。
【0181】
(配向工程)
配向工程は、塗布膜に含まれる液晶性成分を配向させる工程である。これにより、光吸収異方性層が得られる。
配向工程は、乾燥処理を有していてもよい。乾燥処理によって、溶媒などの成分を塗布膜から除去することができる。乾燥処理は、塗布膜を室温下において所定時間放置する方法(例えば、自然乾燥)によって行われてもよいし、加熱および/または送風する方法によって行われてもよい。
ここで、光吸収異方性層形成用組成物に含まれる液晶性成分は、上述した塗布膜形成工程または乾燥処理によって、配向する場合がある。例えば、光吸収異方性層形成用組成物が溶媒を含む塗布液として調製されている態様では、塗布膜を乾燥して、塗布膜から溶媒を除去することで、光吸収異方性を持つ塗布膜(すなわち、光吸収異方性層)が得られる。
乾燥処理が塗布膜に含まれる液晶性成分の液晶相への転移温度以上の温度により行われる場合には、後述する加熱処理は実施しなくてもよい。
【0182】
塗布膜に含まれる液晶性成分の液晶相への転移温度は、製造適性の面から10~250℃が好ましく、25~190℃がより好ましい。上記転移温度が10℃以上であると、液晶相を呈する温度範囲にまで温度を下げるための冷却処理などが必要とならず、好ましい。また、上記転移温度が250℃以下であると、一旦液晶相を呈する温度範囲よりもさらに高温の等方性液体状態にする場合にも高温を要さず、熱エネルギーの浪費、ならびに、基板の変形および変質などを低減できるため、好ましい。
【0183】
配向工程は、加熱処理を有することが好ましい。これにより、塗布膜に含まれる液晶性成分を配向させることができるため、加熱処理後の塗布膜を光吸収異方性層として好適に使用できる。
加熱処理は、製造適性などの面から10~250℃が好ましく、25~190℃がより好ましい。また、加熱時間は、1~300秒が好ましく、1~60秒がより好ましい。
【0184】
配向工程は、加熱処理後に実施される冷却処理を有していてもよい。冷却処理は、加熱後の塗布膜を室温(20~25℃)程度まで冷却する処理である。これにより、塗布膜に含まれる液晶性成分の配向を固定することができる。冷却手段としては、特に限定されず、公知の方法により実施できる。
以上の工程によって、光吸収異方性層を得ることができる。
なお、本態様では、塗布膜に含まれる液晶性成分を配向する方法として、乾燥処理および加熱処理などを挙げているが、これに限定されず、公知の配向処理によって実施できる。
【0185】
(他の工程)
光吸収異方性層の形成方法は、上記配向工程後に、光吸収異方性層を硬化させる工程(以下、「硬化工程」ともいう。)を有していてもよい。
硬化工程は、例えば、光吸収異方性層が架橋性基(重合性基)を有している場合には、加熱および/または光照射(露光)によって実施される。このなかでも、硬化工程は光照射によって実施されることが好ましい。
硬化に用いる光源は、赤外線、可視光または紫外光(紫外線)など、種々の光源を用いることが可能であるが、紫外線であることが好ましい。また、硬化時に加熱しながら紫外線を照射してもよいし、特定の波長のみを透過するフィルターを介して紫外線を照射してもよい。
露光が加熱しながら行われる場合、露光時の加熱温度は、液晶膜に含まれる液晶性成分の液晶相への転移温度にもよるが、25~140℃であることが好ましい。
また、露光は、窒素雰囲気下で行われてもよい。ラジカル重合によって液晶膜の硬化が進行する場合において、酸素による重合の阻害が低減されるため、窒素雰囲気下で露光することが好ましい。
【0186】
光吸収異方性層の厚さは、特に限定されないが、小型軽量化の観点から、100~8000nmが好ましく、300~5000nmがより好ましい。
【0187】
<偏光子>
本発明に用いられる偏光子は、光を特定の直線偏光に変換する機能を有する部材であれば特に限定されず、従来公知の偏光子を利用することができる。
【0188】
偏光子としては、ヨウ素系偏光子、二色性染料を利用した染料系偏光子、および、ポリエン系偏光子が挙げられる。ヨウ素系偏光子および染料系偏光子には、塗布型偏光子と延伸型偏光子があり、いずれも適用できる。塗布型偏光子としては、液晶性化合物の配向を利用して二色性有機色素を配向させた偏光子が好ましく、延伸型偏光子としては、ポリビニルアルコールにヨウ素または二色性染料を吸着させ、延伸して作製される偏光子が好ましい。
また、基材上にポリビニルアルコール層を形成した積層フィルムの状態で延伸および染色を施すことで偏光子を得る方法として、特許第5048120号公報、特許第5143918号公報、特許第5048120号公報、特許第4691205号公報、特許第4751481号公報、および、特許第4751486号公報に記載の方法が挙げられ、これらの偏光子に関する公知の技術も好ましく利用することができる。
【0189】
なかでも、入手が容易で偏光度に優れる観点で、ポリビニルアルコール系樹脂(-CH2-CHOH-を繰り返し単位として含むポリマー。特に、ポリビニルアルコールおよびエチレン-ビニルアルコール共重合体からなる群から選択される少なくとも1つ)を含む偏光子であることが好ましい。
【0190】
偏光子の厚みは特に限定されないが、3~60μmが好ましく、5~20μmがより好ましく、5~10μmがさらに好ましい。
【0191】
<位相差層>
本発明の視角制御システムは、上述したように、位相差層を含んでいてもよい。
位相差層の波長550nmにおける面内位相差(面内レタデーション)Reは特に制限されないが、60nmより大きいことが好ましく、100~250nmがより好ましく、150~200nmがさらに好ましい。
また、位相差層20のNz係数は特に制限されないが、1.5以上が好ましく、2.0~10.0がより好ましく、3.0~5.0がさらに好ましい。
位相差層の波長550nmにおける厚み方向のレタデーションRthは、上記のReおよびNz係数の好ましい範囲を両立するように設定されることが好ましく、具体的には、60nmより大きいことが好ましい。
また、
図1に示す、位相差層20の遅相軸21の方位角は、偏光子の吸収軸の方向を0°と基準とした際に、-10~10°が好ましく、-5~5°がより好ましく、0°(すなわち、吸収軸31と平行)であることがさらに好ましい。言い換えれば、位相差層20の遅相軸(面内遅相軸)と、偏光子の吸収軸とのなす角度は、0~10°が好ましく、0~5°がより好ましく、0°がさらに好ましい。
なお、上記方位角は、視角制御システムを光吸収異方性層側から観察した際に、偏光子の吸収軸を基準として、反時計回り方向に正の角度値で表し、時計回り方向に負の角度値で表す。
位相差層としては、Nz係数が1.5以上のBプレートが好ましい。
【0192】
<透明基材フィルム>
本発明の視角制御システムは、透明基材フィルムを含んでいてもよい。
透明基材フィルムは、光吸収異方性層を形成する基材として用いてもよいし、光吸収異方性層を保護するフィルムとして用いてもよい。透明基材フィルムが、位相差層を兼ねてもよい。
透明基材フィルムとしては、公知の透明樹脂フィルム、透明樹脂板、および、透明樹脂シートなどを用いることができ、特に限定はない。
透明樹脂フィルムとしては、セルロースアシレートフィルム(例えば、セルローストリアセテートフィルム(屈折率1.48)、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム、セルロースアセテートプロピオネートフィルム)、ポリエチレンテレフタレートフィルム、ポリエーテルスルホンフィルム、ポリウレタン系樹脂フィルム、ポリエステルフィルム、ポリカーボネートフィルム、ポリスルホンフィルム、ポリエーテルフィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、(メタ)アクリルニトリルフィルム、シクロオレフィン系ポリマーフィルム(シクロオレフィン系ポリマーを用いたポリマーフィルム)、ポリカーボネート系ポリマーフィルム、ポリスチレン系ポリマーフィルム、または、アクリル系ポリマーフィルムが好ましい。アクリル系ポリマーフィルムとしては、ラクトン環単位、無水マレイン酸単位、および、グルタル酸無水物単位から選ばれる少なくとも1種の単位を含むアクリル系ポリマーを含むことが好ましい。
【0193】
透明基材フィルムの厚さは、20~100μmが好ましい。
本発明においては、透明基材フィルムがセルロースエステル系フィルムであり、かつ、その膜厚が20~70μmであるのが好ましい。
【0194】
<配向層>
本発明の視角制御システムは、透明基材フィルムと光吸収異方性層との間に、配向層を含んでいてもよい。
配向層は、配向層上において二色性物質を所望の配向状態とすることができるのであれば、どのような層でもよい。
例えば、配向層としては、多官能アクリレート化合物から形成される膜、および、ポリビニルアルコールを含む膜が挙げられ、ポリビニルアルコールを含む膜が好ましい。
配向軸を傾ける場合には、例えば、アゾ化合物またはシンナモイル化合物のような光配向性化合物を含む光配向層に対して斜め方向からUV光照射することで実現でき、その結果、透過率中心軸をフィルム法線方向(光吸収異方性層の表面に対する法線方向)に対して傾けることが可能となる。
【0195】
<バリア層>
本発明の視角制御システムは、光吸収異方性層とともに、バリア層を含むことも好ましい。
ここで、バリア層は、ガス遮断層(酸素遮断層)とも呼ばれ、大気中の酸素などのガス、水分、または、隣接する層に含まれる化合物などから本発明の光吸収異方性層を保護する機能を有する。
バリア層については、例えば、特開2014-159124号公報の[0014]~[0054]段落、特開2017-121721号公報の[0042]~[0075]段落、特開2017-115076号公報の[0045]~[0054]段落、特開2012-213938号公報の[0010]~[0061]段落、および、特開2005-169994号公報の[0021]~[0031]段落の記載を参照できる。
【0196】
<屈折率調整層>
本発明の視角制御システムは、上述した光吸収異方性層が二色性物質を有し、光吸収異方性層の高屈折率に起因する内部反射が問題となる場合がある。その場合に、屈折率調整層が存在することが好ましい。屈折率調整層は、光吸収異方性層に接するように配置される層であり、波長550nmにおける面内平均屈折率が1.55~1.70である。いわゆるインデックスマッチングを行うための屈折率調整層であることが好ましい。
【0197】
<粘着層>
本発明の視角制御システムおよび画像表示装置は、粘着層を含んでいてもよい。
本発明における粘着層を構成する材料としては、液晶表示装置および自発光型表示装置に使用される公知の接着剤が好ましく、感圧型接着剤がより好ましい。
【0198】
粘着層には、母材(粘着剤)、導電性粒子、および、必要に応じて用いられる熱膨張性粒子の他に、架橋剤(例えば、イソシアネート系架橋剤、エポキシ系架橋剤など)、粘着付与剤(例えば、ロジン誘導体樹脂、ポリテルペン樹脂、石油樹脂、油溶性フェノール樹脂など)、可塑剤、充填剤、老化防止剤、界面活性剤、紫外線吸収剤、光安定剤、および、酸化防止剤などの適宜な添加剤を配合してもよい。
【0199】
粘着層の厚みは、5~500μmが好ましく、5~250μmがより好ましい。5μm以上の場合、必要な接着力やリワーク適性が得られやすく、500μm以下の場合、画像表示装置の周辺端部から粘着剤がはみ出したり、滲み出す場合がある。
【0200】
粘着層の形成方法としては、例えば、母材、導電性粒子、および、必要に応じて、熱膨張性粒子、添加剤、溶媒などを含むコーティング液を塗布して剥離ライナーを介して圧着する方法、および、適当な剥離ライナー(剥離紙など)上にコーティング液を塗布して粘着層を形成し、これを圧着転写(移着)する方法が挙げられる。
【0201】
その他、粘着層としては、例えば特開2003-292916号公報などに記載の熱剥離性粘着シートの構成に、導電性粒子を添加した構成を適用できる。
また、粘着層としては、日東電工(株)製「リバアルファ」などの市販品中の粘着層表面に導電性粒子を散布したものを用いてもよい。
【0202】
<接着層>
本発明の視角制御システムおよび画像表示装置は、接着層を含んでいてもよい。
接着層に含まれる接着剤は、貼り合わせた後の乾燥や反応により接着性を発現する。
例えば、ポリビニルアルコール系接着剤(PVA系接着剤)は、乾燥により接着性が発現し、材料どうしを接着することが可能となる。
反応により接着性を発現する硬化型接着剤の具体例としては、(メタ)アクリレート系接着剤のような活性エネルギー線硬化型接着剤、および、カチオン重合硬化型接着剤が挙げられる。なお、(メタ)アクリレートとは、アクリレートおよび/またはメタクリレートを意味する。(メタ)アクリレート系接着剤における硬化性成分としては、例えば、(メタ)アクリロイル基を有する化合物、および、ビニル基を有する化合物が挙げられる。また、カチオン重合硬化型接着剤としては、エポキシ基またはオキセタニル基を有する化合物も使用できる。エポキシ基を有する化合物は、分子内に少なくとも2個のエポキシ基を有するものであれば特に限定されず、一般に知られている各種の硬化性エポキシ化合物を用いることができる。好ましいエポキシ化合物として、分子内に少なくとも2個のエポキシ基と少なくとも1個の芳香環を有する化合物(芳香族系エポキシ化合物)や、分子内に少なくとも2個のエポキシ基を有し、そのうちの少なくとも1個は脂環式環を構成する隣り合う2個の炭素原子との間で形成されている化合物(脂環式エポキシ化合物)などが例として挙げられる。
中でも、加熱変形耐性の観点から、紫外線照射で硬化する紫外線硬化型接着剤が好ましく用いられる。
【0203】
接着層および粘着層の各層には、サリチル酸エステル系化合物、ベンゾフェノール系化合物、ベンゾトリアゾール系化合物、シアノアクリレート系化合物、および、ニッケル錯塩系化合物などの紫外線吸収剤で加えることにより、紫外線吸収能を持たせてもよい。
【0204】
粘着層および接着層の付設の方法は特に制限されない。例えば、トルエンおよび酢酸エチルなどの溶媒にベースポリマーまたはその組成物を溶解または分散させた濃度10~40質量%程度の粘着剤溶液を調製し、それを流延方式および塗工方式などの方式で被塗布物上に直接付設する方式が挙げられる。また、上記以外にも、セパレータ上に粘着層または接着層を形成してそれを転写する方式が挙げられる。
【0205】
粘着層および接着層は、異なる組成または種類のものの重畳層としてフィルムの片面または両面に設けることもできる。なお、粘着層および接着層を両面に設ける場合に、フィルムの表裏において異なる組成や種類や厚さなどの粘着層および接着層を使用してもよい。
【0206】
<その他の層>
視角の角度依存性を制御するために、本発明の視角制御システムおよび画像表示装置は、さらに光学異方性フィルムまたは旋光子を含んでいてもよい。
例えば、カーボネート、シクロオレフィン、セルロースアシレート、メタクリル酸メチル、スチレン、および、無水マレイン酸由来の繰り返し単位を含むポリマーからなる光学異方性を有する樹脂フィルムを用いることも好ましい。
【0207】
<画像表示装置>
本発明の視角制御システムは、任意の画像表示装置に対して使用することができる。つまり、本発明は、上記視角制御システムを含む画像表示装置にも関する。
画像表示装置としては、特に限定されず、例えば、液晶表示装置、自発光型表示装置(有機EL表示装置、マイクロLED表示装置)、ヘッドアップディスプレイ、および、ヘッドマウントディスプレイなどが挙げられる。画像表示装置中の表示パネルとしては、液晶セルを含む表示パネル、自発光型表示装置の表示パネルなどが挙げられ、これらの表示パネル上に視角制御システムが配置される。
液晶表示装置は、通常、液晶セルとバックライトを有し、液晶セルの視認側、およびバックライト側の両方の面に、それぞれ偏光子が設置されている。本発明の視角制御システムは、液晶表示装置の視認側またはバックライト側のいずれかの面に適用することができるし、両方の面に適用することもできる。液晶表示装置への適用は、液晶表示装置のいずれかの面、または、両方の面の偏光子を、本発明の視角制御システムに置き換えることで実現できる。つまり、液晶セルの両側に設けられる偏光子として、本発明の視角制御システムに含まれる偏光子を用いることができる。
本発明の視角制御システムを液晶表示装置に対して適用する場合には、液晶表示装置の表示性能を高める観点から、視角制御システム中の偏光子が光吸収異方性層よりも液晶セルに近い側に配置されることが好ましい。また、本発明の視角制御システムを液晶表示装置のバックライト側に適用する場合には、光の利用効率を高める観点から、視角制御システム中の偏光子が反射偏光子であるか、通常の偏光子と反射偏光子の積層体であることが好ましい。
なお、本発明においては、液晶セルの両側に設けられる偏光子のうち、視認側の偏光子の吸収軸を左右方向とした場合、本発明の視角制御システム中の偏光子を上記視認側の偏光子として使用した場合には、上下方向の遮光性が制御でき、非視認側の偏光子として使用した場合には、左右方向の遮光性が制御できる。
本発明の視角制御システムを有機EL表示装置に対して適用する場合には、有機EL表示装置の視認側に視角制御システムを配置し、かつ、本発明の視角制御システム中の偏光子が光吸収異方性層よりも有機EL表示装置に近い側に配置されることが好ましい。また、偏光子と有機EL表示装置の間に、λ/4板を配置することが好ましい。
なお、画像表示装置中の視角制御システムにおいて、偏光子に対して光吸収異方性層が視認側に配置されることが好ましい。
以下に、液晶表示装置を構成する液晶セルについて詳述する。
【0208】
(液晶セル)
液晶表示装置に利用される液晶セルは、VA(Vertical Alignment)モード、OCB(Optically Compensated Bend)モード、IPS(In-Plane-Switching)モード、または、TN(Twisted Nematic)モードであることが好ましいが、これらに限定されるものではない。
TNモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に水平配向し、さらに60~120゜にねじれ配向している。TNモードの液晶セルは、カラーTFT(Thin Film Transistor)液晶表示装置として最も多く利用されており、多数の文献に記載がある。
VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に配向している。VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2-176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech.Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n-ASMモード)の液晶セル(日本液晶討論会の予稿集58~59(1998)記載)および(4)SURVIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。また、PVA(Patterned Vertical Alignment)型、光配向型(Optical Alignment)、およびPSA(Polymer-Sustained Alignment)のいずれであってもよい。これらのモードの詳細については、特開2006-215326号公報、および特表2008-538819号公報に詳細な記載がある。
IPSモードの液晶セルは、棒状液晶性分子が基板に対して実質的に平行に配向しており、基板面に平行な電界が印加することで液晶分子が平面的に応答する。IPSモードは電界無印加状態で黒表示となり、上下一対の偏光子の吸収軸は直交している。光学補償シートを用いて、斜め方向での黒表示時の漏れ光を低減させ、視野角を改良する方法が、特開平10-54982号公報、特開平11-202323号公報、特開平9-292522号公報、特開平11-133408号公報、特開平11-305217号公報、および、特開平10-307291号公報などに開示されている。
【実施例】
【0209】
以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、および、操作などは本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の具体例に制限されるものではない。
【0210】
<比較例1>
色素(二色性物質)が垂直方向に配向した光吸収異方性層を、以下のように作製した。
【0211】
(位相差層の作製)
本発明の実施例に使用する各種の位相差層を、以下のように作製した。
(押出成形)
シクロオレフィン樹脂 ARTON G7810(JSR社)を、100℃において2時間以上乾燥し、2軸混練押し出し機を用いて、280℃で溶融押し出しした。このとき押し出し機とダイとの間にスクリーンフィルター、ギアポンプ、および、リーフディスクフィルターをこの順に配置し、これらをメルト配管で連結し、幅1000mm、リップギャップ1mmのTダイから押し出し、180℃、175℃、および、170℃に設定した3連のキャストロール上にキャストし、幅900mmおよび厚み320μmの未延伸フィルム1を得た。
【0212】
(延伸・熱固定)
搬送されている上記未延伸フィルム1に対し、以下の方法で、延伸工程および熱固定工程を施した。
【0213】
(a)縦延伸
未延伸フィルム1に対し、縦横比(L/W)が0.2であるロール間縦延伸機を用いて搬送しながら下記条件にて縦延伸した。
[条件]
予熱温度:170℃
延伸温度:170℃
延伸倍率:155%
(b)横延伸
縦延伸したフィルムに対し、テンターを用いて搬送しながら下記条件にて横延伸した。
[条件]
予熱温度:170℃
延伸温度:170℃
延伸倍率:80%
【0214】
(c)熱固定
延伸工程の後に続いて、延伸フィルムをテンタークリップで端部を把持して幅が一定(3%以内の拡大または縮小の範囲)となるように延伸フィルム両端部を保持しながら、下記条件にて熱処理して、熱固定を行った。
熱固定温度:165℃
熱固定時間:30秒
なお、予熱温度、延伸温度および熱固定温度は、放射温度計を用いて、幅方向に5点で測定した値の平均値である。
【0215】
(巻き取り)
熱固定の後、両端をトリミングし、張力25kg/mで巻き取り、幅は1340mm、巻長は2000mのフィルムロールを得た。
得られた延伸フィルムの波長550nmにおける面内位相差Reは170nm、波長550nmにおける厚み方向のレタデーションRthは510nm、Nz係数は3.5、遅相軸はMD方向、膜厚は68μmであった。これを、Bプレート20とし、比較例1の位相差層として用いた。
【0216】
(配向層付き透明支持体1の作製)
上記で作製されたBプレート20の片面にコロナ処理を行い、その上にワイヤーバーで下記配向層下地層形成用塗布液1を塗布した。塗膜が形成された支持体を60℃の温風で60秒間、さらに100℃の温風で120秒間乾燥し、配向層下地層を形成し、配向層下地層付き透明支持体1を得た。
配向層の膜厚は0.5μmであった。
【0217】
――――――――――――――――――――――――――――――――
(配向層下地層形成用塗布液1)
――――――――――――――――――――――――――――――――
・下記の変性ポリビニルアルコール 3.80質量部
・開始剤Irg2959 0.20質量部
・水 70質量部
・メタノール 30質量部
――――――――――――――――――――――――――――――――
【0218】
【0219】
配向層下地層上にさらに下記光配向層形成用組成液E1を塗布し、60℃で2分間乾燥した。その後、得られた塗布膜に、紫外線露光装置を用いて紫外線(UV)(照射量2000mJ/cm
2)を、極角θuv=0°(フィルム法線方向)から照射し、厚み0.03μmの光配向層付き透明支持体1を作製した。ここで、方位角φuvの基準0°は、透明支持体1(負のBプレート20)の遅相軸、極角θuvの基準0°は、透明支持体1の法線方向とする。
図6および8において、視角制御システムの吸収異方性層を作製する際の、UV光照射の方位角φuvおよび極角θuvの定義を表す。より具体的には、
図6は、UV光照射方向70の方位角φuvを示す図であり、透明支持体1(負のBプレート20)の遅相軸を基準(0°)として、反時計回り方向を正の角度値として、紫外光を照射する方向の方位角を表す。
図7は、UV光照射方向71の極角θuvを示す図であり、フィルム面12(配向層下地層の表面)に対する法線13(配向層下地層の表面に対する法線方向)とUV光照射方向71とのなす角度を極角θuvとして表す。
【0220】
(光配向層形成用組成液E1の調製)
下記の組成にて、光配向層形成用組成液E1を調製し、攪拌しながら1時間溶解し、孔径0.45μmのフィルターでろ過した。
――――――――――――――――――――――――――――――――
光配向層形成用組成液E1
――――――――――――――――――――――――――――――――
・下記光配向材料E-1 0.3質量部
・2-ブトキシエタノール 41.6質量部
・ジプロピレングリコールモノメチルエーテル 41.6質量部
・純水 16.5質量部
――――――――――――――――――――――――――――――――
【0221】
光配向材料E-1
【0222】
【0223】
(光吸収異方性層P1の形成)
得られた光配向層上に、下記の光吸収異方性層形成用組成物P1をワイヤーバーで連続的に塗布し、塗布層P1を形成した。
次いで、塗布層P1を120℃で30秒間加熱し、塗布層P1を室温(23℃)になるまで冷却した。
次いで、80℃で60秒間加熱し、再び室温になるまで冷却した。
その後、LED灯(中心波長365nm)を用いて照度200mW/cm2の照射条件で2秒間照射することにより、光配向層上に光吸収異方性層P1を作製した。
光吸収異方性層P1の膜厚は3.5μm、配向度は0.96であった。光吸収異方性層P1の透過率中心軸とフィルム法線(光吸収異方性層の表面に対する法線方向)とのなす角度θは0度であった。
これを光吸収異方性フィルム1とした。
【0224】
―――――――――――――――――――――――――――――――――
光吸収異方性層形成用組成物P1の組成
―――――――――――――――――――――――――――――――――
・下記二色性物質D-1 0.40質量部
・下記二色性物質D-2 0.15質量部
・下記二色性物質D-3 0.63質量部
・下記高分子液晶性化合物P-1 3.20質量部
・下記低分子液晶性化合物M-1 0.45質量部
・重合開始剤
IRGACUREOXE-02(BASF社製) 0.040質量部
・下記化合物E-1 0.060質量部
・下記化合物E-2 0.060質量部
・下記界面活性剤F-1 0.010質量部
・下記界面活性剤F-2 0.015質量部
・シクロペンタノン 90.00質量部
・ベンジルアルコール 5.00質量部
―――――――――――――――――――――――――――――――――
【0225】
二色性物質D-1
【0226】
【0227】
二色性物質D-2
【0228】
【0229】
二色性物質D-3
【0230】
【0231】
高分子液晶性化合物P-1
【0232】
【0233】
低分子液晶性化合物M-1
【0234】
【0235】
化合物E-1
【0236】
【0237】
化合物E-2
【0238】
【0239】
界面活性剤F-1
【0240】
【0241】
界面活性剤F-2
【0242】
【0243】
(視角制御システム1の作製)
国際公開第2015/166991号記載の片面保護膜付偏光板02と同様の方法で、偏光子の厚さが8μmで、偏光子の片面がむき出しの偏光板1を作製した。
上記偏光板1の偏光子がむき出し面と、上記作製した光吸収異方性フィルム1の透明支持体1表面をコロナ処理し、下記のPVA接着剤1を用いて貼合し、視角制御システム1を作製した。この時、透明支持体1(負のBプレート20)の遅相軸と、偏光子の吸収軸が平行となるように貼合した。また、光吸収異方性層の透過率中心軸とフィルム面の法線(光吸収異方性層の表面に対する法線方向)とが一致しており、光吸収異方性層の透過率中心軸と上記偏光板1中の偏光子の吸収軸とのなす角が90度であった。
【0244】
(PVA接着剤1の調製)
アセトアセチル基を含有するポリビニルアルコール系樹脂(平均重合度:1200、ケン化度:98.5モル%、アセトアセチル化度:5モル%)100質量部に対し、メチロールメラミン20質量部を、30℃の温度条件下に、純水に溶解し、固形分濃度3.7%に調整した水溶液を調製した。
【0245】
(画像表示装置1の作製)
IPSモードの液晶表示装置であるiPad(登録商標)Air Wi-Fiモデル16GB(APPLE社製)を分解し、液晶セルとその両面に配置された偏光子とを含む液晶表示パネルを取り出した。液晶表示パネルから視認側偏光板を剥離した面に、上記作製した視角制御システム1を、偏光板1側が液晶セル側になるようにして、下記の粘着剤シート1を用いて貼合した。このとき、偏光板1中の偏光子の吸収軸の方向が液晶画面の長手方向になるよう貼合した。液晶セルへの貼合後、組み立て直し、画像表示装置1を作製した。
【0246】
(粘着剤シート1の作製)
以下の手順に従い、アクリレート系ポリマーを調製した。
冷却管、窒素導入管、温度計および撹拌装置を備えた反応容器に、アクリル酸ブチル95質量部およびアクリル酸5質量部を溶液重合法により重合させて、平均分子量200万、分子量分布(Mw/Mn)3.0のアクリレート系ポリマーA1を得た。
【0247】
次に、得られたアクリレート系ポリマーA1(100質量部)に加えて、コロネートL(トリレンジイソシアネ-トのトリメチロールプロパン付加物の75質量%酢酸エチル溶液、1分子中のイソシアネート基数:3個、日本ポリウレタン工業株式会社製)(1.0質量部)、および、シランカップリング剤KBM-403(信越化学工業社製)(0.2質量部)を混合し、最後に全固形分濃度が10質量%となるように酢酸エチルを添加して、粘着剤形成用組成物を調製した。この組成物を、シリコーン系剥離剤で表面処理したセパレートフィルムにダイコーターを用いて塗布し90℃の環境下で1分間乾燥させ、アクリレート系粘着剤シートを得た。膜厚は25μm、貯蔵弾性率が0.1MPaであった。
【0248】
<比較例2、実施例1~5>
光配向層形成用組成液E1を塗布し、60℃で2分間乾燥して得られた塗布膜への紫外光を照射する方位角φuv、極角θuvを表1のように変更した以外は、比較例1と同様にし、視角制御フィルム2~7、および画像表示装置2~7を作製した。
【0249】
<実施例6>
光吸収異方性層形成用組成物を下記の光吸収異方性層形成用組成物P2を用い、かつ、光配向層形成用組成液E1を塗布して60℃で2分間乾燥して得られた塗布膜への紫外光を照射する方位角φuv、極角θuvを表1のように変更した以外は、比較例1と同様にし、視角制御フィルム8、および画像表示装置8を作製した。
【0250】
―――――――――――――――――――――――――――――――――
光吸収異方性層形成用組成物P2の組成
―――――――――――――――――――――――――――――――――
・二色性物質D-1 0.40質量部
・二色性物質D-2 0.15質量部
・二色性物質D-3 0.63質量部
・低分子液晶性化合物M-2 2.74質量部
・低分子液晶性化合物M-3 0.91質量部
・重合開始剤
IRGACUREOXE-02(BASF社製) 0.040質量部
・化合物E-1 0.060質量部
・化合物E-2 0.060質量部
・界面活性剤F-1 0.010質量部
・界面活性剤F-2 0.015質量部
・シクロペンタノン 90.00質量部
・ベンジルアルコール 5.00質量部
―――――――――――――――――――――――――――――――――
【0251】
低分子液晶性化合物M-2
【0252】
【0253】
低分子液晶性化合物M-3
【0254】
【0255】
<実施例7>
光吸収異方性層形成用組成物を下記の光吸収異方性層形成用組成物P3を用い、かつ、光配向層形成用組成液E1を塗布して60℃で2分間乾燥して得られた塗布膜への紫外光を照射する方位角φuv、極角θuvを表1のように変更した以外は比較例1と同様にし、視角制御フィルム9、および画像表示装置9を作製した。
【0256】
―――――――――――――――――――――――――――――――――
光吸収異方性層形成用組成物P3の組成
―――――――――――――――――――――――――――――――――
・二色性物質D-1 0.40質量部
・二色性物質D-2 0.15質量部
・二色性物質D-3 0.63質量部
・低分子液晶性化合物M-4 2.74質量部
・低分子液晶性化合物M-5 0.91質量部
・重合開始剤
IRGACUREOXE-02(BASF社製) 0.040質量部
・化合物E-1 0.060質量部
・化合物E-2 0.060質量部
・界面活性剤F-1 0.010質量部
・界面活性剤F-2 0.015質量部
・シクロペンタノン 90.00質量部
・ベンジルアルコール 5.00質量部
―――――――――――――――――――――――――――――――――
【0257】
低分子液晶性化合物M-4
【0258】
【0259】
低分子液晶性化合物M-5
【0260】
【0261】
<性能の評価>
(1)配向度と透過率の評価
得られた光吸収異方性層を用い、AxoScan OPMF-1(オプトサイエンス社製)において、波長550nmのP偏光における光吸収異方性層の透過率を測定した。より具体的には、測定の際には、透過率中心軸が傾いている方位角を最初に探し、次に、その方位角に沿った光吸収異方性層の法線方向を含む面内(透過率中心軸を含み、層表面に直交する平面)内で、光吸収異方性層表面の法線方向に対する角度である極角を0~60°まで5°毎に変更しつつ、波長550nmのP偏光を入射して、光吸収異方性層の透過率を測定した。この結果、最も透過率の高い方向を透過率中心軸とした。
また、表面反射の影響を除去した後、スネルの式やフレネルの式を考慮した下記理論式にフィッティングすることにより、ko[λ]、ke[λ]が算出される。測定波長λは、550nmで行った。
k=-log(T)×λ/(4πd)
この得られたko[λ]、ke[λ]より、面内方向および厚さ方向の吸光度、二色比を算出し、最終的に配向度を求めた。
【0262】
(2)画像表示装置の輝度の評価
上記作製した画像表示装置1~7を、測定機(EZ-Contrast XL88、ELDIM社製)を用いて、白表示画面の極角θob=0°~80°、方位角φob=0°(正面に向かって右方向)~360°の輝度を計測した。θob=0°は画像表示装置面の法線方向、φob=0°は画像表示装置の画面長手方向(視角制御システムの偏光子の吸収軸方向)とした。観察方向の極角θob、方位角φobの定義は、
図4および
図5に示す。
図4は観察方向の極角を説明する図であり、
図4においては、画像表示装置面62(画像表示装置の表面)に対する法線方向61、および、観察方向63が記載されており、法線方向61と観察方向63とのなす角度が極角θobに該当する。
図5は観察方向の方位角を説明する図であり、
図5においては、画像表示装置長辺(視角制御システムの偏光子の吸収軸に対応)を基準(0°)として、視角制御システム側から画像表示装置を観察した際に反時計回り方向に正の角度値として、方位角を表しており、画像表示装置の観察方向の画像表示面への正射影の方向64と画像表示装置長辺(視角制御システムの偏光子の吸収軸)とのなす角度が方位角φobに該当する。
画像表示装置の白表示画面の正面方向(θob=0°)輝度を100%とした時の、他の方向の輝度を表2の「観察方向」欄に示した。表2に示す「観察方向」欄においては、極角θob=40°で、方位角φobを45°、90°および180°における輝度の結果を表す。
上記角度において観察を行った理由としては、画像表示装置を車載用途に適用した際を想定している。
右ハンドルの自動車において、画像表示装置を、ドライバー席と助手席の中央部のダッシュボード上に、設置した場合(例、カーナビゲーション装置)の配置の模式図を、
図8および
図9に示す。
図8に示すように、画像表示装置60をダッシュボード90上に配置した場合、後述するように、画像表示装置60からの画像がフロントガラス91に映り込むことがある。なお、
図9に示すように、画像表示装置60は、鉛直方向に対して10~20°傾いている。
図10は、本発明の画像表示装置の自動車のダッシュボード部に設置した場合の、右ハンドル自動車における観察方向と視認性への影響を表す模式図である。
図10に示すように、θob=40°における各φobは以下に対応する(
図10)。
φob=45°および90°:画像表示装置の画像がフロントガラスに映り込む方位。輝度が25%を超えると、ドライバー席側への映り込み画像が目立ち、運転の妨げとなりうる。
φob=180°:助手席側から画像表示装置の画像を視認する方位。輝度が70%以上あれば、助手席側からの視認性が良好。
なお、左ハンドルの自動車においては、光配向層形成用組成液E1を塗布し、60℃で2分間乾燥して得られた塗布膜への紫外光を照射する方位角φuvを、φuv(左ハンドル)=540-φuv(右ハンドル)と変更し、光吸収異方性層の透過率中心軸の方位角φを、φ(左ハンドル)=540-φ(右ハンドル)と調整することで、右ハンドルの自動車と同様の効果を得ることができる。
【0263】
【0264】
【0265】
表2に示すように、実施例1~7においては、フロントガラスへの画像の映り込みが弱く、助手席からの視認性が十分であった。
一方、比較例1においては、フロントガラスへの画像の映り込みが目立った。
また、比較例2においては、助手席からの視認性が不十分であった。
【符号の説明】
【0266】
10 光吸収異方性層
11 透過率中心軸
11b 透過率中心軸をフィルム面に正射影した方向
11b1 透過率中心軸をフィルム面に正射影した方向(第1象限)
11b2 透過率中心軸をフィルム面に正射影した方向(第2象限)
11b3 透過率中心軸をフィルム面に正射影した方向(第3象限)
11b4 透過率中心軸をフィルム面に正射影した方向(第4象限)
12 フィルム面
13 フィルム法線方向
20 位相差層
21 位相差層の遅相軸
30 偏光子
31 偏光子の吸収軸
40 表示パネル
50 視角制御システム
60 画像表示装置
61 画像表示装置面の法線
62 画像表示装置面
63 画像表示装置の観察方向
64 画像表示装置の観察方向の画像表示面への正射影の方向
70,71 UV光照射方向
90 ダッシュボード
91 フロントガラス