(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-09-12
(45)【発行日】2024-09-24
(54)【発明の名称】試料観察装置、試料観察方法、およびコンピュータシステム
(51)【国際特許分類】
H01J 37/22 20060101AFI20240913BHJP
G06T 7/00 20170101ALI20240913BHJP
H01L 21/66 20060101ALI20240913BHJP
G01N 23/2251 20180101ALI20240913BHJP
G01B 15/04 20060101ALI20240913BHJP
【FI】
H01J37/22 502H
G06T7/00 350B
H01L21/66 J
G01N23/2251
G01B15/04 K
(21)【出願番号】P 2021116563
(22)【出願日】2021-07-14
【審査請求日】2024-02-05
(73)【特許権者】
【識別番号】501387839
【氏名又は名称】株式会社日立ハイテク
(74)【代理人】
【識別番号】110002066
【氏名又は名称】弁理士法人筒井国際特許事務所
(72)【発明者】
【氏名】伊藤 晟
(72)【発明者】
【氏名】宮本 敦
(72)【発明者】
【氏名】近藤 直明
(72)【発明者】
【氏名】中山 英樹
【審査官】藤田 健
(56)【参考文献】
【文献】米国特許出願公開第2021/0133989(US,A1)
【文献】特開2020-177835(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01J 37/00
G06T 7/00
(57)【特許請求の範囲】
【請求項1】
撮像装置およびプロセッサを備える試料観察装置であって、
前記プロセッサは、
試料の設計データを記憶資源に格納し、
複数の入力画像である第1学習用画像を作成し、
目標画像である第2学習用画像を作成し、
前記第1学習用画像と前記第2学習用画像とで像質の変換に係わるモデルを学習し、
前記試料を観察する際に、前記試料を前記撮像装置によって撮像した第1撮像画像を前記モデルに入力して出力される第2撮像画像を、観察用画像として取得し、
前記第1学習用画像と前記第2学習用画像との少なくとも一方を、前記設計データに基づいて作成
し、
前記第2学習用画像は、ユーザにより指定されたパラメータ値を用いて作成され、
前記ユーザにより指定可能なパラメータは、前記試料の回路パターンの濃淡、形状変形、画像分解能、および画像ノイズのうち、少なくとも1つの要素に対応したパラメータである、
試料観察装置。
【請求項2】
請求項1に記載の試料観察装置において、
前記プロセッサは、
前記設計データに基づいて、前記第1学習用画像を作成し、
前記設計データに基づいて、前記第2学習用画像を作成する、
試料観察装置。
【請求項3】
請求項1に記載の試料観察装置において、
前記プロセッサは、
前記試料を前記撮像装置によって撮像した撮像画像に基づいて、前記第1学習用画像を作成し、
前記設計データに基づいて、前記第2学習用画像を作成する、
試料観察装置。
【請求項4】
請求項1に記載の試料観察装置において、
前記プロセッサは、
前記設計データに基づいて、前記第1学習用画像を作成し、
前記試料を前記撮像装置によって撮像した撮像画像に基づいて、前記第2学習用画像を作成する、
試料観察装置。
【請求項5】
請求項1に記載の試料観察装置において、
前記第1学習用画像は、複数の像質の複数の画像を含み、
前記複数の像質の複数の画像は、前記試料の回路パターンの濃淡、形状変形、画像分解能、および画像ノイズのうち、少なくとも1つの要素の変更によって作成される、
試料観察装置。
【請求項6】
撮像装置およびプロセッサを備える試料観察装置であって、
前記プロセッサは、
試料の設計データを記憶資源に格納し、
複数の入力画像である第1学習用画像を作成し、
目標画像である第2学習用画像を作成し、
前記第1学習用画像と前記第2学習用画像とで像質の変換に係わるモデルを学習し、
前記試料を観察する際に、前記試料を前記撮像装置によって撮像した第1撮像画像を前記モデルに入力して出力される第2撮像画像を、観察用画像として取得し、
前記第1学習用画像と前記第2学習用画像との少なくとも一方を、前記設計データに基づいて作成し、
前記プロセッサは、前記試料を前記撮像装置によって撮像した撮像画像に基づいて、前記第1学習用画像を作成し、前記設計データに基づいて、前記第2学習用画像を作成するか、もしくは、前記設計データに基づいて、前記第1学習用画像を作成し、前記試料を前記撮像装置によって撮像した撮像画像に基づいて、前記第2学習用画像を作成し、
前記プロセッサは、
前記撮像画像と前記設計データとを照合し、前記設計データの領域から、前記撮像画像内の対応する位置の領域の画像をトリミングする、
試料観察装置。
【請求項7】
請求項1に記載の試料観察装置において、
前記プロセッサは、
前記第1学習用画像として、前記試料の同じ領域ごとに、複数の画像を作成し、
前記第2学習用画像として、前記試料の前記同じ領域ごとに、複数の画像を作成し、
前記学習の際には、前記試料の前記同じ領域ごとに、前記第1学習用画像の前記複数の画像と前記第2学習用画像の前記複数の画像とで前記モデルを学習し、
前記試料を観察する際には、前記試料を前記撮像装置によって撮像した前記第1撮像画像として、前記試料の前記同じ領域ごとに撮像した複数の撮像画像を前記モデルに入力して出力される前記第2撮像画像として複数の撮像画像を、前記観察用画像として取得する、
試料観察装置。
【請求項8】
請求項
7に記載の試料観察装置において、
前記第1撮像画像における前記複数の撮像画像は、前記撮像装置に備える複数の検出器により取得された、散乱方向あるいはエネルギーの異なる散乱電子の量を検出した、複数の種類の画像である、
試料観察装置。
【請求項9】
撮像装置およびプロセッサを備える試料観察装置であって、
前記プロセッサは、
試料の設計データを記憶資源に格納し、
複数の入力画像である第1学習用画像を作成し、
目標画像である第2学習用画像を作成し、
前記第1学習用画像と前記第2学習用画像とで像質の変換に係わるモデルを学習し、
前記試料を観察する際に、前記試料を前記撮像装置によって撮像した第1撮像画像を前記モデルに入力して出力される第2撮像画像を、観察用画像として取得し、
前記第1学習用画像と前記第2学習用画像との少なくとも一方を、前記設計データに基づいて作成し、
前記プロセッサは、前記設計データに基づいて前記第2学習用画像を作成する際に、前記設計データの領域から、前記試料のパターン輪郭線を描画したエッジ画像を作成する、
試料観察装置。
【請求項10】
請求項
9に記載の試料観察装置において、
前記プロセッサは、
前記エッジ画像を作成する際に、前記設計データの領域から、複数の方向の方向別のパターン輪郭線を描画した複数のエッジ画像を作成し、
前記学習の際には、前記第1学習用画像と前記第2学習用画像として前記複数のエッジ画像に対応した複数の画像とで前記モデルを学習する、
試料観察装置。
【請求項11】
撮像装置およびプロセッサを備える試料観察装置であって、
前記プロセッサは、
試料の設計データを記憶資源に格納し、
複数の入力画像である第1学習用画像を作成し、
目標画像である第2学習用画像を作成し、
前記第1学習用画像と前記第2学習用画像とで像質の変換に係わるモデルを学習し、
前記試料を観察する際に、前記試料を前記撮像装置によって撮像した第1撮像画像を前記モデルに入力して出力される第2撮像画像を、観察用画像として取得し、
前記第1学習用画像と前記第2学習用画像との少なくとも一方を、前記設計データに基づいて作成し、
前記プロセッサは、前記試料を観察する際に、前記観察用画像を用いて、前記試料の回路パターンの寸法を計測する、
試料観察装置。
【請求項12】
請求項1に記載の試料観察装置において、
前記プロセッサは、前記試料を観察する際に、前記観察用画像を用いて、前記観察用画像と前記設計データとの位置合わせを行うことで、前記第1撮像画像の撮像位置を特定する、
試料観察装置。
【請求項13】
請求項1に記載の試料観察装置において、
前記プロセッサは、前記試料を観察する際に、欠陥位置情報で示す欠陥座標を撮像した前記第1撮像画像を前記モデルに入力して出力される前記第2撮像画像による前記観察用画像を用いて、前記試料の欠陥の位置を特定する、
試料観察装置。
【請求項14】
請求項1に記載の試料観察装置において、
前記プロセッサは、
前記学習の際に、前記第1学習用画像と前記第2学習用画像との少なくとも一方を、前記設計データに基づいて、前記試料の面を斜め上方向から観察したチルト画像とし、
前記試料を観察する際に、前記撮像装置によって前記試料の面を斜め上方向から撮像したチルト画像を前記第1撮像画像として前記モデルに入力して出力される前記第2撮像画像としてのチルト画像を、前記観察用画像として取得する、
試料観察装置。
【請求項15】
請求項1に記載の試料観察装置において、
前記プロセッサは、前記設計データに基づいて作成した前記第1学習用画像または前記第2学習用画像を、画面に表示させる、
試料観察装置。
【請求項16】
撮像装置およびプロセッサを備える試料観察装置における試料観察方法であって、
前記プロセッサにより実行されるステップとして、
試料の設計データを記憶資源に格納するステップと、
複数の入力画像である第1学習用画像を作成するステップと、
目標画像である第2学習用画像を作成するステップと、
前記第1学習用画像と前記第2学習用画像とで像質の変換に係わるモデルを学習するステップと、
前記試料を観察する際に、前記試料を前記撮像装置によって撮像した第1撮像画像を前記モデルに入力して出力される第2撮像画像を、観察用画像として取得するステップと、
前記第1学習用画像と前記第2学習用画像との少なくとも一方を、前記設計データに基づいて作成するステップと、
を有
し、
前記第2学習用画像は、ユーザにより指定されたパラメータ値を用いて作成され、
前記ユーザにより指定可能なパラメータは、前記試料の回路パターンの濃淡、形状変形、画像分解能、および画像ノイズのうち、少なくとも1つの要素に対応したパラメータである、
試料観察方法。
【請求項17】
撮像装置を備える試料観察装置におけるコンピュータシステムであって、
前記コンピュータシステムは、
試料の設計データを記憶資源に格納し、
複数の入力画像である第1学習用画像を作成し、
目標画像である第2学習用画像を作成し、
前記第1学習用画像と前記第2学習用画像とで像質の変換に係わるモデルを学習し、
前記試料を観察する際に、前記試料を前記撮像装置によって撮像した第1撮像画像を前記モデルに入力して出力される第2撮像画像を、観察用画像として取得し、
前記第1学習用画像と前記第2学習用画像との少なくとも一方を、前記設計データに基づいて作成
し、
前記第2学習用画像は、ユーザにより指定されたパラメータ値を用いて作成され、
前記ユーザにより指定可能なパラメータは、前記試料の回路パターンの濃淡、形状変形、画像分解能、および画像ノイズのうち、少なくとも1つの要素に対応したパラメータである、
コンピュータシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、試料観察技術に関し、例えば半導体ウェハ等の試料における欠陥や異常等(欠陥と総称する場合がある)および回路パターン等を観察する機能を有する装置等に関する。
【背景技術】
【0002】
半導体ウェハの製造では、製造プロセスを迅速に立ち上げ、高い歩留まりの量産体制に早期に移行させることが重要である。この目的のため、製造ラインには、各種の検査装置、観察装置、計測装置等が導入されている。試料観察装置(欠陥観察装置とも記載)は、検査装置が検査し出力した欠陥位置情報での欠陥座標に基づいて、半導体ウェハ面の欠陥位置を高解像度に撮像して画像を出力する機能を有する。欠陥座標は、試料面での欠陥の位置を表す座標情報である。試料観察装置は、撮像装置として例えば走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用いる。このような試料観察装置は、レビューSEMとも呼ばれ、広く使用されている。
【0003】
半導体の量産ラインでは、観察作業の自動化が望まれている。レビューSEMは、例えば、自動欠陥レビュー(ADR:Automatic Defect Review)機能と、自動欠陥分類(ADC:Automatic Defect Classification)機能とを備えている。ADR機能は、欠陥位置情報の欠陥座標で示す試料の欠陥位置における画像を自動収集する処理等を行う機能である。ADC機能は、ADR機能によって収集された欠陥画像を自動分類する処理等を行う機能である。
【0004】
半導体ウェハに形成される回路パターンの構造には多数の種類がある。半導体ウェハに発生する欠陥にも様々な種類や発生位置等がある。ADR機能は、欠陥や回路パターン等の視認性が高い、高画質な画像を撮像し出力することが重要である。そのため、従来、レビューSEMの検出器から得られた信号を画像化した生の撮像画像に対し、画像処理技術を用いて視認性を高めることが行われている。
【0005】
それに係わる1つの方法としては、事前に像質が異なる画像の対応関係を学習し、学習したモデルに基づいて、一方の像質と同様な画像が入力された際に、他方の像質の画像を推定する方法がある。学習は、機械学習などが適用できる。
【0006】
上記学習に係わる先行技術例として、特開2018-137275号公報(特許文献1)には、事前に低倍率で撮像した画像と高倍率で撮像した画像との関係性を学習することで、低倍率画像から高倍率画像を推定する方法が記載されている。
【先行技術文献】
【特許文献】
【0007】
【発明の概要】
【発明が解決しようとする課題】
【0008】
試料観察装置のADR機能に関して、前述のような、事前に撮像画像と理想的な像質の画像(目標画像とも記載)との関係性を学習する方法を適用する場合、学習用に撮像画像(特に複数の撮像画像)と目標画像とを用意する必要がある。しかしながら、事前に理想的な像質の画像を用意することは困難である。例えば実際の撮像画像にはノイズがあり、その撮像画像に基づいてノイズが無い理想的な像質の画像を用意することは困難である。
【0009】
また、撮像環境や試料の状態の違い等に応じて、撮像画像の像質は変化する。そのため、より高精度な学習を行うためには、様々な像質の複数の撮像画像を用意する必要がある。しかしながら、これには多くの労力を要する。また、撮像画像を用いて学習を行う場合、事前に試料を用意して撮像する必要があり、ユーザに大きな負担が強いられる。
【0010】
多数の撮像画像や理想的な像質の画像の用意が困難な場合等にも対応できる仕組みや、試料観察に好適な様々な像質の画像を取得できる仕組みが必要である。
【0011】
本発明の目的は、試料観察装置の技術に関して、実際の画像の撮像等の作業を低減できる技術を提供することである。
【課題を解決するための手段】
【0012】
本発明のうち代表的な実施の形態は以下に示す構成を有する。実施の形態の試料観察装置は、撮像装置およびプロセッサを備える試料観察装置であって、前記プロセッサは、試料の設計データを記憶資源に格納し、複数の入力画像である第1学習用画像を作成し、目標画像である第2学習用画像を作成し、前記第1学習用画像と前記第2学習用画像とで像質の変換に係わるモデルを学習し、前記試料を観察する際に、前記試料を前記撮像装置によって撮像した第1撮像画像を前記モデルに入力して出力される第2撮像画像を、観察用画像として取得し、前記第1学習用画像と前記第2学習用画像との少なくとも一方を、前記設計データに基づいて作成する。
【発明の効果】
【0013】
本発明のうち代表的な実施の形態によれば、試料観察装置の技術に関して、実際の画像の撮像等の作業を低減できる技術を提供することである。上記した以外の課題、構成および効果等については、発明を実施するための形態において示される。
【図面の簡単な説明】
【0014】
【
図1】本発明の実施の形態1の試料観察装置の構成を示す図である。
【
図2】実施の形態1で、学習フェーズおよび試料観察フェーズを示す図である。
【
図3】実施の形態1で、試料の欠陥位置情報での欠陥座標の例を示す図である。
【
図4】実施の形態1で、学習フェーズの構成を示す図である。
【
図5】実施の形態1で、設計データの例を示す図である。
【
図6】実施の形態2で、学習フェーズの構成を示す図である。
【
図7】実施の形態3で、学習フェーズの構成を示す図である。
【
図8】実施の形態4で、撮像画像と設計データとの照合などを示す図である。
【
図9】実施の形態5で、学習フェーズの構成を示す図である。
【
図10】実施の形態5で、複数の検出器の構成を示す図である。
【
図11】実施の形態5で、第1学習用画像における画像例を示す図である。
【
図12】実施の形態5で、第1学習用画像における画像例を示す図である。
【
図13】実施の形態5で、第2学習用画像における画像例を示す図である。
【
図14】実施の形態5で、第2学習用画像における画像例を示す図である。
【
図15】各実施の形態で、試料観察フェーズの処理フローを示す図である。
【
図16】各実施の形態で、試料観察フェーズでの寸法計測の処理例を示す図である。
【
図17】各実施の形態で、試料観察フェーズでの設計データとの位置合わせの処理例を示す図である。
【
図18】各実施の形態で、試料観察フェーズでの欠陥検出・識別の処理例を示す図である。
【
図19】各実施の形態で、GUIの画面例を示す図である。
【
図20】各実施の形態で、GUIの画面例を示す図である。
【発明を実施するための形態】
【0015】
以下、図面を参照しながら本発明の実施の形態を詳細に説明する。図面において、同一部には原則として同一符号を付し、繰り返しの説明を省略する。実施の形態は、図面において、各構成要素の表現は、発明の理解を容易にするために、実際の位置、大きさ、形状、および範囲等を表していない場合がある。説明上、プログラムによる処理について説明する場合に、プログラムや機能や処理部等を主体として説明する場合があるが、それらについてのハードウェアとしての主体は、プロセッサ、あるいはそのプロセッサ等で構成されるコントローラ、装置、計算機、システム等である。計算機は、プロセッサによって、適宜にメモリや通信インタフェース等の資源を用いながら、メモリ上に読み出されたプログラムに従った処理を実行する。これにより、所定の機能や処理部等が実現される。プロセッサは、例えばCPUやGPU等の半導体デバイス等で構成される。プロセッサは、所定の演算が可能な装置や回路で構成される。処理は、ソフトウェアプログラム処理に限らず、専用回路でも実装可能である。専用回路は、FPGA、ASIC、CPLD等が適用可能である。プログラムは、対象計算機に予めデータとしてインストールされていてもよいし、プログラムソースから対象計算機にデータとして配布されてインストールされてもよい。プログラムソースは、通信網上のプログラム配布サーバでもよいし、非一過性のコンピュータ読み取り可能な記憶媒体(例えばメモリカード)等でもよい。プログラムは、複数のモジュールから構成されてもよい。コンピュータシステムは、複数台の装置によって構成されてもよい。コンピュータシステムは、クライアントサーバシステム、クラウドコンピューティングシステム、IoTシステム等で構成されてもよい。各種のデータや情報は、例えばテーブルやリスト等の構造で表現・実装されるが、これに限定されない。識別情報、識別子、ID、名、番号等の表現は互いに置換可能である。
【0016】
<実施の形態>
試料観察装置に関して、機械学習に基づいた像質変換(言い換えると画像推定)においては、目標となる像質の画像を用意することが、像質変換エンジン(学習のモデルを含む)の性能向上に重要である。実施の形態では、実際の撮像画像では実現困難な画像を目標画像とする場合でも、ユーザの嗜好に合わせた画像を目標画像として使用する。また、実施の形態では、観察試料状態等に応じて画像の像質が変動する場合においても、像質変換エンジンの性能を維持する。
【0017】
実施の形態では、目標となる像質をユーザが指定したパラメータと、設計データとに基づいて、学習用の目標画像(第2学習用画像)を作成する。これにより、実際の撮像画像では実現困難な像質も実現可能とし、目標画像の用意が容易になる。また、実施の形態では、設計データに基づいて様々な像質の画像(第1学習用画像)を作成する。実施の形態では、それらの画像を入力画像として、像質変換エンジンのモデルを最適化する。言い換えると、モデルのパラメータを好適な値に設定・調整する。これにより、入力画像の像質変動に対するロバストネスを向上する。
【0018】
実施の形態の試料観察装置および方法は、事前に試料の設計データに基づいて目標の像質の画像(第2学習用画像)と様々な像質の入力画像(第1学習用画像)との少なくとも一方を作成し、学習によってモデルを最適化する。これにより、試料観察の際には、実際に試料を撮像して得た像質の第1撮像画像を、モデルによって、理想的な像質の第2撮像画像に変換して、観察用画像として得る。
【0019】
実施の形態の試料観察装置は、半導体ウェハ等の試料に形成された回路パターンや欠陥等を観察する装置である。この試料観察装置は、検査装置が作成・出力した欠陥位置情報を参照して処理を行う。この試料観察装置は、撮像装置により撮像した画像、あるいは撮像せずに設計データに基づいて作成した画像である、第1学習用画像(複数の入力画像)から、理想的な像質(ユーザの嗜好を反映した像質)の目標画像である第2学習用画像を推定するモデルを学習する。
【0020】
従来技術例の試料観察装置および方法は、実際に撮像した多数の画像を用意して、入力画像および目標画像として、モデルを学習する技術である。それに対し、実施の形態の試料観察装置および方法は、設計データに基づいて第1学習用画像と第2学習用画像との少なくとも一方を作成する機能を備える。これにより、学習用に撮像する作業を低減できる。
【0021】
<実施の形態1>
図1~
図5を用いて、実施の形態1の試料観察装置等について説明する。実施の形態1の試料観察方法は、実施の形態1の試料観察装置(特にコンピュータシステムのプロセッサ)において実行されるステップを有する方法である。試料観察装置での処理や対応するステップは、大別して、学習処理と、試料観察処理とがある。学習処理は、機械学習によるモデル学習である。試料観察処理は、学習済みのモデルを用いて構成される像質変換エンジンを用いて、試料の観察・欠陥検出等を行う処理である。
【0022】
実施の形態1では、入力画像である第1学習用画像と目標画像である第2学習用画像との両方を、実際に撮像した画像ではなく、設計データに基づいて作成する画像とする。
【0023】
以下では、試料観察装置として、半導体ウェハを試料として半導体ウェハの欠陥等を観察する装置を例に説明する。この試料観察装置は、検査装置からの欠陥位置情報で示す欠陥座標に基づいて、試料を撮像する撮像装置を備える。以下では、撮像装置としてSEMを用いる例を説明する。撮像装置は、SEMに限定されず、SEM以外の装置、例えばイオン等の荷電粒子を用いた撮像装置としてもよい。
【0024】
なお、第1学習用画像と第2学習用画像との像質に関して、像質(言い換えると画像の性質)は、画質やその他の性質(例えば回路パターン一部抽出など)を含む概念である。画質は、撮像倍率、視野範囲、画像解像度、S/Nなどを含む概念である。第1学習用画像の像質と第2学習用画像の像質との関係において、画質などの高低の関係は、相対的な定義である。例えば、第2学習用画像は、第1学習用画像よりも、画質が高い。また、像質を規定する条件やパラメータ等は、撮像装置で撮像してその画像を得る場合のみに限らず、画像処理等によってその画像を作成して得る場合にも、適用される。
【0025】
実施の形態1の試料観察装置および方法は、試料の回路パターンのレイアウトの設計データを入力する設計データ入力部と、第1処理パラメータを複数通り変更して設計データから同じレイアウト(言い換えると同じ領域)の複数の第1学習用画像を作成(言い換えると生成)する第1学習用画像作成部と、ユーザが嗜好に応じて指定した第2処理パラメータを用いて設計データから第2学習用画像を作成(言い換えると生成)する第2学習用画像作成部と、複数の第1学習用画像を入力として第2学習用画像を推定して出力するモデルを学習する学習部(言い換えると第1学習用画像と第2学習用画像とを用いてモデルを学習する学習部)と、撮像装置で撮像した試料の第1撮像画像をモデルに入力して出力として第2撮像画像を得る推定部と、を備える。第1学習用画像作成部は、試料の回路パターンの濃淡値、形状変形、画像分解能、画像ノイズ等のうち、少なくとも1つ以上の要素について、パラメータ値を複数通りに変更して、設計データから同じ領域の複数の第1学習用画像を作成する。第2学習用画像作成部は、第1学習用画像のためのパラメータとは異なるパラメータとして、ユーザがGUIで指定したパラメータを用いて、設計データから第2学習用画像を作成する。
【0026】
[1-1.試料観察装置]
図1は、実施の形態1の試料観察装置1の構成を示す。試料観察装置1は、大別して、撮像装置2と、上位制御装置3とを有して構成されている。試料観察装置1は具体例としてレビューSEMである。撮像装置2は具体例としてSEM101である。撮像装置2には上位制御装置3が結合されている。上位制御装置3は、撮像装置2等を制御する装置であり、言い換えるとコンピュータシステムである。試料観察装置1等は、必要な機能ブロックや各種のデバイスを備えているが、図面では必須な要素を含む一部を図示している。
図1の試料観察装置1を含む全体は、言い換えると欠陥検査システムとして構成されている。上位制御装置3には、記憶媒体装置4や入出力端末6が接続されており、ネットワークを介して欠陥分類装置5や検査装置7、製造実行システム10(MES)等が接続されている。
【0027】
試料観察装置1は、自動欠陥レビュー(ADR)機能を有する装置またはシステムである。本例では、予め、外部の検査装置7において試料を検査した結果として欠陥位置情報8が作成されており、検査装置7から出力・提供されたその欠陥位置情報8が予め記憶媒体装置4に格納されている。上位制御装置3は、欠陥観察に係わるADR処理の際に、記憶媒体装置4からその欠陥位置情報8を読み出して参照する。撮像装置2であるSEM101は、試料9である半導体ウェハの画像を撮像する。試料観察装置1は、撮像装置2で撮像した画像に基づいて、ユーザの嗜好を反映した理想的な像質の画像である観察用画像(特にADR機能による複数の画像)を得る。
【0028】
製造実行システム(MES)10は、試料9である半導体ウェハを用いた半導体デバイスの製造プロセスを管理・実行するシステムである。MES10は、試料9に関する設計データ11を有しており、本例では、予め、MES10から取得された設計データ11が記憶媒体装置4に格納されている。上位制御装置3は、処理の際に記憶媒体装置4からその設計データ11を読み出して参照する。設計データ11の形式については特に限定せず、試料9の回路パターン等の構造を表現するデータであればよい。
【0029】
欠陥分類装置5は、自動欠陥分類(ADC)機能を有する装置またはシステムであり、試料観察装置1によるADR機能を用いた欠陥観察処理結果の情報・データに基づいて、ADC処理を行って、欠陥(対応する欠陥画像)を分類した結果を得る。欠陥分類装置5は、分類した結果の情報・データを、例えばネットワークに接続された図示しない他の装置に供給する。なお、
図1の構成に限らず、試料観察装置1に欠陥分類装置5が併合された構成等も可能である。
【0030】
上位制御装置3は、制御部102、記憶部103、演算部104、外部記憶媒体入出力部105(言い換えると入出力インタフェース部)、ユーザインタフェース制御部106、およびネットワークインタフェース部107等を備える。それらの構成要素は、バス114に接続されており、相互に通信や入出力が可能である。なお、
図1の例では、上位制御装置3が1つのコンピュータシステムで構成される場合を示すが、上位制御装置3が複数のコンピュータシステム(例えば複数のサーバ装置)等で構成されてもよい。
【0031】
制御部102は、試料観察装置1の全体を制御するコントローラに相当する。記憶部103は、プログラムを含む各種の情報やデータを記憶し、例えば磁気ディスクや半導体メモリ等を備える記憶媒体装置で構成される。演算部104は、記憶部103から読み出されたプログラムに従って演算を行う。制御部102や演算部104は、プロセッサやメモリを備えている。外部記憶媒体入出力部(言い換えると入出力インタフェース部)105は、外部の記憶媒体装置4との間でデータの入出力を行う。
【0032】
ユーザインタフェース制御部106は、ユーザ(言い換えるとオペレータ)との間で情報・データの入出力を行うためのグラフィカル・ユーザ・インタフェース(GUI)を含むユーザインタフェースを提供・制御する部分である。ユーザインタフェース制御部106には入出力端末6が接続されている。ユーザインタフェース制御部106には、他の入力デバイスや出力デバイス(例えば表示デバイス)が接続されてもよい。ネットワークインタフェース部107にはネットワーク(例えばLAN)を介して欠陥分類装置5や検査装置7等が接続されている。ネットワークインタフェース部107は、ネットワークを介して欠陥分類装置5等の外部装置との間の通信を制御する通信インタフェースを有する部分である。外部装置の他の例は、DBサーバ等が挙げられる。
【0033】
ユーザは、入出力端末6を用いて、試料観察装置1(特に上位制御装置3)に対し、情報(例えば指示や設定)を入力し、試料観察装置1から出力された情報を確認する。入出力端末6は、例えばPCが適用でき、キーボード、マウス、ディスプレイ等を備える。入出力端末6は、ネットワークに接続されたクライアントコンピュータとしてもよい。ユーザインタフェース制御部106は、後述のGUIの画面を作成し、入出力端末6の表示デバイスで表示させる。
【0034】
演算部104は、例えばCPU、ROM、およびRAM等によって構成され、記憶部103から読み出されたプログラムに従って動作する。制御部102は、例えばハードウェア回路またはCPU等によって構成される。制御部102がCPU等で構成される場合、制御部102も、記憶部103から読み出されたプログラムに従って動作する。制御部102は、例えばプログラム処理に基づいて各機能を実現する。記憶部103には、外部記憶媒体入出力部105を介して記憶媒体装置4からプログラム等のデータが供給・格納される。あるいは、記憶部103には、ネットワークインタフェース部107を介してネットワークからプログラム等のデータが供給・格納されてもよい。
【0035】
撮像装置2を構成するSEM101は、ステージ109、電子源110、検出器111、図示しない電子レンズ、偏向器112等を備える。ステージ109(言い換えると試料台)は、試料9である半導体ウェハが載置され、少なくとも水平方向に移動可能であるステージである。電子源110は、試料9に電子ビームを照射するための電子源である。図示しない電子レンズは、電子ビームを試料9面上に収束させる。偏向器112は、電子ビームを試料9上で走査するための偏向器である。検出器111は、試料9から発生した二次電子や反射電子等の電子・粒子を検出する。言い換えると、検出器111は、試料9面の状態を画像として検出する。本例では、検出器111として、図示のように複数の検出器を有する。
【0036】
SEM101の検出器111によって検出された情報(言い換えると画像信号)は、上位制御装置3のバス114に供給される。その情報は、演算部104等によって処理される。本例では、上位制御装置3は、SEM101のステージ109、偏向器112、および検出器111等を制御する。なお、ステージ109等の駆動のための駆動回路等については図示を省略している。試料9に対する観察処理は、SEM101からの情報(言い換えると画像)を上位制御装置3であるコンピュータシステムが処理することで実現される。
【0037】
本システムは、以下のような形態としてもよい。上位制御装置3はクラウドコンピューティングシステム等のサーバとし、ユーザが操作する入出力端末6はクライアントコンピュータとする。例えば、機械学習に多くのコンピュータ資源が要求される場合には、クラウドコンピューティングシステム等のサーバ群において機械学習処理を行わせるようにしてもよい。サーバ群とクライアントコンピュータとの間で処理機能を分担してもよい。ユーザは、クライアントコンピュータを操作し、クライアントコンピュータは、サーバに対し要求を送信する。サーバは、要求を受信し、要求に応じた処理を行う。例えば、サーバは、要求された処理の結果を反映した画面(例えばWebページ)のデータを、応答としてクライアントコンピュータに送信する。クライアントコンピュータは、その応答のデータを受信し、表示デバイスにその画面(例えばWebページ)を表示する。
【0038】
[1-2.機能ブロックおよびフロー]
図2は、実施の形態1の試料観察装置および方法における、主な機能ブロックおよびフローの構成例を示す。
図1の上位制御装置3は、制御部102または演算部104の処理によって、
図2のような各機能ブロックを実現する。試料観察方法は、大別して、学習フェーズ(学習処理)S1と、試料観察フェーズ(試料観察処理)S2とを有する。学習フェーズS1は、学習用画像作成処理のステップS11と、モデル学習処理のステップS12とを有する。試料観察フェーズS2は、推定処理のステップS21を有する。各部と各ステップは対応している。
図1の記憶部103には、各種の画像、モデル、設定情報、処理結果等のデータ・情報が適宜に格納される。
【0039】
学習用画像作成処理のステップS11は、機能ブロックとして、設計データ入力部200と、GUIによるパラメータ指定205と、第2学習用画像作成部220と、第1学習用画像作成部210とを有する。設計データ入力部200は、外部(例えばMES10)からの設計データ250を入力する(例えば
図1の記憶媒体装置4からの設計データ11の読み出し)。GUIによるパラメータ指定205は、後述のGUIの画面で、ユーザが第2学習用画像の作成に係わるパラメータ(第2処理パラメータとも記載)を指定・入力するものである。第2学習用画像作成部220は、設計データ250と、第2処理パラメータとに基づいて、目標画像252である第2学習用画像を作成する。第1学習用画像作成部210は、設計データ250に基づいて、複数の入力画像251である第1学習用画像を作成する。なお、第1学習用画像や第2学習用画像の作成は、例えば設計データが画像である場合には、設計データの画像そのものを用いることであってもよいし、設計データがベクターデータである場合には、ベクターデータからビットマップの画像を作成することであってもよい。
【0040】
モデル学習処理S12では、第1学習用画像である複数の入力画像251(様々な像質の画像)のいずれが入力されても第2学習用画像(推定第2学習用画像)である目標画像252が出力されるように、モデル260の学習が行われる。
【0041】
[1-3.欠陥位置情報]
図3は、外部の検査装置7からの欠陥位置情報8に含まれている欠陥座標で示される欠陥位置の例を示す模式図である。
図3では、対象の試料9のx-y面において、欠陥座標を、点(×印)で図示している。試料観察装置1からみると、この欠陥座標は、観察対象となる観察座標である。ウェハ301は、円形の半導体ウェハ面領域を示す。ダイ302は、ウェハ301に形成されている複数のダイ(言い換えるとチップ)の領域を示す。
【0042】
実施の形態1の試料観察装置1は、このような欠陥座標に基づいて、試料9の面の欠陥部位が写った高精細な画像を自動的に収集するADR機能を有する。ただし、検査装置7からの欠陥位置情報8内の欠陥座標には、誤差が含まれている。言い換えると、検査装置7の座標系での欠陥座標と、試料観察装置1の座標系での欠陥座標との間には誤差が生じ得る。誤差の要因としては、ステージ109上の試料9の位置合わせの不完全さ等が挙げられる。
【0043】
そのため、試料観察装置1は、欠陥位置情報8の欠陥座標を中心として第1の条件で広視野・低倍率の画像(言い換えると相対的に低画質の画像、第1画像)を撮像し、その画像に基づいて、欠陥部位を再検出する。そして、試料観察装置1は、事前に学習したモデルを用いて、その再検出した欠陥部位について、第2の条件での狭視野・高倍率の画像(言い換えると相対的に高画質の画像、第2画像)を推定して、観察用画像として取得する。
【0044】
ウェハ301には規則的に複数のダイ302が含まれている。そのため、欠陥部位を持つダイ302に対して例えば隣接する他のダイ302を撮像した場合、欠陥部位を含まない良品ダイの画像を取得可能である。試料観察装置1における欠陥検出処理では、例えばこのような良品ダイ画像を参照画像として用いることができる。そして、欠陥検出処理では、検査対象画像(観察用画像)と参照画像との間で、欠陥判定として、例えば濃淡(特徴量の例)の比較が行われ、濃淡の異なる箇所を欠陥部位として検出可能である。
【0045】
[1-4.学習フェーズ その1]
図4は、実施の形態1における学習フェーズS1の構成例を示す。上位制御装置3のプロセッサ(制御部102または演算部104)は、学習フェーズS1の処理を行う。描画エンジン403は、
図2での第1学習用画像作成部210と第2学習用画像作成部220とを合わせ持つ処理部に相当する。像質変換エンジン405は、
図2でのモデル260を用いて学習を行う学習部230に相当する。
【0046】
学習フェーズS1では、プロセッサは、設計データ400から一部の領域を切り出したデータと、第1処理パラメータ401とを描画エンジン403に入力することで、第1学習用画像404を取得する。第1学習用画像404は、学習用の複数の入力画像であり、ここでは、この画像を記号fでも示す。i=1~Mであり、Mは画像枚数である。複数の第1学習用画像をf={f1,f2,……,fi,……,fM}として示す。
【0047】
第1処理パラメータ401は、第1学習用画像404を作成(言い換えると生成)するためのパラメータ(言い換えると条件)である。第1処理パラメータ401は、実施の形態1では、本システムに予め設定されたパラメータである。第1処理パラメータ401は、撮像環境や試料9の状態による撮像画像の像質変化を想定して、異なる像質の複数の第1学習用画像を作成するために設定されたパラメータである。第1処理パラメータ401は、例えば、回路パターンの濃淡値、形状変形、画像分解能、および画像ノイズのうち、少なくとも1つ以上の要素のパラメータを用いて、パラメータ値を複数通りに変更することで設定された、パラメータセットである。
【0048】
設計データ400は、観察対象の試料9の回路パターン形状のレイアウトデータである。例えば試料9が半導体ウェハまたは半導体デバイスである場合、設計データ400は、半導体回路パターンの設計形状のエッジ情報が座標データとして書き込まれたファイルである。このような設計データのファイルとしては、従来、GDS-IIやOASIS等のフォーマットが知られている。設計データ400を利用することで、実際に試料9をSEM101によって撮像しなくても、パターンのレイアウト情報を得ることができる。
【0049】
描画エンジン403では、設計データ400におけるパターンのレイアウト情報に基づいて、画像として、第1学習用画像404と第2学習用画像405との両方を作成する。
【0050】
実施の形態1(
図4)では、第1学習用画像のための第1処理パラメータ401と、第2学習用画像のための第2処理パラメータとでは、異なるパラメータである。第1処理パラメータ401は、対象工程での変動を考慮して、回路パターンの濃淡、形状変形、画像分解能、および画像ノイズの要素に対応したパラメータ値の変更が反映され、予め設定されている。それに対し、第2処理パラメータ402は、GUIでユーザが指定したパラメータ値が反映され、試料観察に際するユーザの嗜好が反映される。
【0051】
[1-5.設計データ]
図5を用いて、設計データ400におけるパターンのレイアウト情報について説明する。
図5は、設計データ400におけるパターンのレイアウト情報の例を示す。(A)の設計データ500は、試料9の面におけるある領域の設計データを示す。設計データ400からは、各領域のパターンのレイアウト情報が取得できる。本例では、パターンのエッジ形状が線で表現されている。例えば、太い破線は、上層パターンを示し、一点鎖線は、下層パターンを示す。領域501は、説明用に比較するパターン領域の例を示す。
【0052】
(C)の画像505は、実際に電子顕微鏡であるSEM101によって試料9の面における領域501と同じ領域を撮像することで取得した画像である。
【0053】
(B)の情報(領域)502は、(A)の設計データ500から領域501(画像505と同じ領域)をトリミングした情報(領域)である。領域504は、上層パターン領域(例えば縦ライン領域)であり、領域503は、下層パターン領域(例えば横ライン領域)である。例えば、領域504である縦ライン領域は、図示のように、エッジ形状として、縦の2本のライン(太い破線)を有する。このようなパターン領域は、例えば、構成する点(対応する画素)毎の座標情報を有する。
【0054】
描画エンジン403での画像取得方法としては、例えば、設計データ400から取得したパターンレイアウト情報と処理パラメータとに基づいて、下層から順に描画することで、画像を取得する方法がある。描画エンジン403は、設計データ500から、描画する領域(例えば領域501)をトリミングし、処理パラメータ(第1処理パラメータ401)に基づいて、パターンの無い領域(例えば領域506)を描画する。次に、描画エンジン403は、下層パターンの領域503を描画し、最後に、上層パターンの領域504を描画することで、情報502のような画像を得る。このような処理により、
図4の第1学習用画像404が得られる。パラメータ値等を変更しながら同様の処理を行うことで、複数の入力画像である第1学習用画像404が得られる。
【0055】
[1-6.学習フェーズ その2]
図4に戻る。次に、プロセッサは、第2処理パラメータ402と、設計データ400とに基づいて、第1学習用画像404の取得時と同じ領域を切り出したデータを描画エンジン403に入力することで、第2学習用画像407を取得する。第2処理パラメータ402は、第2学習用画像407の作成(言い換えると生成)のために設定されるパラメータであり、GUI等によりユーザが指定してユーザの嗜好を反映させたパラメータである。
【0056】
次に、プロセッサは、複数の入力画像である第1学習用画像404を像質変換エンジン405に入力することで、推定による出力として、推定第2学習用画像406を得る。推定第2学習用画像406は、モデルによって推定された画像であり、ここでは、この画像を記号g’でも表す。j=1~Nであり、Nは画像枚数である。複数の推定第2学習用画像をg’={g’1,g’2,……,g’j,……,g’N}として示す。
【0057】
なお、実施の形態1では、第1学習用画像(f)404の枚数Mと、推定第2学習用画像(g’)406の枚数Nとを同じとするが、これに限定されない。
【0058】
像質変換エンジン405を構成する機械学習のモデルとしては、深層学習のモデル、例えば畳み込みニューラルネットワーク(CNN:Convolutional Neural Network)に代表されるモデルを適用してもよい。
【0059】
次に、プロセッサは、演算408において、第2学習用画像(g)407と、複数の推定第2学習用画像(g’)406とを入力して、それらの差分に関する推定誤差409を算出する。算出された推定誤差409は、像質変換エンジン405にフィードバックされる。プロセッサは、推定誤差409が小さくなるように、像質変換エンジン405のモデルのパラメータを更新する。
【0060】
プロセッサは、以上のような学習処理を繰り返すことで、像質変換エンジン405を最適化する。最適化された像質変換エンジン405とは、第1学習用画像404から推定第2学習用画像406を推定する際の精度が高いことを指す。なお、推定誤差409には、画像の差分や、第2学習用画像407と推定第2学習用画像406とを識別するCNNによる出力を使用してもよい。変形例として、後者の場合、演算408は、CNNを用いた学習による演算となる。
【0061】
本処理の課題は、どのように第1学習用画像404と第2学習用画像407とを取得するかである。試料9の状態や撮像条件の違いによる撮像画像の像質変化に対してロバストな像質変換エンジン405に最適化するためには、第1学習用画像404の像質のヴァリエーションを確保する必要がある。そこで、本処理では、発生し得る像質の変化を想定し、第1処理パラメータ401を複数通り変更して、設計データ400から第1学習用画像404を作成することで、第1学習用画像404の像質のヴァリエーションを確保可能となる。
【0062】
また、ユーザの嗜好を反映した像質の画像を出力できるように像質変換エンジン405を最適化するためには、目標画像である第2学習用画像407として、ユーザの嗜好を反映した像質の画像を使用する必要がある。しかしながら、ユーザの嗜好に合う像質(言い換えると観察に好適な像質)が、試料9を撮像して得た画像では実現困難である場合、そのような目標画像を用意することが困難である。そこで、本処理では、設計データ400と第2処理パラメータ402とを描画エンジン405に入力して第2学習用画像407を作成する。これにより、撮像画像では実現困難な像質の画像も、第2学習用画像407として取得できる。また、本処理では、第1学習用画像404と第2学習用画像407とのどちらも設計データ400に基づいて作成される。そのため、実施の形態1では、事前に試料9を用意して撮像する必要が基本的に無く、学習による像質変換エンジン405の最適化が可能である。
【0063】
なお、実施の形態1の試料観察装置1では、SEM101により撮像した画像を学習処理に用いる必要は無いが、SEM101により撮像した画像を学習処理や試料観察処理で用いることについて制限するものではない。例えば、変形例としては、学習処理において、一部の撮像画像を追加、補助として用いてもよい。
【0064】
なお、第1処理パラメータ401は、対象工程で発生し得る変動を反映したパラメータとして予め設計される。この対象工程とは、対象の試料9の種類に対応した製造プロセスの製造工程である。変動とは、像質(例えば分解能、パターン形状、ノイズ等)に係わる環境や状態や条件の変動である。
【0065】
実施の形態1では、第1学習用画像404に係わる第1処理パラメータ401については、予め本システムで設計されるものとしたが、これに限らずに可能である。変形例では、第1処理パラメータについても、第2処理パラメータと同様に、GUIの画面でユーザによる可変の設定を可能としてもよい。例えば、第1処理パラメータとして使用するパラメータセット等を、候補から選択して設定可能としてもよい。特に、変形例では、GUIの画面で、像質のヴァリエーションを確保するための第1処理パラメータについて、使用するパラメータ毎に、変動幅(分散などの統計値でもよい)を設定可能としてもよい。これにより、ユーザは、処理時間と精度とのトレードオフを考慮しながら、第1処理パラメータの可変設定による試行や調整が可能である。
【0066】
[1-7.効果等]
以上のように、実施の形態1の試料観察装置および方法によれば、実際の画像の撮像等の作業を低減できる。実施の形態1では、実際の撮像画像を用いずに、設計データを用いて、第1学習用画像と第2学習用画像の作成が可能となる。これにより、試料観察の事前に試料を用意して撮像する作業が必要無く、オフラインで、言い換えると撮像不要で、像質変換エンジンのモデルの最適化が可能となる。そのため、例えば設計データの完成時に学習を行い、対象の試料である半導体ウェハが完成した際にすぐに第1撮像画像の撮像および第2撮像画像の推定が可能になる。即ち、作業全体の効率化が可能である。
【0067】
実施の形態1によれば、ユーザの嗜好に合わせた像質に変換できる像質変換エンジンを最適化できる。また、試料の状態や撮像条件の変化に対しロバストネスが高い像質変換エンジンに最適化できる。これにより、試料観察の際には、この像質変換エンジンを使用することで、ユーザの嗜好に合わせた像質の画像を観察用画像として安定して高精度に出力可能である。
【0068】
実施の形態1によれば、機械学習として深層学習を用いる場合でも、多数の画像を用意可能である。実施の形態1によれば、ユーザの嗜好に応じた目標画像を作成可能である。実施の形態1によれば、様々な撮像条件に対応した入力画像を設計データから作成し、ユーザによるパラメータ指定によって目標画像を作成するので、上記のような効果が達成できる。
【0069】
<実施の形態2>
図6を用いて、実施の形態2の試料観察装置等について説明する。実施の形態2等における基本構成は実施の形態1と同様であり、以下では主に実施の形態2等における実施の形態1とは異なる構成部分について説明する。実施の形態2の試料観察装置および方法は、試料の回路パターンのレイアウトの設計データを入力する設計データ入力部と、第1学習用画像を用意する第1学習用画像入力部と、ユーザが指定した第2処理パラメータを用いて設計データから第2学習用画像を作成する第2学習用画像作成部と、第1学習用画像と第2学習用画像とを用いてモデルを学習する学習部と、撮像装置で撮像した試料の第1撮像画像をモデルに入力して推定によって第2撮像画像を出力する推定部とを備える。
【0070】
実施の形態2で、本処理の課題として、ユーザの嗜好に合わせた理想的な目標画像をどのように取得するかがある。撮像装置の撮像条件を変更しながら試料を撮像し、ユーザの嗜好に合った画像の撮像条件を見つけ出すことは、容易ではない。更に、いかなる撮像条件であっても、ユーザが期待する理想的な像質の画像が得られない場合もある。すなわち、電子顕微鏡による撮像の物理限界として、画像の分解能、シグナル/ノイズ比(S/N)、コントラスト等の評価値を、全て希望通りの値にすることはできない。
【0071】
そこで、実施の形態2では、設計データを描画エンジンに入力して、ユーザの嗜好を反映する第2処理パラメータを用いて描画することで、理想的な像質の目標画像の作成を可能とする。この設計データから作成された理想的な目標画像が第2学習用画像として使用される。
【0072】
実施の形態2での学習フェーズS1の構成は、
図2に対し異なる構成としては、第1学習用画像作成部210は、設計データ250から複数の入力画像251を作成するのではなく、撮像装置2で実際に撮像した画像に基づいて複数の入力画像251を作成する。
【0073】
[2-1.学習フェーズ]
図6は、実施の形態2で、学習フェーズS1の構成例を示す。前述の実施の形態1では、学習フェーズS1で、
図4の第1学習用画像404と第2学習用画像407とのいずれも設計データに基づいて作成し、像質変換エンジン405を最適化する方法を示した。それに対し、実施の形態2では、第1学習用画像については、電子顕微鏡であるSEM101によって実際に撮像した画像を使用し、第2学習用画像については、設計データに基づいて作成する。
【0074】
図6で、プロセッサは、SEM101の撮像パラメータ610を設定してSEM101の制御によって試料9の撮像612を行う。プロセッサは、この際に、欠陥位置情報8を用いてもよい。プロセッサは、この撮像612により、第1学習用画像(f)604として少なくとも1枚の画像を取得する。
【0075】
なお、実施の形態2で、撮像装置2による撮像612としては、SEM101等の電子顕微鏡に限らず、光学顕微鏡や超音波検査装置などを用いてもよい。
【0076】
しかしながら、撮像612により、発生し得る像質の変化を想定した様々な像質の複数の画像を第1学習用画像604として取得する場合には、従来では、それに対応した複数の試料が必要であり、ユーザの作業の負担が大きい。そのため、実施の形態2では、プロセッサは、撮像612により得られた1つの第1学習用画像604に対し、パラメータ値を様々に変更した画像処理を適用することで、像質を様々に変化させた複数の入力画像を第1学習用画像として作成・取得してもよい。
【0077】
次に、プロセッサは、設計データ600と、ユーザの嗜好を反映した処理パラメータである第2処理パラメータ602とを描画エンジン603に入力することで、第2学習用画像607(g)を取得する。描画エンジン603は、第2学習用画像作成部に相当する。
【0078】
[2-2.効果等]
上記のように、実施の形態2によれば、目標画像である第2学習用画像については設計データに基づいて作成するので、目標画像を作成するための撮像の作業が低減できる。
【0079】
また、他の効果として以下も挙げられる。前述の実施の形態1(
図2)では、学習フェーズS1の入力画像(第1学習用画像)については設計データから作成され、試料観察フェーズS2の入力画像については撮像画像(第1撮像画像253)となる。そのため、実施の形態1では、学習フェーズS1と試料観察フェーズS2とで、設計データに基づいた作成画像と撮像画像との差異による影響があり得る。それに対し、実施の形態2では、学習フェーズS1の入力画像については撮像画像から作成され、試料観察フェーズS2の入力画像についても撮像画像(第1撮像画像253)となる。これにより、実施の形態2での学習フェーズS1は、実施の形態1での学習フェーズS1とは異なり、設計データに基づいて描画エンジンにより取得した作成画像と、撮像画像との違いによる影響を受けずに、モデルの最適化が可能である。
【0080】
<実施の形態3>
図7を用いて、実施の形態3の試料観察装置等について説明する。実施の形態3の試料観察装置および方法は、試料の回路パターンのレイアウトの設計データを入力する設計データ入力部と、第1学習用画像を作成する第1学習用画像作成部と、第2学習用画像を用意する第2学習用画像入力部と、第1学習用画像と第2学習用画像とを用いてモデルを学習する学習部と、撮像装置で撮像した試料の第1撮像画像をモデルに入力して推定によって第2撮像画像を出力する推定部とを備える。
【0081】
第1学習用画像作成部は、回路のパターンの濃淡値、形状変形、画像分解能、画像ノイズ等のうち、少なくとも1つ以上の要素の第1処理パラメータを複数通り変更して、設計データから同じ領域の複数の入力画像を第1学習用画像として作成する。
【0082】
実施の形態3で、本処理の課題として、様々な像質の画像を第1学習用画像とすることが挙げられる。もし、単一な像質の画像のみを第1学習用画像とした場合、試料の状態や撮像条件の違いによる像質変化に対するロバストネスを確保しにくいので、像質変換エンジンの汎用性が低い。実施の形態3では、同一の設計データから第1学習用画像を作成する際に、発生し得る像質の変化を想定して、第1処理パラメータを変更することで、第1学習用画像の像質のヴァリエーションの確保が可能になる。
【0083】
実施の形態3での学習フェーズS1の構成は、
図2に対し異なる構成としては、第2学習用画像作成部220は、設計データ250から目標画像252を作成するのではなく、撮像装置2で実際に撮像した画像に基づいて目標画像252を作成する。
【0084】
[3-1.学習フェーズ]
図7は、実施の形態3での学習フェーズS1の構成例を示す。実施の形態3では、第2学習用画像については撮像装置2(SEM101)で撮像した画像を使用し、第1学習用画像については設計データに基づいて作成する。
【0085】
図7で、プロセッサは、撮像装置2であるSEM101の撮像パラメータ710を設定して、試料9の撮像712を制御することで、第2学習用画像707(g)を取得する。プロセッサは、撮像712の際には、欠陥位置情報8を用いてもよい。
【0086】
なお、撮像712により取得した画像は、コントラスト不足やノイズ等の影響により、視認性に欠ける場合がある。そのため、実施の形態3で、プロセッサは、撮像712により得られた画像に対し、コントラスト補正やノイズ除去などの画像処理を適用し、その画像を第2学習用画像707としてもよい。また、試料観察装置1のプロセッサは、外部の別の装置から取得した画像を、第2学習用画像707として用いてもよい。
【0087】
次に、プロセッサは、設計データ700と、第1処理パラメータ701とを描画エンジン703に入力することで、複数の入力画像である第1学習用画像704(f)を取得する。
【0088】
なお、第1処理パラメータ701は、撮像環境や試料9の状態による撮像画像の像質変化を想定して、回路パターンの濃淡値、形状変形、画像分解能、および画像ノイズのうち、少なくとも1つ以上の要素のパラメータについて、パラメータ値を複数通りに変更して、異なる像質の複数の入力画像である第1学習用画像704を取得するためのパラメータセットである。
【0089】
一般に、電子顕微鏡での撮像によって像質が良い画像を取得する場合、撮像等の処理に要する時間が長くなる。例えば、その撮像の際には、電子ビーム走査、複数の画像フレームの加算処理等が必要であるため、比較的に長い時間がかかる。そのため、その場合、画質と処理時間との両立は難しく、画質と処理時間とにはトレードオフの関係がある。
【0090】
そこで、実施の形態3で、本処理では、事前に画質の良い画像の撮像712を行って第2学習用画像707として、像質変換エンジン705の学習に使用する。これにより、撮像処理時間が比較的短いが、画質の相対的に悪い画像から画質の相対的に良い画像への変換が可能となる。その結果、画質と処理時間との両立が可能となる。言い換えると、ユーザに応じて画質と処理時間とのバランスを調整しやすくなる。
【0091】
また、別の装置により取得した画像を第2学習用画像707として使用する変形例の場合には、試料観察フェーズS2の際に、試料観察装置1で撮像した画像の像質を、その別装置で取得される画像の像質に変換することが可能となる。
【0092】
なお、
図7で、上位制御装置3のプロセッサから、SEM101による撮像712を撮像パラメータ710によって制御する際には、例えば電子ビームの走査回数などを設定・制御する。これにより、撮像画像の画質の高低などを制御できる。例えば目標画像(第2学習用画像707)側では、走査回数を多くして高画質画像を撮像するようにし、入力画像(第1学習用画像704)側では、設計データ700に基づいて相対的に低画質画像を使用することもできる。このように入力画像と目標画像とで画質の高低を制御することで、処理時間と精度とのバランスをとることも可能である。
[3-2.効果等]
上記のように、実施の形態3によれば、複数の入力画像である第1学習用画像については設計データに基づいて作成するので、複数の入力画像を作成するための撮像の作業が低減できる。
【0093】
<実施の形態4>
図8を用いて、実施の形態4の試料観察装置等について説明する。実施の形態4では、第1学習用画像および第2学習用画像の使用方法について示す。実施の形態4では、第1学習用画像と第2学習用画像との一方は、撮像画像を使用する。そのため、実施の形態4は、実施の形態2または実施の形態3の変形例に相当する。実施の形態4は、実施の形態2や3での学習フェーズS1に対し、主に異なる構成部分は、学習用画像取得および使用方法である。
【0094】
[4-1.学習フェーズ]
図8は、実施の形態4で、学習フェーズS1の構成例を示す。実施の形態4で、第1学習用画像(f)と第2学習用画像(g)との一方は、SEM101で撮像した試料9の撮像画像であり、もう一方は、設計データから作成した設計画像である。例えば、撮像画像から第1学習用画像を作成し、設計データから第2学習用画像を作成する場合で説明するが、逆の場合でも、実施の形態4での処理が同様に成立する。
【0095】
図8で、プロセッサは、SEM101による撮像画像801と、設計データ800とを照合し画像位置合わせの処理802を行う。プロセッサは、この処理802に基づいて、設計データ800の領域内において、撮像画像801の位置・領域と対応する位置・領域803をトリミング804する。これにより、トリミングされた設計データ805(領域、情報)が得られる。プロセッサは、この設計データ805(領域)から、第1学習用画像または第2学習用画像を作成する。
【0096】
なお、上記のような画像位置合わせ802の機能を設ける場合、例えば
図6の実施の形態2の場合では、SEM101による撮像612で得られる撮像画像と、設計データ600(その中の領域)とを入力として画像位置合わせを行う機能ブロックが追加される。
【0097】
実施の形態4では、本処理により、第1学習用画像と第2学習用画像との位置合わせが可能となり、第1学習用画像と第2学習用画像とについて、位置ずれが無い、または低減される。これにより、第1学習用画像と第2学習用画像との位置ずれを考慮する必要無く、モデルの最適化が可能となり、最適化処理の安定性が向上する。
【0098】
<実施の形態5>
図9以降を用いて、実施の形態5の試料観察装置等について説明する。実施の形態5では、第1学習用画像および第2学習用画像において複数の画像を使用する方法、言い換えると前述の1つの画像ごとにさらに複数化する方法を示す。実施の形態5は、実施の形態1に対し、主に異なる構成部分は、学習用画像取得おおび使用方法である。実施の形態5は、実施の形態1での第1学習用画像および第2学習用画像について、試料9の同じ領域ごとに、さらに複数の画像を用いる。実施の形態5での特徴は、実施の形態1~3に対し同様に適用できる。
【0099】
[5-1.学習フェーズ]
図9は、実施の形態5での学習フェーズS1の構成例を示す。描画エンジン903は、設計データ900、第1処理パラメータ901、検出器別処理パラメータ911に基づいて、複数の第1学習用画像904を作成する。また、描画エンジン903は、設計データ900、第2処理パラメータ902、検出器別処理パラメータ912に基づいて、第2学習用画像907を作成する。実施の形態5では、さらに、各第1学習用画像904は、複数の画像で構成され、第2学習用画像907は、複数の画像で構成される。例えば、第1学習用画像904における1番目の画像f1は、f1-1からf1-Vまでの複数(Vとする)の画像で構成される。同様に、M番目までの各画像は、複数(V)の画像で構成される。第2学習用画像907(g)は、g-1からg-Uまでの複数(Uとする)の画像で構成される。
【0100】
描画エンジン903により取得した複数の第1学習用画像904(f1~fM)における各画像は、それぞれ2次元の配列として扱うことができる。例えば、ある矩形の画像において、画面水平方向(x方向)を第1次元とし、画面垂直方向(y方向)を第2次元として、画像領域内の各画素の位置を2次元配列で指定できる。さらに、複数の入力画像である第1学習用画像904(2次元配列の各画像)は、画像枚数Vに対応した方向を、3次元方向として連結することで、各画像を3次元の配列に拡張して構成してもよい。例えば、1番目の画像群f1(=f1-1~f1-V)は、1つの3次元配列で構成される。
【0101】
複数の第1学習用画像904(f1~fM)は、画像枚数Mおよび画像枚数Vに対応して、以下のように識別・特定することができる。画像枚数Mに対応した方向での複数を識別するための変数(インデックス)をiとし、画像枚数Vに対応した方向での複数を識別するための変数(インデックス)をmとする。第1学習用画像904中のある1つの画像は、(i,m)を指定することで特定できる。例えば、第1学習用画像904であるi番目の画像群fi={fi-1,……,fi-V}中におけるm番目の画像fi-m、といったように特定できる。
【0102】
また、描画エンジン903により取得した複数の第2学習用画像907{g-1,……,g-U}における各画像は、それぞれ2次元の配列として扱うことができる。さらに、複数の目標画像である第2学習用画像907(2次元配列の各画像)は、画像枚数Uに対応した方向を、3次元方向として連結することで、各画像を3次元の配列に拡張して構成してもよい。複数の目標画像である第2学習用画像907(g-1~g-U)における1つの画像は、画像枚数Uに対応した方向での複数を識別するための変数(kとする)を用いて、例えば画像g-k、といったように特定できる。
【0103】
次に、第1学習用画像904の各画像(例えば画像群f1)を像質変換エンジン905に入力することで、推定第2学習用画像906として、対応する画像群(例えばg’1)が得られる。プロセッサは、この推定第2学習用画像906についても、画像枚数Nとは別の画像枚数(Wとする)に対応した方向(例えば3次元方向)で要素を複数に分割し、例えば画像群g’1{g’1-1,……,g’1-W}のように作成してもよい。これらの推定第2学習用画像906についても同様に3次元配列で構成してもよい。
【0104】
複数の第2学習用画像906(g’1~g’N)は、画像枚数Nおよび画像枚数Wに対応して、例えば以下のように識別・特定できる。画像枚数Nに対応した方向での変数(インデックス)をjとし、画像枚数Wに対応した方向での変数(インデックス)をnとする。複数の第2学習用画像906中のある1つの画像は、(j,n)を指定することで特定できる。例えば、第2学習用画像906であるj番目の画像群g’j={g’j-1,……,g’j-W}中におけるn番目の画像g’j-n、といったように特定できる。
【0105】
なお、実施の形態5で、
図9の例では、第1学習用画像904と第2学習用画像907との両方を、設計データ900に基づいて作成する場合を示したが、これに限らず、実施の形態2,3と同様に、第1学習用画像904と第2学習用画像907との一方を、試料9の撮像によって取得するようにしてもよい。
【0106】
また、実施の形態5では、前述の実施の形態1~4に対し、像質変換エンジン905のモデルは、第1学習用画像904および推定第2学習用画像906の3次元方向の画像枚数(V,W)に応じた多次元画像を入出力する構成に変更される。例えば、この像質変換エンジン905にCNNを適用する場合には、CNNにおける入力層および出力層のみを、上記3次元方向の画像枚数(V,W)に対応させた構成に変更すればよい。
【0107】
実施の形態5では、3次元方向の画像枚数(V,W)での複数の画像(例えば画像群f1の画像f1-1~f1―V)としては、特に、撮像装置2(SEM101)の複数の検出器111(
図1)により取得できる複数の種類の複数の画像などを適用できる。この複数の種類の複数の画像は、例えば散乱方向の異なる散乱電子の量、あるいはエネルギーの異なる散乱電子の量を画像化した画像である。具体的には、電子顕微鏡では、そのような複数の種類の画像を撮像・取得できるものがある。その電子顕微鏡では、一度の撮像によってそれらの画像を取得できるものもあるし、複数回の撮像に分けてそれらの画像を取得できる装置もある。
図1のSEM101は、複数の検出器111を用いて、上記のような複数の種類の画像を撮像できる。これによる複数の種類の複数の画像を、実施の形態5での3次元方向の複数の画像として適用可能である。
【0108】
なお、
図4、
図7、
図9等の構成において、モデルに対する入出力の複数の画像(第1学習用画像および推定第2学習用画像)は、入力側の画像枚数と出力側の画像枚数とを同じとしたが、これに限らず、入力側の画像枚数と出力側の画像枚数とを異ならせることも可能である。また、入力側の画像枚数と出力側の画像枚数とで一方のみを1枚とすることも可能である。
【0109】
[5-2.検出器]
図10は、
図1のSEM101の複数の検出器111の詳細構成例を示す斜視図である。本例では、検出器111として、5つの検出器を有する。これらの検出器は、ステージ109上の試料9に対し、所定の位置(位置P1~P5)に配置されている。z軸は、鉛直方向と対応している。位置P1の検出器および位置P2の検出器は、y軸に沿った位置に配置され、位置P3の検出器および位置P4の検出器は、x軸に沿った位置に配置されている。これらの4個の検出器は、z軸の所定の位置における同一の平面内に配置されている。位置P5の検出器は、z軸に沿って、4個の検出器の平面の位置に比べて上方に離れた位置に配置されている。
【0110】
4個の検出器は、特定の放出角度(仰角および方位角)を持つ電子を選択的に検出できるように配置されている。例えば、位置P1の検出器は、試料9からy軸の正方向に沿って放出された電子を検出可能である。位置P4の検出器は、試料9からx軸の正方向に沿って放出された電子を検出可能である。位置P5の検出器は、主に試料9からz軸の方向に放出された電子を検出可能である。
【0111】
上記のように、複数の検出器が異なる軸に沿って複数の位置に配置された構成により、あたかも各検出器に対して対向方向から光を照射したかのようなコントラストのついた画像を取得可能である。そのため、より詳細な欠陥観察が可能である。このような検出器111の構成に限定されず、異なる数、位置、向き等の構成としてもよい。
【0112】
[5-3.描画エンジンにより作成する第1学習用画像]
図11および
図12は、実施の形態5での学習フェーズS1において、描画エンジン903により作成する第1学習用画像904の画像の例を示す。
図11および
図12に示す複数の種類の画像は、各実施の形態で適用可能である。実施の形態5で、プロセッサは、これらの複数の種類の画像を、設計データ900に基づいて推定によって作成する。
【0113】
例えば、試料9から飛び出す電子の種類によって、二次電子像や反射電子像が得られる。二次電子(Secondary Electron)をSEとも略称する。反射電子(BackScattered Electron)をBSEとも略称する。
図11の(A)~(G)の画像はSE像の例であり、
図12の(H)~(I)の画像はBSE像の例である。(A)~(G)の画像は、像質変動を考慮した画像の例である。(B)~(E)の画像は、パターン形状変形を考慮した画像の例である。また、
図10の例と同様に、いくつかの方向(例えばx-y面での上下左右)に取り付けられた複数の検出器(反射電子検出器)を有する構成の場合、それらの複数の検出器により検出された電子数から、方向別のBSE像が得られる。また、検出器の前にエネルギーフィルタを設けた構成の場合、特定のエネルギーを持った散乱電子のみを検出でき、それにより、エネルギー別の画像が得られる。
【0114】
また、SEM101の構成によっては、測定対象を任意の傾斜方向から観察したチルト画像を得ることもできる。
図12の(J)の画像1200の例は、ステージ109上の試料9の面に対し、左斜め上45度の方向から観察したチルト画像である。このようなチルト画像を得る方式としては、例えばビームチルト方式、ステージチルト方式、鏡筒チルト方式等が挙げられる。ビームチルト方式は、電子光学系より照射する電子線を偏向し、電子線の照射角度を傾斜させて撮像する方式である。ステージチルト方式は、試料を載せるステージを傾斜させて撮像する方式である。鏡筒チルト方式は、光学系自体を試料に対して傾斜させる方式である。
【0115】
実施の形態5では、このような複数の種類の複数の画像を第1学習用画像904とすることで、1枚の画像を第1学習用画像とする構成よりも、多くの情報を像質変換エンジン905のモデルに入力可能となるため、像質変換エンジン905のモデルの性能、特に様々な像質に対応できるロバストネスを向上できる。像質変換エンジン905のモデルの出力として、異なる像質による複数の推定第2学習用画像906が得られる。
【0116】
また、複数の異なる像質の画像を像質変換エンジン905の出力とするために、出力画像ごとに異なる複数の像質変換エンジンを用意する構成とする場合、複数の像質変換エンジンの最適化が必要となる。また、それらの像質変換エンジンを利用する際には、各像質変換エンジンに撮像画像を入力し処理する必要があるため、処理時間が長くなる。それに対し、実施の形態5では、複数の異なる像質の画像(推定第2学習用画像906)を像質変換エンジン906の出力とするために、1つの像質変換エンジン905で済む。実施の形態5では、同一の設計データ900に基づいて第2学習用画像907を作成しているため、像質変換エンジン905は、同一な特徴量から、各出力画像(推定第2学習用画像906)を作成可能である。本処理では、複数の画像を出力可能な1つの像質変換エンジン905にすることで、最適化の際の処理時間および像質変換の処理時間が短くなり、効率および利便性が向上する。
【0117】
図11の(A)の画像1110は、疑似SE画像として、層別濃淡描画の画像である。前述の
図5の(B)の例のように、試料9の領域は、回路パターンとして例えば上下層を有する。画像1110は、パターン濃淡値による像質ヴァリエーションの生成例である。プロセッサは、設計データの領域に基づいて、パターン濃淡値を変更することで、このような画像を作成する。この画像1110では、上層のライン(例えばライン領域1111)と下層のライン(例えばライン領域1112)とが異なる濃淡(明度)で描画されており、上層の方が下層よりも明るい。また、画像1110の例のように、SE像で特に顕著に観察される各層のエッジ部(例えばライン1113)におけるホワイトバンドを描画した画像としてもよい。
【0118】
(B)の画像1120は、回路パターンの形状変形による例である。プロセッサは、設計データの領域に基づいて、回路パターンの形状を変形する処理によって、このような画像を作成する。画像1120は、形状変形の例として、コーナーラウンディングである。縦ラインと横ラインとのコーナー1211に丸みが付与されている。
【0119】
(C)の画像1130は、形状変形の他の例として、ラインエッジラフネス付与の例である。画像1130は、各ライン領域について、エッジ(例えばライン1131)を歪ませるようにラフネスが付与されている。
【0120】
(D)の画像1140は、形状変形の他の例として、線幅変更の例である。画像1140では、上層のライン領域の線幅(例えば線幅1141)を標準よりも膨張させ、下層のライン領域の線幅(例えば線幅1412)を標準よりも収縮させている。
【0121】
(E)の画像1150は、層別濃淡描画の他の例として、(A)の画像1110に対し、上下層で濃淡(明度)を反転した例である。画像1150では、下層の方が上層よりも明るい。
【0122】
(F)の画像1160は、画像分解能による像質ヴァリエーションの例である。プロセッサは、設計データの領域に基づいて、分解能を変更する処理によって、このような画像を作成する。画像1160は、分解能が低い顕微鏡を想定して、標準よりも低分解能とされている。画像1160では、ぼかした画像となっており、例えばライン領域のエッジがぼやけている。
【0123】
(G)の画像1170は、画像ノイズによる像質ヴァリエーションの例である。プロセッサは、設計データの領域に基づいて、画像ノイズを変更する処理によって、このような画像を作成する。画像1170は、ノイズ付与によって、標準よりも低S/Nとされている。画像1170では、画素毎のノイズ(異なる濃淡値)が現れている。
【0124】
図12で、(H)の画像1180は、疑似BSE画像の例において、検出器による像質ヴァリエーションの例である。プロセッサは、検出器111の構成および設計データの領域に基づいて、画像加工処理等によって、このような画像を作成する。画像1180は、複数の検出器のうち例えば左側のBSE検出器による画像を想定し、回路パターンの右側に影がある画像である。例えばある縦ライン領域1181について、左側のエッジのライン1182と、右側のエッジのライン1183とがある。左側のエッジのライン1182は、このパターンに対し左側にBSE検出器がある場合を想定して、より明るい色(光が当てられたような表現)とされ、反対に、右側のエッジのライン1183は、より暗い色(影のような表現)とされている。
【0125】
(I)の画像1190は、検出器による他の例であり、上側のBSE検出器による画像を想定し、パターンの下側に影がある画像である。例えばある横ライン領域1191について、上側のエッジのライン1192と、下側のエッジのライン1193とがある。上側のエッジのライン1192は、このパターンに対し上側にBSE検出器がある場合を想定して、より明るい色とされ、反対に、下側のエッジのライン1193は、より暗い色とされている。
【0126】
(J)の画像1200は、チルト画像の例である。画像1200は、ステージ109上の試料9(
図10)を、標準的なz軸の方向ではなく、斜め上方向、例えば左斜め上45度(チルト方向)から撮像した場合を想定したチルト画像である。このチルト画像内では、パターンが3次元的に表現されている。例えば、縦ライン領域1201のパターンは、斜めから観察した場合を想定して、右側の側面の領域1202が表現されている。横ライン領域1203は、下側の側面の領域1204が表現されている。また、上層の縦ライン領域1201と下層の横ライン領域1204とが交差する部分も表現されている。
【0127】
プロセッサは、例えば、設計データにおける二次元的なパターンレイアウトのデータから、このようなチルト画像を推定して作成する。この際に、チルト画像を推定して作成する方法としては、例えば、パターンの高さの設計値を入力して、疑似的なパターンの三次元形状を生成し、チルト方向から観察される画像を推定する方法が挙げられる。
【0128】
上記のように、試料観察装置1のプロセッサは、帯電やパターン形状の変動などといった試料9の状態や撮像条件などの影響によって、試料9を撮像する際に想定される像質の変動を考慮し、異なる様々な像質の画像をヴァリエーションとして作成し、複数の入力画像である第1学習用画像904とする。これにより、入力画像の像質変動に対してロバストな像質変換エンジン905のモデルに最適化が可能である。また、試料9を観察する際の条件に合わせて、撮像装置2の検出器111(複数の検出器のうちの使用する検出器など)を設定すること、あるいは、チルト画像にすることで、高精度にモデルの最適化が可能である。
【0129】
[5-4.描画エンジンにより作成する第2学習用画像]
次に、
図13および
図14は、描画エンジン903により作成する第2学習用画像907の例を示す。例えば、撮像によって得られる画像よりも視認性を向上させた、高コントラストで高S/Nな画像を、第2学習用画像907としてもよい。また、チルト画像など、ユーザの嗜好に合わせた画像を、第2学習用画像907としてもよい。また、撮像した画像を模した画像のみではなく、撮像して得られるであろう画像から情報を取得するための画像処理を適用した結果を、第2学習用画像907としてもよい。また、設計データの回路パターンから一部を抽出した画像を、第2学習用画像907としてもよい。
【0130】
図13で、(A)の画像1310は、撮像によって得られる画像よりも視認性を向上させた高コントラストの画像の例である。画像1310では、上層パターン領域と下層パターン領域とそれ以外の領域(パターン無し領域)との3種類の領域が高コントラストとなるように表現されている。
【0131】
(B)の画像1320は、層別のパターンセグメンテーションの画像の例である。画像1320では、上層パターン領域と下層パターン領域とそれ以外の領域(パターン無し領域)との3種類の領域が、領域毎に色を分けて表現されている。
【0132】
(C)の画像1330から
図14の(K)の画像1410までの画像は、パターンエッジの画像の例であり、パターンの輪郭線(エッジ)が目立つように描画されている。(C)の画像1330では、パターンのエッジが抽出されており、例えば各ライン領域のエッジラインが白で描画され、それ以外は黒で描画されている。
【0133】
(D)の画像1340および(E)の画像1350は、(C)の画像1330に対し、エッジ方向別の画像であり、(D)の画像1340はx方向(横方向)のエッジのみを抽出した画像であり、(E)の画像1350はy方向(縦方向)のエッジのみを抽出した画像である。
【0134】
図14で、(F)の画像1360から(K)の画像1410までの画像は、半導体の積層の層毎に分けた画像の例である。(F)の画像1360は、上層パターンのエッジのみを抽出した画像である。(G)の画像1370は、上層パターンのx方向のエッジのみを抽出した画像である。(H)の画像1380は、上層パターンのy方向のエッジのみを抽出した画像である。(I)の画像1390は、下層パターンのエッジのみを抽出した画像である。(J)の画像1400は、下層パターンのx方向のエッジのみを抽出した画像である。(K)の画像1410は)、下層パターンのy方向のエッジのみを抽出した画像である。
【0135】
撮像画像に対し画像処理を適用した場合、画像のノイズ等の影響により、正しく情報を抽出できない場合や、適用工程に合わせてパラメータを調整する必要がある場合がある。実施の形態5では、設計データから画像処理適用後の画像を取得する際には、ノイズ等の影響は受けないため、容易に情報を取得できる。実施の形態5では、撮像して得られるであろう画像から情報を取得するための画像処理を適用した画像を、第2学習用画像907として学習させ、像質変換エンジン905のモデルを最適化する。これにより、画像処理の代わりに像質変換エンジン905を使用可能となる。
【0136】
なお、本例では、エッジ画像は、x方向とy方向との2つの方向の方向別の複数のエッジ画像としたが、これに限らず、他の方向(例えば面内の斜め方向)についても同様に適用可能である。
【0137】
<試料観察フェーズ>
図15を用いて、
図2の試料観察フェーズS2の例について説明する。
図15以降の各処理例は、前述の各実施の形態に同様に適用できる。
図15は、試料観察フェーズS2の処理フローを示し、ステップS201~S207を有する。上位制御装置3のプロセッサは、まず、ステップS201で、観察対象となる試料9である半導体ウェハをSEM101のステージ109上にロードする。ステップS202で、プロセッサは、試料9に対応した撮像条件を読み込む。また、ステップS203で、プロセッサは、試料観察処理(推定処理S21)に対応した像質変換エンジン(例えば
図4の像質変換エンジン405)の処理パラメータ(
図2の学習フェーズS1で学習済みである、画像推定のために最適化されたモデルパラメータ270)を読み込む。
【0138】
次に、ステップS204で、プロセッサは、試料9上の観察対象領域が撮像視野内に含まれるようにステージ109を移動させる。言い換えると、プロセッサは、撮像光学系を観察対象領域に位置付ける。ステップS204~S207の処理は、観察対象領域(例えば欠陥位置情報8で示す欠陥位置)毎に繰り返しのループ処理である。次に、ステップS205で、プロセッサは、SEM101の制御によって、電子ビームを試料9に照射し、検出器111により二次電子や反射電子等を検出して画像化することで、観察対象領域の第1撮像画像253(F)を取得する。
【0139】
次に、ステップS206で、プロセッサは、像質変換エンジン405(
図2の推定部240のモデル260)に第1撮像画像253(F)を入力することで、出力として推定による第2撮像画像254(G’)を取得する。これにより、プロセッサは、第1撮像画像253の像質を第2学習用画像の像質に変換した第2撮像画像254を取得できる。即ち、観察処理に好適な像質の画像(観察用画像)が第2撮像画像254として得られる。
【0140】
その後、ステップS207で、プロセッサは、第2撮像画像254に対し、観察目的に応じた画像処理を適用してもよい。この画像処理の適用例としては、寸法計測、設計データとの位置合わせ、欠陥検出・識別などが挙げられる。それぞれの例について後述する。なお、このような画像処理は、試料観察装置1以外の装置(例えば
図1の欠陥分類装置6)で行ってもよい。
【0141】
<A. 寸法計測>
ステップS207の画像処理の例として寸法計測の処理例は以下の通りである。
図16は、寸法計測の処理例を示す。この寸法計測は、第2撮像画像254(F’)を用いて試料9の回路パターンの寸法を計測するものである。上位制御装置3のプロセッサは、事前に、第2学習用画像としてエッジ画像(
図13,
図14)を使用して最適化した像質変換エンジン1601を用いる。プロセッサは、像質変換エンジン1601に、第1撮像画像253(F)である画像1600を入力することで、出力としてエッジ画像である画像1602を取得する。
【0142】
次に、プロセッサは、画像1602に対する寸法計測処理1603を行う。プロセッサは、この寸法計測処理1603で、エッジ間の距離を測定することで、パターンの寸法を計測する。プロセッサは、寸法計測処理1603の結果の画像1604を得る。画像1602,1604の例では、各エッジ間の領域毎に、横方向の幅が計測されている。例えば、エッジ間領域1605の横幅(X)1606等がある。
【0143】
更に、上記のようなエッジ画像は、前述のライン幅や、ホール径に代表される、一次元的なパターン寸法に加え、パターン輪郭線に基づくパターンの二次元的な形状評価にも有効である。例えば、半導体製造におけるリソグラフィ工程では、光近接効果により、パターンの二次元的な形状変形が発生する場合がある。形状変形の例は、コーナー部の丸まりやパターンのうねり等が挙げられる。
【0144】
画像からパターンの寸法や形状を計測・評価する際には、パターンのエッジの位置を、画像処理によってなるべく高精度に特定する必要がある。しかしながら、撮像により得られる画像には、ノイズ等の、パターン情報以外の情報も含まれる。そのため、高精度にエッジ位置を特定するためには、従来、人手により、画像処理パラメータを調整する必要がある。それに対し、本処理では、事前に学習により最適化した像質変換エンジン(モデル)により、撮像画像をエッジ画像に変換することで、人手による画像処理パラメータの調整を要せずに、高精度にエッジ位置を特定可能である。モデル学習では、入出力画像としてエッジやノイズ等を考慮した様々な像質の画像を用いて学習して最適化している。そのため、上記のように好適なエッジ画像(第2撮像画像254)を用いた高精度の寸法計測が可能である。
【0145】
<B. 設計データとの位置合わせ>
ステップS207の画像処理の例として設計データとの位置合わせの処理例は以下の通りである。SEM101等の電子顕微鏡においては、撮像位置のずれ量の推定と補正(言い換えるとアドレッシング)が必要になる。電子顕微鏡の視野を移動させるためには、電子ビームの照射位置を移動させる必要がある。その方法としては、試料を搬送するステージを移動させるステージシフトと、偏向器により電子ビームの軌道を変更させるイメージシフトとの2つがある。両者とも、停止位置には誤差がある。
【0146】
撮像位置のずれ量を推定する方法の1つとしては、撮像画像と設計データ(その中の領域)との位置合わせ(言い換えるとマッチング)を行うことが考えられる。一方、撮像画像の像質が悪い場合には、位置合わせ自体に失敗することがある。そこで、実施の形態では、撮像画像(第1撮像画像253)を像質変換エンジン(モデル270)に入力した際の出力である第2撮像画像254と、設計データ(その中の領域)との位置合わせを行うことにより、第1撮像画像253の撮像位置の特定を行う。位置合わせに有効な像変換の方法はいくつか考えらえる。例えば、1つの方法では、第1撮像画像253よりも高画質な画像を第2撮像画像254として推定する。これにより、位置合わせの成功率向上が期待できる。また、他の方法では、方向別のエッジ画像を第2撮像画像254として推定することも考えられる。
【0147】
図17は、設計データとの位置合わせの処理例を示す。プロセッサは、試料9のパターンの各層の各方向のエッジ画像を第2学習用画像として事前に最適化した処理パラメータ1701を像質変換エンジン1002に設定する。プロセッサは、第1撮像画像253である撮像画像1700を像質変換エンジン1702に入力して、出力として第2撮像画像254であるエッジ画像(画像群)1703を得る。エッジ画像(画像群)1703は、パターンの各層、各方向のエッジ画像(推定されたSEM画像)であり、例えば、上層x方向の画像、上層y方向の画像、下層x方向の画像、下層y方向の画像などである。それに対応した像質の画像の例は、前述の
図13等の通りである。
【0148】
次に、プロセッサは、設計データ1704における試料9の領域を、描画エンジン1708により描画して、各層別、各エッジ方向別のエッジ画像(画像群)1705を作成する。エッジ画像(画像群)1705は、設計データ1704から作成したエッジ画像(設計画像)であり、エッジ画像1703と同様に、例えば、上層x方向の画像、上層y方向の画像、下層x方向の画像、下層y方向の画像などである。
【0149】
次に、プロセッサは、設計データ1704から作成したエッジ画像1705と、撮像画像1700から作成したエッジ画像1703とのそれぞれの相関マップを計算1706する。プロセッサは、この相関マップ計算1706では、エッジ画像1703の各画像と、エッジ画像1705の各画像とで、層や方向が対応する画像の組で、それぞれの相関マップを作成する。複数の相関マップとして、例えば、上層x方向の相関マップ、上層y方向の相関マップ、下層x方向の相関マップ、下層y方向の相関マップなどが得られる。次に、プロセッサは、重み付き加算等を行うことで、複数の相関マップを1つにまとめて、最終的な相関マップ1707を計算して得る。
【0150】
この最終的な相関マップ1707において、相関値が最大となる位置が、撮像画像(対応する観察対象領域)と設計データ(その中の対応する領域)との位置合わせ(マッチング)の位置になる。前述の重み付き加算において、例えば画像に含まれるエッジ量に反比例した重みとする。これにより、エッジ量が少ない画像の一致度を犠牲にすることなく、正しい位置合わせが期待できる。
【0151】
上記のように、パターン形状を示すエッジ画像を使用することで、撮像画像と設計データとの位置合わせが高精度に可能である。しかしながら、前述と同様に、撮像画像にはパターン情報以外の情報も含まれるため、撮像画像から画像処理によって高精度にエッジ位置を特定するためには、画像処理のパラメータを調整する必要がある。本処理では、事前に最適化した像質変換エンジンにより第1撮像画像をエッジ画像に変換することで、人手によるパラメータの調整を要せずに、エッジ位置を高精度に特定できる。これにより、撮像画像と設計データとの位置合わせを高精度に実現できる。
【0152】
<C. 欠陥検出、欠陥種類識別>
ステップS207の画像処理の例として欠陥検出および欠陥種類識別(分類)の処理例は以下の通りである。
図18は、欠陥検出および欠陥種類識別(分類)の処理例を示す。プロセッサは、S/Nの高い画像を第2学習用画像として最適化した像質変換エンジンを用いる。プロセッサは、撮像画像に基づいて像質変換エンジンにより得た第2撮像画像254である画像1801と、設計データから作成した参照用画像1800との画像位置合わせ処理1802を行って、位置合わせ結果の画像1803を取得する。
【0153】
次に、プロセッサは、設計データに基づいた、位置合わせ結果の画像1803から、撮像画像に基づいて得た画像1801と同じ領域を切り出す処理1804を行って、切り出された画像1805を得る。
【0154】
次に、プロセッサは、切り出された画像1805と、撮像画像に基づいて得た画像1801との差分を計算することにより、欠陥位置特定処理1806を行って、その結果である特定された欠陥位置を含んだ画像(欠陥画像)1807を得る。
【0155】
その後、プロセッサは、さらに、欠陥画像1807を用いて、欠陥種類を識別する処理1808(言い換えると分類処理)を適用してもよい。欠陥を識別する方法としては、画像から画像処理により特徴量を算出して特徴量に基づいて識別する方法でもよいし、事前に最適化した欠陥識別用のCNNを用いて識別する方法でもよい。
【0156】
一般に、撮像により得た第1撮像画像および参照用画像には、ノイズが含まれるため、高精度に欠陥検出や識別を行うためには、従来、人手で画像処理パラメータを調整する必要がある。それに対し、本処理では、像質変換エンジンにより第1撮像画像をS/Nの高い画像1801(第2撮像画像254)に変換することで、ノイズの影響を低減可能である。また、設計データから作成した参照用画像1800は、ノイズを含まないため、参照用画像のノイズを考慮せずに、欠陥位置の特定が可能となる。このように、欠陥位置特定を阻害する要因である第1撮像画像および参照用画像のノイズの影響を低減可能となる。
【0157】
<GUI>
次に、前述の各実施の形態に同様に適用可能であるGUIの画面例を説明する。なお、前述の実施の形態1~3等の構成は、組み合わせた形態も可能であり、その組み合わせた形態では、実施の形態1~3等の構成からユーザが適宜に使用する好適な構成を選択できる。ユーザは、試料観察の種別などに応じてモデル等を選択できる。
【0158】
図19は、前述のエンジン(モデル)の最適化方法に関してユーザが決定・設定できるGUIの画面例を示す。この画面では、出力データの欄1900で、出力データの種別をユーザが選択して設定できる。欄1900には、像質変換後画像や、各種の画像処理適用結果(欠陥検出結果、欠陥識別結果、撮像位置の座標、寸法計測結果など)などの選択肢が表示されている。
【0159】
また、下部の表には、前述の学習フェーズS1に係わる第1学習用画像と第2学習用画像とについて、取得方法および処理パラメータをユーザが設定できる欄が設けられている。欄1901では、第1学習用画像の取得方法について、「撮像」と「設計データ利用」との選択肢から選択して設定できる。欄1902では、第2学習用画像の取得方法について、「撮像」と「設計データ利用」との選択肢から選択して設定できる。
図19の例では、欄1901で「撮像」、欄1902で「設計データ利用」が選択されているので、前述の実施の形態2の構成と対応している。
【0160】
第2学習用画像の取得方法において「設計データ利用」が選択された場合には、対応する処理パラメータの欄において、ユーザがエンジンに使用する処理パラメータを指定して設定できる。欄1903では、パラメータの例として、パターン濃淡値、画像分解能、回路パターン形状変形などのパラメータの値を指定できる。
【0161】
また、欄1904では、理想画像の像質をユーザが選択肢から選択できる。理想画像(目標画像、第2学習用画像)の像質は、例えば、理想SEM画像、エッジ画像、チルト画像などから選択できる。理想画像の像質が選択された後、Previewボタン1905が押された場合、その選択された像質でのプレビュー画像を例えば
図20の画面で確認できる。
【0162】
図20の画面例は、選択された像質でのプレビュー画像を表示する例である。画像IDの欄2001では、プレビュー対象の画像のIDをユーザが選択できる。画像種の欄2002では、対象の画像種をユーザが選択肢から選択できる。欄2003には、学習用画像(本例では第2学習用画像)の作成のために入力する設計データ(その中の領域)のプレビュー画像が表示される。欄2004には、学習用画像(本例では第2学習用画像)の作成のためにユーザが設定した処理パラメータ(
図19)を描画エンジンに設定した場合にその描画エンジンにより作成・出力された画像がプレビュー画像として表示される。本画面では、欄2003の画像と欄2004の画像とが並列で表示される。ユーザは、それらの画像を確認できる。第1学習用画像についても同様にプレビューが可能である。
【0163】
本例では、1つの設計データ(試料9の領域)とそれに対応して作成した画像とが表示されているが、同様に、他の領域を画像IDや所定の操作で指定して画像を表示可能である。
図19の欄1904で理想画像としてSEM画像が選択されている場合には、欄2002で、画像種として、前述の検出器111のどの検出器に対応した種類の画像であるか等が選択できる。理想画像としてエッジ画像が選択されている場合には、画像種として、どの層のどの方向のエッジ情報に対応した画像であるか等が選択できる。上記のようなGUIを用いることで、ユーザによる作業を効率化できる。
【0164】
以上、本発明を実施の形態に基づいて具体的に説明したが、本発明は前述の実施の形態に限定されず、要旨を逸脱しない範囲で種々変更可能である。
【符号の説明】
【0165】
1…試料観察装置、2…撮像装置、3…上位制御装置、S1…学習フェーズ、S2…試料観察フェーズ、S11…学習用画像作成処理、S12…モデル学習処理、S21…推定処理、200…設計データ入力部、205…GUIによるパラメータ指定、210…第1学習用画像作成部、220…第2学習用画像作成部、230…学習部、240…推定部、250…設計データ、251…複数の入力画像(第1学習用画像)、252…目標画像(第2学習用画像、推定第2学習用画像)、253…第1撮像画像、254…第2撮像画像、260…モデル、270…モデルパラメータ。