(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-09-18
(45)【発行日】2024-09-27
(54)【発明の名称】発光素子及びその製造方法、発光性化合物及びその製造方法、組成物及びその製造方法、情報処理方法、情報処理装置、プログラム、発光性化合物の提供方法、並びにデータ生成方法
(51)【国際特許分類】
H10K 50/10 20230101AFI20240919BHJP
C09K 11/06 20060101ALI20240919BHJP
G06N 20/00 20190101ALI20240919BHJP
H05B 33/10 20060101ALI20240919BHJP
【FI】
H05B33/14 B
C09K11/06 610
C09K11/06 645
C09K11/06 650
G06N20/00
H05B33/10
(21)【出願番号】P 2022045845
(22)【出願日】2022-03-22
【審査請求日】2022-03-31
【審判番号】
【審判請求日】2023-07-04
【早期審査対象出願】
(73)【特許権者】
【識別番号】000002093
【氏名又は名称】住友化学株式会社
(74)【代理人】
【識別番号】100114557
【氏名又は名称】河野 英仁
(74)【代理人】
【識別番号】100078868
【氏名又は名称】河野 登夫
(72)【発明者】
【氏名】板東 晃徳
(72)【発明者】
【氏名】斎藤 孝和
(72)【発明者】
【氏名】石飛 昌光
(72)【発明者】
【氏名】西田 理彦
(72)【発明者】
【氏名】吉岡 謙
【合議体】
【審判長】神谷 健一
【審判官】関根 洋之
【審判官】西岡 貴央
(56)【参考文献】
【文献】特開2021-140701(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H10K 50/10
H05B 33/00-33/28
G09F 9/30
C09K 11/06
(57)【特許請求の範囲】
【請求項1】
複数の化合物を準備する準備工程と、
前記準備工程で得られた複数の化合物から、発光性化合物を抽出する抽出工程と、を含み、
前記抽出工程において、mordredによる分子記述子のSpDiam_Aが5.0以上
6.0以下、AATSC2cが
-0.010以上0.003以下、MATS5sが
-0.30以上0.17以下、GATS6cが0.6以上
3.0以下、
及びAETA_betaが
0.5以上1.6以
下を満たす発光性化合物を抽出する
発光性化合物の製造方法。
【請求項2】
複数の化合物を準備する準備工程と、
前記準備工程で得られた複数の化合物から、発光スペクトルの半値幅が所定値未満である発光性化合物を抽出する抽出工程と、を含み、
前記抽出工程において、mordredによる分子記述子のSpDiam_Aが5.0以上
6.0以下、AATSC2cが
-0.010以上0.003以下、MATS5sが
-0.30以上0.17以下、GATS6cが0.6以上
3.0以下、
及びAETA_betaが
0.5以上1.6以
下を満たす発光性化合物を抽出する
発光性化合物の製造方法。
【請求項3】
請求項
1又は請求項
2に記載の製造方法により製造された発光性化合物と、
正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料、酸化防止剤及び溶媒からなる群より選ばれる少なくとも1種と、を混合する工程を含む
組成物の製造方法。
【請求項4】
陽極と、陰極と、前記陽極及び前記陰極の間に設けられた発光層と、を有する、発光素子の製造方法であって、
請求項
1又は請求項
2に記載の製造方法により製造された発光性化合物を用いて前記発光層を形成する工程を含む
発光素子の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、発光素子及びその製造方法、発光性化合物及びその製造方法、組成物及びその製造方法、情報処理方法、情報処理装置、プログラム、発光性化合物の提供方法、並びにデータ生成方法に関する。
【背景技術】
【0002】
有機化合物又は有機金属錯体を発光物質とする発光素子(有機EL素子)の実用化が進んでいる。有機EL素子は、一対の電極間に発光材料を含む有機化合物層を挟んで電圧を印加することにより、電極から注入された電子およびホールが再結合して発光物質が励起状態となり、その励起状態が基底状態に戻る際に発光する。発光素子に用いる発光物質によって、その発光特性が異なることから、良好な発光特性を有する発光物質に関する研究開発が進められている。
【0003】
近年、新規物質や代替物質の研究開発にあたり、統計分析等の情報処理技術を用いて効率的に材料開発を行うマテリアルズ・インフォマティクス(MI)の技術が提案されている(例えば特許文献1)。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
MIの技術を用いて、所望の特性を満たし得る化合物を探索するためには、膨大な数の候補化合物に対し、MIを適用して各化合物の特性を評価する必要がある。所望の特性を満たし得る化合物を抽出するには、いまだ非常に多くの計算コストや時間を要する。
【0006】
本開示の主な目的は、良好な特性を有し得る化合物を効率的に得ることができる情報処理方法等を提供することである。
【課題を解決するための手段】
【0007】
本開示の一態様に係る発光素子は、陽極と、陰極と、前記陽極及び前記陰極の間に設けられた発光層と、を有する、発光素子であって、前記発光層が、mordredによる分子記述子のSpDiam_Aが5.0以上、AATSC2cが0.003以下、MATS5sが0.17以下、GATS6cが0.6以上、及びAETA_betaが1.6以下を満たす発光性化合物を含有する。
【0008】
本開示の一態様に係る発光性化合物は、mordredによる分子記述子のSpDiam_Aが5.0以上、AATSC2cが0.003以下、MATS5sが0.17以下、GATS6cが0.6以上、及びAETA_betaが1.6以下を満たす。
【0009】
本開示の一態様に係る組成物は、上述の発光性化合物と、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料、酸化防止剤及び溶媒からなる群より選ばれる少なくとも1種と、を含有する。
【0010】
本開示の一態様に係る発光性化合物の製造方法は、複数の化合物を準備する準備工程と、前記準備工程で得られた複数の化合物から、発光性化合物を抽出する抽出工程と、を含み、前記抽出工程において、mordredによる分子記述子のSpDiam_Aが5.0以上、AATSC2cが0.003以下、MATS5sが0.17以下、GATS6cが0.6以上、AETA_betaが1.6以下、AATSC3sが-0.2以上0.5以下、C3SP2が0以上30以下、AETA_beta_sが0.5以上1.0以下、SlogP_VSA5が0以上400以下、n5aRingが0以上10以下、及びn6ARingが0以上10以下のうちの少なくとも1つを満たす発光性化合物を抽出する。
【0011】
本開示の一態様に係る発光性化合物の製造方法は、複数の化合物を準備する準備工程と、前記準備工程で得られた複数の化合物から、発光スペクトルの半値幅が所定値未満である発光性化合物を抽出する抽出工程と、を含み、前記抽出工程において、mordredによる分子記述子のSpDiam_Aが5.0以上、AATSC2cが0.003以下、MATS5sが0.17以下、GATS6cが0.6以上、AETA_betaが1.6以下、AATSC3sが-0.2以上0.5以下、C3SP2が0以上30以下、AETA_beta_sが0.5以上1.0以下、SlogP_VSA5が0以上400以下、n5aRingが0以上10以下、及びn6ARingが0以上10以下のうちの少なくとも1つを満たす発光性化合物を抽出する。
【0012】
本開示の一態様に係る組成物の製造方法は、上述のいずれかの製造方法により製造された発光性化合物と、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料、酸化防止剤及び溶媒からなる群より選ばれる少なくとも1種と、を混合する工程を含む。
【0013】
本開示の一態様に係る発光素子の製造方法は、陽極と、陰極と、前記陽極及び前記陰極の間に設けられた発光層と、を有する、発光素子の製造方法であって、上述のいずれかの製造方法により製造された発光性化合物を用いて前記発光層を形成する工程を含む。
【0014】
本開示の一態様に係る情報処理方法は、複数の候補となる化合物における量子化学計算により求めたスペクトル指標を取得し、取得した前記スペクトル指標に基づき、各化合物を、スペクトル指標が所定条件を満たすグループと、スペクトル指標が所定条件を満たさないグループとに分類し、前記スペクトル指標が所定条件を満たすグループに分類された発光性化合物を抽出する。
【0015】
本開示の一態様に係る発光性化合物の製造方法は、上述の情報処理方法により発光性化合物を抽出する工程と、抽出した前記発光性化合物を得る工程と、を含む。
【0016】
本開示の一態様に係る情報処理方法は、複数の候補となる化合物を生成し、生成した各化合物の分子記述子毎の値を取得し、化合物の分子記述子の値を入力した場合に、該化合物のスペクトル指標を出力するよう学習されたモデルに、得られた前記各化合物の分子記述子の値を入力してスペクトル指標を特定し、特定したスペクトル指標が所定条件を満たす発光性化合物を抽出する。
【0017】
本開示の一態様に係る発光性化合物の製造方法は、上述の情報処理方法により発光性化合物を抽出する工程と、抽出した前記発光性化合物を得る工程と、を含む。
【0018】
本開示の一態様に係る発光性化合物の提供方法は、コンピュータにより生成された候補となる複数の化合物から抽出された、化合物の分子記述子の値を入力した場合に、該化合物のスペクトル指標を出力するよう学習されたモデルを用いて特定されたスペクトル指標が所定条件を満たす発光性化合物を出力する。
【0019】
本開示の一態様に係るデータ生成方法は、コンピュータにより生成された候補となる複数の化合物と、各化合物に対する量子化学計算により算出されたスペクトル指標と、を対応付けて記憶し、前記各化合物における分子記述子毎の値を前記各化合物にさらに対応付けて記憶する。
【0020】
本開示の一態様に係る情報処理方法は、化合物に希望する特性の条件を取得し、複数の候補となる化合物をコンピュータにより生成し、生成した各化合物の分子記述子毎の値を取得し、化合物の分子記述子の値を入力した場合に該化合物の特性を出力するよう学習されたモデルを用いて、生成した各化合物の中から化合物の特性が前記条件を満たす化合物を抽出し、抽出した化合物に対する量子化学計算により特性を算出し、量子化学計算により算出した特性が前記条件を満たす化合物を特定し、特定した化合物及び該化合物の特性を出力する。
【0021】
本開示の一態様に係る情報処理方法は、化合物に希望する特性の条件を受け付け、受け付けた前記条件を満たす化合物の複数の分子記述子と、各分子記述子の値の範囲と取得し、取得した前記複数の分子記述子と、各分子記述子の値の範囲とを表示する。
【発明の効果】
【0022】
本開示によれば、良好な特性を有し得る化合物を効率的に得ることができる。
【図面の簡単な説明】
【0023】
【
図1】実施形態に係る情報処理装置1の構成例を示すブロック図である。
【
図2】化合物DBに記憶される化合物情報の内容例を示す図である。
【
図4】1次抽出に関する処理手順の一例を示すフローチャートである。
【
図5】2次抽出に関する処理手順の一例を示すフローチャートである。
【
図8】表示部に表示される結果画面の一例を示す模式図である。
【
図9】変形例における情報処理装置及び情報端末装置の構成例を示すブロック図である。
【
図10】情報端末装置が実行する処理手順の一例を示すフローチャートである。
【
図11】表1及び表2に示す化合物のマッピングデータを例示する図である。
【
図12】表1及び表2に示す化合物のマッピングデータを例示する図である。
【発明を実施するための形態】
【0024】
本開示をその実施の形態を示す図面を参照して具体的に説明する。初めに、実施形態に係る情報処理装置を用いた情報処理方法について説明する。
【0025】
図1は、実施形態に係る情報処理装置1の構成例を示すブロック図である。情報処理装置1は、種々の情報処理、情報の送受信が可能な装置であり、例えばサーバコンピュータ、パーソナルコンピュータ、量子コンピュータ等である。情報処理装置1は、複数の候補となる化合物の中から、所望の特性を有し得る化合物や、所望の特性を有し得る新規化合物を抽出する抽出装置として機能する。
【0026】
本実施形態では、情報処理装置1により実施される処理内容について、良好な発光スペクトルを有し得る発光性化合物の抽出に適用する例を挙げて説明する。良好な発光スペクトルとは、発光性化合物の発光効率(光取り出し効率)を向上し得るような発光スペクトルであってもよい。本実施形態の適用対象は発光性化合物に限らず、例えば良好な充放電性能を有し得る電池材料の抽出等、多様な特性を有し得る各種化合物の抽出に適用させることができる。
【0027】
発光素子は、一対の電極間に発光物質である発光性化合物を含む発光層を挟んで電圧を印加することにより、発光性化合物が光を発する。発光性化合物が発する光のスペクトルはその発光性化合物特有のものであり、異なる種類の発光性化合物を用いることによって、様々な色や強さの発光を呈する発光素子を得ることができる。
【0028】
発光性化合物における発光効率は、発光性化合物の発光スペクトルに影響される。例えば発光性化合物におけるスペクトル幅を狭線化させることで、発光ロスを低減し発光効率をより向上させることができる。本実施形態では、良好な発光スペクトルを有し発光効率に優れ得る発光性化合物として、発光性化合物におけるスペクトル指標が所定条件を満たす発光性化合物を抽出する。
【0029】
スペクトル指標とは、発光性化合物における発光スペクトルに関する値を意味する。スペクトル指標としては、例えばスペクトル幅、スペクトル強度、第1ピーク及び第2ピークの強度比、スペクトル形状の標準偏差等が挙げられる。スペクトル幅は、発光スペクトルの半値幅であってもよい。半値幅は、半値全幅(FWHM:Full Width at Half Maximum)でもよく、半値半幅(HWHM:Half Width at Half Maximum)でもよい。スペクトル幅は、スペクトルの第2ピークを考慮し、第2ピークの低エネルギー側において強度が第2ピークの50%になる部分から第1ピーク部分までの幅であってもよい。以下の説明では、スペクトル指標として、スペクトル幅(FWHM)を用いるものとする。
【0030】
情報処理装置1は、制御部11、記憶部12、通信部13、表示部14及び操作部15等を備える。情報処理装置1は複数のコンピュータからなるマルチコンピュータであってもよく、ソフトウェアによって仮想的に構築された仮想マシンであってもよい。
【0031】
制御部11は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)等を備える演算処理装置である。制御部11は、内蔵するROM(Read Only Memory)又はRAM(Random Access Memory)等のメモリを用い、ROMや記憶部12に格納された各種コンピュータプログラムを実行し、上述したハードウェア各部の動作を制御する。制御部11は、計測開始指示を与えてから計測終了指示を与えるまでの経過時間を計測するタイマ、数をカウントするカウンタ、日時情報を出力するクロック等の機能を備えていてもよい。
【0032】
記憶部12は、ハードディスク又はSSD(Solid State Drive )等の不揮発性記憶装置を備える。記憶部12には各種のコンピュータプログラム及びデータが記憶される。記憶部12は、複数の記憶装置により構成されていてもよく、情報処理装置1に接続された外部記憶装置であってもよい。記憶部12に記憶されるコンピュータプログラムには、発光性化合物の抽出に関する処理をコンピュータに実行させるためのプログラム1Pが含まれる。
【0033】
記憶部12にはさらに、学習モデル121及び化合物DB(Data Base :データベース)122が記憶されている。学習モデル121は、機械学習により生成された機械学習モデルである。学習モデル121は、人工知能ソフトウェアの一部を構成するプログラムモジュールとしての利用が想定される。化合物DB122は、複数の化合物に関する化合物情報を格納するデータベースである。
【0034】
記憶部12に記憶されるコンピュータプログラム(コンピュータプログラム製品)は、当該コンピュータプログラムを読み取り可能に記録した非一時的な記録媒体1Aにより提供されてもよい。記録媒体1Aは、CD-ROM、USBメモリ、SD(Secure Digital)カード等の可搬型メモリである。制御部11は、図示しない読取装置を用いて、記録媒体1Aから所望のコンピュータプログラムを読み取り、読み取ったコンピュータプログラムを記憶部12に記憶させる。代替的に、上記コンピュータプログラムは通信により提供されてもよい。プログラム1Pは、単一のコンピュータプログラムでも複数のコンピュータプログラムにより構成されるものでもよく、また、単一のコンピュータ上で実行されても通信ネットワークによって相互接続された複数のコンピュータ上で実行されてもよい。
【0035】
通信部13は、インターネット等のネットワークを介した通信に関する処理を行うための通信デバイスを備える。制御部11は通信部13を通して、外部装置との間で各種情報の送受信を行う。
【0036】
表示部14は、液晶パネル、有機EL(Electro Luminescence)ディスプレイ等のディスプレイ装置を備える。表示部14は、制御部11からの指示に従い、各種の情報を表示する。
【0037】
操作部15は、ユーザの操作を受け付けるインタフェースであり、例えばキーボード、ディスプレイ内蔵のタッチパネルデバイス、スピーカ及びマイクロフォン等を備える。操作部15は、ユーザからの操作入力を受け付け、操作内容に応じた制御信号を制御部11へ送出する。
【0038】
図2は、化合物DB122に記憶される化合物情報の内容例を示す図である。化合物DB122には、候補となる化合物(以下、単に候補化合物とも称する)に関する化合物情報を含む候補化合物情報と、既知の化合物に関する化合物情報を含む既知化合物情報とが記憶されている。候補化合物とは、新たな製造候補となり得る化合物を意味する。既知の化合物とは、分子構造が公知な化合物であり、新規な化合物でないものを意味する。
【0039】
候補化合物情報には、例えば化合物を識別するためのIDをキーに、各化合物の分子構造、構造式、スペクトル幅(量子化学計算値)、分子記述子、スペクトルフラグ、既知フラグ等の値を紐付けたレコードが格納されている。
【0040】
構造式は、SMILES(Simplified Molecular Input Line Entry System)記法に従って表現された化合物の化学構造式である。なお、化学構造式の記法は、化学構造を文字列化等することにより化合物に対し後述する量子化学計算や分子記述子の生成を実行可能なものであれば特に限定されない。
【0041】
スペクトル幅(量子化学計算値)は、量子化学計算により得られた化合物のスペクトル幅である。量子化学計算は、公知の量子化学計算ソフトウェア、例えばGaussian09(Gaussian社製)を用いて実行することができる。スペクトル幅は、化合物DB122に記憶されるスペクトル指標の一例である。化合物DB122には、その他量子化学計算により算出された各種のスペクトル指標が記憶されてよい。
【0042】
分子記述子は、化合物の持つ構造的特徴や物理化学的特性等を計算機で扱いやすくするために数値化したものである。分子記述子は、化合物の構造式から計算可能であり、公知のソフトウェア、例えばmordred、RDKit、MOE、alvaDesc、PaDEL-Descriptor、Codessa等を用いて求めることができる。本実施形態では、mordredにより分子記述子を計算するものとし、以下に示す分子記述子の値はmordredにより算出される値を意味する。分子記述子列には、mordredで定義されている複数種類の分子記述子の値が含まれている。
【0043】
本実施形態では、上述の通りmordredにより算出される分子記述子を用いるが、使用するソフトウェアに応じて、実質的に同内容の記述子、すなわち上述の記述子と同じ又は類似の内容を意味する記述子を用いてよい。
【0044】
スペクトルフラグは、候補化合物のスペクトル指標に応じて生成されるフラグである。詳細には、候補化合物のスペクトル指標が所定条件を満たすか否かを示すフラグである。スペクトル指標がスペクトル幅である場合、所定条件はスペクトル幅が閾値未満であるか否かである。
図2に示す例では、スペクトル幅が閾値未満である場合、所定条件を満たすことを示すフラグ「1」、スペクトル幅が閾値以上である場合、所定条件を満たさないことを示すフラグ「2」がスペクトルフラグ列に格納されている。
【0045】
既知フラグは、候補化合物が既知であるか否かを示す情報である。
図2に示す例では、候補化合物が既知である場合、既知であることを示すフラグ「1」が既知フラグ列に格納されている。候補化合物が既知でない場合、既知フラグ列は空欄又は既知でないことを示すフラグが格納される。
【0046】
既知化合物情報には、例えば化合物を識別するためのIDをキーに、各化合物の分子構造、構造式、スペクトル幅(実測値)、スペクトル幅(量子化学計算値)、分子記述子等の値を紐付けたレコードが格納されている。
【0047】
スペクトル幅(実測値)は、実験により得られた化合物のスペクトル幅である。既知化合物情報に記憶される他の情報内容は、候補化合物情報と同様である。
【0048】
情報処理装置1は、例えば論文、専門書、公知の構造式検索手段等を用いて既知の化合物の構造式を収集する。情報処理装置1は、発光性を有する発光性化合物に特化して化合物を収集してもよい。情報処理装置1は、収集した化合物に関する各種実測値や、量子化学計算及び分子記述子等の算出により得られる各種データを取得し、既知化合物情報として化合物DB122に蓄積する。化合物DB122に記憶される化合物情報は上記の例に限定されない。
【0049】
図3は、学習モデル121の概要を示す説明図である。学習モデル121は、化合物における複数の分子記述子の値を入力として、該化合物のスペクトル幅を出力する機械学習モデルである。なお、学習モデル121の出力値は、スペクトル幅以外の他のスペクトル指標であってもよい。
【0050】
情報処理装置1は、所定の訓練データを学習する機械学習を行って学習モデル121を事前に生成しておく。そして情報処理装置1は、学習モデル121を用いて、新たに生成した発光性化合物の分子記述子に対するスペクトル幅を推定する。
【0051】
学習モデル121は、例えばランダムフォレストである。ランダムフォレストは、複数の決定木によって、対象データを特徴量に合った目的属性に分類するための分類器であり、各決定木で得られた出力結果に対する多数決によって最終的な分類結果を獲得する。回帰問題を扱う場合には、各決定木で得られた出力結果の代表値(例えば平均値)を最終的な予測値として出力してもよい。
【0052】
学習モデル121は、複数の分岐ノードと、分岐ノードの末端の葉ノードとを有する決定木により構成される。各決定木において、入力データは一番上の根ノードから枝に行く途中で条件により分類され、末端の葉ノードに辿り着くと、当該末端の葉ノードに与えられた値が予測値として出される。各葉ノードには、スペクトル幅の値が対応付けられている。
【0053】
学習モデル121への入力となる説明変数は、化合物における複数の分子記述子の値である。学習モデル121からの出力となる目的変数は、スペクトル幅の値である。各決定木の生成にはそれぞれ異なる説明変数が用いられ、当該説明変数に対するスペクトル幅が出力される。
【0054】
なお、説明変数として複数の分子記述子を用いる場合、スペクトル幅の説明力が高い記述子を選択する観点から、例えばRidge回帰、LASSO回帰等により選択された所定数の分子記述子を使用してもよい。mordredにて定義される分子記述子は1000種類以上存在するため、所定数の分子記述子を選択的に利用することで、計算コストを低減することができる。
【0055】
学習モデル121は、複数の分子記述子の値と、スペクトル幅を示すラベルとが対応付けられた訓練データを用意し、当該訓練データを用いて未学習のモデルを機械学習させることにより生成することができる。
【0056】
正解となるスペクトル幅は、例えば量子化学計算により算出されたスペクトル幅を用いることができる。量子化学計算は、公知の量子化学計算ソフトウェアを用いて実行することができる。このような量子化学計算は、実測値との誤差の小さい高精度な値が得られることが知られている。本発明者らの検討においても、実測値と量子化学計算による計算値との誤差はわずかな値であることが確認されている。このようなシミュレーションによる測定値を訓練データのスペクトル幅として利用することで、実験による実測値の収集を不要とし、より多くの訓練データを容易かつ効率的に生成することができる。
【0057】
正解となるスペクトル幅は、量子化学計算によるスペクトル幅に限らず、実験による実測値であってもよく、量子化学計算によるスペクトル幅及び実測値の両方であってもよい。
【0058】
情報処理装置1は、訓練データに含まれる入力データを当てはめ、最上位の根ノードから下位に向かい、損失関数を用いてもっとも良い値を出力する枝を逐次的に探索しながら決定木を生成する。情報処理装置1は、学習モデル121における損失関数を最適化(最小化)するよう、例えば勾配降下法を用いパラメータを調整する。情報処理装置1は、損失関数が所定基準を満たすことにより学習を完了する。学習が完了すると、化合物における分子記述子の値に対し当該化合物のスペクトル幅を適切に認識可能に学習された学習モデル121が構築される。
【0059】
上記では、学習モデル121がランダムフォレストである例を説明したが、学習モデル121の構成は限定されるものではなく、分子記述子に対するスペクトル幅を識別可能であればよい。学習モデル121は、例えば、Transformer、CNN(Convolution Neural Network)、RNN(Recurrent Neural Network)、LSTM(Long Short Term Memory)等のニューラルネットワークであってもよく、サポートベクタマシン、ロジスティクス回帰、XGBoost(eXtreme Gradient Boosting )等の他の学習アルゴリズムを用いてもよい。
【0060】
学習モデル121は、情報処理装置1により生成され、学習されるものに限られない。学習モデル121は、外部サーバにて学習済みのモデルとして情報処理装置1へ送信され、記憶部12に記憶されてもよい。学習モデル121は、外部サーバにて生成され、情報処理装置1にて学習されてもよい。
【0061】
以下、情報処理装置1が実行する発光性化合物の抽出処理の詳細を説明する。
【0062】
図4は、1次抽出に関する処理手順の一例を示すフローチャートである。以下の各フローチャートにおける処理は、情報処理装置1の記憶部12に記憶するプログラム1Pに従って制御部11により実行されてもよく、制御部11に備えられた専用のハードウェア回路(例えばFPGA又はASIC)により実現されてもよく、それらの組合せによって実現されてもよい。
【0063】
情報処理装置1の制御部11は、抽出対象とする発光性化合物の抽出条件を取得する(ステップS11)。本実施形態における抽出条件は、スペクトル幅が所定値未満である発光性化合物であり、制御部11は、発光性化合物におけるスペクトル幅の閾値(上限値)を取得する。制御部11は、例えばユーザが操作部15を操作することによる入力を受け付けることで抽出条件を取得してもよく、通信接続された外部装置から送信される情報を受信することにより抽出条件を取得してもよい。
【0064】
制御部11は、複数の候補化合物を生成し(ステップS12)、各候補化合物の分子構造を表す構造式を取得する。制御部11は、生成した各候補化合物における分子記述子毎の値を取得する(ステップS13)。詳細には制御部11は、mordredを用いて、候補化合物の構造式から各分子記述子の値を算出する。
【0065】
制御部11は、例えばRidge回帰又はLASSO回帰等を用いて、全ての分子記述子の中から、学習モデル121への入力に用いる所定数の分子記述子を選択する(ステップS14)。なおステップS14の処理は省略してもよい。
【0066】
制御部11は、選択した候補化合物における複数の分子記述子の値を学習モデル121に入力し(ステップS15)、学習モデル121から出力されるスペクトル幅を取得する(ステップS16)。制御部11は、生成した各候補化合物に対し上述の処理を実行し、スペクトル幅をそれぞれ求める。
【0067】
制御部11は、選択した複数の分子記述子について、学習モデル121でのスペクトル幅の予測における寄与度を算出する(ステップS17)。学習モデル121がランダムフォレストの場合、分子記述子の寄与度は、変数重要度に相当する。重要度は、例えばoob(out-of-bag)データ、ジニ係数等に基づき算出することができる。分子記述子の寄与度は、その他SHAP(SHapley Additive exPlanation)、LIME(Local Interpretable Model-Agnostic Explanations)等の手法により算出してもよい。なおステップS17の処理は省略してもよい。
【0068】
制御部11は、取得した学習モデル121の予測結果に基づいて、生成した全ての候補化合物の中から、学習モデル121から出力されたスペクトル幅が閾値未満である候補化合物を抽出する(ステップS18)。ステップS18の抽出は1次抽出に対応する。なお、1次抽出における閾値は、抽出条件として取得した閾値とは独立して、別途の値が設定されてもよい。1次抽出は閾値を用いるものに限らず、制御部11は、例えば学習モデル121から出力されたスペクトル幅の小さい順に所定数の候補化合物を抽出してもよい。
【0069】
制御部11は、抽出した各候補化合物について、候補化合物の分子構造、構造式、分子記述子毎の値を対応付けて、化合物DB122の候補化合物情報に記憶する(ステップS19)。制御部11は、1次抽出処理を終了する。
【0070】
図5は、2次抽出に関する処理手順の一例を示すフローチャートである。情報処理装置1は、
図4の1次抽出処理の終了後に、
図5の処理を開始してよい。
【0071】
情報処理装置1の制御部11は、
図4のステップS18にて抽出した複数の候補化合物について、量子化学計算により算出されるスペクトル幅を取得する(ステップS21)。制御部11は、所定の量子化学計算ソフトウェアを用いて、候補化合物の構造式からスペクトル幅の値を算出する。
【0072】
制御部11は、取得したスペクトル幅と、当該スペクトル幅に基づき生成される各種フラグとを化合物DB122の候補化合物情報に記憶する(ステップS22)。具体的には制御部11は、量子化学計算によるスペクトル幅と、スペクトル幅の閾値とに基づいて、スペクトル幅が閾値未満であるか否かを判定し、判定結果に応じたスペクトルフラグを生成する。また制御部11は、既知化合物情報を参照して、生成した各候補化合物の分子構造が既知であるか否かを判定し、分子構造が既知である候補化合物に対し既知フラグを生成する。
【0073】
制御部11は、各候補化合物における量子化学計算によるスペクトル幅と、化合物DB122に記憶する情報とに基づいて、各候補化合物を第1グループから第3グループのいずれかに分類する(ステップS23)。具体的には、制御部11は、各候補化合物に対応付けられるスペクトルフラグの種類及び既知フラグの有無に基づいて、各候補化合物をグルーピングする。第1グループに分類される候補化合物は、スペクトル幅が閾値未満であり、且つ既知の化合物として記憶されていない化合物である。第2グループに分類される候補化合物は、スペクトル幅が閾値未満であり、且つ既知の化合物として記憶されている化合物である。第3グループに分類される候補化合物は、スペクトル幅が閾値以上である化合物である。
【0074】
制御部11は、複数の分子記述子の組み合わせ値をグループ毎にマッピングしたマッピングデータを生成する(ステップS24)。制御部11は、各候補化合物における分子記述子毎の値と、各候補化合物の属するグループとに基づき、第1グループを他の第2グループ及び第3グループから分離可能な分子記述子の組み合わせ及び各分子記述子の値の範囲を特定する(ステップS25)。
【0075】
図6及び
図7は、マッピングデータを例示する図である。図示の如く、マッピングデータは、異なる種類の分子記述子を縦軸横軸とするグラフである。グラフ上に、複数の候補化合物における分子記述子の組み合わせ値がマッピングされている。
【0076】
図6に示す例にて、グラフの縦軸はAATSC2c、横軸はSpDiam_Aである。制御部11は、マッピング対象となる各候補化合物について、候補化合物データに記憶されるAATSC2c及びSpDiam_Aの値をグラフ上にプロットする。
図6では、説明の容易のため、第1グループ及び第3グループに属する化合物をマッピングしたマッピングデータを例示しているが、マッピングデータには、第1グループから第3グループまでに属する全ての化合物がマッピングされていてもよいことは勿論である。
【0077】
制御部11は、後述する分子記述子の特定精度を向上する観点から、1次抽出にて選別した抽出対象外の候補化合物を含めてマッピングデータを生成してもよく、候補化合物のみならず既知の化合物を含めてマッピングデータを生成してもよい。例えば、制御部11は、既知化合物情報を参照して、スペクトル幅が閾値未満である既知の化合物を抽出し、抽出した既知の化合物を第2グループに属する化合物としてマッピングデータにマッピングしてもよい。
【0078】
マッピングデータは、各候補化合物の属するグループを識別可能に表示する。制御部11は、例えば分子記述子の値のマーカーの形や表示色をグループに応じて変更するなど、分子記述子の値のマーカーの表示態様をグループに応じて異ならせる。これにより、ユーザは、複数の情報を効率的に把握できるとともに、グループ毎のデータを明確に認識することができる。
【0079】
制御部11は、マッピングデータを用いて、第1グループの候補化合物を、他のグループの候補化合物から分離可能な分子記述子の値の範囲を特定する。制御部11は、分子記述子の値の分布状況に応じて、分子記述子毎に、第1グループの候補化合物のみを含むような分子記述子の上限値及び下限値を導出する。制御部11は、上限値又は下限値のいずれか一方のみを特定してもよい。制御部11は、第1グループの切り分けが不可である分子記述子の組み合せについては、当該組み合わせが適正でないと判定し、上限値及び下限値を特定しないものであってよい。
【0080】
図6に示す例では、第1グループに属する候補化合物がグラフの右側に偏在するようマッピングされている。制御部11は、
図6中の破線枠で示す領域を切り出し可能なAATSC2cの上限値及び下限値と、SpDiam_Aの上限値及び下限値とを特定する。
【0081】
制御部11は、他の分子記述子の組み合わせについても同様の処理を実行する。具体的には、制御部11は、新たな分子記述子の組み合わせを縦軸横軸とするマッピングデータを生成し、当該分子記述子の組み合わせに対する分子記述子毎の値の範囲を特定する。
【0082】
図7は、他の分子記述子の組み合わせに係るマッピングデータの一例を示す。
図7は、グラフの縦軸をAETA_beta、横軸をGATS6cとするマッピングデータである。制御部11は、
図7に示すマッピングデータに基づいて、
図7中の中央右側に示す破線枠で示す領域を切り出し可能なAETA_betaの上限値及び下限値と、GATS6cの上限値及び下限値とをさらに特定する。なお
図6及び
図7に示す破線枠は、単に第1グループを分離する概念を示すものであり、分子記述子の数値を何ら限定するものではない。
【0083】
制御部11は、異なる分子記述子の組み合わせ毎の複数のマッピングデータと、各分子記述子の値の範囲とを統合的に評価することにより、最終的な分子記述子の組合せ及び各分子記述子の値の範囲を特定する。
【0084】
具体的には、制御部11は、第1のマッピングデータで特定した分子記述子の値の範囲を満たす化合物について、第2のマッピングデータを生成し、さらなる分子記述子の値の範囲を特定する。そして、第1及び第2のマッピングデータで特定した分子記述子の値の範囲を満たす化合物について、第3のマッピングデータによる特定を行う。制御部11は最終的に、第1グループを他のグループから分離可能な1つの分子記述子の組み合わせと、各分子記述子の値の範囲とを取得する。なお、マッピングデータは2種類の分子記述子を2軸で示すものに限定されず、3種類以上の分子記述子を軸とするものであってもよい。
【0085】
制御部11は、分子記述子の組み合わせ及び範囲の特定処理において、各分子記述子の寄与度に従い、特定処理に用いる分子記述子の優先度を決定してもよい。制御部11は、
図4のステップS17にて算出した各分子記述子の寄与度に基づき、寄与度の高い順に優先的に分子記述子を使用する。制御部11は、寄与度の高い分子記述子から順に組み合わせを生成し、分子記述子の値の範囲を特定する。分子記述子の寄与度を考慮することで、多数の分子記述子の中から、候補化合物の分離に影響力が高い分子記述子を効率的且つ効果的に選択することができる。
【0086】
制御部11は、分子記述子の値の範囲を先に特定した後、分子記述子の組み合わせを特定してもよい。制御部11は、例えば化合物DB122を参照して、スペクトル指標が所定条件を満たす既知の化合物を全て抽出し、抽出した各化合物における分子記述子毎の値を取得する。制御部11は、取得した各分子記述子における最大値及び最小値を特定し、特定した最大値及び最小値の範囲を、当該分子記述子の値の範囲とする。制御部11は、特定した範囲を対応付けた分子記述子を用いて、第1グループを分離することのできる分子記述子の組み合わせを特定する。
【0087】
なお分子記述子の組み合わせ及びその値の範囲を特定する方法は上記に限らず、その他公知の手法を用いてよい。
【0088】
候補化合物のグループ分けは、上記第1グループから第3グループに分類するものに限られない。例えば候補化合物は、既知の化合物であるか否を考慮することなく、スペクトル指標が所定条件を満たすか否かにより分類されてもよい。この場合、候補化合物は、スペクトル指標が所定条件を満たすグループ(スペクトル幅が閾値未満であるグループ)と、スペクトル指標が所定条件を満たさないグループ(スペクトル幅が閾値以上であるグループ)とに分類される。制御部11は、スペクトル指標が所定条件を満たすグループを、スペクトル指標が所定条件を満たさないグループから分離可能な分子記述子の組み合わせ及び範囲を特定する。
【0089】
図5に戻り説明を続ける。制御部11は、1次抽出された候補化合物の中から、特定した分子記述子の組み合わせ及び各分子記述子の値の範囲を満たす候補化合物(発光性化合物)を抽出する(ステップS26)。ステップS26の処理により、第1グループに属する発光性化合物が抽出される。ステップS26の抽出は2次抽出に対応する。制御部11は、2次抽出において、第1グループに属する発光性化合物のうちスペクトル幅の小さい順に所定数の発光性化合物を抽出してもよい。
【0090】
制御部11は、2次抽出結果を記憶部12に記憶する(ステップS27)。制御部11は、2次抽出により第1グループに分類された発光性化合物が合成により実際に得られた場合、新たな既知の化合物として候補化合物情報に新たな既知フラグを生成してもよい。制御部11は、新たに既知フラグが生成された候補化合物情報を、既知化合物情報に追加する。
【0091】
制御部11は、得られた抽出結果を、表示部14を介して出力し(ステップS28)、一連の処理を終了する。
【0092】
以下に、
図4及び
図5の処理内容について具体的な数値例を挙げて説明する。
制御部11は、ステップS11において、抽出条件として、スペクトル幅が0.2eV未満を満たすとの条件を受け付ける。スペクトル幅の閾値は、良好な発光スペクトルを有する既存の発光性化合物におけるスペクトル幅を基準値として、上記基準値に所定のマージンを加味した値が設定されている。
【0093】
制御部11は、ステップS12において、例えばシクロヘキサン環を基本骨格とし、環の数や置換基を異ならせた複数の候補化合物を生成する。
【0094】
制御部11は、ステップS14において、mordredにて定義される複数の記述子の中から、Ridge回帰により選択される50種類の分子記述子を取得する。取得した分子記述子としては、例えばSpDiam_A、AATSC2c、AATSC3s、MATS5s、GATS6c、GATS7i、C3SP2、AETA_beta、AETA_beta_s、SlogP_VSA5、n5aRing、n6Aring、nB、nARing、AXp-3d、SaasC、Vabc等が挙げられる。制御部11は、各候補化合物について、それら50種類の分子記述子毎の値を算出する。制御部11は、算出した分子記述子を用いて学習モデル121によりスペクトル幅を予測するとともに、各分子記述子における寄与度を算出する。
【0095】
制御部11は、ステップS25において、スペクトル幅が0.2eV未満であり新規な候補化合物群を、スペクトル幅が0.2eV未満であり且つ既知の化合物群及びスペクトル幅が0.2eV以上である化合物群から分離可能な分子記述子の組み合わせ及び各分子記述子の値の範囲を特定する。
【0096】
特定結果の一例として、例えばSpDiam_Aが5.0以上、AATSC2cが0.003以下、MATS5sが0.17以下、GATS6cが0.6以上、及びAETA_betaが1.6以下が得られる。
【0097】
分子記述子の組み合わせ及び各分子記述子の値の範囲としてはさらに、SpDiam_Aが5.0以上6.0以下、AATSC2cが-0.010以上0.003以下、MATS5sが-0.30以上0.17以下、GATS6cが0.6以上3.0以下、及びAETA_betaが0.5以上1.6以下を特定し得る。分子記述子が上記組み合わせ及びその値の範囲内において、スペクトル幅の狭線化により良好な発光スペクトルを有し得る発光性化合物を、より効率的且つ効果的に抽出することができる。
【0098】
分子記述子の組み合わせ及び各分子記述子の値の範囲としてはさらにまた、nBが0以上2以下、AATSC3sが-0.2以上0.5以下、C3SP2が0以上30以下、AETA_beta_sが0.5以上1.0以下、SlogP_VSA5が0以上400以下、n5aRingが0以上10以下、n6ARingが0以上10以下、nARingが0以上10以下、AXp-3dが0.10以上0.20以下、SaasCが0以上40以下、及びVabcが100以上2000以下を特定し得る。
【0099】
図8は、表示部14に表示される結果画面の一例を示す模式図である。制御部11は、得られた抽出結果に基づいて、抽出結果を示す結果画面を生成し表示部14に表示させる。
図8に示すように、結果画面には、例えば抽出条件欄141、結果一覧142、分子記述子情報欄143、マッピングデータ欄144等が含まれている。
【0100】
抽出条件欄141には、抽出に用いた抽出条件が表示されている。情報処理装置1は、抽出時に受け付けた抽出条件を抽出条件欄141に表示させる。
【0101】
結果一覧142には、抽出された発光性化合物が一覧で表示されている。情報処理装置1は、候補化合物情報に記憶する情報に基づいて、2次抽出により抽出された各発光性化合物における分子構造、量子化学計算によるスペクトル幅、分子記述子毎の値等を一覧で表示させる。
【0102】
分子記述子情報欄143には、抽出条件に対応する分子記述子の組み合わせ及び各分子記述子の値の範囲が表示されている。情報処理装置1は、
図5のステップS25にて特定した分子記述子の組み合わせ及び各分子記述子の値の範囲を分子記述子情報欄143に表示させる。分子記述子情報欄143にはさらに、分子記述子の寄与度を示す情報が表示されている。情報処理装置1は、
図4のステップS17にて取得した各分子記述子の寄与度に基づいて、寄与度の高い順に分子記述子を並べて分子記述子情報欄143に表示させる。
【0103】
マッピングデータ欄144には、マッピングデータが表示されている。マッピングデータ欄144は、ユーザの操作部15を介した操作に応じて、表示対象とするマッピングデータの縦軸横軸の分子記述子を変更可能に構成されている。情報処理装置1は、
図5のステップS24にて生成した複数のマッピングデータのうち、ユーザの選択に応じた分子記述子を軸とするマッピングデータを読み出し、マッピングデータ欄144に表示させる。
【0104】
例えば発光性化合物の合成担当者は、結果画面を用いて製造候補となる発光性化合物に関する各種情報を容易に把握することができる。合成担当者は、結果画面に提示される抽出結果を確認することにより、実際に合成を行う発光性化合物を決定することができる。
【0105】
上述の構成によれば、所望の特性を満たし得る化合物を効率的に抽出し、合成を行うことができる。情報処理装置1は、学習モデル121を用いて1次抽出を行った化合物に対して量子化学計算を行うことで、所望の特性を満たし得る化合物を精度よく抽出するとともに、演算負荷を低減することができる。
【0106】
上述の構成によれば、所望の特性を満たし得る化合物を抽出可能な分子記述子の条件が特定される。特定された分子記述子の条件を利用することで、新たな候補化合物から所望の特性を満たし得る化合物を効率的に抽出することができる。分子記述子の条件は、マッピングデータを用いて効率的に特定される。分子記述子の条件は、化合物群を分離するためのグルーピング数、グルーピング条件、スペクトル指標の値などを適宜調整することにより、多様な抽出態様に応じた条件を取得することができる。
【0107】
(変形例)
情報処理装置1は、化合物の抽出結果を外部装置へ提供するよう構成されてもよい。
図9は、変形例における情報処理装置1及び情報端末装置2の構成例を示すブロック図である。情報端末装置2は、抽出結果の提供を受ける外部装置の一例である。
【0108】
図9に示すように、情報処理装置1は、複数の情報端末装置2それぞれとインターネット等のネットワークNを介して通信可能に接続されている。情報処理装置1と情報端末装置2とは、ネットワークNを介してデータの送受信が可能である。
【0109】
情報処理装置1は、情報端末装置2から受け付けた抽出条件に応じて、抽出条件を満たす化合物の抽出や記述子の特定を実行し、実行結果を示す情報を情報端末装置2へ送信する。情報処理装置1は、化合物の抽出サービスを提供するサービス提供サーバとして機能する。
【0110】
情報端末装置2は、例えばパーソナルコンピュータ、スマートフォン、タブレット端末等であり、抽出サービスを利用するユーザにより管理される。
【0111】
情報端末装置2は、制御部21、記憶部22、通信部23、表示部24及び操作部25等を備える。記憶部22は、化合物の抽出結果を取得に関する処理をコンピュータに実行させるためのプログラム2Pを含む各種のコンピュータプログラム及びデータが記憶される。情報端末装置2のハードウェア構成は情報処理装置1と同様であるため詳細な説明を省略する。
【0112】
図10は、情報端末装置2が実行する処理手順の一例を示すフローチャートである。以下の各フローチャートにおける処理は、情報端末装置2の記憶部22に記憶するプログラム2Pに従って制御部21により実行されてもよく、制御部21に備えられた専用のハードウェア回路により実現されてもよく、それらの組合せによって実現されてもよい。
【0113】
情報端末装置2の制御部21は、ユーザが操作部25を操作することによる抽出条件を受け付ける(ステップS41)。制御部21は、例えば、抽出対象とする化合物に希望する特定として、化合物が満たすべきスペクトル幅の範囲を受け付ける。制御部21は、受け付けた抽出条件を情報処理装置1へ送信する(ステップS42)。制御部21は、抽出条件に対応付けて情報端末装置2又はユーザ識別情報を送信してもよい。
【0114】
情報処理装置1は、
図4のステップS11の処理により、情報端末装置2から送信された抽出条件を取得する。情報処理装置1は、
図4及び
図5で説明した処理を実行することにより、取得した抽出条件を満たす化合物を抽出する。また情報処理装置1は、例えば取得した抽出条件を満たす化合物群を、抽出条件を満たさない化合物群から分離可能な分子記述子の組み合わせ及び各分子記述子の値の範囲を特定する。情報処理装置1は、
図5のステップS28の処理により、抽出結果を情報端末装置2へ送信する。情報処理装置1は、通信部13を介して、情報端末装置2又はユーザ識別情報にて識別される情報端末装置2へ抽出結果を送信する。
【0115】
情報端末装置2の制御部21は、情報処理装置1から送信される抽出結果を受信する(ステップS43)。制御部21は、受信した抽出結果を、表示部24を介して出力し(ステップS44)、一連の処理を終了する。表示部24には、
図8と同様な結果画面が表示される。
【0116】
上記構成によれば、化合物の抽出に関する各種情報の利用価値を向上することができる。
【0117】
本実施形態において、上述の情報処理方法により抽出された発光性化合物を提供できる。
発光性化合物は、mordredによる分子記述子のSpDiam_Aが5.0以上、AATSC2cが0.003以下、MATS5sが0.17以下、GATS6cが0.6以上、及びAETA_betaが1.6以下を満たす。発光性化合物における分子記述子が上記範囲内において、発光スペクトルが良好である、特にスペクトル幅が狭線化されるとともに、そのような発光性化合物を効率的に得ることができる。
【0118】
発光性化合物は、SpDiam_Aが5.0以上6.0以下、AATSC2cが-0.010以上0.003以下、MATS5sが-0.30以上0.17以下、GATS6cが0.6以上3.0以下、及びAETA_betaが0.5以上1.6以下を満たすことが好ましい。発光性化合物における分子記述子が上記範囲内において、発光スペクトルが良好である、特にスペクトル幅が狭線化されるとともに、そのような発光性化合物をより効率的に得ることができる。
【0119】
発光性化合物の発光スペクトルを良好にする観点から、SpDiam_Aは、より好ましくは5.7以下、さらに好ましくは5.5以下である。AATSC2cは、より好ましくは―0.004以上、さらに好ましくは―0.003以上であり、また、より好ましくは0.002以下、さらに好ましくは0.001以下である。MATS5sは、より好ましくは-0.20以上、さらに好ましくは―0.15以上であり、また、より好ましくは0.15以下、さらに好ましくは0.13以下である。GATS6cは、より好ましくは0.8以上であり、また、より好ましくは2.0以下、さらに好ましくは1.4以下である。AETA_betaは、より好ましくは1.0以上、さらに好ましくは1.2以上である。
【0120】
発光性化合物は、nBが0以上2以下、AATSC3sが-0.2以上0.5以下、C3SP2が0以上30以下、AETA_beta_sが0.5以上1.0以下、SlogP_VSA5が0以上400以下、n5aRingが0以上10以下、n6ARingが0以上10以下、nARingが0以上10以下、AXp-3dが0.10以上0.20以下、SaasCが0以上40以下、及びVabcが100以上2000以下を更に満たすことがより好ましい。発光性化合物における分子記述子が上記範囲内において、発光スペクトルが良好である、特にスペクトル幅が狭線化されるとともに、そのような発光性化合物をより効率的に得ることができる。
【0121】
発光性化合物の発光スペクトルを良好にする観点から、nBは、さらに好ましくは1以下、最も好ましくは0である。AATSC3sは、さらに好ましくは-0.1以上、最も好ましくは0.0以上であり、また、さらに好ましくは0.4以下である。C3SP2は、さらに好ましくは4以上であり、また、さらに好ましくは16以下である。AETA_beta_sは、さらに好ましくは0.6以上であり、また、さらに好ましくは0.7以下である。SlogP_VSA5は、さらに好ましくは100以下である。n5aRingは、さらに好ましくは6以下、最も好ましくは3以下である。n6ARingは、さらに好ましくは4以下、最も好ましくは2以下である。nARingは、さらに好ましくは2以上であり、また、さらに好ましくは6以下、最も好ましくは5以下である。AXp-3dは、さらに好ましくは0.15以上であり、また、さらに好ましくは0.17以下であり、最も好ましくは0.16以下である。SaasCは、さらに好ましくは1以上であり、また、さらに好ましくは20以下、最も好ましくは15以下である。Vabcは、さらに好ましくは200以上であり、また、さらに好ましくは1500以下、最も好ましくは1000以下である。
【0122】
実施形態に係る発光性化合物は、スペクトル指標が0.2eV未満であり、好ましくは0.12eV以下であり、より好ましくは0.08eV以下である。
【0123】
実施形態の発光性化合物A1~A82の構造式の例示を表1に示す。
【0124】
【0125】
【0126】
【0127】
【0128】
本実施形態において、上述の情報処理方法を適用した発光性化合物の製造方法を提供できる。
発光性化合物の製造方法は、複数の化合物を準備する準備工程と、準備工程で得られた複数の化合物から、発光性化合物を抽出する抽出工程と、を含む。
【0129】
上記準備工程は、複数の化合物をコンピュータ上で生成する工程に対応する。
【0130】
上記抽出工程において、mordredによる分子記述子のSpDiam_Aが5.0以上、AATSC2cが0.003以下、MATS5sが0.17以下、GATS6cが0.6以上、AETA_betaが1.6以下、AATSC3sが-0.2以上0.5以下、C3SP2が0以上30以下、AETA_beta_sが0.5以上1.0以下、SlogP_VSA5が0以上400以下、n5aRingが0以上10以下、及びn6ARingが0以上10以下のうちの少なくとも1つを満たす発光性化合物を抽出する。抽出工程は、上述の情報処理方法を適用して発光性化合物を抽出することにより行うことができる。
【0131】
本実施形態により提供される他の態様の発光性化合物の製造方法は、複数の化合物を準備する準備工程と、準備工程で得られた複数の化合物から、発光スペクトルの半値幅が所定値未満である発光性化合物を抽出する抽出工程と、を含む。
【0132】
上記準備工程は、複数の化合物をコンピュータ上で生成する工程に対応する。
【0133】
上記抽出工程において、mordredによる分子記述子のSpDiam_Aが5.0以上、AATSC2cが0.003以下、MATS5sが0.17以下、GATS6cが0.6以上、AETA_betaが1.6以下、AATSC3sが-0.2以上0.5以下、C3SP2が0以上30以下、AETA_beta_sが0.5以上1.0以下、SlogP_VSA5が0以上400以下、n5aRingが0以上10以下、及びn6ARingが0以上10以下のうちの少なくとも1つを満たす発光性化合物を抽出する。抽出工程は、上述の情報処理方法を適用して発光性化合物を抽出することにより行うことができる。
【0134】
本実施形態により提供される他の態様の発光性化合物の製造方法は、実施形態の情報処理方法により発光性化合物を抽出する工程と、抽出した前記発光性化合物を得る工程と、を含む。
【0135】
発光性化合物を得る工程では、例えば、カップリング反応、アミノ化反応、縮合反応等の反応やハロゲン化反応等の官能基変換反応等を組み合わせることにより得ることができる。
【0136】
本実施形態において、上述の発光性化合物を含有する組成物を提供できる。
組成物は、実施形態の発光性化合物と、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料、酸化防止剤及び溶媒からなる群より選ばれる少なくとも1種と、を含有する。実施形態の発光性化合物は、1種を単独で又は2種以上を組み合せて用いてもよい。
【0137】
正孔輸送材料としては、低分子化合物でも高分子化合物でもよい。正孔輸送材料としては、高分子化合物が好ましく、例えばポリビニルカルバゾール及びその誘導体、側鎖又は主鎖に芳香族アミン構造を有するポリアリーレン及びその誘導体が挙げられる。正孔輸送材料は、1種を単独で又は2種以上を組み合せて用いてもよい。
【0138】
電子輸送材料としては、低分子化合物でも高分子化合物でもよい。電子輸送材料は、架橋基を有していてもよい。低分子化合物としては、例えば、8-ヒドロキシキノリンを配位子とする金属錯体、オキサジアゾール、アントラキノジメタン、ベンゾキノン、ナフトキノン、アントラキノン、テトラシアノアントラキノジメタン、フルオレノン、ジフェニルジシアノエチレン及びジフェノキノン、並びにこれらの誘導体が挙げられる。高分子化合物としては、例えば、ポリフェニレン、ポリフルオレン、及びこれらの誘導体が挙げられる。高分子化合物は、金属でドープされていてもよい。電子輸送材料は、1種を単独で又は2種以上を組み合せて用いてもよい。
【0139】
正孔注入材料及び電子注入材料は、低分子化合物でも高分子化合物でもよい。正孔注入材料及び電子注入材料は、架橋基を有していてもよい。低分子化合物としては、例えば、銅フタロシアニン等の金属フタロシアニン、モリブデン、タングステン等の金属酸化物、フッ化リチウム、フッ化ナトリウム、フッ化セシウム、フッ化カリウム等の金属フッ化物、カーボン等が挙げられる。高分子化合物としては、例えば、ポリアニリン、ポリチオフェン、ポリピロール、ポリフェニレンビニレン、ポリチエニレンビニレン、ポリキノリン及びポリキノキサリン、並びにこれらの誘導体、芳香族アミン構造を主鎖又は側鎖に含む重合体等の導電性高分子等が挙げられる。
【0140】
発光材料は、低分子化合物でも高分子化合物でもよい。発光材料は、架橋基を有していてもよい。低分子化合物としては、例えば、ナフタレン及びその誘導体、アントラセン及びその誘導体、ペリレン及びその誘導体、並びに、イリジウム、白金又はユーロピウムを中心金属とする三重項発光錯体等が挙げられる。高分子化合物としては、例えば、フェニレン基、ナフタレンジイル基、フルオレンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、アントラセンジイル基及びピレンジイル基等のアリーレン基、芳香族アミンから2個の水素原子を取り除いてなる基等の芳香族アミン残基、並びにカルバゾールジイル基、フェノキサジンジイル基及びフェノチアジンジイル基等の2価の複素環基を含む高分子化合物等が挙げられる。発光材料は、1種を単独で又は2種以上を組み合せて用いてもよい。
【0141】
酸化防止剤は、発光及び電荷輸送を阻害しない化合物であれば特に限定されないが、例えば、フェノール系酸化防止剤、リン系酸化防止剤等が挙げられる。酸化防止剤は、1種を単独で又は2種以上を組み合せて用いてもよい。
【0142】
溶媒としては、例えば、塩素系溶媒、エーテル系溶媒、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒、ケトン系溶媒、エステル系溶媒、多価アルコール系溶媒、アルコール系溶媒、スルホキシド系溶媒、アミド系溶媒等が挙げられる。溶媒は、1種を単独で又は2種以上を組み合せて用いてもよい。
【0143】
実施形態の組成物の製造方法は、上述の製造方法により製造された発光性化合物と、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料、酸化防止剤及び溶媒からなる群より選ばれる少なくとも1種と、を混合する工程を含む。
【0144】
本実施形態において、上述の発光性化合物を含有する発光素子を提供できる。
発光素子は、陽極と、陰極と、前記陽極及び前記陰極の間に設けられた実施形態の発光性化合物を含有する発光層と、を有する。実施形態の発光性化合物は、1種を単独で又は2種以上を組み合せて用いてもよい。
【0145】
発光層は、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤からなる群より選ばれる少なくとも1種を更に含有することが好ましい。
【0146】
陽極の材料としては、例えば、導電性の金属酸化物、半透明の金属が挙げられ、好ましくは、酸化インジウム、酸化亜鉛、酸化スズ、酸化インジウムスズ(ITO)等である。
【0147】
陰極の材料としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、亜鉛、インジウム等の金属、及びそれらのうち2種以上の合金、並びにそれらのうち1種以上と、銀、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1種以上との合金等が挙げられる。合金としては、例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金が挙げられる。陽極及び陰極は、各々、2層以上の積層構造としてもよい。
【0148】
実施形態の発光素子の製造方法は、上述の製造方法により製造された発光性化合物を用いて前記発光層を形成する工程を含む。発光層は、例えば、乾式法、湿式法により形成することができる。発光層は、例えば、真空蒸着法、インクジェット法またはスピンコート法など用いて形成してもよい。
【0149】
発光素子は、コンピュータ、テレビ、携帯端末等のディスプレイ装置等の発光装置に好適に使用できる。
【実施例】
【0150】
以下、本発明を実施例及び比較例に基づいて更に具体的に説明するが、本発明はそれら実施例に限定されることは意図しない。
【0151】
上記表1に例示する化合物A1~A82及び下記表2に例示する化合物B1~B16に本開示の情報処理方法を適用した。各化合物における分子記述子の値と、スペクトル幅に基づいて、良好な発光スペクトルを有する発光性化合物を抽出し得る。各化合物における分子記述子の値及びスペクトル幅(FWHM)の値を表3及び表4に示す。スペクトル幅の計算は、量子化学計算ソフトGaussian16を使用して行った。
【0152】
図11及び
図12は、表1及び表2に示す化合物のマッピングデータを例示する図である。
図11及び
図12中、黒丸は表1に例示する化合物A1~A82(実施例)を示し、黒三角は表2に例示する化合物B1~B16(比較例)を示す。
【0153】
図11は、グラフの縦軸をAATSC2c、横軸をSpDiam_Aとするマッピングデータである。
図12は、グラフの縦軸をAETA_beta、横軸をGATS6cとするマッピングデータである。
図12のマッピングデータは、化合物A1~A82及び化合物B1~B16のうち、既に特定済みの分子記述子の条件として、SpDiam_Aが5.0以上、AATSC2cが0.003以下、及びMATS5sが0.17以下を満たす化合物のみをマッピングするマッピングデータを示す。
【0154】
実施例の発光性化合物は、スペクトル幅が0.2eV未満であり良好な発光スペクトルを有し得る。
【0155】
以下、一部の化合物について合成方法を記載するが、その他の化合物についても同様にカップリング反応、アミノ化反応、縮合反応等の反応やハロゲン化反応等の官能基変換反応等を組み合わせることにより得ることができる。
【0156】
化合物A8
下記合成スキームに従い、化合物A8を合成する。
【0157】
【0158】
p-メチルベンゼンスルホニルアザイドと5-ブロモ-1-アセナフテノンを[Organic Letters, 2017, vol. 19, No. 10, p. 2502 - 2505]などに記載の手順にしたがって反応させることにより化合物8aが得られうる。化合物8aを[Yuki Gosei Kagaku Kyokaishi, 1959, vol. 17, p. 142,143]などに記載の手順にしたがって反応させることにより化合物8bが得られうる。化合物8bを[Advanced Synthesis and Catalysis, 2018, vol. 360, No. 20, p. 3877 - 3883]などに記載の手順にしたがって反応させることにより化合物8cが得られうる。化合物8cと1,2,3-ベンゾトリアゾールを[Bioorganic and Medicinal Chemistry, 2011, vol. 19, No. 24, p. 7519 - 7525]などに記載の手順にしたがって反応させることにより化合物8dが得られうる。化合物8dを[European Journal of Organic Chemistry, 2017, vol. 2017, No. 22, p. 3197 - 3210]などに記載の手順にしたがって反応させることにより化合物8eが得られうる。化合物8eと1-ブロモ-2-(ブロモメチル)ナフタレンを[Journal of Organic Chemistry, 1987, vol. 52, No. 19, p. 4207 - 4214]などに記載の手順にしたがって反応させることにより化合物8fが得られうる。化合物8fとホウ酸トリメチルを[Journal of Fluorine Chemistry, 2005, vol. 126, No. 4, p. 483 - 490]などに記載の手順にしたがって反応させることにより化合物8gが得られうる。化合物8gを[Chemical Communications, 2011, vol. 47, No. 27, p. 7725 - 7727]などに記載の手順にしたがって反応させることにより化合物8hが得られうる。化合物8hとフェニルトリフラートを[Journal of the American Chemical Society, 2000, vol. 122, No. 10, p. 2178 - 2192]などに記載の手順にしたがって反応させることにより化合物A8が得られうる。
【0159】
化合物A9
下記合成スキームに従い、化合物A9を合成する。
【0160】
【0161】
1,8-ジブロモナフタレンと3-メチル-1-ブチン-3-オールを[Beilstein Journal of Organic Chemistry, 2014, vol. 10, p. 384 - 393]などに記載の手順にしたがって反応させることにより化合物9aが得られうる。化合物9aとトリメチルシリルアセチレンを[Tetrahedron Letters, 2016, vol. 57, No. 10, p. 1100 - 1103]などに記載の手順にしたがって反応させることにより化合物9bが得られうる。化合物9bを[Journal of the Chemical Society. Perkin Transactions 2 (2001), 2002, No. 5, p. 878 - 886]などに記載の手順にしたがって反応させることにより化合物9cが得られうる。化合物9cと3-ヨードベンゾフェノンを[Tetrahedron, 2010, vol. 66, No. 13, p. 2378 - 2383]などに記載の手順にしたがって反応させることにより化合物9dが得られうる。化合物9dを[Journal of the American Chemical Society, 2021, vol. 143, No. 37, p. 15420 - 15426]などに記載の手順にしたがって反応させることにより化合物9eが得られうる。化合物9eを[Journal of Organic Chemistry, 2015, vol. 80, No. 19, p. 9410 - 9424]などに記載の手順にしたがって反応させることにより化合物9fが得られうる。化合物9fとアニリンを[European Journal of Medicinal Chemistry, 2017, vol. 135, p. 1 - 11]などに記載の手順にしたがって反応させることにより化合物9gが得られうる。化合物9gを[Journal of Organic Chemistry USSR (English Translation), 1986, vol. 22, p. 199 - 200]などに記載の手順にしたがって反応させることにより化合物9hが得られうる。化合物9hを[Journal of the American Chemical Society, 1966, vol. 88, p. 1482 - 1488]などに記載の手順にしたがって反応させることにより化合物A9が得られうる。
【0162】
化合物A13
下記合成スキームに従い、化合物A13を合成する。
【0163】
【0164】
2-(クロロメトキシ)エチルトリメチルシランと1H-ペリミジンを[Journal of Organic Chemistry, 1986, vol. 51, No. 10, p. 1891 - 1894]などに記載の手順にしたがって反応させることにより化合物13aが得られうる。化合物13aと2-イソプロポキシ-4,4,5,5-テトラメチル-1,3,2-ジオキサボロランを[Organic Letters, 2011, vol. 13, No. 14, p. 3588 - 3591]などに記載の手順にしたがって反応させることにより化合物13bが得られうる。化合物13bと2-ブロモ-3-ヨードナフタレンを[Organic Letters, 2015, vol. 17, No. 6, p. 1613 - 1616]などに記載の手順にしたがって反応させることにより化合物13cが得られうる。化合物13cを[Tetrahedron Letters, 1993, vol. 34, No. 12, p. 1885 - 1888]などに記載の手順にしたがって反応させることにより化合物13dが得られうる。化合物13dとブロモベンゼンを[Organometallics, 2010, vol. 29, No. 18, p. 4120 - 4129]などに記載の手順にしたがって反応させることにより化合物13eが得られうる。化合物13eを[Pharmaceutical Chemistry Journal, 1982, vol. 16, No. 11, p. 844 - 848]などに記載の手順にしたがって反応させることにより化合物13fが得られうる。化合物13fを[Bioorganic and Medicinal Chemistry Letters, 2018, vol. 28, No. 18, p. 3123 - 3128]などに記載の手順にしたがって反応させることにより化合物A13が得られうる。
【0165】
化合物A21
下記合成スキームに従い、化合物A21を合成する。
【0166】
【0167】
(3-ブロモナフタレン-2-イル)ボロン酸と1-ブロモ-2-ヨードベンゼンを[Journal of Organic Chemistry, 2015, vol. 80, No. 15, p. 7779 - 7784]などに記載の手順にしたがって反応させることにより化合物21aが得られうる。化合物21aを[New Journal of Chemistry, 2008, vol. 32, No. 11, p. 1847 - 1849]などに記載の手順にしたがって反応させることにより化合物21bが得られうる。化合物21bと1-ブロモ-2-ヨードベンゼンを[Journal of Organic Chemistry, 2021, vol. 86, No. 24, p. 17651 - 17666]などに記載の手順にしたがって反応させることにより化合物21cが得られうる。化合物21cと3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)シクロペンタ-2-エン-1-オンを[Tetrahedron Letters, 2009, vol. 50, No. 5, p. 590 - 592]などに記載の手順にしたがって反応させることにより化合物21dが得られうる。N-フェニルビス(トリフルオロメタンスルホンイミド)と3-シクロペンテノンを[Journal of the American Chemical Society, 2018, vol. 140, No. 47, p. 16253 - 16263]などに記載の手順にしたがって反応させることにより化合物21eが得られうる。化合物21eとビス(ピナコラート)ジボロンを[Bioorganic and Medicinal Chemistry Letters, 2021, vol. 36, art. no. 127823]などに記載の手順にしたがって反応させることにより化合物21fが得られうる。化合物21dと化合物21fを[Tetrahedron Letters, 2013, vol. 54, No. 6, p. 512 - 514]などに記載の手順にしたがって反応させることにより化合物21gが得られうる。化合物21gを[Organic Letters, 2016, vol. 18, No. 2, p. 200 - 203]などに記載の手順にしたがって反応させることにより化合物21hが得られうる。化合物21hを[Chemical Science, 2019, vol. 10, No. 14, p. 4025 - 4031]などに記載の手順にしたがって反応させることにより化合物21iが得られうる。化合物21iを[Chemistry - A European Journal, 2015, vol. 21, No. 33, p. 11813 - 11824]などに記載の手順にしたがって反応させることにより化合物21jが得られうる。化合物21jを[Journal of Organometallic Chemistry, 1992, vol. 426, No. 2, p. 213 - 245]などに記載の手順にしたがって反応させることにより化合物A21が得られうる。
【0168】
化合物A60
下記合成スキームに従い、化合物A60を合成する。
【0169】
【0170】
6,7-ジブロモ-1H-ベンゾイミダゾールとほう酸トリメチルを[Dalton Transactions, 2009, No. 40, p. 8667 - 8682]などに記載の手順にしたがって反応させることにより化合物60aが得られうる。化合物60aと2-ブロモ-3-(ブロモメチル)ベンズアルデヒドを[MedChemComm, 2013, vol. 4, No. 1, p. 140 - 144]などに記載の手順にしたがって反応させることにより化合物60bが得られうる。化合物60bを[Applied Organometallic Chemistry, 2012, vol. 26, No. 6, p. 287 - 292]などに記載の手順にしたがって反応させることにより化合物60cが得られうる。化合物60cを[Tetrahedron, 2008, vol. 64, No. 46, p. 10573 - 10580]などに記載の手順にしたがって反応させることにより化合物60dが得られうる。化合物60dとアニリンを[Journal of the Chemical Society, 1957, p. 2210,2212]などに記載の手順にしたがって反応させることにより化合物60eが得られうる。化合物60eを[Journal of Polymer Science, Part A: Polymer Chemistry, 2014, vol. 52, No. 21, p. 3096 - 3106]などに記載の手順にしたがって反応させることにより化合物60fが得られうる。化合物60fを[Journal of Organic Chemistry, 2012, vol. 77, No. 20, p. 9418 - 9421,4]などに記載の手順にしたがって反応させることにより化合物A60が得られうる。
【0171】
化合物A66
下記合成スキームに従い、化合物A66を合成する。
【0172】
【0173】
1-ブロモナフタレンとビス(ピナコラート)ジボロンを[Angewandte Chemie - International Edition, 2018, vol. 57, No. 48, p. 15762 - 15766]などに記載の手順にしたがって反応させることにより化合物66aが得られうる。化合物66aと1-ブロモ-2-ヨードナフタレンを[Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, vol. 194, p. 111 - 116]などに記載の手順にしたがって反応させることにより化合物66bが得られうる。化合物66bとアニリンを[Journal of Organic Chemistry, 2013, vol. 78, No. 10, p. 4649 - 4664]などに記載の手順にしたがって反応させることにより化合物66cが得られうる。化合物66cと2-ブロモベンズアルデヒドを[Tetrahedron Letters, 2013, vol. 54, No. 46, p. 6171 - 6177]などに記載の手順にしたがって反応させることにより化合物66dが得られうる。化合物66dとアニリンを[Bioorganic and Medicinal Chemistry, 2016, vol. 24, No. 19, p. 4675 - 4691]などに記載の手順にしたがって反応させることにより化合物66eが得られうる。化合物66eを[Organic Letters, 2018, vol. 20, No. 4, p. 958 - 961]などに記載の手順にしたがって反応させることにより化合物A66が得られうる。
【0174】
化合物A70
下記合成スキームに従い、化合物A70を合成する。
【0175】
【0176】
2-((N-フェニル)アミノ)ベンズアルデヒドと1,2-ジブロモ-4-ヨードベンゼンを[Chemistry - A European Journal, 2018, vol. 24, No. 18, p. 4519 - 4522]などに記載の手順にしたがって反応させることにより化合物70aが得られうる。化合物70aとビス(ピナコラート)ジボロンを[European Journal of Medicinal Chemistry, 2017, vol. 137, p. 139 - 155]などに記載の手順にしたがって反応させることにより化合物70bが得られうる。化合物70bと2,3,4,5-テトラブロモアニリンを[Journal of Medicinal Chemistry, 2006, vol. 49, No. 1, p. 35 - 38]などに記載の手順にしたがって反応させることにより化合物70cが得られうる。化合物70cを[Il Farmaco, 1990, vol. 45, No. 1, p. 7 - 27]などに記載の手順にしたがって反応させることにより化合物70dが得られうる。化合物70dとヨードベンゼンを[Advanced Synthesis and Catalysis, 2014, vol. 356, No. 18, p. 3821 - 3830]などに記載の手順にしたがって反応させることにより化合物70eが得られうる。化合物70eとフェニルヒドラジンを[Journal of the Indian Chemical Society, 1957, vol. 34, p. 77]などに記載の手順にしたがって反応させることにより化合物70fが得られうる。化合物70fを[European Journal of Medicinal Chemistry, 2012, vol. 58, p. 214 - 227]などに記載の手順にしたがって反応させることにより化合物70gが得られうる。化合物70gとジフェニルヨードニウムとトリフルオロメタンスルホン酸を[Angewandte Chemie - International Edition, 2018, vol. 57, No. 35, p. 11427 - 11431]などに記載の手順にしたがって反応させることにより化合物70hが得られうる。化合物70hとアリルトリブチルスズを[Angewandte Chemie - International Edition, 2017, vol. 56, No. 21, p. 5886 - 5889]などに記載の手順にしたがって反応させることにより化合物70iが得られうる。化合物70iとトリブチルビニルスズを[Organic Letters, 2018, vol. 20, No. 18, p. 5680 - 5683]などに記載の手順にしたがって反応させることにより化合物70jが得られうる。化合物70jを[Chemistry - A European Journal, 2020, vol. 26, No. 8, p. 1772 - 1775]などに記載の手順にしたがって反応させることにより化合物A70が得られうる。
【0177】
化合物A72
下記合成スキームに従い、化合物A72を合成する。
【0178】
【0179】
2-ブロモ-7-クロロナフタレン-1-オールとクロロトリメチルシランを[Tetrahedron Letters, 1995, vol. 36, No. 46, p. 8415 - 8418]などに記載の手順にしたがって反応させることにより化合物72aが得られうる。化合物72aとトリフルオロメタンスルホン酸無水物を[Journal of Organic Chemistry, 2017, vol. 82, No. 8, p. 4242 - 4253]などに記載の手順にしたがって反応させることにより化合物72bが得られうる。化合物72bとベンジルアジドを[Chemical Science, 2016, vol. 7, No. 8, p. 5206 - 5211]などに記載の手順にしたがって反応させることにより化合物72cが得られうる。化合物72cを[Monatshefte fur Chemie, 2010, vol. 141, No. 7, p. 773 - 779]などに記載の手順にしたがって反応させることにより化合物72dが得られうる。化合物72dと2-(クロロメトキシ)エチルトリメチルシランを[Bioorganic and Medicinal Chemistry Letters, 1996, vol. 6, No. 24, p. 2919 - 2924]などに記載の手順にしたがって反応させることにより化合物72eが得られうる。化合物72eとホルムアルデヒドを[Journal of the American Chemical Society, 2019]などに記載の手順にしたがって反応させることにより化合物72fが得られうる。化合物72fを[Journal of Medicinal Chemistry, 2021, vol. 64, No. 1, p. 695 - 710]などに記載の手順にしたがって反応させることにより化合物72gが得られうる。化合物72gを[Indian Journal of Chemistry - Section B Organic and Medicinal Chemistry, 1984, vol. 23, No. 9, p. 844 - 848]などに記載の手順にしたがって反応させることにより化合物72hが得られうる。化合物72hとN-(2-iodophenylmethyl)aniline N-(2-ヨードフェニルメチル)アニリンを[Memorial des services chimiques de l’Etat, 1946, vol. 32, p. 62,66]などに記載の手順にしたがって反応させることにより化合物72iが得られうる。化合物72iを[Tetrahedron, 2009, vol. 65, No. 17, p. 3409 - 3416]などに記載の手順にしたがって反応させることにより化合物A72が得られうる。
【0180】
【0181】
【0182】
【0183】
【0184】
【0185】
上述のように開示された実施の形態は全ての点で例示であって、制限的なものではない。本発明の範囲は、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれる。また、上述の実施の形態の少なくとも一部を任意に組み合わせてもよい。
上述の実施の形態に示すシーケンスは限定されるものではなく、矛盾の無い範囲で、各処理手順はその順序を変更して実行されてもよく、また並行して複数の処理が実行されてもよい。各処理の処理主体は限定されるものではなく、矛盾の無い範囲で、各装置の処理を他の装置が実行してもよい。
【符号の説明】
【0186】
1 情報処理装置
11 制御部
12 記憶部
13 通信部
14 表示部
15 操作部
121 学習モデル
122 化合物DB
1P プログラム
1A 記録媒体
2 情報端末装置