IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アプライド マテリアルズ インコーポレイテッドの特許一覧

<>
  • 特許-単一ウエハ上に集積された三色光源 図1
  • 特許-単一ウエハ上に集積された三色光源 図2
  • 特許-単一ウエハ上に集積された三色光源 図3
  • 特許-単一ウエハ上に集積された三色光源 図4
  • 特許-単一ウエハ上に集積された三色光源 図5
  • 特許-単一ウエハ上に集積された三色光源 図6
  • 特許-単一ウエハ上に集積された三色光源 図7
  • 特許-単一ウエハ上に集積された三色光源 図8
  • 特許-単一ウエハ上に集積された三色光源 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-09-30
(45)【発行日】2024-10-08
(54)【発明の名称】単一ウエハ上に集積された三色光源
(51)【国際特許分類】
   H01L 33/08 20100101AFI20241001BHJP
   H01L 33/32 20100101ALI20241001BHJP
   H01L 33/12 20100101ALI20241001BHJP
   H01L 33/16 20100101ALI20241001BHJP
   H01S 5/323 20060101ALI20241001BHJP
   H01S 5/40 20060101ALI20241001BHJP
【FI】
H01L33/08
H01L33/32
H01L33/12
H01L33/16
H01S5/323 610
H01S5/40
【請求項の数】 17
(21)【出願番号】P 2023516766
(86)(22)【出願日】2021-09-08
(65)【公表番号】
(43)【公表日】2023-09-29
(86)【国際出願番号】 US2021049496
(87)【国際公開番号】W WO2022060611
(87)【国際公開日】2022-03-24
【審査請求日】2023-05-08
(31)【優先権主張番号】17/021,391
(32)【優先日】2020-09-15
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】390040660
【氏名又は名称】アプライド マテリアルズ インコーポレイテッド
【氏名又は名称原語表記】APPLIED MATERIALS,INCORPORATED
【住所又は居所原語表記】3050 Bowers Avenue Santa Clara CA 95054 U.S.A.
(74)【代理人】
【識別番号】110002077
【氏名又は名称】園田・小林弁理士法人
(72)【発明者】
【氏名】チャドジック, マイケル
(72)【発明者】
【氏名】サンチェス, エロール アントニオ シー.
【審査官】右田 昌士
(56)【参考文献】
【文献】国際公開第2010/044129(WO,A1)
【文献】特開2020-119967(JP,A)
【文献】特開2012-186449(JP,A)
【文献】特開2001-223165(JP,A)
【文献】特開2016-025357(JP,A)
【文献】特開2013-239718(JP,A)
【文献】特表2016-527706(JP,A)
【文献】特開平07-249795(JP,A)
【文献】特表2019-516251(JP,A)
【文献】米国特許出願公開第2020/0135976(US,A1)
【文献】中国特許出願公開第110416249(CN,A)
【文献】米国特許出願公開第2020/0152612(US,A1)
【文献】特開2011-254078(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 33/00 - 33/64
H01S 5/00 - 5/50
(57)【特許請求の範囲】
【請求項1】
デバイスであって、
基板と、
前記基板上に形成された誘電体層と、
第1の波長を特徴とする第1の光を放出するように構成された第1の光源であって、前記第1の光源が、前記基板の第1の領域に自然に形成され、前記誘電体層の第1の開口部内に配置され、GaN又はInGaNのうちの少なくとも一方を含む第1の半導体層と、前記第1の半導体層上に形成され、第1の多孔性を有するGaNを含む第1の多孔性半導体層と、前記第1の多孔性半導体層上に形成され、第1の緩和度を有するInGaNを含む第1の緩和半導体層を備える、第1の光源と、
前記第1の波長と異なる第2の波長を特徴とする第2の光を放出するように構成された第2の光源であって、前記第2の光源が、前記基板の第2の領域に自然に形成され、前記誘電体層の第2の開口部内に配置され、GaN又はInGaNのうちの少なくとも一方を含む第2の半導体層と、前記第2の半導体層上に形成され、前記第1の多孔性と異なる第2の多孔性を有するGaNを含む第2の多孔性半導体層と、前記第2の多孔性半導体層上に形成され、前記第1の緩和度と異なる第2の緩和度を有するInGaNを含む第2の緩和半導体層を備える、第2の光源と、
前記第1の波長及び前記第2の波長と異なる第3の波長を特徴とする第3の光を放出するように構成された第3の光源であって、前記第3の光源が、前記基板の第3の領域に自然に形成され、前記誘電体層の第3の開口部内に配置される、第3の光源と
を含む、デバイス。
【請求項2】
前記第1の光源が、半極性又は無極性のうちの少なくとも一方である極性を有する発光面を備える、請求項1に記載のデバイス。
【請求項3】
前記第1の光源が、第1の緩和度を有する第1の活性領域を含み、前記第2の光源が、第2の緩和度を有する第2の活性領域を含み、かつ、前記第1の緩和度が前記第2の緩和度と異なる、請求項1に記載のデバイス。
【請求項4】
前記第1の光源が、インジウムの第1のパーセンテージを有する第1の活性領域を含み、前記第2の光源が、インジウムの第2のパーセンテージを有する第2の活性領域を含み、かつ、インジウムの前記第1のパーセンテージがインジウムの前記第2のパーセンテージと異なる、請求項1に記載のデバイス。
【請求項5】
前記第1の光源が、第1の形状を有し、前記第2の光源が、第2の形状を有し、かつ、前記第1の形状が前記第2の形状と異なる、請求項1に記載のデバイス。
【請求項6】
前記第1の光源の前記第1の緩和半導体層内のInGaNが、インジウムの第1のパーセンテージを有し、
前記第2の光源の前記第2の緩和半導体層内のInGaNが、インジウムの第2のパーセンテージを有し、かつ、
インジウムの前記第1のパーセンテージがインジウムの前記第2のパーセンテージと異なる、請求項に記載のデバイス。
【請求項7】
前記第1の光源が、第1の限界寸法を特徴とし、前記第2の光源が、第2の限界寸法を特徴とし、かつ、前記第1の限界寸法が前記第2の限界寸法と異なる、請求項1に記載のデバイス。
【請求項8】
デバイスであって、
第1の波長を特徴とする第1の光を放出するように構成された複数の第1の光源であって、前記複数の第1の光源のそれぞれの第1の光源が、基板の第1の領域に自然に形成され、前記複数の第1の光源のそれぞれの第1の半導体層がGaN又はInGaNのうちの少なくとも一方を含み、第1の多孔性を特徴とする、複数の第1の光源と、
第2の波長を特徴とする第2の光を放出するように構成された複数の第2の光源であって、前記複数の第2の光源のそれぞれの第2の光源が、前記基板の第2の領域に自然に形成され、前記複数の第2の光源のそれぞれの第2の半導体層がGaN又はInGaNのうちの少なくとも一方を含み、第2の多孔性を特徴とする、複数の第2の光源と、
第3の波長を特徴とする第3の光を放出するように構成された複数の第3の光源であって、前記複数の第3の光源のそれぞれの第3の光源が、前記基板の第3の領域に自然に形成され、前記複数の第3の光源のそれぞれの第3の半導体層が第3の多孔性を特徴とする、複数の第3の光源と
を含み、前記第1の波長が、前記第2の波長及び前記第3の波長と異なり、前記第2の波長が前記第3の波長と異な前記第1の多孔性が、前記第2の多孔性及び前記第3の多孔性と異なり、前記第2の多孔性が前記第3の多孔性と異なる、デバイス。
【請求項9】
前記複数の第1の光源が、前記複数の第1の光源の隣接する第1の光源の間に第1の距離を有するように離隔され、
前記複数の第2の光源が、前記複数の第2の光源の隣接する第2の光源の間に第2の距離を有するように離隔され、かつ、
前記第1の距離が前記第2の距離と異なる、請求項に記載のデバイス。
【請求項10】
前記複数の第1の光源のそれぞれの第1の光源が、第1の限界寸法を特徴とし、
前記複数の第2の光源のそれぞれの第2の光源が、第2の限界寸法を特徴とし、かつ、
前記第1の限界寸法が前記第2の限界寸法と異なる、請求項に記載のデバイス。
【請求項11】
前記複数の第1の光源が、前記複数の第1の光源の隣接する第1の光源の間に第1の距離を有するように離隔され、
前記複数の第2の光源が、前記複数の第2の光源の隣接する第2の光源の間に第2の距離を有するように離隔され、
前記第1の距離が前記第2の距離よりも大きく、かつ、
前記第1の限界寸法が前記第2の限界寸法よりも小さい、請求項10に記載のデバイス。
【請求項12】
第1の数の前記第1の光源が、前記基板の前記第1の領域に形成され、
第2の数の前記第2の光源が、前記基板の前記第2の領域に形成され、
記第1の光源の前記第1の数が前記第2の光源の前記第2の数よりも小さく、かつ、
前記第1の限界寸法が前記第2の限界寸法よりも小さい、請求項10に記載のデバイス。
【請求項13】
前記基板の前記第1の領域が、前記基板の複数の第1の部分を含み、
前記基板の前記第2の領域が、前記基板の複数の第2の部分を含み、
前記基板の前記第3の領域が、前記基板の複数の第3の部分を含む、請求項に記載のデバイス。
【請求項14】
前記基板の前記第1の部分の数が、前記基板の前記第2の部分の数よりも大きい、請求項13に記載のデバイス。
【請求項15】
前記複数の第1の光源のそれぞれの第1の光源が、第1の限界寸法を特徴とし、
前記複数の第2の光源のそれぞれの第2の光源が、第2の限界寸法を特徴とし、かつ、
前記第1の限界寸法が前記第2の限界寸法よりも小さい、請求項14に記載のデバイス。
【請求項16】
デバイスであって、
第1の波長を特徴とする第1の光を放出するように構成された第1の光源であって、前記第1の光源が、基板の第1の領域に形成され、前記第1の光源の第1の半導体層がGaN又はInGaNのうちの少なくとも一方を含み、第1の多孔性を特徴とする、第1の光源と、
第2の波長を特徴とする第2の光を放出するように構成された第2の光源であって、前記第2の光源が、前記基板の第2の領域に形成され、前記第2の光源の第2の半導体層がGaN又はInGaNのうちの少なくとも一方を含み、第2の多孔性を特徴とする、第2の光源と、
第3の波長を特徴とする第3の光を放出するように構成された第3の光源であって、前記第3の光源が、前記基板の第3の領域に形成され、前記第3の光源の第3の半導体層が第3の多孔性を特徴とする、第3の光源と
を含み、前記第1の波長が、前記第2の波長及び前記第3の波長と異なり、前記第2の波長が前記第3の波長と異なり、かつ、
前記第1の多孔性が、前記第2の多孔性及び前記第3の多孔性と異なり、前記第2の多孔性が前記第3の多孔性と異なる、デバイス。
【請求項17】
前記第1の光源が、半極性又は無極性のうちの少なくとも一方である発光面を備える、請求項16に記載のデバイス。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
[0001]本出願は、2020年9月15日に出願された「単一ウエハ上に集積された三色光源」と題する米国非仮特許出願第17/021,391号の優先権を主張し、その出願全体は、ここで参照することによって本出願の一部をなしている。
【0002】
[0002]本技術は、同一基板上に3つの異なる発光波長を有する光源を形成する方法に関する。より具体的には、本技術は、所望の発光波長を達成するために、様々な光源の特性を調整する方法に関する。
【背景技術】
【0003】
[0003]様々なディスプレイ技術は、フルカラーディスプレイを提供するために、赤、緑、及び青などの異なる発光波長を有する光源を使用する。例えば、発光ダイオード(LED)は、テレビジョンのディスプレイパネル上に配置され得る。LEDは、最大直線寸法が約10μm未満又は約10μmのマイクロLEDであり得る。同一基板上に種々の発光波長を有するLEDを提供することは困難であり、費用及び時間がかかり、LEDは許容可能な特性によって特徴付けられないことが多い。
【0004】
[0004]したがって、同一基板上に種々の発光波長を有する高品質のLEDを生産するために使用できる改善された方法が必要とされている。本技術は、これらの必要性及びその他の必要性に対処する。
【発明の概要】
【0005】
[0005]例示的なデバイスは、基板と、基板上に形成された誘電体層と、第1の波長を特徴とする第1の光を放出するように構成された第1の光源と、第1の波長とは異なる第2の波長を特徴とする第2の光を放出するように構成された第2の光源と、第1の波長及び第2の波長とは異なる第3の波長を特徴とする第3の光を放出するように構成された第3の光源とを含み得る。第1の光源は、基板の第1の領域に自然に(natively)形成され、誘電体層の第1の開口部内に配置され得る。第2の光源は、基板の第2の領域に自然に形成され、誘電体層の第2の開口部内に配置され得る。第3の光源は、基板の第3の領域に自然に形成され、誘電体層の第3の開口部内に配置され得る。
【0006】
[0006]幾つかの実施形態では、第1の光源は、半極性及び/又は無極性である極性を有する発光面を含み得る。第1の光源は、第1の緩和度を有する第1の活性領域を含み得、第2の光源は、第2の緩和度を有する第2の活性領域を含み得、かつ、第1の緩和度は第2の緩和度と異なり得る。
【0007】
[0007]第1の光源は、インジウムの第1のパーセンテージを有する第1の活性領域を含み得、第2の光源は、インジウムの第2のパーセンテージを有する第2の活性領域を含み得、かつ、インジウムの第1のパーセンテージはインジウムの第2のパーセンテージと異なる。第1の光源は、第1の形状を有し得、第2の光源は、第2の形状を有し得、かつ、第1の形状は第2の形状と異なり得る。
【0008】
[0008]第1の光源は、GaN及び/又はInGaNを含む第1の半導体層を含み得る。第1の光源は、第1の半導体層上に形成された第1の多孔性半導体層、及び第1の多孔性半導体層上に形成された第1の緩和半導体層も含み得、第1の多孔性半導体層は、第1の多孔性を有するGaNを含み得、第1の緩和半導体層は、第1の緩和度を有するInGaNを含み得る。
【0009】
[0009]第2の光源は、GaN及び/又はInGaNを含む第2の半導体層を含み得、第2の光源は、第2の半導体層上に形成された第2の多孔性半導体層、及び第2の多孔性半導体層上に形成された第2の緩和半導体層も含み得、第2の多孔性半導体層は、第2の多孔性を有するGaNを含み得、第2の緩和半導体層は、第2の緩和度を有するInGaNを含み得る。第1の多孔性は第2の多孔性と異なってもよく、かつ、第1の緩和度は第2の緩和度と異なってもよい。
【0010】
[0010]第1の光源の第1の緩和半導体層内のInGaNは、インジウムの第1のパーセンテージを有し得、第2の光源の第2の緩和半導体層内のInGaNは、インジウムの第2のパーセンテージを有し得、かつ、インジウムの第1のパーセンテージはインジウムの第2のパーセンテージと異なり得る。第1の光源は第1の限界寸法を特徴とし得、第2の光源は第2の限界寸法を特徴とし得、かつ、第1の限界寸法は第2の限界寸法と異なり得る。
【0011】
[0011]本技術の幾つかの実施形態は、第1の波長を特徴とする第1の光を放出するように構成された複数の第1の光源と、第2の波長を特徴とする第2の光を放出するように構成された複数の第2の光源と、第3の波長を特徴とする第3の光を放出するように構成された複数の第3の光源とを有するデバイスを包含し得る。複数の第1の光源のそれぞれの第1の光源が、基板の第1の領域に自然に形成され得る。第1の波長は、第2の波長及び第3の波長と異なってもよく、第2の波長は第3の波長と異なってもよい。複数の第2の光源のそれぞれの第2の光源が、基板の第2の領域に自然に形成され得、複数の第3の光源のそれぞれの第3の光源が、基板の第3の領域に自然に形成され得る。
【0012】
[0012]幾つかの実施形態では、複数の第1の光源は、複数の第1の光源の隣接する第1の光源の間に第1の距離を有するように離隔され得、複数の第2の光源は、複数の第2の光源の隣接する第2の光源の間に第2の距離を有するように離隔され得、かつ、第1の距離は第2の距離と異なり得る。複数の第1の光源のそれぞれの第1の光源は、第1の限界寸法を特徴とし得、複数の第2の光源のそれぞれの第2の光源は、第2の限界寸法を特徴とし得、かつ、第1の限界寸法は第2の限界寸法と異なり得る。
【0013】
[0013]複数の第1の光源は、複数の第1の光源の隣接する第1の光源の間に第1の距離を有するように離隔され得、複数の第2の光源は、複数の第2の光源の隣接する第2の光源の間に第2の距離を有するように離隔され得、かつ、第1の距離は第2の距離よりも大きくてもよく、第1の限界寸法は第2の限界寸法よりも小さくてもよい。第1の数の第1の光源が、基板の第1の領域に形成され得、第2の数の第2の光源が、基板の第2の領域に形成され得、第1の数の第1の光源は第2の数の第2の光源よりも小さくてもよく、かつ、第1の限界寸法は第2の限界寸法よりも小さくてもよい。
【0014】
[0014]基板の第1の領域は、基板の複数の第1の部分を含み得、基板の第2の領域は、基板の複数の第2の部分を含み得、基板の第3の領域は、基板の複数の第3の部分を含み得る。基板の第1の部分の数は、基板の第2の部分の数よりも大きくてもよい。複数の第1の光源のそれぞれの第1の光源は、第1の限界寸法を特徴とし得、複数の第2の光源のそれぞれの第2の光源は、第2の限界寸法を特徴とし得、かつ、第1の限界寸法は第2の限界寸法よりも小さくてもよい。
【0015】
[0015]本技術の幾つかの実施形態は、第1の波長を特徴とする第1の光を放出するように構成された第1の光源と、第2の波長を特徴とする第2の光を放出するように構成された第2の光源と、第3の波長を特徴とする第3の光を放出するように構成された第3の光源とを有するデバイスを包含し得る。
第1の光源は基板の第1の領域に形成され得、第1の光源の第1の半導体層が、第1の多孔性を特徴とし得る。第2の光源は基板の第2の領域に形成され得、第2の光源の第2の半導体層が、第2の多孔性を特徴とし得る。第3の光源は基板の第3の領域に形成され得、第3の光源の第3の半導体層が、第3の多孔性を特徴とし得る。第1の波長は、第2の波長及び第3の波長と異なってもよく、第2の波長は第3の波長と異なってもよい。第1の多孔性は、第2の多孔性及び第3の多孔性と異なってもよく、第2の多孔性は第3の多孔性と異なってもよい。第1の光源は、半極性及び/又は無極性である発光面を含み得る。
【0016】
[0016]かかる技術は、従来型のシステム及び技法よりも数多くの恩恵を提供し得る。例えば、光源は同一基板上に自然に形成され、従来型のピックアンドプレース(pick-and-place)法と比較して、費用を低減し、歩留まりを増加させ、処理時間を減少させ得る。更に、それぞれの光源の発光波長は調整され得る。例えば、明るい赤色エミッタを提供することにおける課題は克服され得る。加えて、エミッタが形成されるテンプレートの厚さは低減され得る。これらの実施形態及びその他の実施形態は、その多くの利点及び特徴と共に、後述の記載及び添付の図面と併せてより詳細に記載されている。
【0017】
[0017]開示されている技術の性質及び利点についての更なる理解は、本明細書の以下の部分及び図面を参照することによって実現され得る。
【図面の簡単な説明】
【0018】
図1】本技術の幾つかの実施形態に係る、例示的なデバイスの上面概略図である。
図2】本技術の幾つかの実施形態に係る、例示的な光源の側面図である。
図3】本技術の幾つかの実施形態に係る、例示的なデバイスの側面概略図である。
図4】本技術の幾つかの実施形態に係る、例示的なデバイスの側面概略図である。
図5】本技術の幾つかの実施形態に係る、例示的なデバイスの斜視図である。
図6】本技術の幾つかの実施形態に係る、例示的なデバイスの斜視図である。
図7】本技術の幾つかの実施形態に係る、Vピットを有するPN接合の側面概略図である。
図8】本技術の幾つかの実施形態に係る、第1の例示的なデバイス及び第2の例示的なデバイスの上面概略図である。
図9】本技術の幾つかの実施形態に係る、例示的なデバイスの概略斜視図である。
【発明を実施するための形態】
【0019】
[0027]幾つかの図面は概略図として含まれている。図面は例示のためのものであり、縮尺どおりであると明記されていない限り縮尺どおりと見なすべきではないと、理解されたい。更に、概略図として、図面は、理解を助けるために提供されており、現実的な描写と比較して全ての態様又は情報を含まない場合があり、例示を目的として強調された素材を含むことがある。
【0020】
[0028]添付の図面では、類似の構成要素及び/又は特徴は、同じ参照符号を有し得る。更に、同種の様々な構成要素は、類似した構成要素どうしを区別する文字により、参照符号にしたがって区別され得る。本明細書で第1の参照符号のみが使用される場合、記載は、文字に関係なく、同じ第1の参照符号を有する類似の構成要素の任意の1つに適用可能である。
【0021】
[0029]多くのディスプレイ技術は、フルカラーディスプレイを提供するために、赤、緑、及び青などの異なる発光波長を有する光源を使用する。光源は、種々の発光波長を生成するために、種々のバンドギャップを有する種々の材料で作られている。幾つかの従来型の方法は、「ピックアンドプレース」技法を使用して、それぞれの波長に適した発光特性を有する光源を提供する。これらの方法では、別個の基板を使用して発光波長ごとに異なるLEDを成長させ、成長基板からLEDを除去し、次いでLEDを共通のウエハに取り付ける。これらの方法は、発光波長ごとにLEDと同様の結晶構造を有する成長基板を選択することにより、格子不整合を最小限に抑えることが可能である。格子不整合は、LEDが放出する光の品質及び効率に悪影響を及ぼす可能性のある歪みをLEDに引き起こし得る。しかし、処理ステップの数、開始基板の数の増加、及び機器の複雑さのために、これらの方法は面倒で、時間がかかり、歩留まりが低く、費用がかかる。
【0022】
[0030]本技術は、同一基板上に種々の発光波長を有するLEDを自然に形成することによって、これらの問題を克服し得る。特定の発光波長を選択するために、様々なパラメータを調整することができる。例えば、基板上に形成されるSiドープGaN層の種々の領域は、種々の量の多孔性を有し得、これを使用して、InGaN層の対応する領域に様々な量のInを組み込んで、InGaN層の歪みを変更することができ、それにより、InGaN層の種々の領域上に形成された活性領域の発光波長をシフトする。特に、第1の領域は青色発光用に調整され、第2の領域は緑色発光用に幾らか緩和され、第3の領域は赤色発光用に更に緩和され得る。次いで、GaNに基づく光源を種々の領域上に形成することができる。
【0023】
[0031]代替的又は追加的に、光源の特性を調整して、特定の発光波長を選択することができる。例えば、光源は、半極性及び/又は無極性である発光面を有するように形成され得る。これにより、より多くのInをGaNベースの材料に組み込むことが可能となり、発光波長がより長い波長にシフトし得る。別の実施例として、Vピット又は傾斜トレンチを発光面上に形成して、Inの組み込み及び発光波長を増加させ得る。更に別の実施例として、光源の限界寸法は、Inの組み込み及び発光波長を調整(増加又は減少)するために、他のものに対して減少又は増加し得る。なお更なる実施例として、Inの組み込み及び発光波長を調整(増加又は減少)するために、光源のピッチが増加又は減少し得る。更に別の実施例として、Inの組み込み及び発光波長を変更(増加又は減少)するために、光源は、ファセット及び/又は超格子を有するように形成され得る。
【0024】
[0032]本技術の方法はまた、発光波長を望ましくない方法でシフトする可能性のある歪み効果、及び/又は発光の強度を低下させる可能性のある偏光効果を最小限に抑えることができる。更に、本技術の方法は、LEDの厚さを低減し得る。加えて、本技術の方法は、LEDを形成するために使用される処理ステップ及び/又はマスキングステップの数を減少させ得る。
【0025】
[0033]図1は、本技術の幾つかの実施形態による、例示的なデバイス100の上面概略図を示す。デバイス100は、基板115上に自然に形成される複数の光源145、150、及び155を含み得る。基板115はSiを含み得る。より具体的には、基板115は、第1の波長を有する光を放出するように構成された第1の光源145が形成される第1の領域130と、第2の波長を有する光を放出するように構成された第2の光源150が形成される第2の領域135と、第3の波長を有する光を放出するように構成された第3の光源155が形成される第3の領域140とを含み得る。幾つかの実施例では、第1の波長は電磁スペクトルの赤色領域内にあり、第2の波長は電磁スペクトルの緑色領域内にあり、第3の波長は電磁スペクトルの青色領域内にあり得る。赤色領域は約615nmから約740nmの波長を含み、緑色領域は約500nmから約565nmの波長を含み、青色領域は約450nmから約485nmの波長を含み得る。簡潔にするために、幾つかの第1の光源145、第2の光源150、及び第3の光源155のみが図1に示されている。しかし、任意の適切な数の第1の光源145、第2の光源150、及び第3の光源155が提供されてもよい。
【0026】
[0034]図2は、本技術の幾つかの実施形態による、例示的な光源200の側面図を示す。光源200は、GaN及び/又はInGaNの多重量子井戸(MQW)構造と、MQWの反対側のP型及びN型ドープGaN又はInGaNとを有し得る活性領域235、並びに基板215上に堆積される半導体層220を含む。簡潔にするために、コンタクト、リフレクタ、及びパッシベーション層は示されていない。幾つかの実施例では、半導体層220はGaNを含み得、基板215はSiを含み得るが、基板は、他のシリコン含有材料、並びに半導体層が形成され得る任意の他の材料であってもよく、又はこれらを含んでもよい。光源200の発光波長は、活性領域235のMQWにおけるインジウムの濃度、並びに基板215及び半導体層220に対する格子不整合による活性領域235上の歪みによって影響を受け得る。単位入力電力当たりの光源200の放射電力又は輝度も、活性領域235内及びその表面上の歪み及び欠陥トラップによって制限される。かかる制限を低減するための一実施例として、光源200はまた、半導体層220上に形成される多孔性半導体層225を含み得る。幾つかの実施例では、多孔性半導体層225は、多孔性SiドープGaNを含み得る。加えて、光源200は、多孔性半導体層225上に形成される緩和半導体層230を含み得る。幾つかの実施例では、緩和半導体層230は、緩和InGaNを含み得る。
【0027】
[0035]次に、光源200の発光波長は、多孔性半導体層225の多孔度を変えることによって選択され得る。例えば、多孔度は、多孔性半導体層225のSiドープGaNから、増加するSiの量を除去することによって増大させることができる。これにより、緩和半導体層230は、MQWのレベルに近いより高いInのレベルで、より自然な(より緩和された)格子サイズをとることができる。次いで、活性領域235のMQWの特定のインジウム濃度から生じる発光波長は、その下の層及び基板によって与えられる歪みによる影響をあまり受けない。このことは、光源200からのより長い発光波長をもたらす。
【0028】
[0036]幾つかの実施例では、光源200の発光波長は、図1に示される、第1の光源145、第2の光源150、及び第3の光源155を提供するように変化し得る。例えば、基板115の第1の領域130上の第1の光源145は、多孔度が30%から60%などの高い多孔度を有する多孔性半導体層225を含み得る。基板115の第2の領域135上の第2の光源150は、多孔度が0%から30%などの中間の多孔度を有する多孔性半導体層225を含み得る。基板115の第3の領域140上の第3の光源は、多孔度が0%などの低い多孔度を有する多孔性半導体層225を含み得る。これにより、基板115の第1の領域130上の第1の光源145は、高い緩和度及び/又は5%から15%のInなどの高度のInの組み込みを有する緩和半導体層230を有し、基板115の第2の領域135上の第2の光源150は、中間の緩和度及び/又は2%から5%のInなどの中程度のInの組み込みを有する緩和半導体層230を有し、基板の第3の領域140上の第3の光源155は、低い緩和度及び/又は1%から5%のInなどの低度のInの組み込みを有する緩和半導体層230を有し得る。
【0029】
[0037]図1に示されるデバイス100は、基板115上に半導体層220を均一に堆積させ、次いで半導体層220上に多孔性半導体層225を均一に堆積させることによって形成され得る。半導体層220及び多孔性半導体層225は、有機金属化学蒸着(MOCVD)、プラズマ強化型MOCVD、分子線エピタキシ(MBE)、又は気相エピタキシなどの様々な方法によって堆積され得る。幾つかの実施例では、多孔性半導体層225の多孔度は、次いで、基板115の第1の領域130、基板115の第2の領域135、及び基板115の第3の領域140に対応する領域で異なるように調整され得る。
【0030】
[0038]例えば、最初に堆積されたときの多孔性半導体層225の多孔性を増大させるために、多孔性半導体層225の多孔性SiドープGaNから様々な量のSiが除去され得る。幾つかの実施例では、基板115の第1の領域130上に形成された多孔性半導体層225の部分から電気化学プロセスによって第1の量のSiが除去され得、基板115の第2の領域135上に形成された多孔性半導体層225の部分から第2の量のSiが除去され得、基板115の第3の領域140上に形成された多孔性半導体層225の部分から第3の量のSiが除去され得る。除去されるSiの第1の量は、除去されるSiの第2の量より多くてもよく、除去されるSiの第2の量は、除去されるSiの第3の量よりも多くてもよい。次に、緩和半導体層230が、多孔性半導体層225上に堆積され得る。多孔性半導体層225の多孔性の違いにより、緩和半導体層230の種々の領域は、対応する歪みの違いを有し得る。この実施例では、基板115の第1の領域130に対応する緩和半導体層230の部分は、基板115の第2の領域135に対応する緩和半導体層230の部分よりも大きな歪み緩和度を有し得る。このことは、基板115の第1の領域130上に形成された光源が、基板115の第2の領域135上に形成された光源よりも長い発光波長を有することができるように、発光波長を赤方偏移させる効果も有する。同様に、基板115の第2の領域135に対応する緩和半導体層230の部分は、基板115の第3の領域140に対応する緩和半導体層230の部分よりも大きな歪み緩和度を有し得る。更に、基板115の第2の領域135上に形成された光源は、基板115の第3の領域140上に形成された光源よりも長い発光波長を有し得る。他の実施例では、多孔性半導体層225の部分のうちの少なくとも1つは、その多孔性が変化しないように、堆積されたままであってもよい。光源は、緩和半導体層230の種々の領域上への堆積によって形成され得る活性領域235を含み得る。
【0031】
[0039]図3は、本技術の幾つかの実施形態による、例示的なデバイス300の側面概略図を示す。デバイス300は、第1の光源345、第2の光源350、及び第3の光源355を含み得、これらのそれぞれは、基板315上に自然に形成される。基板315はSiを含み得るが、基板は、他のシリコン含有材料、並びに半導体層が形成され得る任意の他の材料であってもよく、又はこれらを含んでもよい。第1の光源345は、第1の波長を有する光を放出するように構成され得、第2の光源350は、第2の波長を有する光を放出するように構成され得、第3の光源355は、第3の波長を有する光を放出するように構成され得る。幾つかの実施例では、第1の波長は電磁スペクトルの赤色領域内にあり、第2の波長は電磁スペクトルの緑色領域内にあり、第3の波長は電磁スペクトルの青色領域内にあり得る。
【0032】
[0040]デバイス300は、基板315上に誘電体層370を堆積させることによって形成され得る。誘電体層370は、SiNなどの材料を含み得、約0.50μm未満又は約0.50μm、約0.45μm未満又は約0.45μm、約0.40μm未満又は約0.40μm、約0.35μm未満又は約0.35μm、又はそれ未満の厚さを有し得る。幾つかの実施例では、誘電体層370は、基板315上に均一に堆積され得、次いでサブミクロンから数ミクロンの直径サイズの開口部が、誘電体層370内で基板315の表面までエッチングされて、開口サイズの半分から開口サイズの3倍まで変化し得る有効な深さになり得る。幾つかの実施例では、光源345、350、及び355は、誘電体層370内のこれらの開口部内の基板315上に選択的堆積され得るが、誘電体層370上には堆積されない。小さく深い開口部内でのこの選択的堆積により、その他の場合(より大きくより浅い寸法で行われた場合)必要とされたであろう基板315と活性領域335との間の層の厚さを低減させて、欠陥トラップを減少させ、最適な材料品質及び放射電力のための緩和を増加させることができる。
【0033】
[0041]第1の光源345、第2の光源350、及び第3の光源355のそれぞれは、活性領域335のMQWにおけるより高いInの組み込み及び緩和を可能にするように、ひいては、発光波長を選択するようにも調整され得る限界寸法を有する。この実施例では、限界寸法は、誘電体層370のそれぞれの開口部の直径(「限界直径」)であり得る。他の実施例では、限界寸法は、選択的に堆積された光源345、350、又は355のアスペクト比(高さ対直径比)であり得る。第1の光源345の直径は、約200nmから約400nmであり得、第2の光源350の直径は、約400nmから約800nmであり得、第3の光源355の直径は、約400nmから約800nmであり得る。より一般的には、第1の光源345は、第2の光源350及び第3の光源355の直径よりも小さい直径を有し得る。更に、第2の光源350及び第3の光源355の直径は等しくてもよく、又は第2の光源350の直径は第3の光源355の直径よりも小さくてもよい。第1の光源345、第2の光源350、及び第3の光源355のそれぞれについては、それぞれの活性領域の選択的堆積中に供給される光源の直径及び/又はInの濃度を調整して、特定の発光波長を有する光源を提供することができる。例えば、発光波長を増大させるために、活性領域335の堆積中に、より高い濃度のInを供給することができる。更に、発光波長を増大させるために、光源の直径を低減することができる。
【0034】
[0042]第1の光源345、第2の光源350、及び第3の光源355のそれぞれは、一実施例では、半導体層220、多孔性半導体層225、及び活性領域335の下の緩和半導体層230に類似した層のセットを含むように形成され得る。対応する多孔性半導体層225及び緩和半導体層230が含まれない他の実施例では、これらの2つの層は半導体220と同じであってもよく、又は幾つかの他の実施例では、InGaNがGaNに置き換わるか、若しくは半導体層220の上部に追加されてもよい。また、更に幾つかの他の実施例では、GaNとInGaNの交互層(「交互スタック」)が使用されてもよい。例えば、第1の光源345は、第1の半導体層360と第2の半導体層347の交互層を含んでもよく、ここで、第1の半導体層360はGaNを含み、第2の半導体層347はInGaNを含む。同様に、第2の光源350は、第1の半導体層360と第2の半導体層352の交互層を含んでもよく、ここで、第1の半導体層360はGaNを含み、第2の半導体層352はInGaNを含む。同様に、第3の光源355は、第1の半導体層360と第2の半導体層357の交互層を含んでもよく、ここで、第1の半導体層360はGaNを含み、第2の半導体層357はInGaNを含む。しかし、第2の光源350は、半導体層352を含まなくてもよく、第1の半導体層360のみを含んでもよい。代替的又は追加的に、第3の光源355は、半導体層357を含まなくてもよく、第1の半導体層360のみを含んでもよい。幾つかの実施例では、第1の光源345の第2の半導体層347の上部、第2の光源350の第2の半導体層352の上部、及び/又は第3の光源355の第2の半導体層357の上部は、約0.60μm未満又は約0.60μm、約0.50μm未満又は約0.50μm、約0.40μm未満又は約0.40μm、約0.30μm未満又は約0.30μm、約0.20μm未満又は約0.20μm、約0.10μm未満又は約0.10μm、又はそれ未満だけ、誘電体層370の上部の上方に延在するように形成され得る。
【0035】
[0043]幾つかの実施例では、誘電体層370の開口部内の基板315の表面上にシード層365が堆積され得る。シード層365は、AlN及び/又はHfNを含み得、約20nmから約30nmの厚さを有し得る。シード層365は、第1の半導体層360内のGaが基板315内のSiと反応することを防止し得る。次に、第1の光源345、第2の光源350、及び第3の光源355の層は、誘電体層370の開口部内のシード層365上に堆積され得る。第1の半導体層360は、第1の光源345、第2の光源350、及び第3の光源355について同じであり得る。第1の半導体層360が第2の半導体層347、352、及び357と交互になる交互スタックの実施例では、最下層の第1の半導体層360は、約300nm未満又は約300nm、約250nm未満又は約250nm、約200nm未満又は約200nm、約150nm未満又は約150nm、又はそれ未満の厚さを有し得る。交互スタック内の残りの層のそれぞれは、約50nmから約100nmの厚さを有し得る。第1の光源345の第2の半導体層347、第2の光源350の第2の半導体層352、及び第3の光源355の第2の半導体層357のInGaN層は、種々の歪み緩和度を提供するために、種々の濃度のInを有し得る。例えば、第1の光源345の第2の半導体層347は、約0.25から約0.3のIn濃度を有し得る。更に、第2の光源350の第2の半導体層352は、約0.14から約0.18のIn濃度を有し得る。加えて、第3の光源355の第2の半導体層357は、約0.05から約0.08のIn濃度を有し得る。
【0036】
[0044]幾つかの実施例では、MQWの歪みを更に和らげるために、又は50nmから100nmの層の交互スタックが使用されないときのどちらかに、活性領域335のN型ドープ層内にGaNとInGaNのより薄い交互層の超格子スタックが、MQWの真下に含まれてもよい。超格子内のGaNとInGaNの交互層は、活性領域335のMQW内の交互層よりも薄くてもよい。超格子のInGaN層におけるインジウムの濃度は、MQWのInGaN層におけるインジウムよりも低くてもよい。例えば、MQW内のGaNとInGaNの交互層のそれぞれは、約2nmから約15nmの厚さを有し得、一方、超格子内の層は、約1nmから約5nmの厚さを有し得る。活性領域335の表面の極性は、発光の強度を低下させ得る。
【0037】
[0045]図4は、本技術の幾つかの実施形態による、例示的なデバイス400の側面概略図を示す。デバイス400は、第1の光源445、第2の光源450、及び第3の光源455を含み得、これらのそれぞれは、誘電体層470の開口部内の基板415上に自然に形成される。第1の光源445、第2の光源450、及び第3の光源455は、図3に示される第1の光源345、第2の光源350、及び第3の光源355と同様の方法で形成され得、同様の特性を有し得る。例えば、第1の光源445は、第1の光源345の第1の半導体層360及び第2の半導体層347と類似である、第1の半導体層460と第2の半導体層447の交互層を含んでもよい。同様に、第2の光源450は、第2の光源350の第1の半導体層360及び第2の半導体層352と類似である、第1の半導体層460と第2の半導体層452の交互層を含んでもよい。同様に、第3の光源455は、第3の光源355の第1の半導体層360及び第2の半導体層357と類似である、第1の半導体層460と第2の半導体層457の交互層を含んでもよい。幾つかの実施例では、誘電体層470の開口部内の基板415の表面上にシード層465が堆積され得る。シード層465は、図3に示されるシード層365と類似であり得る。
【0038】
[0046]図4に示される実施例では、活性領域435が台形の形状を有するように、活性領域435のコーナーにファセットを形成することによって偏光効果が低減され得る。幾つかの実施例では、ファセットは、無極性面又は半極性表面を有するように形成され得る。第2の光源450及び第3の光源455は、台形形状を有する活性領域435を有する光源の実施例である。更に、ファセットは、下層の、第2の光源450の第2の半導体層452、第3の光源455の第2の半導体層457、及び/又は第1の半導体層460、並びに活性領域435のMQWの直下に含まれる場合には超格子スタックに続いてもよい。あるいは、活性領域435がピラミッド形状を有するように、活性領域435のコーナーにファセットを形成することによって偏光効果が低減され得る。ファセットは、無極性表面又は半極性表面を有するように形成され得る。第1の光源445は、ピラミッド形状を有する活性領域435を有する光源の一例である。第1の光源445の活性領域435は、ピラミッド形状の傾斜側面を発光面として使用し得る。更に、ファセットは、第1の光源445の下にある第2の半導体層447及び/又は第1の半導体層460に続いてもよい。前の図3の実施例のように、活性領域435の堆積中の光源限界寸法及びInの供給を調整して、ファセット活性領域435の発光波長を選択することができる。
【0039】
[0047]図4及び5に示される平面に垂直な方向(すなわち、断面又は限界寸法に垂直な方向)における例示的な光源の寸法は、幾つかの実施例では、選択された限界直径と同じであり得る。このような場合、上から見た光源の形状は、図1のように四角形又は円形である。次いで、光源の3次元形状は、以下のいずれかになり得る。誘電体の上の高さの伸びが限界寸法又は直径よりも小さいかわずかに大きい場合、四角形又は円形のメサ、誘電体の上の高さの伸びが限界寸法の少なくとも2倍から3倍の場合は、四角形又は円形のロッド。図4のように、(平らではなく)ファセットされた場合は、これらのメサ及びロッドのバージョンは、台形又はピラミッド形の上部を持つ。しかし、幾つかの実施例では、限界寸法に垂直な光源の寸法が長くなるため、光源の3次元形状は、誘電体の上の高さの伸びに応じてストライプメサ又はフィンになる。どちらの場合も、平らな上部の代わりに台形又はピラミッド形の上部も有し得る。
【0040】
[0048]図5は、本技術の幾つかの実施形態による、例示的なデバイス500の斜視図を示す。図5に示される実施例では、デバイス500は複数の光源515を含み得、そのそれぞれはストライプピラミッドであり得る形状を有する。光源515のそれぞれは、極性面である第1の発光面545を含み得る。更に、光源515のそれぞれは、半極性面又は無極性面である複数の第2の発光面550を含み得る。半極性面又は無極性面を使用すると、より多くのInを発光面に組み込むことが可能になり、光源515の発光波長を増加させ得る。更に、半極性面又は無極性面を使用すると、望ましくない及び/又は予測不可能なやり方で発光波長を変え得る、歪み及び偏光効果を減少させ得る。図5に示される実施例では、第2の発光面550は、半極性である(10-11)面であり得る。光源515のそれぞれにおける活性領域は、GaN及び/又はInGaNの多重量子井戸(MQW)構造535、P型GaN層560、及びN型GaN層565を含み得る。コンタクト層、リフレクタ、及びパッシベーション層は示されていない。
【0041】
[0049]図5に示す光源515は、半導体層530上で成長させることができる。半導体層530は、図3及び4に関して述べられるように、GaN及び/又はInGaNを含み得る。あるいは、光源515は、図2に示される光源200の多孔性半導体層225上に形成される緩和半導体層230上で成長し得る。活性領域の堆積中及び活性領域の下の任意のInGaN層におけるInの供給を調整して、光源515の発光波長を選択することができる。図5に示すように、各光源515は、窒化ケイ素などの誘電体材料555の開口部540内に築くことができる。誘電体材料555の開口部540は、光源515の限界寸法の一例であり得る。ピラミッド構造は開口部540のサイズ以上の幅を有するため、開口部540のサイズを変えると、ピラミッド構造のサイズも変えることができる。これにより、ピラミッド構造に組み込まれるInの量が変わり、それにより、光源515の発光波長を変えることができる。例えば、発光波長を増加させるために、開口部540のサイズは低減させられることがあり、これは、Inの組み込みの量を増加させる。一方、発光波長を減少させるために、開口部540のサイズは増大させられることがあり、これは、Inの組み込みの量を減少させる。したがって、下にある半導体層、成長中のInの供給、ストライプピラミッドの幅及びファセットなど、活性領域のMQWインジウム濃度及び歪みレベルに影響を及ぼすストライプピラミッド光源パラメータの任意の組み合わせを調整することによって、より大きな波長シフト及び高品質の出力ビームを達成することが可能となり得る。
【0042】
[0050]図6は、本技術の幾つかの実施形態による、例示的なデバイス600の斜視図を示す。図6に示される実施例では、デバイス600は複数の光源615を含み得、そのそれぞれは鉛直ロッド又はワイヤ形状を有する。光源615のそれぞれにおける活性領域は、GaN及び/又はInGaNの多重量子井戸(MQW)構造635、P型GaN層660、及びN型GaN層665を含み得る。コンタクト層、リフレクタ、及びパッシベーション層は示されていない。図6に示される光源615の活性領域は、窒化ケイ素などの誘電体層655の開口部640内から半導体層630上に成長させることができる。半導体層630は、GaN及び/又はInGaNを含み得る。誘電体層655の開口部640のサイズ及び光源615の直径を調整して、鉛直ロッド又はワイヤのMQW構造635及び半導体層630の両方に組み込まれるInの量を変えることができ、それにより、光源615の発光波長が変わる。活性領域の高さは、誘電体層655の開口部640のサイズの3倍から5倍だけ、誘電体層655の上方に延在し得る。構造のかかる高いアスペクト比は、更なる歪み緩和を可能にし得る。光源615のそれぞれは、半極性面又は無極性面である複数の発光面650を含み得る。半極性面又は無極性面を使用すると、より多くのInを発光面に組み込むことが可能になり、光源615の発光波長を増加させ得る。更に、半極性面又は無極性面を使用すると、望ましくない及び/又は予測不可能なやり方で発光波長を変え得る、歪み及び偏光効果を減少させ得る。図6に示される実施例では、第2の発光面650は、半極性である(10-11)面であり得る。したがって、下にある半導体層、成長中のInの供給、ロッド又はワイヤの誘電体の開口部サイズ及び直径、誘電体の上方の高さの伸び、発光面の極性など、活性領域のMQWインジウム濃度及び歪みレベルに影響を及ぼすロッド又はワイヤ光源パラメータの任意の組み合わせを調整することによって、より大きな波長シフト及び高品質の出力ビームを達成することが可能となり得る。
【0043】
[0051]図7は、本技術の幾つかの実施形態による、Vピットを有するPN接合700の側面概略図を示す。PN接合700は、第1の半導体層715、活性領域720、及び第2の半導体層725を含み得る。第1の半導体層715はP型GaNを含み得、第2の半導体層725はN型GaNを含み得る。活性領域720は、GaN及び/又はInGaNを含む多重量子井戸(MQW)層であり得る。Vピット730は活性領域720内に形成され得る。例えば、Vピット730は、ある位置で活性領域720の成長を遅らせるが、別の位置で活性領域720の成長を継続することによって形成され得る。成長は、成長中の温度、圧力、流量、及び/又は前駆体を調整することによって遅らせることができる。Vピット730を活性領域720に組み込むことにより、発光波長を増加させることができる。
【0044】
[0052]幾つかの実施例では、光源の発光波長を選択するために、複数のVピット730が組み込まれ得る。複数のVピット730は、半極性及び/又は無極性である発光面に形成され得る。一実施例では、図5に示される光源515の第2の発光面550上に複数のVピット730が形成され得る。別の実施例では、図6に示される光源615の発光面650上に複数のVピット730が形成され得る。しかし、Vピット730の形成は、半極性発光面又は無極性発光面に限定されるわけではなく、代わりに極性発光面上に形成されてもよい。例えば、図3に示される活性領域335の上面に、複数のVピット730が形成され得る。Vピット730を形成することは、発光波長を更に増加させるために、上述した他の技法の幾つか又は全てと組み合わせて使用され得る。
【0045】
[0053]図8は、本技術の幾つかの実施形態による、第1の例示的なデバイス800及び第2の例示的なデバイス805の上面概略図を示す。第1のデバイス800及び第2のデバイス805は、基板上に自然に形成される複数の光源845、850、及び855を含み得る。第1の光源845は、第1の波長を有する光を放出するように構成され得、第2の光源850は、第2の波長を有する光を放出するように構成され得、第3の光源855は、第3の波長を有する光を放出するように構成され得る。幾つかの実施例では、第1の波長は電磁スペクトルの赤色領域内にあり、第2の波長は電磁スペクトルの緑色領域内にあり、第3の波長は電磁スペクトルの青色領域内にあり得る。
【0046】
[0054]第1のデバイス800は、4つのダイを含み得、ダイのそれぞれは、2つの第1の光源845、1つの第2の光源850、及び1つの第3の光源855を含む。第1のデバイス800内の各ダイは、約1μmの直線寸法815を有する四角形の形状を有し得る。第2のデバイス805は、8つの第1の光源845、4つの第2の光源850、及び4つの第3の光源855を含む1つのダイを含み得る。第2のデバイス805内のダイは、約2μmの直線寸法820を有する四角形の形状を有し得る。直線寸法820は、所望のマイクロLEDの基準を満たすために、約5μm未満又は約5μm、約4μm未満又は約4μm、約3μm未満又は約3μm、約2μm未満又は約2μmであり得る。
【0047】
[0055]第1の光源845、第2の光源850、及び第3の光源855の限界寸法は、上述の発光波長を生産するように選択され得る。例えば、Inの組み込み及び発光波長を増加させるために、限界寸法を低減させることができる。光源の直径は、限界寸法の一例であり得る。幾つかの実施例では、第1の光源845、第2の光源850、及び第3の光源855の直径は、約50nmから約1000nmであり得る。より具体的には、幾つかの実施例では、第1の光源845の直径は約300nmであってもよく、第2の光源850及び第3の光源855の直径は約500nmであってもよい。他の実施例では、第1の光源855の直径は、第2の光源850及び第3の光源855の直径よりも小さくてもよく、一方、第2の光源850の直径は、第3の光源855の直径と同じか又はそれより小さくてもよい。
【0048】
[0056]更に、第1の光源845、第2の光源850、及び第3の光源855の数は、ダイ内の各発光波長の総発光面積がほぼ同じになるように選択され得る。例えば、第1の光源845の総発光面積は、第2の光源850の総発光面積の±5%、±10%、±15%、±20%、又は±25%以内であり得る。同様に、第1の光源845の総発光面積は、第3の光源855の総発光面積の±5%、±10%、±15%、±20%、又は±25%以内であり得る。同様に、第2の光源845の総発光面積は、第3の光源855の総発光面積の±5%、±10%、±15%、±20%、又は±25%以内であり得る。図8に示される実施例では、第2の光源850及び第3の光源855の直径と比較して第1の光源845の直径がより小さいため、各第2の光源850に対して2つの第1の光源845、及び各第3の光源855に対して2つの第1の光源845があり得る。5μm×5μmのダイなどの他の実施例では、8個から42個の第1の光源845、3個から6個の第2の光源850、及び2個又は3個の第3の光源855があり得る。代替的又は追加的に、第1の光源845、第2の光源850、及び第3の光源855は、第1の光源845、第2の光源850、及び第3の光源855への電気的接続を提供するための接点に十分なスペースを提供するため、及び/又は集光効率を高めるためにリフレクタに十分なスペースを提供するために、配置され得る。
【0049】
[0057]図9は、本技術の幾つかの実施形態による、例示的なデバイス900の概略斜視図を示す。デバイス900は、基板上に自然に形成される、複数の第1の光源945、複数の第2の光源950、及び複数の第3の光源955を含み得る。第1の光源945は、第1の波長を有する光を放出するように構成され得、第2の光源950は、第2の波長を有する光を放出するように構成され得、第3の光源955は、第3の波長を有する光を放出するように構成され得る。幾つかの実施例では、第1の波長は電磁スペクトルの赤色領域内にあり、第2の波長は電磁スペクトルの緑色領域内にあり、第3の波長は電磁スペクトルの青色領域内にあり得る。
【0050】
[0058]上述したように、第1の光源945、第2の光源950、及び第3の光源955の限界寸法は、所望の発光波長を生産するように選択され得る。代替的又は追加的に第1の光源945、第2の光源950、及び第3の光源955のピッチは、所望の発光波長を生産するように選択され得る。例えば、ピッチは、Inの組み込み及び発光波長を増加させるために増大され得、より離隔された構造にInを組み込むことはより容易であるため、よって横からのInの組み込みを妨げない。代替的又は追加的に、隣接する第1の光源945の間の距離、隣接する第2の光源950の間の距離、及び隣接する第3の光源955の間の距離は、所望の発光波長を生産するように選択され得る。例えば、Inの組み込み及び発光波長を増加させるために、隣接する光源の間の距離を増大させることができる。隣接する光源の間の距離は、隣接する光源の最も近い側面の間の間隔として定義され得る。幾つかの実施例では、隣接する光源の間の距離は、約200nmから約1000nmであり得る。
【0051】
[0059]代替的又は追加的に、活性領域に組み込まれるInの量は、所望の発光波長を生産するように選択され得る。例えば、約0.10から約0.30のIn濃度を第1の光源945に組み込むことができ、約0.00から約0.15のIn濃度を第2の光源950に組み込むことができ、約0.00から約0.05のIn濃度を第3の光源955に組み込むことができる。代替的又は追加的に、光源は、様々な形状を有するように形成され得る。例えば、光源は、四角形のメサ、長方形のメサ、ディスク形状のメサ、円形のメサ、四角形のピラミッド、縞模様のピラミッド、円筒、ロッド、ワイヤ、又はナノワイヤを含んでもよい。第1の光源945、第2の光源950、及び第3の光源955は、種々の形状又は同じ形状を有し得る。
【0052】
[0060]同一基板上に電磁スペクトルの赤、緑、及び青の領域の発光波長を有する光源を自然に形成するために、上述の技法のいずれか又は全てを組み合わせることができる。例えば、所望の発光波長を提供するために、光源の三次元形状、光源の限界寸法、半導体層及び/又は光源の活性領域内のInの濃度、誘電体層の上方の活性領域の高さ、光源が形成される層の多孔性、光源が形成される層の歪み、光源の発光面の極性、発光面におけるVピットの形成、ダイ当たりの光源の数、及び/又は隣接する光源間の間隔を調整することができる。
【0053】
[0061]上記の記載には、本技術の様々な実施形態の理解を提供するために、解説を目的として多数の詳細事項を明記してきた。しかし、特定の実施形態は、これらの詳細事項の一部がなくとも、又は追加の詳細実行があっても実施され得ることが、当業者には自明であろう。
【0054】
[0062]幾つかの実施形態を開示したが、実施形態の本質から逸脱しなければ、様々な改変例、代替構造、及び均等物が使用され得ることは、当業者によって認識されよう。加えて、本技術を不必要に不明瞭にすることを避けるために、幾つかの周知のプロセス及び要素については記載していない。したがって、上記の記載は、本技術の範囲を限定するものと解釈すべきでない。
【0055】
[0063]値の範囲が提供されている場合、その範囲の上限値と下限値との間の介在値のそれぞれも、(文脈上そうでないと明確に指示されない限り)下限値の最も小さい単位まで具体的に開示されると理解される。記載された範囲における任意の記載値どうし又は記載されていない介在値どうしの間のより狭い範囲、及び、かかる記載範囲における他の記載値又は介在値は全て、包含される。上記の狭い範囲の上限値及び下限値は、個別に、この範囲に含まれ得るか又はこの範囲から除外され得る。この狭い範囲に限界値のいずれかが含まれるか、どちらも含まれないか、又は両方が含まれる場合の各範囲も、記載範囲内に特に除外された限界値があることを条件として、本技術に包含される。記載範囲が限界値の一方又は両方を含む場合、含有された限界値のいずれか又は両方を除外する範囲も、含まれる。
【0056】
[0064]本明細書及び添付の特許請求の範囲において、単数形の「1つの(a、an)」、及び「前記(the)」は、(文脈上そうでないと明確に指示されない限り)複数形の意味を含む。したがって、例えば、「1つの材料(a material)」への言及は、複数のかかる材料を含み、「その前駆体(the precursor)」への言及は、一又は複数の前駆体及び当業者に既知のその等価物への言及を含む、等々である。
【0057】
[0065]また、「備える(comprise(s)/comprising)」、「含有する(contain(s)/containing)」、「含む(include(s)/including)」という語は、この明細書及び以下の特許請求の範囲で使用される場合には、記載された特徴、整数、構成要素、又は工程の存在を特定することを意図しているが、一又は複数の、他の特徴、整数、構成要素、工程、作用、又はグループの存在又は追加を除外するものではない。
図1
図2
図3
図4
図5
図6
図7
図8
図9