(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-10-07
(45)【発行日】2024-10-16
(54)【発明の名称】発光装置
(51)【国際特許分類】
H01S 5/022 20210101AFI20241008BHJP
F21S 2/00 20160101ALI20241008BHJP
G02B 3/04 20060101ALN20241008BHJP
G03B 21/14 20060101ALN20241008BHJP
H01L 33/50 20100101ALN20241008BHJP
H04N 5/74 20060101ALN20241008BHJP
H04N 9/31 20060101ALN20241008BHJP
F21Y 115/30 20160101ALN20241008BHJP
【FI】
H01S5/022
F21S2/00 311
G02B3/04
G03B21/14 A
H01L33/50
H04N5/74 Z
H04N9/31 500
F21Y115:30
(21)【出願番号】P 2019171453
(22)【出願日】2019-09-20
【審査請求日】2022-08-22
【審判番号】
【審判請求日】2023-11-24
(73)【特許権者】
【識別番号】000226057
【氏名又は名称】日亜化学工業株式会社
(74)【代理人】
【識別番号】100101683
【氏名又は名称】奥田 誠司
(72)【発明者】
【氏名】原 章徳
(72)【発明者】
【氏名】山下 利章
【合議体】
【審判長】波多江 進
【審判官】芝沼 隆太
【審判官】藤田 年彦
(56)【参考文献】
【文献】特開2018-120111(JP,A)
【文献】特開2012-18208(JP,A)
【文献】特開2017-107776(JP,A)
【文献】特開2014-179504(JP,A)
【文献】特開2016-219779(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01S 5/00- 5/50
H01L 33/00- 33/64
F21K 9/00- 9/90
F21S 2/00- 45/70
F21V 1/00- 99/00
F21W102/00-131/411
F21Y101/00-115/30
G03B 21/00- 21/30
H04N 5/74
(57)【特許請求の範囲】
【請求項1】
複数の半導体発光素子と、
前記複数の半導体発光素子のそれぞれから出射された光をコリメートして複数のコリメートビームを出力する光学素子と、
集光点を有する集光部であって、前記複数のコリメートビームを
前記集光点に収束する非球面を有する集光部と、
前記複数のコリメートビームが入射する光入射面を含む透光領域、および前記透光領域を囲む反射領域を有する波長変換部であって、前記透光領域は、前記集光部によって
前記集光部の前記集光点に収束された前記複数のコリメートビームによって励起される蛍光体を含む、波長変換部と、
を備
え、
前記波長変換部は、前記集光部を基準として、前記光学素子の反対側に位置し、
前記複数のコリメートビームは、前記光入射面の端部分に照射される少なくとも一対の外側コリメートビームと、前記外側コリメートビームに挟まれて位置する1以上の内側コリメートビームと、を有する、
発光装置。
【請求項2】
前記透光領域の前記光入射面は、前記集光部の光軸に交差し、前記集光部の
前記集光点から外れて位置する、
請求項1に記載の発光装置。
【請求項3】
前記光学素子から出射され、前記集光部に入射する前記複数のコリメートビームは互いに平行である、
請求項1または2に記載の発光装置。
【請求項4】
前記複数の半導体発光素子は、前記集光部の光軸に垂直な面に沿って1行以上2列以上または2行以上1列以上の行列状に配列されている、
請求項1から3のいずれかに記載の発光装置。
【請求項5】
前記透光領域の前記光入射面の形状は、矩形であり、
前記光入射面の前記端部分は前記光入射面の隅であり、
前記集光部は、前記外側コリメートビームを、前記内側コリメートビームよりも発散させる形状である、
請求項1から
4のいずれかに記載の発光装置。
【請求項6】
前記集光部は非球面レンズであり、
前記非球面レンズのコーニック定数kは、-15<k<0、又は、0<k<+6である、
請求項1から
4のいずれかに記載の発光装置。
【請求項7】
前記複数の半導体発光素子、前記光学素子、および前記集光部を収容する筐体をさらに備え、
前記筐体は、前記波長変換部を支持する蓋部分であって、前記集光部によって収束された前記複数のコリメートビームを通過させる貫通孔を有する蓋部分を有している、
請求項1から
6のいずれかに記載の発光装置。
【請求項8】
前記複数の半導体発光素子は、複数のレーザダイオードである、
請求項1から
7のいずれかに記載の発光装置。
【請求項9】
前記複数のレーザダイオードを気密封止するパッケージをさらに備える、
請求項
8に記載の発光装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、発光装置に関する。
【背景技術】
【0002】
従来、半導体発光素子から出射される光と、蛍光体から発せられる蛍光との混合によって得られる混合光を発する多くの発光装置が提案されている。このような発光装置では、例えば、半導体発光素子から出射される青色の光によって黄色い蛍光を発する蛍光体を励起することにより、蛍光体含有部を通過する青色の光と、蛍光体から発せられる黄色い蛍光とを混合して白色の混合光を得る(例えば特許文献1)。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
半導体発光素子から出射される光で蛍光体を照射した場合、蛍光体含有部を通過する半導体発光素子からの光と、蛍光体から発せられる蛍光との混合によって得られる混合光には、色むらが生じる場合がある。
【課題を解決するための手段】
【0005】
本開示の発光装置は、一実施形態において、複数の半導体発光素子と、前記複数の半導体発光素子のそれぞれから出射された光をコリメートして複数のコリメートビームを出力する光学素子と、前記複数のコリメートビームを収束する非球面を有する集光部と、前記複数のコリメートビームが入射する光入射面を含む透光領域、および前記透光領域を囲む反射領域を有する波長変換部であって、前記透光領域は、前記集光部によって収束された前記複数のコリメートビームによって励起される蛍光体を含む、波長変換部と、を備える。
【発明の効果】
【0006】
本開示における前述の発光装置によれば、半導体発光素子から出射される光と、蛍光体から発せられる蛍光との混合によって得られる混合光の色むらを抑制する発光装置が可能になる。
【図面の簡単な説明】
【0007】
【
図1A】
図1Aは、蛍光体を含む透光領域40t、およびそれを囲む反射領域40rを有する波長変換部40を模式的に示す斜視図である。
【
図1B】
図1Bは、球面レンズによって収束された2行5列のコリメートビームの、透光領域40tの光入射面40s1での強度分布の計算結果を示す図である。
【
図1C】
図1Cは、透光領域40tの光出射面40s2から出射される混合光の色の分布を模式的に示す図である。
【
図2A】
図2Aは、本開示の実施形態における発光装置100を模式的に示す斜視図である。
【
図3A】
図3Aは、光源20から出射されたコリメートビーム20bが非球面レンズ30によって収束され、波長変換部40における透光領域40tの光入射面40s1に入射する様子を模式的に示すX方向から見た側面図である。
【
図3B】
図3Bは、光源20から出射されたコリメートビーム20bが非球面レンズ30によって収束され、波長変換部40における透光領域40tの光入射面40s1に入射する様子を模式的に示すY方向から見た側面図である。
【
図4】
図4は、式(1)に示すレンズの曲面をプロットしたグラフである。
【
図5】
図5は、コーニック定数k=+0.5の非球面レンズ30によって収束された2行5列の照射コリメートビームの強度分布の計算結果を示す図である。
【
図6】
図6は、様々なコーニック定数のレンズによって収束された2行5列の照射コリメートビームの強度分布の計算結果を示す図である。
【
図7A】
図7Aは、
図2Bに示す光源20のうち、枠体22および蓋体23の記載が省略された図である。
【
図7B】
図7Bは、半導体発光素子25から出射されたレーザ光が光反射部材27の反射面27rによって反射され、光学素子24のコリメートレンズ24lによってコリメートされる様子を模式的に示す、YZ平面における断面図である。
【
図7C】
図7Cは、半導体発光素子25から出射されたレーザ光が光反射部材27の反射面27rによって反射され、光学素子24のコリメートレンズ24lによってコリメートされる様子を模式的に示す、XZ平面における断面図である。
【
図8A】
図8Aは、光源20から出射されたコリメートビーム20bが、変形例における放物面反射鏡31によって収束され、波長変換部40における透光領域40tの光入射面40s1に入射する様子を模式的に示すY方向から見た側面図である。
【
図8B】
図8Bは、光源20から出射されたコリメートビーム20bが、変形例における放物面反射鏡31によって収束され、波長変換部40における透光領域40tの光入射面40s1に入射する様子を模式的に示すY方向から見た側面図である。
【
図9】
図9は、単一波長の励起光のスペクトル、および蛍光のスペクトルを模式的に示す図である。
【発明を実施するための形態】
【0008】
(蛍光のスペクトル)
本開示の実施形態を説明する前に、レーザ光等のようにスペクトル幅の狭い光(励起光)によって蛍光体を励起した場合における、その蛍光体から発せられる蛍光のスペクトルを説明する。
【0009】
図9は、励起光のスペクトル、および蛍光のスペクトルを模式的に示す図である。
図9に示すように、励起光のスペクトル幅は狭いのに対し、蛍光のスペクトル幅は広い。蛍光のスペクトルは、励起光の波長よりも長い波長域にある。実際には、蛍光体を励起光で照射すると、励起光の一部は蛍光体を励起し、残りの部分は、蛍光体を透過する、蛍光体に反射される等によって波長変換されずに蛍光体含有部から取り出される。したがって、蛍光体を透過する励起光と、蛍光体から発せられた蛍光とが混合した光が得られる。例えば、波長455nmの青色レーザ光によってYAG(Yttrium Aluminium Garnet)蛍光体を励起すると、この蛍光体は黄色の蛍光を発する。蛍光体を透過する青色レーザ光と、蛍光体から発せられる黄色の蛍光との混合によって白色光が得られる。この白色の混合光は、例えば照明器具に利用することができる。なお、混合光の色として代表的には白色が挙げられるが、これに限らず、混合光の色は励起光と蛍光体の組み合わせで調整することが可能である。
【0010】
(本開示の実施形態の基礎となった知見)
次に、
図1Aから
図1Cを参照して、本開示の実施形態の基礎となった知見を説明する。蛍光体を励起光で照射することにより、蛍光体を透過する励起光と、蛍光体から発せられた蛍光との混合光を得る場合、蛍光体は以下の形態で用いられ得る。
【0011】
図1Aは、蛍光体を含む透光領域40t、およびそれを囲む反射領域40rを有する波長変換部40を模式的に示す斜視図である。透光領域40tは、露出した互いに平行な光入射面40s1および光出射面40s2を含む。透光領域40tは、例えば、蛍光体を含むセラミックス、すなわち蛍光体セラミックスであり得る。蛍光体が発する蛍光は実質的に無配光であるため、蛍光体セラミックスでは、蛍光の一部は反射領域40rに向かい、反射領域40rによって反射される。蛍光体セラミックスは、例えば、無機材料の結着材および蛍光体から形成されている。反射領域40rは、例えば、セラミックスから形成され得る。
図1Aに示す例では、透光領域40tは、YAG蛍光体および酸化アルミニウムの結着材を主材料として形成され、反射領域40rは、酸化アルミニウムを主材料として形成されている。同じ酸化アルミニウムを含む透光領域40tおよび反射領域40rは、高い密着性を有する。
【0012】
透光領域40tに含まれるYAG蛍光体を励起する励起光源として、例えば、複数の青色のコリメートビームを出射する半導体レーザパッケージを利用することができる。複数のコリメートビームを1個の集光レンズによって収束し、収束した複数のビームで透光領域40tの光入射面40s1を照射すれば、混合光が得られる。コリメートビームとは、ビーム径がビームの進行方向に対して一定となるようにコリメートされたビームのことを意味する。ただし、ビーム径は厳密に一定にはならない場合がある。また、コリメートビームを集光レンズによって収束するとビーム径は徐々に狭くなり、ビームウェストで最小になった後、徐々に拡大していく。本明細書では、説明を簡単にするために、「コリメートビーム」の用語は、コリメートビームが集光レンズを透過した後のビームも含む。
【0013】
図1Bは、球面レンズによって収束された2行5列の照射コリメートビームの、透光領域40tの光入射面40s1での強度分布の計算結果を示す図である。
図1Bでは、光の強度を相対的に示しており、白色を0%、黒色を100%として、濃淡で強度を示す。以下では、透光領域40tに照射されるコリメートビームの、光入射面40s1での強度分布を、単に「照射コリメートビームの強度分布」と称する。計算条件の詳細については後述する。黒色の矩形形状の枠によって囲まれた領域は、透光領域40tの光入射面40s1を表す。透光領域40tの光入射面40s1は、球面レンズによって収束されたコリメートビームの集光点から外れて位置する。
図1Bに示すように、透光領域40tの光入射面40s1のうち、主に中央部分が照射される。複数のコリメートビームは、中央から離れるほど発散するが、
図1Bに示す例ではその発散度合いがそれほど大きくなく、光入射面40s1の端部分、特に4つの隅はほとんど照射されない。透光領域40tに入射したコリメートビームによって励起された蛍光体は、蛍光を発する。したがって、透光領域40tの光出射面40s2からは、透光領域40tを通過する青色の光と、YAG蛍光体から発せられた黄色の蛍光とが混合された白色光が出射されるはずである。しかし、実際には、この混合光には色むらが生じ得る。
【0014】
図1Cは、透光領域40tの光出射面40s2から出射される混合光の色の分布を模式的に示す図である。白色領域は白色光が出射される領域を表し、斜線によって表された領域はそれよりも黄色味の強い光が出射される領域を表す。透光領域40tの光出射面40s2のうち、中央部分では、白色光が多く出射されるが、端部分、特に4つの隅では、比較的黄色味の強い光が出射され、色むらが大きいことがわかる。これには以下の理由が考えられる。行方向(X方向)の端にある4つのコリメートビームが照射された箇所で発せられた蛍光の一部は、反射領域40rに向かい、反射領域40rによって反射された後、光出射面40s2から出射される。反射領域40rのうち、隅では互いに垂直な2つの面によって蛍光が反射される。その結果、青色光の割合より黄色光の割合の方が多くなり、混合光は、透光領域40tの光出射面40s2のうち、端部分、特に4つの隅において黄色くなる。
【0015】
本発明者は、色むらが生じる原因が照射コリメートビームの透光領域の光入射面における強度分布にあると考え、色むらを低減することができる新規な発光装置に想到した。この発光装置は、光源から出射された複数のコリメートビームを収束させる非球面を有する集光部を備える。この非球面の形状は、収束した照射コリメートビームの強度分布が混合光の色むらを低減するように適切に設計される。集光部の詳細については後述する。
【0016】
(実施形態)
本開示における一実施形態を、図面を参照しながら以下に説明する。ただし、以下に示す形態は、本発明の技術思想を具体化するものであって、本発明を限定しない。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするために誇張していることがある。
【0017】
本明細書においては、ある面の上に部材が直接配置される状態、あるいは、その面の上に直接配置された別の物体の上に部材が直接配置される状態のいずれも、「面の上に部材を配置する」と表現する。つまり、その面の上方に部材が配置され、間接物を介してあるいは介さずにその面と部材が物理的に繋がっている状態は、その面の上に部材が配置されている状態と表記する。なお、面の上に部材が直接配置されていることに特定する場合は「直接」の文言を用いて表現する。直接配置されていることに特定されていない場合は、いずれであってもよいことを示している。
【0018】
<発光装置の構成例>
まず、
図2Aから
図2Dを参照して、本開示の実施形態における発光装置の構成例を説明する。
【0019】
図2Aは、本開示の実施形態における発光装置100を模式的に示す斜視図である。
図2Bは、
図2Aに示す発光装置100の内部を模式的に示す斜視図である。
図2Bでは、筐体50の外形が破線によって記載されている。図面には、参考のため、互いに直交するX方向、Y方向、およびZ方向が示されている。
【0020】
本実施形態における発光装置100は、主面10sを有する基板10と、主面10s上にあり、かつ2行5列のコリメートビームを出射する光源20と、コリメートビームを収束する凸部30cを有する非球面レンズ30と、非球面レンズ30の光軸上に透光領域40tがある波長変換部40と、光源20および非球面レンズ30を収容する筐体50とを備える。行方向はX方向に平行であり、列方向はY方向に平行である。なお、本明細書において「上方」とは、基板10の主面10sを基準にして、光源20が配置される方向を指す。使用時における発光装置100の向きは任意である。
【0021】
本実施形態における基板10は、例えば、XY平面に対して平行な主面10sを有し、Z方向に厚さを有する。基板10は、光源20から発せられた熱を速やかに外部に放出するため、熱伝導率が比較的高い材料から形成されていることが望ましい。基板10の熱伝導率は、例えば20W/mK以上である。基板10の主材料としては、例えば、Cu、Al、Fe、Ni、Moなどの金属、または、窒化アルミニウム、炭化ケイ素などのセラミックスが挙げられる。
【0022】
本実施形態における光源20は、基部21と、基部21の主面上に2行5列に配置された半導体発光素子と、基部21の主面上に設けられ、かつ、半導体発光素子を囲むリード端子22l付きの枠体22と、枠体22の枠の上に設けられた蓋体23と、蓋体23上に設けられた光学素子24とを備える。光学素子24は、光源20内に2行5列に配置された半導体発光素子からそれぞれ出射された光をコリメートして2行5列のコリメートビームを、非球面レンズ30の光軸に平行な方向(Z方向)に出力する。これらのコリメートビームの進行方向は互いに平行である。ただし、進行方向は、厳密に平行である必要はない。本明細書では、「平行」は、数学的に厳密な「平行」に限定されない。本明細書における「平行」は、例えば、厳密な平行から1.5度以下のずれを許容できる。コリメートビームの本数が複数であれば、複数のコリメートビームで蛍光体を含有する透光領域40tを照射することができる。波長変換部40における透光領域40tがYAG蛍光体を含む場合、青色のコリメートビームの波長は、例えば、420nm以上480nm以下である。蛍光体の種類に応じて適したコリメートビームの波長が選択される。光源20のX方向およびY方向におけるサイズは例えば25mm以上35mm以下であり、Z方向における厚さは例えば10mm以上15mm以下である。光源20の詳細については後述する。
【0023】
本実施形態における非球面レンズ30は、例えば、凸部30cおよび平板部分30fを有する平凸レンズである。凸部30cおよび平板部分30fの屈折率は、例えば1.4以上2.1以下である。凸部30cは、コリメートビームが入射する側に設けられているが、コリメートビームが入射する側とは反対の側に設けられていてもよい。平板部分30fは必ずしも設ける必要はない。
図2Bに示す例では、凸部30cが平板部分30fよりも厚いが、平板部分30fが凸部30cより厚くてもよい。本開示における非球面を有する集光部は、例えば非球面レンズ30であり得る。
【0024】
非球面レンズ30における凸部30cおよび/または平板部分30fは、例えば、ガラス、石英、サファイアの少なくとも1つから形成され得る。非球面レンズ30のX方向およびY方向におけるサイズは例えば2mm以上200mm以下であり、Z方向における厚さは例えば2mm以上150mm以下である。非球面レンズ30の上面視形状、すなわちZ方向から見た場合の形状は、例えば円形である。光源20と非球面レンズ30とのZ方向における隙間は例えば1mm以上300mm以下である。非球面レンズ30における凸部30cの表面の非球面形状の詳細については後述する。
【0025】
本実施形態における波長変換部40については、
図1Aを参照して説明した通りである。透光領域40tの光入射面40s1は矩形形状を有しているが、多角形状、円形状、楕円形状、またはこれらに近似する形状を有していてもよい。
【0026】
波長変換部40における透光領域40tは、青色光によって励起されて黄色の蛍光を発するYAG蛍光体を含むが、これに限らず、例えば、青色光によって励起されて黄色または緑色の蛍光を発する第1蛍光体および赤色の蛍光を発する第2蛍光体を含んでいてもよい。このような透光領域40tの光入射面40s1を青色光で照射することによって、透光領域40tの光出射面40s2から白色の混合光を得ることができる。
【0027】
波長変換部40における反射領域40rは、酸化アルミニウムの他に、酸化ジルコニウム、または酸化チタンを主材料として形成されていてもよい。反射領域40rは、光透過率を低下させるために、酸化イットリム、酸化ジルコニウム、酸化ルテチウム、または酸化ランタンなどの添加剤を含んでいてもよい。反射領域40rがセラミックスである場合は、反射領域40rの空孔率が高いほど光反射率が向上する傾向にある。このため、反射領域40rのうち、透光領域40tの周辺における空孔率を、それより外側の部分の空孔率よりも高くしてもよい。これにより、透光領域40t内で発せられ、反射領域40rに向かう蛍光を反射領域40rによって効率よく反射させることができる。反射領域40rは、コリメートビームの照射によって透光領域40tにおいて発せられる熱を外部に放出する機能も有していてよい。これにより、透光領域40tにおける蛍光体の劣化を低減することができる。反射領域40rは、セラミックスを主材料としてもよく、金属を主材料としてもよい。また、波長変換部40は、少なくとも透光領域40tを有していればよく、反射領域40rを設けなくてもよい。
【0028】
波長変換部40は、熱を効率よく外部に放出するために、上面および下面の少なくとも一方に放熱部材をさらに備えていてもよい。波長変換部40と放熱部材との間に隙間があると放熱性が低下するため、グリスや誘電体膜等の、波長変換部40と放熱部材との間の隙間を埋める部材を設けてもよい。
【0029】
波長変換部40は、透光領域40tの光入射面40s1の側に、コリメートビームを透過させ、かつ、蛍光体から発せられた蛍光を反射させるフィルタをさらに備えていてもよい。これにより、蛍光が非球面レンズ30に向けて出射される可能性を低減することができるため、蛍光を透光領域40tの光出射面40s2から効率よく出射させることができる。フィルタは、例えば、高屈折率層と低屈折率層とが交互に積層された誘電体多層膜から形成され得る。誘電体多層膜は、特定の波長域の光を略100%で反射し、それ以外の光を透過させることができる。誘電体多層膜は、この特定の波長域が蛍光のスペクトルの波長域の一部または全部を含むように設計され得る。
【0030】
波長変換部40における透光領域40tのX方向およびY方向におけるサイズは例えば0.5μm以上100μm以下であり、Z方向における厚さは例えば0.1mm以上10mm以下である。非球面レンズ30と波長変換部40とのZ方向における隙間は例えば1mm以上300mm以下である。なお、本明細書において、部品同士の隙間とは、部品同士の最短距離と言い換えてもよい。
【0031】
本実施形態における筐体50は、例えば、断面が円形状である円筒体であり得る。筐体50は、断面が多角形状である角筒体、またはドーム体であってもよい。筐体50のZ方向における高さは、光源20の厚さ、光源20と非球面レンズ30との隙間、非球面レンズ30の厚さ、および非球面レンズ30と波長変換部40との隙間の合計によって決まる。筐体50のZ方向における高さと各部品との関係はこれに限らず、適宜調整できる。例えば、これら以外の部品を筐体50に収容してもよく、また、反射鏡を配置する等によりコリメートビーム20bの進行方向を途中で変えてもよい。
【0032】
次に、
図3Aおよび
図3Bを参照する。
図3Aおよび
図3Bは、それぞれ、光源20から出射されたコリメートビーム20bが非球面レンズ30によって収束され、波長変換部40における透光領域40tの光入射面40s1に入射する様子を模式的に示すX方向およびY方向から見た側面図である。
図3Aおよび
図3Bでは、説明の便宜上、筐体50の一部が破線によって記載されている。筐体50が有する蓋部分50cは、非球面レンズ30によって収束された複数のコリメートビーム20bを通過させる貫通孔50oを有し、かつ、波長変換部40を支持する。波長変換部40は、貫通孔50oの縁部分50eによって支持されている。筐体50が有するサポート50sは、側壁部分から内部に突出し、かつ、非球面レンズ30を支持する。非球面レンズ30の平板部分30fの一部が、サポート50sに接合されている。細かい破線によって挟まれた領域は、コリメートビーム20bのビーム幅を表す。
図3Aに示すコリメートビーム20bのビーム幅は列方向(Y方向)において広く、
図3Bに示すコリメートビーム20bのビーム幅は行方向(X方向)において狭い。その理由については後述する。白抜きの矢印は、透光領域40tを透過するコリメートビーム20bと、透光領域40tに含まれる蛍光体から発せられた蛍光との混合光を表す。
【0033】
図3Aおよび
図3Bに示す例では、それぞれ、2本および5本のコリメートビーム20bが非球面レンズ30によって収束され、透光領域40tの光入射面40s1に入射する。コリメートビーム20bの光軸の一部が、コリメートビーム20bのビーム幅を表す破線よりも間隔の広い破線によって表されている。非球面レンズ30の集光点Fは、複数のコリメートビーム20bの光軸が収束する点に相当する。ただし、実際には、複数のコリメートビーム20bの位置にはズレが生じたり、複数のコリメートビーム20bのビーム径が異なったりするので、必ずしも1つの点にすべてのコリメートビーム20bが収束するわけではない。また、仮に位置のずれがなく、ビーム径が同じであっても、すべてのコリメートビーム20bを収束することができる幅には光の回折限界があるので、すべてのコリメートビーム20bが図示されているような点に収束することはないと考えてよい。本明細書では、説明の便宜上、集光点Fを1つの点に簡略化して記載している。
【0034】
図3Aおよび
図3Bに示すように、透光領域40tの光入射面40s1は、非球面レンズ30の光軸に直交し、非球面レンズ30の集光点Fから外れて位置する。透光領域40tの光入射面40s1と集光点Fとの距離は例えば1mm以上20mm以下である。透光領域40tの光入射面40s1が非球面レンズ30の光軸に対して交差していれば、反射鏡等でコリメートビーム20bの進行方向を変えることなく、収束された複数のコリメートビーム20bで透光領域40tの光入射面40s1を照射することができる。
図3Aおよび
図3Bに示す例では、非球面レンズ30の集光点Fは、非球面レンズ30と透光領域40tの光入射面40s1との間に位置する。集光点Fから発散する複数のコリメートビーム20bのすべてが、貫通孔50oの縁部分50eに妨げられることなく、透光領域40tの光入射面40s1に入射する。集光点Fは、透光領域40t内に位置してもよい。他の例として、透光領域40tの光入射面40s1は、非球面レンズ30とその集光点Fとの間に位置していてもよい。
【0035】
透光領域40tの光入射面40s1が非球面レンズ30の集光点Fから外れていると、デフォーカスされた複数のコリメートビーム20bで光入射面40s1を照射することができる。これにより、透光領域40tの光入射面40s1が非球面レンズ30の集光点Fと一致する場合と比較して、光入射面40s1におけるコリメートビーム20bの光密度を低下させることができる。
【0036】
<非球面レンズ30における凸部30c>
次に、非球面レンズ30における凸部30cの表面の非球面形状を説明する。凸部30cの表面の形状はコーニック定数(conic constant)によって規定することができる。コーニック定数をk、非球面レンズ30のレンズの頂点での曲率をc=1/R(Rは曲率半径)とすると、非球面レンズ30のレンズの頂点を原点とするレンズの曲面上の座標(X、Y、Z)=(x、y、z)は、以下の式(1)を満たす。
【数1】
【0037】
zは、レンズの頂点を含むXY平面と、レンズの曲面とのZ方向における距離を表し、r=(x2+y2)1/2は、レンズの曲面と、非球面レンズ30の光軸とのXY平面における距離を表す。a2i(2i=2、・・、n)は、非球面係数を表す。
【0038】
まずは、a
2i=0の場合について説明する。この場合、式(1)は以下の式(2)の解の1つに相当する。
【数2】
【0039】
式(2)から、a2i=0の場合の式(1)は、双曲面、放物面、球面、および楕円面のいずれかの曲面を表すことがわかる。
【0040】
次に、
図4を参照する。
図4は、a
2i=0の場合の式(1)に示すレンズの曲面をプロットしたグラフである。コーニック定数として、k=-1.5からk=+1.5までが0.5刻みで選択された。実線は式(1)の関数を表し、破線は式(2)の関数のうち、式(1)以外の部分を表す。コーニック定数kとグラフの曲面との関係は、以下の通りである。グラフの曲面は、k<-1では双曲面であり、k=-1では放物面であり、-1<k<0ではr方向が短軸でありz方向が長軸である楕円面であり、k=0では球面であり、k>0ではr方向が長軸でありz方向が短軸である楕円面である。グラフの曲面の曲率半径は、距離rが大きくなると、k<0では曲率半径Rよりも大きくなり、k=0では曲率半径Rに等しく、k>0では曲率半径Rよりも小さくなる。非球面レンズ30のレンズの曲面は、実線によって表された原点を含むグラフの曲面に相当する。本実施形態における非球面レンズ30の凸部30cは、コーニック定数k=0以外の曲面を有する。
【0041】
次に、
図5を参照して、非球面レンズ30における凸部30cによって得られる効果を説明する。
図5は、コーニック定数k=+0.5の凸部30cによって収束された2行5列の照射コリメートビームの強度分布の計算結果を示す図である。計算には、Zemax社の光学シミュレーションソフトOpticStudioが用いられた。計算条件は以下の通りである。ただし、本開示は以下の計算条件の発光装置に限定されない。凸部30cに入射する前のコリメートビーム20bのスポットはXY平面において楕円形状を有し、X方向における短径は1.0mmであり、Y方向における長径は4.9mmである。コリメートビーム20bのスポットは、ピーク強度の1/e
2(eはネイピア数)の強度以上である強度範囲の部分で定義した。隣接する2つのコリメートビーム20bの行方向(X方向)における中心間隔は3.5mmであり、列方向(Y方向)における中心間隔は5.9mmである。非球面レンズ30のZ方向における厚さは20mmである。凸部30cの原点での曲率半径Rは26.605mmである。非球面レンズ30の屈折率はn=1.52308であり、非球面レンズ30の周囲の屈折率はn=1である。k=+0.5の場合の非球面レンズ30における平板部分30fから集光点Fまでの距離は36.2mmである。透光領域40tの光入射面40s1と、非球面レンズ30の集光点Fとの距離は9.8mmである。集光点Fは、透光領域40tの光入射面40s1と非球面レンズ30との間に位置する。
【0042】
図5に示すように、行方向(X方向)の端にある4つの照射コリメートビームの強度分布が、それぞれ、矩形形状の透光領域40tの光入射面40s1のうち、4つの隅に向けて伸びる形状になっていることがわかる。このように、複数のコリメートビーム20bは、光入射面40s1の隅に照射される少なくとも一対の外側コリメートビームと、外側コリメートビームに挟まれて位置する1以上の内側コリメートビームと、を有する。球面レンズを用いた
図1Bに示す強度分布と比較して、非球面レンズ30を用いると、照射コリメートビーム20bの集光度が低下する。言い換えると、非球面レンズ30は、外側コリメートビームを、内側コリメートビームよりも発散させる形状を有する。前述したように、透光領域40tのうち、端部分、特に4つの隅では反射領域40rでの反射によって蛍光の割合が多くなる。照射コリメートビームの強度分布を、透光領域40tの光入射面40s1の端部分、特に4つの隅に分散させると、分散させない場合と比較して、その部分でのコリメートビーム20bの割合が多くなる。その結果、透光領域40tの光出射面40s2の端部分、特に4つの隅において出射する光の色味を、光出射面40s2の中央部分から出射する光の色味に近付けることができる。これにより、透光領域40tの光出射面40s2から出射される混合光の色むらを低減することができる。外側コリメートビームの発散の度合いは、発散方向のビーム幅について、外側コリメートビームのビーム幅が内側コリメートビームのビーム幅の1.1倍以上となる発散度合いとすることができ、好ましくは1.3倍以上となる発散度合いとする。これにより、色むらをより低減することができる。また、外側コリメートビームは発散するほど光密度が低下するため、発散度合いは外側コリメートビームのビーム幅が内側コリメートビームのビーム幅の2.5倍以下となる程度であることが好ましい。発散方向のビーム幅とは、例えば略楕円形のビームの長軸方向のビーム幅である。ビーム幅の比較対象とする内側コリメートビームは、複数のコリメートビーム20bのうち非球面レンズ通過時に非球面レンズの中心に最も近い位置にあるコリメートビームであることがより好ましい。
【0043】
次に、
図6を参照して、レンズのコーニック定数kと、照射コリメートビームの強度分布との関係を説明する。
図6は、様々なコーニック定数のレンズによって収束された2行5列の照射コリメートビームの強度分布の計算結果を示す図である。コーニック定数として、k=-1.5(双曲面)、k=-1.0(放物面)、k=-0.5(楕円面)、k=0(球面)、k=+1.0(楕円面)、およびk=+1.5(楕円面)が選択された。コーニック定数k=0(球面)を基準とすると、照射コリメートビームの強度分布は、コーニック定数が負であり(k<0)小さいほど透光領域40tの光入射面40s1の中央部分に集まり、コーニック定数が正であり(k>0)大きいほど透光領域40tの光入射面40s1の端部分、特に4つの隅に分散する。本開示における非球面レンズ30のコーニック定数kは、-15<k<0、又は、0<k<+6の範囲で設計される。
【0044】
前述した例では、非球面レンズ30の凸部30cの表面の形状は、コーニック定数kを変化させて設計されたが、コーニック定数k、曲率c、および非球面係数a2iの少なくとも1つを変化させて設計してもよい。
【0045】
照射コリメートビームの強度分布を変調する2つの代表的な方法が考えられる。1つは、ビーム間の中心間距離の少なくとも1つが異なる複数のコリメートビーム20bを球面レンズによって収束する方法である。もう1つは、本開示のように等間隔に配列された複数のコリメートビーム20bを、非球面レンズ30によって収束する方法である。発明者の分析によれば、後者の方が光源20のサイズを小さくすることができ、それに伴い非球面レンズ30のサイズを小さくすることができるため、発光装置100をより小型化することができる。
【0046】
また、光源20が、1つのパッケージに複数の半導体発光素子25を搭載する構成であることによっても、発光装置100の小型化が可能である。光源20が複数のパッケージで構成されている場合の隣接する2つのパッケージから出射するコリメートビーム20bの最短距離よりも、1つのパッケージ内における隣接する2つの半導体発光素子25から出射するコリメートビーム20bの最短距離の方が小さくし易いからである。すなわち、1つのパッケージに複数の半導体発光素子25を搭載することにより、同数の半導体発光素子25を複数のパッケージに分割配置する場合と比較して、複数のコリメートビーム20bの照射範囲を小さくすることができる。これにより、非球面レンズ30のサイズを小さくすることができ、発光装置100をより小型化することができる。
【0047】
照射コリメートビームの強度分布の望ましい状態は、透光領域40tの光入射面40s1の形状に応じて決めることができる。したがって、非球面レンズ30の凸部30cの表面の非球面形状は、透光領域40tの光入射面40s1の形状に応じて適切に設計され得る。例えば、透光領域40tの光入射面40s1の形状が、円形状、楕円形状、またはオーバル形状である場合、コーニック定数が負(k<0)である凸部30cを有する非球面レンズ30によって混合光の色むらを低減できる可能性がある。オーバル形状とは、円形状または楕円形状に類似する形状であって、交差しない閉曲線であり、少なくとも1箇所で線対称である形状を意味する。コリメートビーム20bを行列状に配置した場合、
図6に示す結果から、コーニック定数が負(k<0)であってその絶対値を大きくするほど行列状のコリメートビーム20bの四隅が中央部に向かって収縮する傾向があるといえる。また、コーニック定数が正(k>0)であってその絶対値を大きくするほど行列状のコリメートビーム20bの四隅が中央部から離れる方向に拡がる傾向があるといえる。透光領域40tの光入射面40s1の形状が、円形状、楕円形状、またはオーバル形状である場合、例えば、凸部30cの表面の非球面形状をコーニック定数が-1.0以下(k≦-1.0)の曲面としてよい。透光領域40tの光入射面40s1の形状が矩形である場合、例えば、凸部30cの表面の非球面形状をコーニック定数が0.5以上(k≧0.5)の曲面とすることができる。
【0048】
非球面レンズ30の凸部30cの表面の非球面形状を変化させる以外に、照射コリメートビームの強度分布は、透光領域40tの光入射面40s1と、非球面レンズ30の集光点Fとの距離を変化させて変調してもよい。
【0049】
<光源20の内部の構成例>
次に、
図7Aを参照して、光源20の内部の構成例を説明する。
図7Aは、
図2Bに示す光源20のうち、枠体22および蓋体23の記載が省略された図である。説明の便宜上、基部21と光学素子24とは、距離が実際よりも離れた状態で記載されている。
【0050】
基部21の主面21s上には、半導体発光素子25が、サブマウント26を介して2行5列に配置されている。一方の行に並ぶ半導体発光素子25の出射端面は、他方の行に並ぶ半導体発光素子25の出射端面に対向している。このように、複数の半導体発光素子25は、非球面レンズ30の光軸に垂直な面(XY平面)に沿って1行以上2列以上または2行以上1列以上の行列状に配列されている。サブマウント26は、半導体発光素子25のZ方向における高さを調整することができる。隣接する半導体発光素子25の中心間距離は、例えば0.85mm以上である。これにより、互いの半導体発光素子25が及ぼす発熱の影響を低減することができる。一方で、光源20の小型化を考えれば、隣接する半導体発光素子25の中心間距離は、例えば2.5mm以下であることが望ましい。
図7Aに示す例では、複数の半導体発光素子25は、行方向に等間隔に並び、かつ列方向に等間隔に並んでいるが、等間隔でなくてもよい。前述したように、隣接する半導体発光素子25の中心間距離を調整することによって、照射コリメートビームの強度分布を変調することも可能である。また、複数の半導体発光素子25の配置としては、1列のみの配置のほか、複数行および複数列のマトリックス状の配置が挙げられる。
【0051】
基部21の主面21s上には、光反射部材27が、2行5列に配置されている。光反射部材27の斜面に設けられた反射面27rは、半導体発光素子25の出射端面に対面しており、半導体発光素子25から出射された光を反射する面である。光反射部材27における反射面27rと基部21の主面21sとがなす角度は、半導体発光素子25および光学素子24の配置関係によって決まる。
図7Aに示す例では、この角度は45度であるが、45度以外の角度でもよい。2行に並ぶ半導体発光素子25から出射された光は、光反射部材27における反射面27rによって基部21の主面21sから離れる方向に反射され、光学素子24に入射する。2行に並ぶ半導体発光素子25のうち、一方の行の半導体発光素子25は、+Y方向に光を出射し、他方の行の半導体発光素子25は、-Y方向に光を出射する。+Y方向は、
図7Aの矢印方向に対応し、-Y方向は、
図7Aの矢印とは反対の方向に対応する。
【0052】
光反射部材27は、例えば、石英もしくはBK7(硼珪酸ガラス)などのガラス、アルミニウムなどの金属、またはSiを主な構成材料とすることができる。光反射部材27における反射面27rは、半導体発光素子25が発する光に対する反射率が比較的高い材料から形成されていることが望ましい。この材料は、金属または誘電体多層膜である。反射面27rの光反射率は、例えば、半導体発光素子25が発する光のピーク波長において、70%以上とすることができ、90%としてもよい。光反射部材27は、複数の光反射面を有していてもよい。光源20は、光反射部材27以外に光反射部材をさらに備えてもよい。
【0053】
光学素子24は、2行5列に配列されたコリメートレンズ24lを備える。コリメートレンズ24lは、半導体発光素子25から出射された光がそのコリメートレンズ24lを通過する位置に設けられている。光学素子24は、2行5列に配列されたコリメートレンズ24lから2行5列のコリメートビームを出射する。
【0054】
光学素子24におけるコリメートレンズ24lは、例えば、ガラス、石英、サファイア、透明セラミックス、およびプラスチックの少なくとも1つから形成されていてもよい。光学素子24のX方向およびY方向におけるサイズは例えば15mm以上20mm以下であり、Z方向における厚さは例えば2.0mm以上5.0mm以下である。
【0055】
なお、半導体発光素子25の個数および配置関係は
図7Aに示す個数および配置関係に限定されない。半導体発光素子25の個数は複数とすることができる。光源20の小型化のために、例えば30個以下としてもよい。光学素子24におけるコリメートレンズ24l、および光反射部材27についても同様である。
【0056】
半導体発光素子25は、例えば、レーザダイオードである。レーザダイオードは、コヒーレントな光を出射する。レーザダイオードは、n側クラッド層、活性層、およびp側クラッド層がこの順に配置された構造を備える。レーザダイオードは、n側クラッド層側に位置する電極(n側の電極)と、p側クラッド層側に位置する電極(p側の電極)とをさらに備える。電極を透光性導電材料で形成し、クラッド層として用いることもできる。n側の電極とp側の電極とに電圧を印加してしきい値以上の電流を流すことにより、レーザダイオードからレーザ光が出射される。
図7Aでは、レーザ光は、半導体発光素子25の端面からY方向に平行な方向に出射される。出射されたレーザ光のスポットは、そのファーフィールドパターンとしてZ方向が長軸でありX方向が短軸である楕円形状を有する。レーザダイオードは、例えば可視領域におけるいずれかの色のレーザ光を出射することができる。可視領域以外の光を混合光の一部として活用する場合は、レーザダイオードは、紫外等の可視領域以外のレーザ光を出射するものであってもよい。
図7Aに示す複数の半導体発光素子25のうち、すべてが同じ波長のレーザ光を出射してもよいし、少なくとも1つが異なる波長のレーザ光を出射してもよい。色むらを小さくするためには、複数の半導体発光素子25からの光のすべてが同じ色であることが好ましい。
【0057】
蛍光体としてYAG蛍光体を用いる場合は、例えば青色のレーザ光を出射するレーザダイオードを用いる。青色光の発光ピーク波長は、420nm以上480nm以下の範囲内にあることが望ましく、440nm~460nmの範囲内にあることがより望ましい。青色のレーザ光を出射するレーザダイオードとしては、窒化物半導体を含む半導体レーザ素子が挙げられる。窒化物半導体としては、例えば、GaN、InGaN、およびAlGaNを用いることができる。窒化物半導体を含む半導体レーザ素子は、組成を変えることで、紫外から可視領域までの光を発光可能である。
【0058】
半導体発光素子25は、必要に応じて、パッケージによって気密封止され得る。基部21、枠体22、および蓋体23は、半導体発光素子25を気密封止するパッケージに相当する。このとき、半導体発光素子25がレーザダイオードであれば、光源20は半導体レーザパッケージであると言うことができる。半導体発光素子25が比較的短波長(例えば約480nm以下の波長)のレーザ光を出射するレーザダイオードである場合、レーザダイオードの出射端面が外気に接していると、集塵効果などにより、動作中に端面劣化が進行していく可能性がある。このような端面劣化は、レーザダイオードの光出力低下を招き得る。レーザダイオードの信頼性を高めて寿命を延ばすため、レーザダイオードは気密封止されることが望ましい。
【0059】
なお、半導体発光素子25は、インコヒーレントな光を出射する発光ダイオード(LED)を含んでもよい。レンズと組み合わせる際にはレーザ光の方が光の損失を少なくできるため、半導体発光素子25はレーザダイオードであることが好ましい。
【0060】
基部21は、発光装置100における基板10と同様に、複数の半導体発光素子25から発せられた熱を速やかに外部に放出するために、熱伝導率が比較的高い材料から形成されていていることが望ましい。同様に、サブマウント26は、熱伝導率の高い材料から形成されていることが望ましい。基部21の主材料としては、例えば、Cuなどの金属、または、窒化アルミニウム、炭化ケイ素などのセラミックスが挙げられる。サブマウント26の主材料としては、窒化アルミニウム、または炭化ケイ素などが挙げられる。
【0061】
半導体発光素子25は、その下面がサブマウント26の上面に接合されている。したがって、半導体発光素子25の側面が光出射面である場合、半導体発光素子25は、基部21の主面21sに対して平行方向に光を出射する。例えば、半導体発光素子25は、金属膜が設けられたサブマウント26にAu-Snなどの導電層を介して固定されている。なお、半導体発光素子25は、直接Z方向に光を出射するように設けられてもよい。このとき、光反射部材27は必要ない。サブマウント26のうち半導体発光素子25が設けられた領域以外では、複数の半導体発光素子25と枠体22にあるリード端子22lとのワイヤによる電気的な接続を容易にするために、ワイヤ接続用の導電層が設けられてもよい。
【0062】
次に、
図7Bおよび
図7Cを参照して、
図3Aおよび
図3Bに示すコリメートビーム20bのビーム幅の違いを説明する。ここでは、半導体発光素子25は、レーザダイオードを含む。
図7Bおよび
図7Cは、それぞれ、半導体発光素子25から出射されたレーザ光が光反射部材27の反射面27rによって反射され、光学素子24のコリメートレンズ24lによってコリメートされる様子を模式的に示す、YZ平面およびXZ平面における断面図である。蓋体23は、開口23oを塞ぐ透光部材23tと、透光部材23tおよび光学素子24との間に隙間を形成するスペーサ23sとを備える。前述したように、半導体発光素子25から出射されるレーザ光は、Z方向に大きく広がり、X方向にはそれほど広がらない。したがって、
図7Bに示すように、Z方向に大きく広がったレーザ光が上方に向けて反射されコリメートされると、コリメートビーム20bのY方向におけるビーム幅は広くなる。これに対して、
図7Cに示すように、X方向にそれほど広がらないレーザ光が上方に向けて反射されコリメートされると、コリメートビーム20bのX方向におけるビーム幅はそれほど広がらない。したがって、光学素子24からZ方向に出射されるコリメートビーム20bのスポットは、XY平面においてY方向が長軸でありX方向が短軸である楕円形状を有する。なお、半導体発光素子25から出射されるレーザ光のファーフィールドパターンは、ここで説明した形状に限るものではなく、例えば長軸と短軸が逆であってもよい。
【0063】
(非球面を有する集光部の変形例)
次に、
図8Aおよび
図8Bを参照して、本開示における非球面を有する集光部の変形例を説明する。
図8Aおよび
図8Bは、光源20から出射されたコリメートビーム20bが、変形例における放物面反射鏡31によって収束され、波長変換部40における透光領域40tの光入射面40s1に入射する様子を模式的に示すY方向から見た側面図である。
図8Aおよび
図8Bでは、基板10および筐体50の記載は省略されている。変形例における放物面反射鏡31は、放物面形状の反射面31mを有している。反射面31mは、放物面の軸31a(Z方向)に対して平行に進行する光を反射して軸31a上にある集光点Fに収束させる。
図8Aおよび
図8Bに示す反射面31mのすべての部分がある必要はなく、光が当たる部分だけがあればよい。放物面反射鏡31における反射面31m以外の部分の形状に制限はない。
図8Aおよび
図8Bに示す例では、光源20は、2行5列に配列されたコリメートビーム20bをZ方向に出射する。透光領域40tの光入射面40s1は、放物面反射鏡31の反射面31mによって反射された5つのコリメートビーム20bのうち、真中のビームの光軸に対して垂直である。
【0064】
図8Aに示す例では、真中のビームは、反射面31mによってX方向に反射される。白抜きの矢印によって表された混合光は、透光領域40tの光出射面40s2からX方向に出射される。
図8Bに示す例では、
図8Aに示す例と比較して、光源20が軸31aからより離れて位置する。
図8Bに示す例でも、光源20から出射されたコリメートビーム20bは、すべて集光点Fに収束する。真中のビームは、反射面31mによって斜め上方向に反射される。混合光は、波長変換部40の光出射面40s2から斜め上方向に出射される。なお、
図8Aに示す例と比較して、光源20が軸31aのより近くに位置する場合、混合光は、波長変換部40の光出射面40s2から斜め下方向に出射される。
【0065】
図8Aおよび
図8Bに示す例では、集光点Fが、放物面反射鏡31と透光領域40tの光入射面40s1との間に位置するが、透光領域40tの光入射面40s1が、
放物面反射鏡31と集光点Fとの間に位置してもよい。集光点Fは、透光領域40tの内部に位置してもよい。
【0066】
変形例における反射面31mは、放物面の形状を有している必要はなく、用途によっては、双曲面または楕円面などの非球面の形状を有していてもよい。本開示における非球面を有する集光部が放物面反射鏡31のような非球面反射鏡であっても、混合光の色むらを低減することができる。
【産業上の利用可能性】
【0067】
本開示の発光装置は、照明器具、自動車などの移動体用ヘッドランプ、プロジェクタ光源、内視鏡用光源など、各種の光源に利用され得る。
【符号の説明】
【0068】
10 基板
10s 基板の主面
20 光源
20b コリメートビーム
21 基部
21s 基部の主面
22 枠体
22l 枠体にあるリード端子
23 蓋体
24 光学素子
24l 光学素子におけるコリメートレンズ
25 半導体発光素子
26 サブマウント
27 光反射部材
27r 光反射部材における反射面
30 非球面レンズ
30c 凸部
30f 平板部分
31 放物面反射鏡
31a 放物面の軸
31m 反射面
40 波長変換部
40r 反射領域
40s1 光入射面
40s2 光出射面
40t 透光領域
50 筐体
50c 蓋部分
50e 縁部分
50o 貫通孔
50s サポート
100 発光装置