(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-10-10
(45)【発行日】2024-10-21
(54)【発明の名称】流体容器及び熱交換装置
(51)【国際特許分類】
F28C 1/02 20060101AFI20241011BHJP
F28C 3/04 20060101ALI20241011BHJP
F28F 27/00 20060101ALI20241011BHJP
【FI】
F28C1/02
F28C3/04
F28F27/00 511G
(21)【出願番号】P 2020086797
(22)【出願日】2020-05-18
【審査請求日】2023-05-02
(73)【特許権者】
【識別番号】598117056
【氏名又は名称】株式会社ゼネシス
(73)【特許権者】
【識別番号】504196300
【氏名又は名称】国立大学法人東京海洋大学
(74)【代理人】
【識別番号】100099634
【氏名又は名称】平井 安雄
(72)【発明者】
【氏名】桜澤 俊滋
(72)【発明者】
【氏名】盛田 元彰
【審査官】礒部 賢
(56)【参考文献】
【文献】特開2019-196854(JP,A)
【文献】実公昭58-052426(JP,Y2)
【文献】特公昭51-025980(JP,B2)
【文献】国際公開第2006/029457(WO,A1)
【文献】特公昭53-027014(JP,B2)
【文献】国際公開第2020/031667(WO,A1)
【文献】特開2019-109991(JP,A)
【文献】特開2012-101194(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F28C 1/00 - 3/18
F28F 27/00
(57)【特許請求の範囲】
【請求項1】
内部の空間部分に流体を収容可能とされ、金属に対する腐食性及び/又はスケールの易析出性を有する第一の流体と当該第一の流体に対し比重大で且つ不溶である第二の流体とがそれぞれ流入出可能とされる容器本体と、
当該容器本体内部に対し前記第一の流体を外部から供給可能とする第一流体供給部と、
前記容器本体における前記第一の流体の供給位置より上側となる所定高さ位置で、前記第二の流体を容器本体の内側面に沿わせる状態で容器本体内部に供給する第二流体供給部と、
前記容器本体内部における前記第一の流体の供給位置より上側で且つ前記第二の流体の供給位置より下側の位置から前記第一の流体を外部に排出可能とする第一流体排出部と、
前記容器本体における前記第一の流体の供給位置より下側の所定部位から前記第二の流体を外部に排出する第二流体排出部とを備え、
前記容器本体の内側面のうち、少なくとも容器本体の内部で前記第一の流体の存在し得る高さ範囲が、上に向けて拡開状となるように傾けて形成される傾斜部とされ、
前記第二流体排出部が、第二の流体の排出経路に、当該排出経路内部を流れる第二の流体の電気伝導率を測定可能とする測定部を設けられ、
当該測定部が、前記容器本体から排出されて以降の所定段階における第二の流体の電気伝導率を測定し、
当該測定で得られた電気伝導率から、第二の流体中における第一の流体の混入度合いを取得し、当該混入度合いに基づいて前記容器本体における第一の流体と第二の流体の各流量の調整を行い、
前記第二の流体が、前記第二流体供給部により、前記容器本体内部の空間部分を取り囲むように容器本体内側面全周にわたって供給され、内側面に沿う流体の層を形成しつつ流下して、容器本体における第二の流体の排出位置に達することを
特徴とする流体容器。
【請求項2】
前記請求項1に記載の流体容器において、
前記容器本体が、内側面の前記傾斜部を略円錐面状とされてなり、
前記第二流体供給部が、前記第二の流体を、前記容器本体の傾斜部における横断面の円周の接線方向に速度成分を有する供給方向として供給し、第二の流体が傾斜部を螺旋状に流下して、前記内側面に沿う流体の層を形成する状態を生じさせることを
特徴とする流体容器。
【請求項3】
前記請求項2に記載の流体容器において、
前記容器本体が、内側面の前記傾斜部に、第二の流体の螺旋状の流れを案内する突条状の案内部を配設されることを
特徴とする流体容器。
【請求項4】
前記請求項1ないし3のいずれかに記載の流体容器
が、高温である熱源流体を前記第一の流体とされると共に、前記熱源流体と熱交換させる液相の熱媒体を前記第二の流体とされて、前記容器本体で第一の流体と第二の流体とを直接接触させて熱交換を行わせるものとされると共に、
前記第二流体供給部が、前記第二流体排出部により前記容器本体から排出されて外部に達し、他の熱交換対象媒体と熱交換した第二の流体をあらためて導入され、当該第二の流体を容器本体内部に供給して、第二の流体を循環使用可能とされることを
特徴とする
熱交換装置。
【請求項5】
前記請求項
4に記載の
熱交換装置において、
前記容器本体内部における第一の流体の存在する領域に対し、前記第二流体供給部によ
る供給分とは別に前記第二の流体を供給する供給手段が設けられ、
当該供給手段から前記第二の流体を第一の流体に撒布し、第一の流体中で第二の流体の液滴を沈降させ、第一の流体の存在する領域を通過した第二の流体の液滴を、前記第二流体供給部から供給された第二の流体に合流させることを
特徴とする熱交換装置。
【請求項6】
前記請求項
4又は5に記載の熱交換装置において、
前記容器本体内部
から前記第一流体排出部で外部に取り出された第一の流体を導入可能とされる沈殿槽が設けられ、
当該沈殿槽が、第一の流体を所定量滞留状態として、前記容器本体で第一の流体中に混入した第二の流体を沈降させ、第一の流体から分離可能とすることを
特徴とする熱交換装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、所定の流体を容器内側面に接触させることなく収められる流体容器、及び、当該流体容器を用いて二つの流体の直接接触による熱交換を行わせる熱交換装置に関する。
【背景技術】
【0002】
高温流体と低温流体との間で熱の授受(熱交換)を行わせる熱交換器の使用にあたり、二つの流体が共に液相である時に効率よく熱交換を行わせたい場合には、複数の略板状のプレートを平行に所定間隔で重ね合せ、各プレート間をそれぞれ流路として、各流路にはプレート一枚おきに高温流体と低温流体を交互に流して、伝熱面となる各プレートを介して熱交換させる構造のプレート式の熱交換器が、従来から多く用いられていた。
【0003】
このプレート式の熱交換器については、熱源となる液相流体がスケール成分を含んだり腐食性を有する場合には、スケール付着や腐食の問題が発生し、これらにより熱交換性能を正しく発揮できなくなるため、定期的なメンテナンスが必要となり、運用コストが大きくなるという問題があった。
【0004】
液相流体に起因する錆や腐食の発生を防止するために、各プレートを耐食性のある金属薄板製としたり、プレートを保護する何らかの表面処理を施す対策も考えられるが、こうした耐食性のある材料の採用や表面処理はコスト大となることから、熱交換器の製造コスト全体が過大となってしまうという問題があった。
【0005】
こうしたプレートのような伝熱面を介して行う熱交換に起因する問題を解消するために、液相の流体同士を直接接触させて熱交換を行えるようにする熱交換器が提案されている。
こうした従来の直接接触式の熱交換器の一例として、特開平8-82490号公報に記載されるものがある。
【先行技術文献】
【特許文献】
【0006】
【発明の概要】
【発明が解決しようとする課題】
【0007】
従来の熱交換器は、前記特許文献に示されるように、熱交換を行う流体同士が直接接触することで、伝熱面となるプレートを不要とすることができる。
しかしながら、こうした従来の熱交換器では、依然として、熱源となる液相流体を一時的に内部に収め、内壁面がこの液相流体と接触するシェル(外殻容器)を必要としており、熱源流体が地熱水等の腐食性やスケール析出性を有する液体(以下、腐食性液体等)である場合、これを入れる容器は、腐食による損傷リスクや頻繁なメンテナンスの必要性があるため、より耐食性のある高級金属の適用や容器内面に樹脂や高級金属によるライニングやコーティングの施工もしくは電気化学的な防食を講じる必要があり、やはり高コストとなってしまうという課題を有していた。
【0008】
また、こうしたコストの面から、大型の熱交換器や、高温、高圧域で使用可能な強固な構造の熱交換器、すなわち、強度確保のために高価な材料の使用量が多くなる熱交換器を経済的に製造することが極めて難しいという課題を有していた。
【0009】
本発明は前記課題を解消するためになされたもので、熱交換器等に使用可能な容器を熱源流体と接触しないようにして、腐食性を有するなど低品位の熱源流体であっても容器内に安定的に保持して熱回収等を行うことができると共に、高コストの部材を用いずに、容器内部の劣化が生じにくい状態を簡易に確保でき、メンテナンス性に優れ、良好な性能を維持しやすい構造を、製造コストの増大を抑えつつ実現可能な流体容器、及びこれを用いた熱交換装置を提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明に係る流体容器は、内部の空間部分に液体を収容可能とされ、金属に対する腐食性及び/又はスケールの易析出性を有する第一の流体と当該第一の流体に対し比重大で且つ不溶である第二の流体とがそれぞれ流入出可能とされる容器本体と、当該容器本体内部に対し前記第一の流体を外部から供給可能とする第一流体供給部と、前記容器本体における前記第一の流体の供給位置より上側となる所定高さ位置で、前記第二の流体を容器本体の内側面に沿わせる状態で容器本体内部に供給する第二流体供給部と、前記容器本体内部における前記第一の流体の供給位置より上側で且つ前記第二の流体の供給位置より下側の位置から前記第一の流体を外部に排出可能とする第一流体排出部と、前記容器本体における前記第一の流体の供給位置より下側の所定部位から前記第二の流体を外部に排出する第二流体排出部とを備え、前記容器本体の内側面のうち、少なくとも容器本体の内部で前記第一の流体の存在し得る高さ範囲が、上に向けて拡開状となるように傾けて形成される傾斜部とされ、前記第二の流体が、前記第二流体供給部により、前記容器本体内部の空間部分を取り囲むように容器本体内側面全周にわたって供給され、内側面に沿う流体の層を形成しつつ流下して、容器本体における第二の流体の排出位置に達するものである。
【0011】
このように本発明によれば、第一の流体と第二の流体とをそれぞれ容器本体に流入出可能とする中で、第二流体供給部で第二の流体を容器本体内部に供給し、容器本体の内側面に沿って第二の流体の層が形成されるようにして、容器本体内部に存在する第一の流体と容器本体内側面との間に第二の流体の層が介在する状況を生じさせ、第一の流体が容器本体内部に存在する間、容器本体の内側面に沿って流下する第二の流体が、第一の流体の容器本体の内側面への接触機会を著しく減少させることにより、容器本体内に流入した第一の流体が容器本体の内側面に接触することに起因する容器本体内側面の腐食や、容器本体の内側面に接した第一の流体からのスケール析出とこのスケールの内側面への付着等による、容器本体の劣化を抑えられ、問題なく第一の流体を容器本体内部に存在させられる。
【0012】
また、容器本体内部で直接接触する第一の流体と第二の流体との間で熱交換が生じることにより、容器本体を第一の流体と第二の流体との間で熱交換を行わせる熱交換装置として用いるようにすれば、第一の流体が金属腐食性やスケールの易析出性を有する場合でも、装置の劣化を生じることなく熱交換を行わせて、所望の温度に変化させた第二の流体を得ることができる。
【0013】
また、本発明に係る流体容器は必要に応じて、前記容器本体が、内側面の前記傾斜部を略円錐面状とされてなり、前記第二流体供給部が、前記第二の流体を、前記容器本体の傾斜部における横断面の円周の接線方向に速度成分を有する供給方向として供給し、第二の流体が傾斜部を螺旋状に流下して、前記内側面に沿う流体の層を形成する状態を生じさせるものである。
【0014】
このように本発明によれば、容器本体における傾斜部を略円錐面状に形成すると共に、容器本体の傾斜部に対する第二流体供給部による第二の流体の供給で、第二の流体の流れに傾斜部の円形となる横断面形状における円周の接線方向に速度成分を付与するようにして、第二の流体が傾斜部を螺旋状に流下する状態を生じさせ、第二の流体に螺旋状の流れに伴う遠心力が加わるようにすることにより、第二の流体の流れの容器本体内側面への付着力をさらに大きくすることができ、内方の第一の流体の流れに対し第二の流体の層をより一層内側面から剥がれにくくして、確実に容器本体の内側面を第一の流体から隔離して保護できる。
【0015】
また、本発明に係る流体容器は必要に応じて、前記容器本体が、内側面の前記傾斜部に、第二の流体の螺旋状の流れを案内する突条状の案内部を配設されるものである。
【0016】
このように本発明によれば、案内部で第二の流体を案内して第二の流体の螺旋状の流れを促すことで、傾斜部の広い範囲で螺旋状に流れる状態が維持され、流れの遠心力で第二の流体の容器本体内側面に付着しやすくなる状態が傾斜部の下部にまで及んで、第二の流体の層を内側面からさらに剥がれにくくすることができ、第一の流体に対し容器本体の内側面を確実に保護できる。
【0017】
また、本発明に係る流体容器は必要に応じて、前記第二流体排出部で前記容器本体から排出されて以降の所定段階における第二の流体の電気伝導率を測定し、得られた電気伝導率から、第二の流体中における第一の流体の混入度合いを取得するものである。
【0018】
このように本発明によれば、容器本体から取り出された第二の流体の電気伝導率を測定し、第一の流体と第二の流体との電気伝導率の差異を利用して、測定値と本来の第二の流体のみの電気伝導率の値とのずれから第一の流体の混入度合いを取得し、容器本体から取り出される第二の流体に随伴して流出する第一の流体の有無や流出量を把握できることにより、第一の流体の誤った位置からの流出を抑えるように第一の流体や第二の流体の流量を調整制御したり、容器本体から取り出された第二の流体に対し第一の流体をその混入度合いに合わせて適切に回収する対策を施すことができ、第二の流体に混入した第一の流体が第二の流体の流路や、第二の流体を循環利用する場合の容器本体に、悪影響を及ぼす事態を確実に阻止できる。
【0019】
また、本発明に係る熱交換装置は、前記流体容器が、高温である熱源流体を前記第一の流体とされると共に、前記熱源流体と熱交換させる液相の熱媒体を前記第二の流体とされて、前記容器本体で第一の流体と第二の流体とを直接接触させて熱交換を行わせるものとされると共に、前記第二流体供給部が、前記第二流体排出部により前記容器本体から排出されて外部に達し、他の熱交換対象媒体と熱交換した第二の流体をあらためて導入され、当該第二の流体を容器本体内部に供給して、第二の流体を循環使用可能とされるものである。
【0020】
このように本発明によれば、容器本体内部を流通する第一の流体と、容器本体の内側面に沿って流れる第二の流体とが直接接触する状況を利用して、第一の流体と第二の流体との間で熱交換を行わせ、熱交換した第二の流体を容器本体から外部に取り出し、他の熱交換対象媒体とさらに熱交換させてから、第二流体供給部に導いて容器本体の内部に供給することを繰り返し、第二の流体を熱媒体として循環させながら熱の搬送に用いることにより、容器本体で腐食やスケールの発生を抑えつつ第一の流体と第二の流体との間の熱交換を行わせると共に、第一の流体の熱を第二の流体を介して所望の熱交換対象媒体に移動させるようにして、熱利用システム全体における第一の流体の流れる経路を必要最小限にとどめると共に周囲から隔離でき、腐食性等を有して取り扱いにくい第一の流体に起因する問題の発生を防止しつつ、第一の流体の保有する熱の有効活用が図れる。
【0021】
また、本発明に係る熱交換装置は必要に応じて、前記容器本体内部における第一の流体の存在する領域に対し、前記第二流体供給部による供給分とは別に前記第二の流体を供給する供給手段が設けられ、当該供給手段から前記第二の流体を第一の流体に撒布し、第一の流体中で第二の流体の液滴を沈降させ、第一の流体の存在する領域を通過した第二の流体の液滴を、前記第二流体供給部から供給された第二の流体に合流させるのである。
【0022】
このように本発明によれば、容器本体内部を流通する第一の流体中に向けて、供給手段を用いて第二の流体をその容器本体の内側面に沿って流れるものとは別途に供給、滴下し、この第二の流体を第一の流体中に通して、最終的に容器本体の内側面に沿って流れた分の第二の流体と合流させ、第二の流体としてまとめて取り出せるようにすることにより、温度差のある第一の流体と第二の流体との間での熱交換にあたり、第一の流体と第二の流体との接触機会を増やして熱交換を効率よく行わせることができ、熱交換で第二の流体を第一の流体の温度により一層近付けられる。
【0023】
また、本発明に係る熱交換装置は必要に応じて、前記容器本体内部から前記第一流体排出部で外部に取り出された第一の流体を導入可能とされる沈殿槽が設けられ、当該沈殿槽が、第一の流体を所定量滞留状態として、前記容器本体で第一の流体中に混入した第二の流体を沈降させ、第一の流体から分離可能とするものである。
【0024】
このように本発明によれば、第一の流体排出部で容器本体内部から外に取り出された第一の流体を沈殿槽に流通させ、沈殿槽で第一の流体を滞留状態とする間に、第一の流体中に混入した高比重の第二の流体を沈降させ、第一の流体と第二の流体とが層状に分離するようにして、第二の流体を回収可能とすることにより、第一の流体との接触機会が増えるのに伴って、第一の流体の流れに取り込まれて第一の流体と共に第一の流体排出部で取り出される第二の流体の量が増大しても、沈殿槽で第二の流体を第一の流体から分離して回収でき、第二の流体が誤って第一の流体と共に容器本体から離れて失われる事態を防いで、第二の流体を有効利用できると共に第二の流体の補充に要するコストを抑えられる。
【図面の簡単な説明】
【0025】
【
図1】本発明の第1の実施形態に係る熱交換装置を用いた発電システムの概略構成説明図である。
【
図2】本発明の第1の実施形態に係る熱交換装置の概略断面図である。
【
図3】本発明の第1の実施形態に係る熱交換装置における第二の流体流下状態の平面図である。
【
図4】本発明の第1の実施形態に係る熱交換装置における各流体の流通状態での傾斜部下部の拡大断面図である。
【
図5】本発明の第1の実施形態に係る熱交換装置の他例における沈殿槽配設状態説明図である。
【
図6】本発明の第2の実施形態に係る熱交換装置の概略断面図である。
【
図7】本発明の第2の実施形態に係る熱交換装置における第二の流体流下状態の平面図である。
【
図8】本発明の第2の実施形態に係る熱交換装置の他例における案内部配置状態説明図である。
【
図9】本発明の第2の実施形態に係る熱交換装置の他例における各流体の流通状態での傾斜部下部の拡大断面図である。
【
図10】本発明の第2の実施形態に係る熱交換装置のさらに他の例における各液体の流通状態での傾斜部下部の拡大断面図である。
【
図11】本発明の他の実施形態に係る熱交換装置の要部概略断面図である。
【発明を実施するための形態】
【0026】
(本発明の第1の実施形態)
以下、本発明の第1の実施形態を
図1ないし
図4に基づいて説明する。本実施形態においては、地熱流体の熱をバイナリーサイクル方式で動力に変換して発電を行う地熱発電システムに用いられる熱交換装置の例について説明する。
【0027】
前記各図において本実施形態に係る熱交換装置1は、所定の第一の流体とこの第一の流体に対し比重大で且つ不溶である第二の流体とが内部をそれぞれ流通可能とされる容器本体10と、この容器本体10内部に対し第一の流体を外部から供給可能とする第一流体供給部20と、容器本体10における前記第一の流体の供給位置より上側となる所定高さ位置で第二の流体を容器本体内部に供給する第二流体供給部30と、容器本体内部から第一の流体を外部に排出可能とする第一流体排出部40と、容器本体10の所定部位から第二の流体を外部に排出する第二流体排出部50とを備える構成である。
【0028】
本実施形態に係る熱交換装置1は、高温である液相の熱源流体を前記第一の流体とされると共に、前記熱源流体と熱交換させる液相の熱媒体を前記第二の流体とされて、容器本体10で第一の流体と第二の流体とを直接接触させて熱交換を行わせるものとされる。そして、この熱交換装置1は、地熱発電システム100の一部として、作動流体の得た熱エネルギーを動力に変換する蒸気動力サイクル部70と、蒸気動力サイクル部70により熱エネルギーから変換された動力を利用して発電を行う発電機80と共に用いられる。
【0029】
前記蒸気動力サイクル部70は、前記熱交換装置1を出た前記第二の流体である熱媒体と作動流体とを熱交換させ、作動流体を蒸発させて気相の作動流体を得る蒸発器71と、気相の作動流体を導入されて作動し、作動流体の保有する熱エネルギーを動力に変換する膨張機72と、この膨張機72を出た気相の作動流体を低温流体と熱交換させることで凝縮させて液相とする凝縮器73と、凝縮器73から取出された液相作動流体を前記蒸発器71に送込むポンプ74とを備える構成である。この蒸気動力サイクル部70をなす前記各装置は、ランキンサイクル等の一般的な蒸気動力サイクルによるシステムで用いられるのと同様の公知の装置であり、説明を省略する。
また、前記発電機80は、公知の蒸気動力サイクルにおけるタービン等の膨張機72を駆動源とする発電に用いられるのと同様のものであり、詳細な説明を省略する。
【0030】
前記蒸気動力サイクル部70に対し、前記熱交換装置1は、第二の流体を第一の流体との熱交換で加熱して、蒸気動力サイクル部70の蒸発器71に導入される熱媒体としての第二の流体が作動流体との間で蒸発器伝熱面を介した間接熱交換を行う際に、作動流体を気相に相変化させられる程度に、第二の流体の温度を上昇させるようにするものである。
【0031】
前記第一の流体は、地熱由来の高温液相の熱源流体であり、より詳細には、地熱地帯の地中(生産井)から取り出した高温高圧の地熱流体を気液分離器90に通して、気相分と分離した液相分が用いられる。この第一の流体は、地熱流体由来のために、金属に対する腐食性を有すると共に、シリカ等のスケールの易析出性を有する。この他、第一の流体となる熱源流体としては、温泉から湧き出した又は汲み上げた高温の温泉水(湯)を用いることもできる。
【0032】
前記第二の流体は、主成分が水である第一の流体に対し高比重且つ不溶である性質を有する液体、例えば、フッ素化合物系の液体であり、水より沸点が高い、絶縁性が高い等の特徴を有するものである。
【0033】
前記容器本体10は、内部の空間部分に液体を収容可能な略箱状とされ、金属に対する腐食性及び/又はスケールの易析出性を有する前記第一の流体と、この第一の流体に対し比重大で且つ不溶である前記第二の流体とがそれぞれ流入出可能とされて、第一の流体と第二の流体とが内部をそれぞれ流通可能とされる構成である。
【0034】
容器本体10の内側面における高さ方向の所定範囲は、傾斜部11として、上に向けて拡開状となるように傾けて形成される。この内側面の傾いた部位である傾斜部11に沿って第二の流体が流下し、さらにその内方となる容器本体10内部に、下の第一流体供給部20から供給され、上の第一流体排出部40で回収され外部に排出される第一の流体が存在するようにされる。言い換えると、容器本体10の内側面のうち、この容器本体10の内部で第一の流体の存在し得る高さ範囲を必ず含むように、容器本体10における傾斜部11の大きさが設定される。
【0035】
この容器本体10における傾斜部11の配置については、容器本体上端まで傾斜部が設けられる構成でも、傾斜部の上側に筒状など他の形状部分が存在する構成でもよい。逆に、容器本体10はその下部まで傾斜部が連続して設けられる構成でも、傾斜部の下側に筒状など他の形状部分が存在する構成でもよい。
【0036】
前記第一流体供給部20は、容器本体10内部に対し第一の流体(熱源流体)を外部から供給可能とするものである。詳細には、地熱帯の生産井から取り出された地熱流体が気液分離器に導入されて、気相分と分離して得られる液相の熱源流体を、この第一流体供給部20が、第一の流体として気液分離器から取り出して容器本体10の内部に導く。
【0037】
この第一流体供給部20による第一の流体の供給位置は、容器本体10内部における傾斜部11の下端と同じ高さ位置より若干上寄りの位置とされ、供給され容器本体内部に流入した第一の流体と第二の流体との境界面の下端が、容器本体10における傾斜部11のある高さ範囲に収まりやすくなるようにされる。
【0038】
また、第一流体供給部20のうち、供給経路の一部として容器本体内に位置する略管状部分は、容器本体10の下部側から容器本体内部に導入配設され、第一の流体を流出させる出口部分が容器本体内部における第一流体供給部20の最上部とされる。こうして、第一流体供給部20は、容器本体10における傾斜部11の内側面に取り付けられたり、傾斜部11を貫通して設けられることはなく、傾斜部11に沿う第二の流体の流れを妨げない。
【0039】
前記第二流体供給部30は、第一流体供給部20による第一の流体の供給位置より上側となる容器本体内部の所定高さ位置で、第二の流体を容器本体10の内側面に沿わせる状態として容器本体内部に供給するものである。
【0040】
第二流体供給部30は、容器本体10の上部側から容器本体内部に導入配設され、第二の流体を供給する最下部の出口部分が容器本体10の内部における傾斜部11に最も近い箇所に位置する。こうして、第二流体供給部30は、容器本体10における傾斜部11の内側面に取り付けられたり、傾斜部11を貫通して設けられることはなく、傾斜部11に沿う第二の流体の流れを妨げない。
【0041】
この第二流体供給部30により、第二の流体が容器本体10内部の空間部分を取り囲むように容器本体内側面全周にわたって供給される。第二の流体は、容器本体10における主に傾斜部11の内側面に沿う液体の層を形成しつつ流下して、容器本体10下部の第二の流体の排出位置に達する。
【0042】
この第二流体供給部30による第二の流体の供給位置は、容器本体10内部における傾斜部11の上端位置より若干上側とされ、供給され容器本体内部に流入した第二の流体が、傾斜部11を全て覆えるようにしている。
【0043】
そして、第二流体供給部30により容器本体10内部に供給される第二の流体の流量は、容器本体10における傾斜部11全域で、第一の流体が容器本体10内部に存在する間、容器本体10内側面と第一の流体との間に第二の流体の層が存在する状態を維持可能なものとなるように制御される。
【0044】
第二流体供給部30からの第二の流体の供給にあたっては、容器本体10の内側面における第二の流体と最初に接する部位に、整流効果のある凹凸を形成したり、粗面を設けるなどして、第二の流体の流れが傾斜面に達する際に均等となるようにし、傾斜部に沿った第二の流体のより一層むらのない流下を図るようにしてもよい。
【0045】
前記第一流体排出部40は、第一流体供給部20による第一の流体の供給位置より上側で、且つ第二流体供給部30による第二の流体の供給位置より下側となる、容器本体10の内部における所定高さ位置から第一の流体を外部に排出可能とするものである。
【0046】
第一流体排出部40のうち、第一の流体を受け入れて容器本体10の外へ導く排出経路の一部として容器本体内に位置する略管状部分は、容器本体10の上部側から容器本体内部に導入され、容器本体10の傾斜部11から離して設けられると共に、第一流体排出部40の第一の流体を受け入れる入口部分が容器本体内部における第一流体排出部40の最下部とされる。こうして、第一流体排出部40は、容器本体10における傾斜部11の内側面に取り付けられたり、傾斜部11を貫通して設けられることはなく、傾斜部11に沿う第二の流体の流れを妨げない。
【0047】
前記第二流体排出部50は、前記第一流体供給部20による第一の流体の供給位置より下側となる、容器本体10の所定部位から第二の流体を外部に排出するものであり、排出経路となる管路の他に、蒸気動力サイクル部70の蒸発器71に第二の流体を送給するポンプ51を有する構成である。
【0048】
この第二流体排出部50は、容器本体10の下部で容器本体内部に接続し、その排出経路に第二の流体を受入可能としている。容器本体10の内部では、容器本体10の傾斜部11の内側面に沿って流下した第二の流体が、第一の流体より比重大であることに基づき、容器本体内部の下部に集まって最下層をなして単独で存在する状態にあるが、第二流体排出部50が容器本体10の外に導いて排出する第二の流体を適切な排出量となるようにすることで、容器本体10の内部における第二の流体と第一の流体との境界面の位置がほぼ一定に維持される。
【0049】
この第二流体排出部50により容器本体10から排出されて外部に達した第二の流体は、ポンプ51で蒸気動力サイクル部70の蒸発器71に送給され、蒸発器71を通過しつつ作動流体と熱交換してから、第二流体供給部30にあらためて導入される。この再導入された第二の流体を、第二流体供給部30が容器本体10の内部に供給して、第二の流体を循環使用可能とする仕組みである。
【0050】
また、第二流体排出部50の排出経路には、内部を流れる液体の電気伝導率を測定可能とする測定部55が設けられる。
測定部55は、第二流体排出部50で容器本体10から排出された後で、且つ蒸発器71に達する前の段階における第二の流体の電気伝導率を測定するものであり、この測定で得られた電気伝導率から、第二の流体中における第一の流体の混入度合いを取得可能としている。
【0051】
これにより、第一の流体の一部が誤って第二の流体の流れに引き込まれて容器本体10内部の下部に達し、第二流体排出部50で容器本体内部から第二の流体と共に排出される状況で、第二の流体中における第一の流体の混入度合いを得て、これに基づいた第一の流体と第二の流体の各流量の調整が行え、第二の流体への第一の流体の混入を抑えるようにすることができる。
【0052】
なお、第一の流体は、第一流体供給部20と第一流体排出部40によって連続して容器本体10内部に対し流入出する状態にあるが、これに限らず、容器本体内部に第一の流体が適量存在する状態で、第一流体供給部20と第一流体排出部40を作動させず、第一の流体の流入出を止めて、第一の流体を容器本体内部に所定時間滞留(貯溜)させる構成とすることもできる。
【0053】
次に、前記構成に基づく熱交換装置の使用状態について説明する。前提として、高温液相の熱源流体としての第一の流体は、地熱地帯の生産井から取り出した地熱流体のうち、気液分離器を経て気相分と分離された液相分(約200℃)を用いる。また、蒸気動力サイクル部70の凝縮器73に導入する低温流体としては、蒸気動力サイクル部70の周囲に存在する外気や河川水等の水を用いるものとする。そして、熱媒体としての第二の流体は、水が主成分である第一の流体に対し比重大で且つ不溶であるフッ素化合物系の液体であって、水より沸点が高いもの、例えば、フロリナート(登録商標)を用いることとする。
【0054】
熱交換装置1では、容器本体10上部の第二流体供給部30が、容器本体内部の傾斜部11上端近傍の所定高さ位置から、熱媒体としての第二の流体を供給、送出し、第二の流体が容器本体10の内側面に沿って流下する状態とする。第二流体供給部30により供給された第二の流体は、容器本体10内部の空間部分を取り囲むように容器本体内側面全周にわたって流下し、傾斜部11の内側面に沿う液体の層を形成する。そして、第二の流体は、傾斜部11の内側面に沿って流下し、容器本体10下部に達する。
【0055】
一方、容器本体10下部の第一流体供給部20からは、気液分離器90から取り出された高温液相の熱源流体としての第一の流体が供給され、容器本体10の内部に流入する。
第一の流体と第二の流体とは互いに溶け合わない性質を有するため、これら二つの液体は容器本体10内部で混ざり合わず、分離した状態を維持する。
【0056】
第一流体供給部20による第一の流体の供給位置は、容器本体10内部における傾斜部11の下端の高さ位置より少し上側の位置であり、容器本体10の内部に流入した第一の流体は、傾斜部11に沿う第二の流体に取り囲まれた状態で容器本体内部を上昇する。こうして、傾斜部11に沿って流下する第二の流体と、その内側の領域に流通する第一の流体とがそれぞれ分離したまま直接接触する状態となり、接触する第一の流体と第二の流体との間で熱交換が進行する。
【0057】
なお、第二の流体の傾斜部11内側面に沿う流れと、その内側で第一の流体の上昇する流れとは、逆方向となることで、第一の流体と第二の流体とは向流の流れ関係で熱交換が行われることとなる。
【0058】
第二流体供給部30で第二の流体を傾斜部11の傾斜した内側面に沿って流下させることにより、第一の流体と第二の流体との比重差に基づき、第二の流体の流れを傾斜部11内側面に付着させやすくすると共に、流れ方向が斜め下向きとなる分、第二の流体の流下する速度を遅くでき、傾斜部11内側面に沿う第二の流体の層が内側面に付着して消失しにくくなり、傾斜部11の内側面を第一の流体から適切に隔離できる。
【0059】
加えて、第二の流体が傾斜部11に沿って流下するにあたり、傾斜部11の内側面から突出したり傾斜部11を貫通するような、第二の流体の流れに対し障害物となるものは特に設けられていないことから、第二の流体の傾斜部11に沿う流れは途中で妨げられることなくスムーズに連続しており、傾斜部11の内側面に沿う第二の流体の層が一部で途切れて、第一の流体が傾斜部11の内側面に接するようなことはない。
【0060】
傾斜部11に沿って流下した第二の流体は、第一流体供給部20により第一の流体が供給される高さ位置を越え、傾斜部11から離れて容器本体10下部に達し、第一の流体との接触による直接熱交換を終える。そして、第二の流体は、第一の流体に対し比重大である第二の流体が容器本体10内の下部に集まった、第二の流体の最下層領域を経由して、第二流体排出部50により少しずつ容器本体10の外に導かれて容器本体10から排出される。
【0061】
また、容器本体10内部を上昇して、容器本体10上部の傾斜部11上端の高さ位置近くまで達した第一の流体は、その高さ位置にある第一流体排出部40の入口部分から第一流体排出部40の排出経路に流入し、そのまま容器本体10の外に導かれて容器本体10から排出される。第一流体排出部40で容器本体10の外に排出された第一の流体は、後段側の他の熱交換装置に送られてさらに熱交換に用いられたり、地熱地帯の還元井に送られて地中に戻される。
【0062】
第一流体供給部20の供給位置を第二流体排出部50の排出位置より上側に設けて、容器本体10における第二の流体の存在し得ない下部に第一の流体が到達しにくくすると共に、第一流体排出部40の排出位置を第二流体供給部30の供給位置より下側に設けて、容器本体10における第二の流体の存在しない上部に第一の流体が到達しにくくして、第一の流体を容器本体10における傾斜部11の存在する高さ範囲内にとどめるようにすることで、傾斜部11以外で第一の流体が容器本体10の近傍に存在することはない。また、傾斜部11では、第一の流体と容器本体内側面との間に第二の流体の層を介在させて、第一の流体の容器本体10への接触を防いでいることで、第一の流体による容器本体10の腐食等の悪影響を抑えられ、容器本体10を確実に保護できる。
【0063】
第二流体排出部50で容器本体10の外に排出された第二の流体は、第二流体排出部50のポンプ51により蒸気動力サイクル部70の蒸発器71に送られる。
こうして第二流体排出部50の排出経路を蒸発器71へ向かう中で、第二の流体は測定部55により電気伝導率を測定される。
【0064】
ここで測定された電気伝導率は、絶縁性の第二の流体中における、導電性のある第一の流体の混入割合に関連した値となることから、測定された電気伝導率から第二の流体中への第一の流体の混入度合いを取得でき、それに基づいて第一の流体が第二の流体と共に排出されないよう各液体の流量調整を行えることとなる。
【0065】
例えば、第二流体排出部50により容器本体10から排出して蒸発器71に導く第二の流体の流量が多すぎると、排出されようとする第二の流体がその近傍に存在する第一の流体を引き込みながら容器本体10から出て、第一の流体が一部混入した状態で第二の流体が熱交換装置1と蒸発器71との間を循環する状態となり、第二の流体の流路各部に金属腐食やスケール発生等の悪影響を及ぼすおそれがある。
【0066】
こうした場合に対応して、測定された電気伝導率から把握した第一の流体の混入度合いに基づいて、ポンプの作動等を制御して第二の流体の流量を絞るなど調整することで、第一の流体の混入を抑えて、第二の流体のみを適切に熱交換装置1と蒸発器71に循環流通させられる。
【0067】
蒸気動力サイクル部70では、蒸発器71において熱交換装置1を出た熱媒体としての第二の流体と作動流体とを熱交換させる。蒸発器71では、蒸発器伝熱面を介した第二の流体との熱交換で加熱された液相の作動流体が、昇温に伴い蒸発して気相へと変化し、この気相の作動流体が蒸発器71を出て、膨張機72に達する。膨張機72では、気相の作動流体が膨張してこれを作動させ、動力を発生させることとなり、この膨張機72の動力により発電機80が駆動されて発電を行い、熱エネルギーが使用可能な電力に変換される。こうして膨張機72で膨張して仕事を行った気相作動流体は、圧力及び温度を低下させた状態となり、膨張機72を出た後、凝縮器73に導入される。
【0068】
凝縮器73では、内部に導入された気相の作動流体が、伝熱部を隔てた流路に別途導入された低温流体と熱交換し、気相の作動流体は熱交換による冷却に伴い凝縮して液相となる。この液相となった作動流体は、ポンプ74を経由して、蒸発器71へ向け進み、蒸発器内に戻ると、前記同様に蒸発器71での蒸発以降の各過程を繰返すこととなる。
【0069】
蒸気動力サイクル部70の蒸発器71での熱交換を終えた第二の流体は、蒸発器71から第二流体供給部30に進み、容器本体10内に供給され、あらためて第一の流体と熱交換するようにされ、こうして第二の流体は容器本体10と蒸発器71とを含む一連の流路を循環し、熱交換装置1での第一の流体との熱交換と、蒸発器71での作動流体との熱交換とを繰り返すこととなる。
【0070】
このように、本実施形態に係る熱交換装置においては、高温の熱源流体である第一の流体と、熱媒体である第二の流体とを、それぞれ容器本体10に流入出可能とする中で、第二流体供給部30で第二の流体を容器本体10内部に供給し、容器本体10の内側面に沿って第二の流体の層が形成されるようにして、容器本体10内部に存在する第一の流体と容器本体10内側面との間に第二の流体の層を介在させ、容器本体10の内側面に沿って流下する第二の流体が、第一の流体の容器本体10の内側面への接触を阻止することから、容器本体10内部に流入した第一の流体が容器本体10の内側面に接触することに起因する容器本体10の腐食や、容器本体10の内側面に接した第一の流体からのスケール析出とこのスケールの内側面への付着等による、容器本体10の劣化を抑えられ、問題なく第一の流体を容器本体10内部に存在させて、容器本体10を第一の流体と第二の流体との間で熱交換を行わせる熱交換装置として用いることができる。
【0071】
なお、前記実施形態に係る熱交換装置において、容器本体10の傾斜部11を略円錐面状とする構成としているが、これに限られるものではなく、傾斜部として内側面を上に向けて拡開状となるように傾けて形成される構成であれば、傾斜部を三角錐や四角錐などの多角錐面状に形成する構成とすることもでき、前記実施形態同様、傾斜部の内側面に沿って流下する第二の流体が形成する流体の層を内側面に付着させた状態に維持しやすく、傾斜部の内側面を第一の流体から適切に隔離できる。
【0072】
また、前記実施形態に係る熱交換装置において、第二の流体を容器本体10の傾斜部11に沿って流下させ、容器本体10の内側面に沿う第二の流体の層を形成すると共に、その内方となる容器本体の内部の領域に第一の流体を流通させて、第一の流体とその周囲の第二の流体とを直接接触させて熱交換可能とする構成としているが、この他、
図5に示すように、容器本体10内部における第一の流体の存在する領域に対し、第二流体供給部30による供給分とは別に第二の流体を供給する供給手段35を設けて、この供給手段35から第二の流体を第一の流体に撒布し、第二の流体の液滴を第一の流体中で沈降させ、第一の流体の存在する領域を通過した第二の流体の液滴を、第二流体供給部30から供給された第二の流体に合流させる構成とすることもできる。
【0073】
この場合、第一の流体に対し、供給手段35を用いて第二の流体をその容器本体10の内側面に沿って流れるものとは別途に供給、撒布した第二の流体も、第一の流体と熱交換させた上で、最終的に容器本体10の内側面に沿って流れた分の第二の流体と合流させ、第二の流体としてまとめて取り出せることから、温度差のある第一の流体と第二の流体との間での熱交換にあたり、第一の流体と第二の流体との接触機会を増やして熱交換を効率よく行わせることができ、熱交換で第二の流体を第一の流体の温度により一層近付けられる。
【0074】
こうして供給手段35を用いて第二の流体を別途供給するなど、第一の流体と第二の流体との接触機会を増やす場合には、
図5に示すように、容器本体内部から第一流体排出部40で外部に取り出された第一の流体を導入可能とされる沈殿槽60を設けて、この沈殿槽60で第一の流体を所定量滞留状態として、容器本体で第一の流体中に混入した第二の流体を沈降させ、第一の流体から分離させるようにするのが望ましい。
【0075】
沈殿槽60では、容器本体10の外に取り出された第一の流体を滞留状態とする間に、第一の流体中に混入した高比重の第二の流体を沈降させ、第一の流体と第二の流体とを層状に分離させることで、第二の流体を回収可能となる。これにより、第一の流体との接触機会が増えるのに伴って、第一の流体の流れに取り込まれて第一の流体と共に第一流体排出部で取り出される第二の流体の量が増大しても、沈殿槽60で第二の流体を第一の流体から分離して回収でき、第二の流体が誤って第一の流体と共に容器本体10から離れてそのまま失われる事態を防いで、特別な性質を有した第二の流体を有効利用できると共に、第二の流体の補充に要するコストを抑えられる。
【0076】
また、前記実施形態に係る熱交換装置は、第一の流体と第二の流体とがそれぞれ流入出可能とされた容器本体10で、第二の流体を容器本体10の傾斜部11に沿って流下させ、容器本体10の内側面に沿う第二の流体の層を形成すると共に、その内方となる容器本体10の内部の領域に第一の流体を流通させ、第一の流体とその周囲の第二の流体とを直接接触させて熱交換させ、熱交換後の第二の流体を容器本体の外に取り出して利用できるようにするなど、容器本体10を熱交換装置の要部とする構成としているが、この他、容器本体10において流通させる第二の流体を熱媒体としてではなく、第一の流体を容器本体10の内側面から隔離することを主目的として使用するようにして、容器本体10を第一の流体を所定量収容する液体容器や、第一の流体を所定時間滞留させる液槽として用いる構成とすることもでき、第一の流体をこれが収められる容器本体への影響を考慮することなく出し入れして様々な用途に利用できる。
【0077】
(本発明の第2の実施形態)
本発明の第2の実施形態を
図6及び
図7に基づいて説明する。
前記各図において本実施形態に係る熱交換装置は、前記第1の実施形態同様、容器本体10と、第一流体供給部20と、第二流体供給部30と、第一流体排出部40と、第二流体排出部50とを備える一方、異なる点として、第二流体供給部30における第二の流体の容器本体10内部への供給方向をする構成を有するものである。なお、容器本体10、第一流体供給部20、第一流体排出部40、及び第二流体排出部50については、前記第1の実施形態と同様のものであり、詳細な説明を省略する。
また、前記熱交換装置1と共に地熱発電システム100をなす蒸気動力サイクル部70及び発電部80については、前記第1の実施形態と同様のものであり、説明を省略する。
【0078】
前記第二流体供給部30は、前記第1の実施形態同様、第一流体供給部20による第一の流体の供給位置より上側となる容器本体内部の所定高さ位置で、第二の流体を容器本体10の内側面に沿わせる状態として容器本体内部に供給するものとされる一方、異なる点として、容器本体10における略円錐面状の傾斜部11に対し、第二の流体を、傾斜部11における横断面の円周の接線方向に速度成分を有する供給方向として供給する構成を有するものである。
【0079】
第二流体供給部30は、容器本体10の上部側から容器本体内部に導入配設され、第二の流体を供給する最下部の出口部分を容器本体10の内部における傾斜部11に最も近い一又は複数箇所に位置させて、傾斜部11に対し、第二の流体を傾斜部11における横断面の円周の接線方向に速度成分を有する供給方向、具体的には、傾斜部11における横断面の円周上の、所定箇所における接線方向に一致する向き、又は、接線方向から若干傾けた斜め下向きに、第二の流体を吐出供給する仕組みである。
【0080】
第二流体供給部30は、こうした方向に第二の流体を供給することで、この第二流体供給部30を出た第二の流体の流れを傾斜部11の内周に滑らかに沿わせ、傾斜部11の内側面上で第二の流体を螺旋状に流下させて、第二の流体が容器本体10内部の空間部分を取り囲むように容器本体内側面全周にわたって供給される状態を得ている。
そして、第二の流体は、傾斜部11の内側面上で螺旋状に流下することで、傾斜部11の内側面に沿う第二の流体の層を形成する。
【0081】
この第二流体供給部30による第二の流体の供給位置は、容器本体10内部における傾斜部11の上端位置にほぼ一致するようにされ、供給され容器本体内部に流入した第二の流体が、螺旋状に流下しながら傾斜部11を全て覆えるようにしている。
【0082】
そして、第二流体供給部30により容器本体10内部に供給される第二の流体の流量は、容器本体10における傾斜部11全域で、容器本体10内側面と第一の流体との間に第二の流体の層が存在する状態を維持可能なものとなるように制御される。
【0083】
第二流体供給部30は、前記第1の実施形態同様、容器本体10における傾斜部11の内側面に取り付けられたり、傾斜部11を貫通して設けられることはなく、傾斜部11に沿う第二の流体の螺旋状の流れを妨げない。
【0084】
次に、本実施形態に係る熱交換装置の使用状態について説明する。前記第1の実施形態と同様、前提として、高温液相の熱源流体としての第一の流体は、気液分離器で気相分と分離された地熱流体の液相分(約200℃)を用いる。また、蒸気動力サイクル部70の凝縮器73に導入する低温流体としては、蒸気動力サイクル部70の周囲に存在する外気や河川水等の水を用いるものとする。そして、熱媒体としての第二の流体は、第一の流体に対し比重大で且つ不溶であり、さらに水より沸点が高い、フッ素化合物系の液体、例えば、フロリナート(登録商標)を用いることとする。
【0085】
熱交換装置1では、容器本体10上部の第二流体供給部30が、容器本体内部の傾斜部11上端近傍の一又は複数箇所から、熱媒体としての第二の流体を傾斜部の内周に沿うように所定方向へ吐出供給し、第二の流体が容器本体10の内側面に沿って螺旋状に流下する状態とする。第二の流体は、容器本体10内部の空間部分を取り囲むように容器本体内側面全周にわたって流れ、傾斜部11の内側面に沿う液体の層を形成する。そして、第二の流体は、傾斜部11の内側面に沿って螺旋状に流下する状態を傾斜部下部まで維持し、最終的に容器本体10下部に達する。
【0086】
一方、容器本体10下部の第一流体供給部20からは、前記第1の実施形態同様、気液分離器から取り出された高温液相の熱源流体としての第一の流体が供給され、容器本体10の内部に流入する。
第一の流体と第二の流体とは互いに溶け合わない性質を有するため、これら二つの液体は容器本体10内部で混ざり合わず、分離した状態を維持する。
【0087】
第一流体供給部20による第一の流体の供給位置は、容器本体10内部における傾斜部11の下端の高さ位置より少し上側の位置であり、容器本体10の内部に流入した第一の流体は、傾斜部11に沿う第二の流体に取り囲まれた状態で容器本体内部を上昇する。こうして、傾斜部11に沿って流下する第二の流体と、その内側の領域に流通する第一の流体とがそれぞれ分離したまま直接接触する状態となり、接触する第一の流体と第二の流体との間で熱交換が進行する。
【0088】
なお、第二の流体の傾斜部11内側面に沿う螺旋状の流れは、傾斜部全体で見た場合、上から下に少しずつ進行する流れとなっていることから、その内側で第一の流体の上昇する流れとは逆方向となり、第一の流体と第二の流体とは向流の流れ関係で熱交換が行われるといえる。
【0089】
第二流体供給部30で第二の流体を傾斜部11の内側面に沿って螺旋状に流下させることにより、第一の流体と第二の流体との比重差に基づき、第二の流体の流れを傾斜部11内側面に付着させやすくすると共に、第二の流体に螺旋状の流れに伴う遠心力が加わることで、傾斜部11内側面に沿う第二の流体の層が内側面に強力に付着して消失しにくくなり、傾斜部11の内側面を第一の流体から適切に隔離できる。
【0090】
加えて、第二の流体が傾斜部11に沿って流下するにあたり、傾斜部11の内側面から突出したり傾斜部11を貫通するような、第二の流体の螺旋状の流れに対し障害物となるものは特に設けられていないことから、第二の流体の傾斜部11に沿う螺旋状の流れは途中で妨げられることなくスムーズに連続しており、傾斜部11の内側面に沿う第二の流体の層が一部で途切れて、第一の流体が傾斜部11の内側面に接するようなことはない。
【0091】
傾斜部11に沿って螺旋状に流下した第二の流体は、第一流体供給部20により第一の流体が供給される高さ位置を越え、傾斜部11から離れて容器本体10下部に達し、第一の流体との接触による直接熱交換を終える。そして、第二の流体は、第一の流体に対し比重大である第二の流体が容器本体10内の下部に集まった、第二の流体の最下層領域を経由して、第二流体排出部50により少しずつ容器本体10の外に導かれて容器本体10から排出される。
【0092】
また、容器本体10内部を上昇して、容器本体10上部の傾斜部11上端の高さ位置近くまで達した第一の流体は、その高さ位置にある第一流体排出部40の入口部分から第一流体排出部40の排出経路に流入し、そのまま容器本体10の外に導かれて容器本体10から排出される。第一流体排出部40で容器本体10の外に排出された第一の流体は、後段側の他の熱交換装置に送られてさらに熱交換に用いられたり、地熱地帯の還元井に送られて地中に戻される。
【0093】
前記第1の実施形態同様、第一流体供給部20の供給位置を第二流体排出部50の排出位置より上側に設けると共に、第一流体排出部40の排出位置を第二流体供給部30の供給位置より下側に設けて、第一の流体を容器本体10における傾斜部11の存在する高さ範囲内にとどめるようにすることで、傾斜部11以外で第一の流体が容器本体10の近傍に存在することはなく、且つ、傾斜部11においては、第一の流体と容器本体内側面との間に第二の流体の層を介在させて、第一の流体の容器本体10への接触を防いでいることで、第一の流体による容器本体10の腐食等の悪影響を抑えられ、容器本体10を確実に保護できる。
【0094】
第二流体排出部50で容器本体10の外に排出された第二の流体は、前記第1の実施形態同様、第二流体排出部50のポンプ51により蒸気動力サイクル部70の蒸発器71に送られると共に、この蒸発器71へ向かう過程で、測定部55により電気伝導率を測定され、測定された電気伝導率からこの第二の流体中への第一の流体の混入度合いを取得されることとなる。
そして、蒸気動力サイクル部70の蒸発器71では、第二の流体が作動流体と熱交換して、作動流体の温度を上昇させ、作動流体を蒸発させる。
【0095】
蒸気動力サイクル部70では、前記第1の実施形態同様、蒸発器71において第二の流体と熱交換した液相の作動流体が、昇温に伴い蒸発して気相へと変化し、この気相の作動流体が蒸発器71を出て、膨張機72に達する。気相の作動流体は膨張機72を作動させ、この膨張機72で発生した動力により発電機80が駆動されて発電を行う。膨張機72を作動させ、圧力及び温度を低下させた気相作動流体は、膨張機72を出た後、凝縮器73に導入され、この凝縮器73における低温流体との熱交換で凝縮し、再び液相となる。液相となった作動流体は、ポンプ74を経由して蒸発器71に戻り、前記同様に蒸発器71での蒸発以降の各過程を繰返すこととなる。
【0096】
一方、蒸発器71で作動流体と熱交換した後の第二の流体は、蒸発器71から第二流体供給部30に進み、容器本体10内に供給され、あらためて第一の流体と熱交換するようにされて、前記第1の実施形態と同様に、第二の流体は、容器本体10と蒸発器71とを含む一連の流路を循環し、熱交換装置1での第一の流体との熱交換と、蒸発器71での作動流体との熱交換とを繰り返す。
【0097】
このように、本実施形態に係る熱交換装置においては、容器本体10における略円錐面状の傾斜部11に対する第二流体供給部30による第二の流体の供給で、第二の流体の流れに傾斜部11の円形となる横断面形状における円周の接線方向に速度成分を付与するようにして、第二の流体が傾斜部11を螺旋状に流下する状態を生じさせ、第二の流体に螺旋状の流れに伴う遠心力が加わるようにすることから、第二の流体の流れの容器本体内側面への付着力をさらに大きくすることができ、内方の第一の流体の流れに対し第二の流体の層をより一層内側面から剥がれにくくして、確実に容器本体10の内側面を第一の流体から隔離して保護できる。
【0098】
なお、前記実施形態に係る熱交換装置において、容器本体10における傾斜部11の内側面を滑らかに連続する円錐面状の曲面とする構成としているが、これに限られるものではなく、
図8及び
図9に示すように、容器本体10の傾斜部11に、第二の流体の螺旋状の流れを案内する突条状の案内部15を設ける構成とすることもできる。
【0099】
この場合、案内部15で第二の流体を案内して第二の流体の螺旋状の流れを促すことで、傾斜部11の広い範囲で螺旋状に流れる状態が維持され、流れの遠心力で第二の流体の容器本体内側面に付着しやすくなる状態が傾斜部11の下部にまで及んで、第二の流体の層を内側面からさらに剥がれにくくすることができ、第一の流体に対し容器本体10の内側面を確実に保護できる。
【0100】
案内部15は、第二の流体の流れを案内する一方、その表面を、これを乗り越えて下方へ向かう一部の第二の流体で覆われるため(
図9参照)、直接第一の流体が接しない状態に維持されることとなる。ただし、案内部をなす突条部分の突出量が大きいなど、流れる第二の流体が案内部の先端部分まで到達しにくく、この先端部分が第二の流体で覆われないおそれがある場合は、こうした先端部分を含む案内部の所定範囲に、第一の流体の接触があっても腐食等の変化を防止するコーティング等の表面処理を施すようにしてもよい。
【0101】
この他、傾斜部11に突条状の案内部15を設ける代わりに、
図10に示すように、傾斜部11の成形において、第二の流体の流れを螺旋状に案内可能な段部17を傾斜部の一部として一体に形成して、傾斜部11自体で、前記案内部を設ける場合と同様に、第二の流体の流れを螺旋状に案内可能とするようにしてもかまわない。
【0102】
また、前記第1及び第2の各実施形態に係る熱交換装置において、容器本体10内部に供給される第二の流体は、少なくとも容器本体10の傾斜部11全域で、容器本体10内側面と第一の流体との間に第二の流体の層が存在する状態を維持するようにされる構成としているが、これに限らず、第一の流体が容器本体10内部に存在する間、容器本体10の内側面に沿って流下する第二の流体が、第一の流体の容器本体10の内側面への接触機会を著しく減少させ、第一の流体が容器本体10の内側面に接触することに起因する容器本体10の劣化を抑えられるのであれば、第二の流体が傾斜部11における容器本体10の内側面を常時覆うように連続して流下する状態を必ずしも維持しない構成、例えば、傾斜部11の各部で、第二の流体の層が一時的に不連続となって第一の流体が容器本体10の内側面に短時間接する状況がわずかながら発生する程度に、第二の流体の流量を抑えたり、第二の流体を断続的に流下させる構成としてもかまわない。
【0103】
さらに、前記第1及び第2の各実施形態に係る熱交換装置においては、容器本体10に流入出させる第一の流体と第二の流体をいずれも液体とし、これらの液体同士を容器本体10内で直接接触させて熱交換を行わせる構成としているが、これに限らず、第一の流体と第二の流体をそれぞれ液体以外としたり、液体以外と液体との混相流体とする構成としてもかまわない。
【0104】
例えば、高温の熱源流体である第一の流体を、地中(生産井)から取り出して気液分離器を通さずにそのまま供給した地熱流体(高温高圧の蒸気)とすることもでき、この場合、気体である第一の流体を容器本体10に導入して、より温度の低い熱媒体である第二の流体と熱交換させると、第一の流体は容器本体10内部で凝縮して一部又は全部が液体となる。
【0105】
そして、このように第一の流体が気体として容器本体10に導入される場合には、
図11に示すように、容器本体10に蓋18を設けて容器本体内部を密閉状態とし、気体である第一の流体が容器本体10の外に意図せず流出するのを抑える構成とすることもできる。
【0106】
こうして蓋18との組合せで密閉容器とされる容器本体10に対し、第一の流体は、地熱流体の場合、金属に対する腐食性と共にスケールの易析出性を有する気相成分や、非凝縮性の腐食性ガスを含み、容器本体10の上部内面や蓋18内面など、第二の流体の流れで覆われない部位に到達可能であることから、これらの部位への第一の流体の接触を防ぐようにするのが望ましい。具体的には、
図11に示すように、気体である第一の流体より軽い不活性ガス、例えば窒素ガスを、容器本体内部に導入し、第一の流体と容器本体上部内面及び蓋内面との間に介在させるようにすれば、気体である第一の流体を容器本体10及び蓋18と接触させない構成が得られることとなる。
【符号の説明】
【0107】
1 熱交換装置
10 容器本体
11 傾斜部
15 案内部
17 段部
18 蓋
20 第一流体供給部
30 第二流体供給部
35 供給手段
40 第一流体排出部
50 第二流体排出部
51 ポンプ
55 測定部
60 沈殿槽
70 蒸気動力サイクル部
71 蒸発器
72 膨張機
73 凝縮器
74 ポンプ
80 発電機
90 気液分離器
100 地熱発電システム