IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ラム リサーチ コーポレーションの特許一覧

特許7577115原子層エッチングおよびイオンビームエッチングのパターニング
<>
  • 特許-原子層エッチングおよびイオンビームエッチングのパターニング 図1
  • 特許-原子層エッチングおよびイオンビームエッチングのパターニング 図2A
  • 特許-原子層エッチングおよびイオンビームエッチングのパターニング 図2B
  • 特許-原子層エッチングおよびイオンビームエッチングのパターニング 図2C
  • 特許-原子層エッチングおよびイオンビームエッチングのパターニング 図3
  • 特許-原子層エッチングおよびイオンビームエッチングのパターニング 図4
  • 特許-原子層エッチングおよびイオンビームエッチングのパターニング 図5A
  • 特許-原子層エッチングおよびイオンビームエッチングのパターニング 図5B
  • 特許-原子層エッチングおよびイオンビームエッチングのパターニング 図5C
  • 特許-原子層エッチングおよびイオンビームエッチングのパターニング 図6
  • 特許-原子層エッチングおよびイオンビームエッチングのパターニング 図7
  • 特許-原子層エッチングおよびイオンビームエッチングのパターニング 図8
  • 特許-原子層エッチングおよびイオンビームエッチングのパターニング 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-10-24
(45)【発行日】2024-11-01
(54)【発明の名称】原子層エッチングおよびイオンビームエッチングのパターニング
(51)【国際特許分類】
   H01L 21/3065 20060101AFI20241025BHJP
   H01L 21/302 20060101ALI20241025BHJP
   H01L 29/82 20060101ALI20241025BHJP
   H10B 61/00 20230101ALI20241025BHJP
   H10N 50/10 20230101ALI20241025BHJP
   H10N 50/20 20230101ALI20241025BHJP
【FI】
H01L21/302 105A
H01L21/302 101C
H01L21/302 104C
H01L21/302 201B
H01L29/82 Z
H10B61/00
H10N50/10 Z
H10N50/20
【請求項の数】 19
(21)【出願番号】P 2022515725
(86)(22)【出願日】2020-09-09
(65)【公表番号】
(43)【公表日】2022-11-16
(86)【国際出願番号】 US2020049871
(87)【国際公開番号】W WO2021055197
(87)【国際公開日】2021-03-25
【審査請求日】2023-07-26
(31)【優先権主張番号】62/901,702
(32)【優先日】2019-09-17
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】592010081
【氏名又は名称】ラム リサーチ コーポレーション
【氏名又は名称原語表記】LAM RESEARCH CORPORATION
(74)【代理人】
【識別番号】110000028
【氏名又は名称】弁理士法人明成国際特許事務所
(72)【発明者】
【氏名】タン・サマンサ・シャンファ
(72)【発明者】
【氏名】ムカージー・タマル
(72)【発明者】
【氏名】ヤン・ウェンビン
(72)【発明者】
【氏名】ディキシット・ギリシュ
(72)【発明者】
【氏名】パン・ヤン
【審査官】長谷川 直也
(56)【参考文献】
【文献】特開2017-157836(JP,A)
【文献】特開2016-208031(JP,A)
【文献】特表2017-535057(JP,A)
【文献】特開2013-243307(JP,A)
【文献】特開平02-116126(JP,A)
【文献】特開2016-105462(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/3065
H01L 21/302
H01L 29/82
H10B 61/00
H10N 50/10
H10N 50/20
(57)【特許請求の範囲】
【請求項1】
マスクに対して積層を選択的にエッチングするための方法であって、
前記積層を少なくとも部分的にエッチングするために原子層エッチングを提供する工程であって、前記原子層エッチングは、少なくともいくらかの残留物を形成する、工程と、
前記積層のイオンビームエッチングを提供する工程であって、前記イオンビームエッチングは、前記原子層エッチングからの前記残留物の少なくともいくらかを除去する、工程と、
を含む、方法。
【請求項2】
請求項1に記載の方法であって、
前記原子層エッチングを提供する前記工程は、複数のサイクルを含み、各サイクルは、
改質段階であって、
シリコン、ゲルマニウム、炭素、チタン、およびスズからなる群より選択された元素を含むハロゲン含有ガスを含む改質ガスを提供する工程と、
前記改質ガスをプラズマ化する工程であって、前記プラズマの成分は、前記積層の表面の一部を改質して改質表面を形成する、工程と、を含む、改質段階と、
活性化段階であって、前記積層の前記改質表面をエッチングする、活性化段階と、
を含む、方法。
【請求項3】
請求項2に記載の方法であって、
前記ハロゲン含有ガスは、ヨードシラン類、ブロモシラン類、クロロシラン類、ヒドロクロロシラン類、およびフルオロシラン類からなる群より選択される、方法。
【請求項4】
請求項2に記載の方法であって、
前記活性化段階は、
活性化ガスを提供する工程と、
前記活性化ガスを活性化する工程と、
を含む、方法。
【請求項5】
請求項4に記載の方法であって、
前記活性化段階は、さらに、バイアスを印加する工程を含む、方法。
【請求項6】
請求項2に記載の方法であって、
前記活性化段階は、金属テトレルハロゲン分子を生成する、方法。
【請求項7】
請求項6に記載の方法であって、
前記金属テトレルハロゲン分子は、金属、シリコン、およびハロゲンを含む、方法。
【請求項8】
請求項1に記載の方法であって、
前記積層は、少なくとも1つの金属含有層を含む、方法。
【請求項9】
請求項1に記載の方法であって、
前記積層は、少なくとも1つの遷移金属含有層を含む、方法。
【請求項10】
請求項1に記載の方法であって、
前記イオンビームエッチングを提供する前記工程は、ガスイオンを連続的に異なる角度で前記積層に向ける工程を含む、方法。
【請求項11】
請求項10に記載の方法であって、
前記イオンビームエッチングは、前記積層のテーパ部を除去する、方法。
【請求項12】
請求項10に記載の方法であって、
前記イオンビームエッチングは、前記積層の金属含有層に含浸したハロゲンを除去する、方法。
【請求項13】
請求項10に記載の方法であって、
前記イオンビームエッチングは、前記積層の金属含有層の一部をエッチングすることなく、前記積層の前記金属含有層に含浸した塩素を除去する、方法。
【請求項14】
請求項1に記載の方法であって、
前記原子層エッチングを提供する前記工程は、複数のサイクルを含み、各サイクルは、
改質段階であって、
ハロゲン含有ガスを含む改質ガスを提供する工程と、
前記改質ガスをプラズマ化する工程であって、前記プラズマの成分は、前記積層の表面の一部を改質して改質表面を形成する、工程と、を含む、改質段階と、
活性化段階であって、前記積層の前記改質表面をエッチングする、活性化段階と、
を含む、方法。
【請求項15】
請求項1に記載の方法であって、さらに、
前記原子層エッチングを提供する前に、イオンビーム開口エッチングを提供する工程を含む、方法。
【請求項16】
マスクに対して積層を選択的にエッチングするための装置であって、
真空搬送モジュールと、
前記真空搬送モジュールに接続された原子層エッチングチャンバと、
前記真空搬送モジュールに接続されたイオンビームエッチングチャンバと、
前記真空搬送モジュールに接続された封入チャンバと、
前記真空搬送モジュール、前記原子層エッチングチャンバ、前記イオンビームエッチングチャンバ、および前記封入チャンバに制御可能に接続されたコントローラであって、
前記積層を前記原子層エッチングチャンバに移すように前記真空搬送モジュールを制御し、
前記積層の原子層エッチングを提供するように前記原子層エッチングチャンバを制御し、
前記積層を前記原子層エッチングチャンバから前記イオンビームエッチングチャンバに移すように前記真空搬送モジュールを制御し、
前記積層のイオンビームエッチングを提供して前記原子層エッチングにより形成された残留物の少なくとも一部を除去するように前記イオンビームエッチングチャンバを制御し、
前記積層を前記イオンビームエッチングチャンバから前記封入チャンバに移すように前記真空搬送モジュールを制御し、
前記積層の封入を提供するように前記封入チャンバを制御するように構成されている、コントローラと、
を備える、装置。
【請求項17】
請求項16に記載の装置であって、
前記コントローラは、さらに、
改質ガスを提供するように前記原子層エッチングチャンバを制御し、
前記改質ガスをプラズマ化するように前記原子層エッチングチャンバを制御し、前記プラズマの成分は、前記積層の表面の一部を改質して改質表面を形成するように構成されている、装置。
【請求項18】
請求項17に記載の装置であって、
前記コントローラは、さらに、
活性化ガスを提供するように前記原子層エッチングチャンバを制御し、
前記活性化ガスを活性化するように前記原子層エッチングチャンバを制御するよう構成されている、装置。
【請求項19】
請求項18に記載の装置であって、
前記コントローラは、さらに、バイアスを印加するように前記原子層エッチングチャンバを制御するように構成されている、装置。
【発明の詳細な説明】
【技術分野】
【0001】
[関連出願の相互参照]
本願は、全ての目的のために参照により本明細書に援用される、2019年9月17日出願の米国出願第62/901,702号の優先権の利益を主張する。
【背景技術】
【0002】
本明細書に記載の背景技術の説明は、本開示の内容を一般的に提示するためのものである。本背景技術欄、および潜在的には本明細書の態様に記載される全てのことは、本願に対する先行技術として明示的にも黙示的にも認められない。
【0003】
本開示は、半導体ウエハ上に半導体デバイスを形成する方法に関する。本開示は特に、半導体デバイスの選択的エッチングに関する。
【0004】
半導体デバイスの形成において、磁気ランダムアクセスメモリ(MRAM)は、パターン転写プロセスを用いて形成されてよい。そのようなパターン転写プロセスは、エッチングプロセスを用いる。MRAM積層は、イオンビームエッチング(IBE)、反応性イオンエッチング(RIE)、およびウェット化学物質による複雑な手法を用いることなしにパターニングすることが極めて難しい、不揮発性の強磁性材料(コバルト(Co)、鉄(Fe)、マンガン(Mn)、ニッケル(Ni)、プラチナ(Pt)、パラジウム(Pd)、およびルテニウム(Ru)など)を含む。長年の開発にもかかわらず、現在のパターニング技術は未だ多くの欠点に悩まされており、それらはテーパ形状、および固定層に対する磁気トンネル接合(MTJ)の短絡を引き起こす側壁の再堆積、ならびに、MTJ層の損傷を引き起こす腐食などである。いくつかの従来技術では、金属エッチングに塩素含有化学物質が用いられるが、エッチング後の副生成物は非揮発性化合物を含む。非揮発性化合物はその後、フィーチャの側壁に再堆積する可能性がある。しかし、デバイスが小型化し、様々な種類の構造の製造がより複雑になるにつれて、いくらかのエッチング副生成物は基板の他の露出領域にも再堆積して不良を引き起こし、最終的にはデバイスの欠陥を引き起こしうる。
【0005】
広ピッチを有する大きい限界寸法(CD)構造については、一段階または複数段階のIBEレシピで十分かもしれない。しかし、100nm未満の小さいCDまたは密ピッチのフィーチャについては、IBEによるパターニングは難しい。具体的な制限は、マスクによるイオン入射の遮断であり、効果的なMRAM積層のエッチングおよびトリミングを妨ぐ。
【発明の概要】
【0006】
本開示の目的により前記を実現するために、マスクに対して積層を選択的にエッチングするための方法が提供される。原子層エッチングは、積層を少なくとも部分的にエッチングするために提供され、少なくともいくらかの残留物を形成する。イオンビームエッチングは、積層をエッチングするために提供され、原子層エッチングからの残留物を少なくともいくらか除去する。
【0007】
別の実施形態では、マスクに対して積層を選択的にエッチングするための装置が提供される。真空搬送モジュールが提供される。真空搬送モジュールに原子層エッチングチャンバが接続される。真空搬送モジュールにイオンビームエッチングチャンバが接続される。真空搬送モジュールに封入チャンバが接続される。コントローラは、真空搬送モジュール、原子層エッチングチャンバ、イオンビームエッチングチャンバ、および封入チャンバに制御可能に接続される。コントローラは、真空搬送モジュールから原子層エッチングチャンバに積層を移すように真空搬送モジュールを制御し、積層の原子層エッチングを提供するように原子層エッチングチャンバを制御し、イオンビームエッチングチャンバに積層を移すように真空搬送モジュールを制御し、積層のイオンビームエッチングを提供するようにイオンビームエッチングチャンバを制御し、イオンビームエッチングチャンバから封入チャンバに積層を移すように真空搬送モジュールを制御し、積層の封入を提供するように封入チャンバを制御するように構成されている。
【0008】
本開示のこれらの特徴および他の特徴は、次の図面と共に、以下の本開示を実施するための形態においてより詳細に説明される。
【図面の簡単な説明】
【0009】
本開示は、添付の図面の図において限定ではなく例示のために示される。同じ参照番号は、同一の要素を意味する。
【0010】
図1】実施形態の高レベルフローチャート。
【0011】
図2A】実施形態により処理された積層の略断面図。
図2B】実施形態により処理された積層の略断面図。
図2C】実施形態により処理された積層の略断面図。
【0012】
図3】原子層エッチングプロセスのより詳細なフローチャート。
【0013】
図4】改質段階のより詳細なフローチャート。
【0014】
図5A】実施形態により処理された金属層のより詳細な断面図。
図5B】実施形態により処理された金属層のより詳細な断面図。
図5C】実施形態により処理された金属層のより詳細な断面図。
【0015】
図6】原子層エッチングチャンバシステムの概略図。
【0016】
図7】イオンビームエッチングチャンバの概略図。
【0017】
図8】実施形態で用いられうる処理ツールの上面概略図。
【0018】
図9】実施形態を実行するときに用いられうるコンピュータシステムの概略図。
【発明を実施するための形態】
【0019】
本開示はここで、添付の図面に示されたように、そのいくつかの好ましい実施形態を参照して詳細に説明される。以下の説明において、本開示の十分な理解を提供するためにいくつかの特定の詳細が記載される。しかし、当業者には、本開示がこれら特定の詳細の一部または全てなしに実施されてよいことが明らかだろう。他の例では、本開示を必要以上に分かりにくくしないように、周知のプロセス工程および/または構造は詳細には説明されていない。
【0020】
半導体ウエハ処理の間に、フィーチャは、金属含有層を介してエッチングされてよい。磁気ランダムアクセスメモリ(MRAM)の形成において、磁性トンネル接合の積層を形成するために、複数の薄金属の層または膜が連続してエッチングされてよい。
【0021】
磁性トンネル接合(MTJ)は、2つの磁性材料間にある薄誘電体バリア層から構成されている。電子は、量子トンネリングのプロセスによってバリアを通過する。これは、スピン注入トルクを用いる磁気メモリの基礎として機能できる。
【0022】
スピン注入トルクは、スピン偏極電流を用いてMTJ内の磁性層の配向が変更できる効果である。電荷キャリア(例えば、電子)は、スピンとして知られる特性を有する。スピンは、キャリアに固有のわずかな角運動量である。電流は一般に、無偏極状態である(50%のスピンアップ電子、50%のスピンダウン電子)。厚い磁性層(通常、「固定層」と呼ばれる)に電流を通すことにより、より多くのいずれかのスピンの電子を有するスピン偏極電流が生成されうる。このスピン偏極電流が第2のより薄い磁性層(「自由層」)に向けられた場合、角運動量はこの層に伝達され、その配向を変更できる。この効果は、振動を励起するため、または磁石の配向を反転させるためにも用いられうる。
【0023】
スピン注入トルクは、磁気ランダムアクセスメモリの能動素子を反転させるために用いられうる。スピン注入磁気ランダムアクセスメモリ(STT-RAMまたはSTT-MRAM)は、従来の磁気抵抗ランダムアクセスメモリ(MRAM)に対して、低い電力消費および優れたスケーラビリティという利点を有する。MRAMは、能動素子を反転させるための磁界を用いる。
【0024】
スピン注入メモリ(STT-RAM)デバイスのパターニングは、反応性イオンエッチングに続いて、イオンビームエッチング(IBE)または完全不活性ガス角度IBE法によって実施される。反応性イオンエッチング(RIE)プロセスは通常、テーパ形状およびエッチング副生成物の大量の側壁再堆積をもたらす。またRIEは、MgO層への化学損傷により、MRAMパターニング向けのプロセスのみに限定される。
【0025】
IBE技術は、反応種によって引き起こされるMTJの損傷を最小限にしながらMRAMパターンを転写するために開発された。一般的な手法は、まず垂直入射でIBEを実施してMTJを成形し、フッティングを最小限にし、そして斜入射でIBEを提供することにより側壁洗浄を提供して、初期工程による再堆積を除去する。IBEは不活性イオンのスパッタリングによるため、側壁再堆積はパターン転写時に存在する。IBEおよび酸化のサイクルは一般に、短絡経路を除去し、MgOトンネル障壁で止まるために実施され、スピン輸送のために初期状態の連続した自由層を保護する。
【0026】
MRAM積層をプラズマドライエッチングする方法は、全ての目的のために参照により援用される、2017年10月31日発行の、Tan等による「Dry Plasma Etch Method To Pattern MRAM Stack」と題した米国特許第9,806,252号に記載されている。イオンビームエッチングを提供するための方法は、全ての目的のために参照により援用される、2016年2月9日発行の、Singh等による「Ion Beam Etching System」と題した米国特許第9,257,295号に記載されている。
【0027】
広ピッチを有する大きい限界寸法(CD)構造については、一段階または複数段階のIBEレシピで十分かもしれない。しかし、100nm未満の小さいCDまたは密ピッチのフィーチャについては、IBEによるパターニングは難しい。具体的な制限は、マスクによるイオン入射の遮断である。この制限は、効果的なMRAM積層のエッチングおよびトリミングを妨げる。
【0028】
実施形態において、一次パターン転写は、原子層エッチング(ALE)によって実現される。ALEプロセスは、コバルト(Co)および鉄(Fe)含有材料の揮発性エッチング副生成物を形成するためにSi種を取り込む。化学エッチングの機構は、最小限の側壁再堆積を可能にする。そのためALEは、アスペクト比による制限なしに密ピッチをパターニングできる。ハロゲンプラズマが含まれたが、ALEサイクルのAr工程は反応種を除去およびパージするため、ALEプロセスは、RIEよりもMgOの損傷を最小化する。ALEプロセスはMRAM積層を開口し、全体の形状を規定する。
【0029】
この実施形態では、IBE処理の第2工程は、ALEによって規定されたMRAMピラーに施される。IBE工程は、ハロゲン種を吸収した表面からの潜在的な損傷を最小限にする側壁残留物の除去に寄与する。IBEはさらに、MRAM側壁を垂直形状に向けてトリミングする。ALEは、揮発性副生成物を形成するMTJ積層をエッチングするのに用いられるため、IBE工程は、MRAMをパターニングするために入射角モードで用いられるのではなく、むしろ積層の残留物および/またはフッティングを除去するためにかすめ角での洗浄に用いられる。
【0030】
ALEとIBEとの統合プロセスは、2つの態様において利点を有する。1)IBE工程は、MRAM積層の表面および側壁上のハロゲン種を効率的に除去する。ALEパターニングにとって、チャンバ壁からなどの残留ハロゲン種は、塩素化表面層を残すという懸念がある。側壁の残留物は電気特質を悪化させ、デバイスの短絡または電気信号の劣化を引き起こす。また、不活性イオンはさらに、最小限のハロゲン残留物を残したままハロゲン化表面層を除去する。2)統合フローは、高アスペクト比構造または密ピッチ構造へのパターニングについてのIBEの制限を回避する。ALEによる化学エッチングは、主にMRAMピラーを規定するため、パターニングへの制限は、もはやIBEによるイオン入射角によって制限されない。実施形態で用いられる統合は、MTJ側壁にわたる再堆積または腐食なしに高密度のMRAMアレイをパターニングするための解決策を提供する。
【0031】
図1は、理解を容易にするための、実施形態の高レベルフローチャートである。この実施形態において、積層は原子層エッチング(工程104)が施される。積層は、異なる材料の複数の層を含んでよい。例えば積層は、通常のMRAMで用いられる1つ以上の磁性材料層を含んでよい。図2Aは、図1に示されたプロセスを用いて処理されうる例示的な積層200の略断面図である。積層200は、シリコンまたは酸化シリコン(Si/SiO2)層204を有する基板の上にある。第1のタンタル(Ta)層208は、Si/SiO2層204の上にある。プラチナ(Pt)層212は、第1のTa層208の上にある。コバルトプラチナ合金(CoPt)層216は、Pt層212の上にある。酸化マグネシウム(MgO)層220は、CoPt層216の上にある。コバルト鉄ボロン(CoFeB)層224は、MgO層220の上にある。第2のTa層228は、CoFeB層224の上にある。ルテニウム(Ru)層232は、第2のTa層228の上にある。パターンマスクは、積層200の上に形成される。この実施形態では、パターンマスクは、Ru層244の下のSiO2層240の下に窒化チタン層236を備える。この実施形態では、原子層エッチング(工程104)の前に、必要に応じてRu層244開口エッチングが提供される。Ru層244開口エッチングは、酸素含有プラズマを用いて提供される。
【0032】
図3は、原子層エッチング(工程104)のより詳細なフローチャートである。原子層エッチングは複数のサイクルを含み、各サイクルは改質段階(工程304)および活性化段階(工程308)を含む。図4は、改質段階のより詳細なフローチャートである。改質ガスが提供される(工程404)。改質ガスは、活性化段階を促進するために表面を改質できる任意の適したガスであってよい。例えば、改質ガスはハロゲン含有ガスであってよい。一実施形態では、改質ガスは、5~200sccmの四塩化ケイ素(SiCl4)を含む。改質ガスがプラズマ化される(工程408)。いくつかの例示的な条件として、プラズマは、約100~900W(ワット)のプラズマ電力を用いて生成されてよい。この動作中の温度は、約60~約200℃であってよい。この動作中のチャンバ圧は、約1~約500ミリトル(mTorr)であってよい。特定の論理に縛られるものではないが、プラズマはSiCl4分子を解離して、塩素およびSi-Cl種を生成するとされる。いくつかの例では、パルス化バイアスが印加されてよい。Si-Cl種は、金属層に吸着されるSi-Cl成分の改質層を形成する。異なる層における異なる金属Mについて、塩素およびSi-Cl成分種は異なる金属Mに吸着して、MSiClxの原子層が形成される(xは1から3を含む整数)。この原子層は、単層であってよい、または単層よりも厚くてよい、または不完全な単層であってよい。
【0033】
図5A~5Cは、積層が処理されている間の分子間相互作用を表す。図5A~5Cは特に、図2Aの積層が処理されているところを示す。図5Aは、CoFeB層224の一部の拡大概略図である。SiCl4の改質ガスは、Si508およびCl512を含む種のプラズマにされる。プラズマ中の種はSiClxである(xは1から3を含む整数)。加えて、個々の塩素イオンがあってよい。バイアスは、SiClx種をCoFeB層224に加速させる。SiClxは、CoFeB層224の露出上面に結合し、単層を形成する。
【0034】
この実施形態では、単層が形成された後に改質段階(工程304)は停止する。図5Bは、CoFeB層224の表面上にSiClxの単層が形成されて、CoFeB層224の一部の改質表面が形成された後の、CoFeB層224の一部の拡大概略図である。バイアス、および/または改質ガス流、および/またはプラズマ電力は停止されてよい。
【0035】
原子層が形成され、改質段階(工程304)が完了した後に、積層200は活性化段階(工程308)が施される。活性化段階は、プラズマが生成されうるガスなどの活性化されうるガスを提供する工程を含んでよい。例えば、活性化ガスは希ガスであってよい。この実施形態では、積層200は、活性化段階(工程308)を提供するためにアルゴン(Ar)プラズマに曝される。この実施形態では、Arを含む活性化ガスが提供される。活性化ガスが活性化される。活性化ガスは、活性化ガスをプラズマ化することによって活性化されてよい。プラズマは、約100~900Wのプラズマ電力を用いて生成されてよい。この動作中の温度は、約60~約300℃であってよい。この動作中のチャンバ圧は、約1~約500mTorrであってよい。Arプラズマは、MSiClx分子を揮発させ、MSiClx分子を除去できる。その結果、金属層の改質表面は、マスクに対して選択的にエッチングされる。そのため表面改質は、積層200をエッチングするのに用いられる。他の実施形態では、活性化ガスを活性化するために熱活性化が用いられてよい。
【0036】
図5Cは、活性化段階時のCoFeB層224の一部の拡大概略図である。アルゴンイオン516は、バイアスによってCoFeB層224に向けて加速される。Arイオン516は、MSiClx錯体を活性化し(Mはこの場合、CoFeBである金属を表す)、揮発性MSiClx錯体520が形成される。バイアスは、MSiClx錯体520を揮発させるのに十分だが、再堆積した残留物をエッチングするのには十分でないエネルギをArイオン516に提供する。改質段階(工程304)および活性化段階(工程308)を提供する工程は、周期的に複数回繰り返されて、積層200の原子層エッチング(工程104)が提供される。
【0037】
図2Bは、ALE(工程104)が提供された後の積層200の略断面図である。再堆積した残留材料の残留物層248が積層200の側壁に形成される。残留物層248は、金属材料、シリコン、および塩素の残留物を含む。いくらかの塩素は、MgO層220などの特定の層に移行し、その層を腐食して、塩素252が含浸したMgO領域を形成する可能性がある。積層200の側壁への残留物層248の堆積は、積層200のエッチングを非垂直面で示されたようなテーパ状にする。
【0038】
積層200のALE(工程104)が完了した後に、積層200はIBE(工程108)が施される。イオンビームエッチングは、不活性ガスを用いる物理スパッタリングによる原子の除去を意味する。物理スパッタンリングは、不活性ガスのイオンとイオン同士の衝突によってエッチングされる材料との間の運動量交換によって提供される。実施形態において、チャンバ圧は20mTorr未満に維持される。低圧はガスとのイオン衝突を低減し、プラズマ形成の可能性を低減する。この実施形態では、イオンはアルゴンイオンである。他の実施形態では、活性化ガスによって提供されるイオンとは異なる他のイオンが用いられてよい。イオンは、50~1800ボルト(V)の範囲のエネルギを有するように加速される。イオンは、残留物層248およびM原子またはM分子をスパッタリングするのに十分なエネルギを有する。
【0039】
図2Cは、IBE(工程108)が提供された後の積層200の略断面図である。IBE(工程108)は、残留物層248およびMgO層220に含浸した塩素252を除去する。またIBE(工程108)は、テーパ部を除去または低減する。この例では、積層200の側壁は、IBE(工程108)によるテーパ部除去によって垂直である。
【0040】
ALE(工程104)は、IBEプロセスのみよりも高いアスペクト比のフィーチャをエッチングできる。また、上記の実施形態によって提供されたフィーチャは、IBEプロセスのみで形成されたフィーチャよりも高いピッチを有することができる。ALEプロセスのみでは、側壁堆積を伴うよりテーパ形状の積層をもたらしうる。IBEプロセス(工程108)が提供されない場合は、MgO層220に含浸して腐食する塩素252は、MgO層220の一部をエッチングするだろう。IBEプロセス(工程108)は、テーパ部および残留物層248を低減または除去できる。IBEプロセス(工程108)は、MgO層220の一部をエッチングすることなく、MgO層220に含浸した塩素252を除去できる。
【0041】
この実施形態において、ALE(工程104)は、1つのレシピで積層200の全ての層をエッチングできる。積層200は比較的薄い(例えば、30nm未満の厚さ)であるため、ALE(工程104)は15分未満で実施される。IBEプロセス(工程108)は、積層200の底面のフッタも除去または低減できる。他の実施形態では、ALE(工程104)は、積層200を少なくとも部分的にエッチングする。
【0042】
様々な実施形態において、積層200はMRAMの積層であってよい。様々な実施形態において、積層200は、2つの磁性材料間にある薄誘電体バリア層から構成されている磁性トンネル接合(MTJ)であってよい。様々な実施形態において、積層200は少なくとも1つの金属含有層を含む。金属含有層は、Cr、Mo、Ir、Ti、Ru、Mn、Ni、Pd、Ta、Co、Fe、Mg、およびPtのうちの少なくとも1つを含んでよい。例では、積層は少なくとも1つのMgO層を含む。他の積層は、第1、第2、および第3の列にCuなどの金属を含む他の遷移金属(例えば、第IV族遷移金属、第V族遷移金属、および第VI遷移金属)を有してよい。
【0043】
上記の実施形態において、改質ガスはSiCl4を含む。他の実施形態では、改質ガスはハロシランを含む。ハロシラン類の例は、ヨードシラン類、ブロモシラン類、クロロシラン類、ヒドロクロロシラン類、およびフルオロシラン類である。特定のクロロシラン類は、テトラクロロシラン、トリクロロシラン、ジクロロシラン、モノクロロシラン、クロロアリルシラン、クロロメチルシラン、ジクロロメチルシラン、クロロジメチルシラン、クロロエチルシラン、t-ブチルクロロシラン、ジ-t-ブチルクロロシラン、クロロイソプロピルシラン、クロロ-sec-ブチルシラン、t-ブチルジメチルクロロシラン、テキシルジメチルクロロシラン、SiHCl-(N(CH322などである。いくつかの実施形態において、改質ガス中のシリコンは、ゲルマニウム、炭素、チタン、またはスズに置き換えられてよい。様々な実施形態では、改質ガスは、シリコン、ゲルマニウム、炭素、チタン、およびスズからなる群より選択される元素を含むハロゲン含有ガスを含む。他の実施形態において、金属シリコンおよび塩素分子(MSiClx)は、より一般的には金属テトレルハロゲン分子として記載されてよい。本明細書および特許請求の範囲において、金属テトレルハロゲン分子は、少なくとも1つの金属原子、少なくとも1つのハロゲン原子、ならびに、シリコン、ゲルマニウム、シリコン、チタン、およびスズのうちの少なくとも1つの第14族元素を有する分子として定義される。金属テトレルハロゲン分子がシリコンを含むときは、金属テトレルハロゲン分子は揮発性金属サイロ錯体である。別の実施形態では、M(SiCl3)(CO)を生成するためにSiCl4およびCOの前駆体が用いられてよい。別の実施形態では、MClx(H2O)yを形成するためにCl2およびH2Oの前駆体が用いられてよい。別の実施形態では、メタノール(CH3OH)前駆体が用いられてよい。
【0044】
他の実施形態において、反応ガスはArではない別の希ガスであってよい。他の実施形態において、反応ガスは、一酸化炭素(CO)、水(H2O)、CH3OH、またはアンモニア(NH3)のうちの1つ以上であってよい。反応ガスは、反応ガスイオンに変換される。
【0045】
いくつかの実施形態において、ALE(工程104)は、オーバエッチングを提供するのに用いられてよい。オーバエッチングは、シリコンまたは酸化シリコン(Si/SiO2)層204の一部をエッチングする。オーバエッチングは、ALE(工程104)によってエッチングされた積層200のテーパ部を低減する。オーバエッチングのシリコンまたは酸化シリコン(Si/SiO2)層204のエッチング中は、再堆積される材料は少ないため、残留物層248はエッチングされ、テーパ部は減少してよい。オーバエッチングは、積層フッタを低減または除去するために用いられてもよい。
【0046】
上記の実施形態における上記の工程の前、最中、または後に、1つ以上の追加プロセスが積層に実施されてよい。例えば、ALE(工程104)の前に、積層200を部分的に開口するために追加のIBE開口工程が用いられてよい。かかる工程は、CoFeB層を開口し、CoFeBをハロゲンに曝すことなくCoFeB層の開口を可能にしてよい。別の実施形態では、ALE(工程104)およびIBE(工程108)は、少なくとも2サイクルにわたって周期的に提供されてよい。かかるプロセスは、遅いスループットを有してよい。
【0047】
さらに、上記の例示的プロセスの順序は、任意の有益な方法で修正されてよい。例えば他の実施形態は、ALEの前にIBEを提供して層をエッチングし、次にALE後にIBEを用いて残留物を除去してよい。さらに他の実施形態は、IBEを用いて1つ以上の層をエッチングし、次にALEを用いて1つ以上の層をエッチングし、次にIBEを用いて1つ以上の層をエッチングし、そしてALEを用いて1つ以上の層をエッチングしてよい。
【0048】
図6は、ALEプロセス(工程104)に用いられうる処理チャンバの実施形態を提供するために、ALEプロセスに用いられうるALEチャンバシステム600の例を概略的に示す。ALEチャンバシステム600は、内部にプラズマ処理閉じ込めチャンバ604を有するプラズマリアクタ602を備える。プラズマ整合ネットワーク608によって調節されるプラズマ電源606は、誘電体誘導電力窓612付近に位置するトランス結合プラズマ(TCP)コイル610に電力を供給して、誘導結合電力を提供することによりプラズマ処理閉じ込めチャンバ604においてプラズマ614を生成する。ピナクル672(ピナクルは登録商標)は、プラズマ処理閉じ込めチャンバ604のチャンバ壁676から誘電体誘導電力窓612に伸びて、ピナクルリングを形成する。ピナクル672は、ピナクル672とチャンバ壁676との内角、およびピナクル672と誘電体誘導電力窓612との内角が各々、90°よりも大きく180°よりも小さくなるように、チャンバ壁676および誘電体誘導電力窓612に対して曲げられている。ピナクル672は、図のようにプラズマ処理閉じ込めチャンバ604の上部付近に、角度の付いたリングを提供する。TCPコイル(上部電源)610は、プラズマ処理閉じ込めチャンバ604内で均一な拡散プロファイルを生成するように構成されてよい。例えばTCPコイル610は、プラズマ614においてトロイダル配電を生成するように構成されてよい。誘電体誘導電力窓612は、エネルギがTCPコイル610からプラズマ処理閉じ込めチャンバ604に通過することを可能にしながら、プラズマ処理閉じ込めチャンバ604からTCPコイル610を離隔するように設けられている。TCPコイル610は、プラズマ処理閉じ込めチャンバ604に高周波(RF)電力を提供するための電極として機能する。バイアス整合ネットワーク618によって調節されるウエハバイアス電圧電源616は、基板666のバイアス電圧を設定するために電極620に電力を提供する。基板666は電極620に支持されているため、電極は基板支持体として機能する。コントローラ624は、プラズマ電源606およびウエハバイアス電圧電源616を制御する。
【0049】
プラズマ電源606およびウエハバイアス電圧電源616は、特定の無線周波数(例えば、13.56メガヘルツ(MHz)、27MHz、2MHz、60MHz、400キロヘルツ(kHz)、2.54ギガヘルツ(GHz)、またはこれらの組み合わせ)で動作するように構成されてよい。プラズマ電源606およびウエハバイアス電圧電源616は、所望のプロセス性能を実現するために、一定範囲の電力を供給するように適宜サイズ決めされてよい。例えば一実施形態において、プラズマ電源606は、50~5000ワットの範囲の電力を供給してよく、ウエハバイアス電圧電源616は、20~2000Vの範囲のバイアス電圧を供給してよい。また、TCPコイル610および/または電極620は、2つ以上の補助コイルまたは補助電極を備えてよい。補助コイルまたは補助電極は、単一電源または複数電源によって給電されてよい。
【0050】
図6に示されるように、ALEチャンバシステム600はさらに、ガス源/ガス供給機構630を備える。ガス源630は、ガス入口(例えば、ガス注入器640)を通じてプラズマ処理閉じ込めチャンバ604と流体接続している。ガス注入器640は、プラズマ処理閉じ込めチャンバ604の任意の有益な位置に設置されてよく、ガスを注入するために任意の形態を取ってよい。しかし、ガス入口は、「調節可能な」ガス注入プロファイルを生成するように構成されうることが好ましい。調節可能なガス注入プロファイルは、プラズマ処理閉じ込めチャンバ604の複数ゾーンへのそれぞれのガス流を独立して調節できる。ガス注入器は、誘電体誘導電力窓612に取り付けられることがより好ましい。ガス注入器は、電力窓に取り付けられてよい、電力窓内に取り付けられてよい、または電力窓の一部を形成してよい。処理ガスおよび副生成物は、圧力制御弁642およびポンプ644を通じてプラズマ処理閉じ込めチャンバ604から除去される。圧力制御弁642およびポンプ644は、プラズマ処理閉じ込めチャンバ604の内部を特定の圧力に維持するようにも機能する。圧力制御弁642は、処理の間、1Torr未満の圧力を維持できる。基板666の周囲にエッジリング660が設置されている。ガス源/ガス供給機構630は、コントローラ624によって制御される。実施形態を実行するために、カリフォルニア州フレモントのラム・リサーチ・コーポレーションによるKiyoが用いられてよい。
【0051】
図7は、イオンビームエッチングチャンバの実施形態を示すために、特定の方法によりイオンビームエッチングを実施するためのイオンビームエッチングチャンバ700の簡易断面図を表す。この例において、基板701は基板支持体703の上に載っている。イオンビームエッチングチャンバ700は、電気接続および流体接続を提供するためのハードウェア(図示せず)を備えてよい。電気接続は、基板支持体703、または場合によっては、基板支持体703の上もしくは内部に位置する静電チャックに電気を供給するために用いられてよく、流体接続は、基板701および基板支持体703の温度を制御するために用いられる流体を提供するのに用いられてよい。基板支持体703は、ヒータ(図示せず)によって加熱されてよい、および/または、冷却機構(図示せず)によって冷却されてよい。任意の適した冷却機構が用いられてよい。一例では、冷却機構は、基板支持体703内の配管、または基板支持体703に隣接する配管を通じて冷却流体を流すことを伴ってよい。基板支持体703は、図7において両矢印で示されたように、様々な速度および角度で回転および傾くことができてよい。回転および傾斜は、イオンビームを連続して異なる角度で入射させる。様々な角度のIBEは、より多くの残留物層248をIBEに曝し、残留物層248をより速く除去する。
【0052】
プラズマ生成ガスは、一次プラズマ生成領域705に供給される。プラズマ生成ガスは、プラズマ源707によって励起される。図7の状況では、プラズマ源707は、誘導結合プラズマ源として機能するコイルである。容量結合源、マイクロ波源、または放電源などの他のソースは、適切に設計されたリアクタにおいて用いられてよい。プラズマは、一次プラズマ生成領域705で形成される。引出電極709は、イオンが引き出される一連の開口710を備える。
【0053】
開口710は、約0.5~1cmの直径と、電極の厚さに規定される高さとを有してよい。開口710は、約0.01~100.0の高さ対幅アスペクト比(AR)を有してよい。いくつかの場合では、開口710は六角形に、四角格子状に、または渦巻き状に配置されるが、他のパターンが用いられてもよい。隣接する開口間の中心から中心の距離は、約1mm~10cmであってよい。この開口は、電極の一面(上面または底面)のみを考えたとき、電極の表面積の約0.1~95%である全開口面積(すなわち、各開口面積の合計)を得るように構成されてよい。例えば、40cmの直径を有する電極および各々1cmの直径を有する500の孔は、約31%の開口面積を有するだろう(393cm2の開口面積÷1257cm2の全面積)。開口710は、異なる電極では異なる直径を有してよい。いくつかの場合では、開口の直径は上部電極では小さく、下部電極では大きい。一実施形態では、下部電極713の開口は、集束電極711の開口よりも大きい(例えば、約0~30%大きい)。これらの場合または他の場合では、集束電極711の開口は、引出電極709の開口よりも大きい(例えば、約0~30%大きい)。
【0054】
基板701に対する、引出電極709に印加されるバイアスV1は、基板に対するイオンに運動エネルギを提供するように機能する。このバイアスは一般に正であり、約20~10,000ボルト以上であってよい。特定の場合には、引出電極のバイアスは約20~2,000ボルトである。引出電極709上方のプラズマにおける正イオンは、電極709と電極713との間の電位差によって下部電極713に引きつけられる。集束電極711が追加されてイオンを集束し、必要に応じて電子をはね返す。この電極のバイアスV2は、引出電極709に対して正または負でありうるが、一般に負にバイアスされる。集束電極711のバイアス電位は、集束電極711のレンズ特性によって決定される。集束電極711のバイアス電圧は、約1.1~20×引出電極の電位V1の正電圧を含み、約0.001~0.95×V1の電位の大きさを有する負電圧を含む。異なる電極に異なる電位が印加されるため、電位勾配が存在する。電位勾配は、約1000V/cm程度であってよい。隣接する電極間の例示的な離隔距離は、約0.1~10cm(例えば、約1cm)に収まる。
【0055】
イオンは、接地された下部電極713の底部から離れた後、集束電極711の電圧が平行ビームを生成するように設定された場合は、平行集束ビームで進む。あるいは、集束電極電圧がイオンビームを不足焦点または過焦点とするように調節される場合は、ビームは発散されうる。多くの場合(全ての場合ではない)において、下部電極713は接地される。接地基板701と共に接地下部電極713を用いることは、実質的にフィールドフリーな基板処理領域715をもたらす。フィールドフリー領域に位置する基板を有することは、反応チャンバにおけるイオンビームと残留ガスまたは表面との間の衝突によって生じる電子または二次イオンが、基板に向けて加速されることを防ぎ、それにより望まない損傷または二次反応が起こるリスクを最小限にする。
【0056】
また、基板701がイオンビーム自体から、または基板とのイオンビーム衝突の間に生じた放出二次電子から帯電するのを防ぐことが重要である。中和は通常、基板701付近に低エネルギ電子源(図示せず)を追加することにより達成される。イオンおよび放出二次電子の両方の正電荷は、基板を正に帯電するため、基板付近の低エネルギ電子は正帯電表面に引きつけられ、この電荷を中和させることができる。この中和の実施は、フィールドフリー領域ではずっと簡単である。
【0057】
いくつかの適用では、下部電極713と基板701との間に電位差があることが望ましいかもしれない。例えば、非常に低いエネルギのイオンが必要な場合、正帯電イオンの相互反発(空間電荷効果)により、高い平行度を有するビームを長距離にわたって低エネルギで維持することは難しい。これに対する1つの解決策は、基板701に対する負バイアスを下部電極713に印加する(または逆に、下部電極713に対して基板701を正にバイアスする)ことである。これにより、高エネルギでイオンを引き出し、イオンが基板に近づくにつれてイオンを減速させることができる。
【0058】
電極709、電極711、および電極713は各々、一定の厚さを有する。この厚さは、約0.5mm~10cmまたは約1mm~3cm(例えば、約5mm)であってよい。電極709、電極711、および電極713は各々、同じ厚さであってよい、または、異なる厚さを有してよい。さらに、引出電極709と集束電極711との間の離隔距離は、集束電極711と下部電極713との間の離隔距離と同じであってよい、それよりも長くてよい、または短くてよい。
【0059】
引出電極709、集束電極711、および下部電極713における開口710は、互いに正確に位置合わせされてよい。そうでなければ、イオンは間違って進み、オンウエハエッチングの結果は悪くなるだろう。例えば、集束電極711の1つの開口が正しく位置合わせされていない場合、基板701の一部分はオーバエッチングされ(過剰なイオンが向けられ)、基板701の別部分はアンダエッチングされる(向けられるイオンがない、またはほとんどない)ことになるだろう。そのため開口は、できる限り互いに合わせて配列されなければならない。様々な場合では、垂直に隣接する電極間のずれは、孔径の約1%以下(隣接する開口に対して、開口位置における線形シフトの距離で測定)に制限される。
【0060】
イオンビームエッチングプロセスは通常、低圧で行われる。いくつかの実施形態では、圧力は、約100mTorr以下(例えば、約1mTorr以下)であってよく、多くの場合では約0.1mTorr以下であってよい。低圧は、イオンと基板処理領域に存在するあらゆるガス種との間の望ましくない衝突を最小限にするのに役立つ。特定の場合では、比較的高い圧力の反応物が他の低圧イオン処理環境に供給される。
【0061】
実施形態において、処理ツールは、ALEプロセスのためのチャンバ、IBEプロセスのためのチャンバ、および結果として生じたデバイスを封入するためのチャンバを提供するプラットフォームを提供してよい。図8は、実施形態で用いた処理ツール800の平面概略図である。カセット802は、処理される前の未処理ウエハを収容し、処理ツール800において全ての処理が完了すると処理済みウエハを保持する。カセット802は、多くのウエハを保持することができ、大抵は25ものウエハを保持できる。ウエハをカセット802に対して搬入出するために、大気搬送モジュール(ATM)814が用いられる。ロードロックステーション805は、ATM814の雰囲気と真空搬送モジュール(VTM)812の真空との間でウエハを前後に移送するために動作する少なくとも1つの装置を表す。VTM812は処理ツールの一部であり、複数のチャンバに接続している。異なる種類のチャンバがあってよい。この実施形態では、2つのALEチャンバ600、2つのイオンビームエッチングチャンバ700、および1つの封入チャンバ828がある。この実施形態では、ALEチャンバ600は、カリフォルニア州フレモントのラム・リサーチによって製造されたKiyo(登録商標)である。イオンビームエッチングチャンバ700は、カリフォルニア州フレモントのラム・リサーチによって製造されたKyber(登録商標)である。封入チャンバ828は、プラズマ強化化学蒸着(PECVD)チャンバ、または別の誘電体堆積チャンバ(カリフォルニア州フレモントのラム・リサーチにより製造されたVECTOR(登録商標)PECVDチャンバなど)であってよい。真空搬送モジュール812内部のロボットシステムは、ロードロックステーション805と異なるチャンバ600、チャンバ700、およびチャンバ828との間で積層ウエハを移動させるためにロボットアームを用いる。ATM814は、真空環境においてカセット802とロードロックステーション805との間でウエハを移送するためにロボットシステムを用いる。コントローラ835は、処理ツール800を制御するために用いられてよい。コントローラ835は、1つ以上のサブコントローラを備えてよい。1つ以上のサブコントローラを備えうるコントローラ835は、真空搬送モジュール812、原子層エッチングチャンバ600、イオンビームエッチングチャンバ700、および封入チャンバ828に制御可能に接続されている。
【0062】
図9は、コンピュータシステム900を示す高レベルブロック図である。コンピュータシステム900は、実施形態で用いられるコントローラ835を実装するのに適している。コンピュータシステム900は、集積回路、プリント回路基板、および小型ハンドヘルドデバイスから大型スーパコンピュータに至るまでの多くの物理的形態を有してよい。コンピュータシステム900は、1つ以上のプロセッサ902を備え、さらに、電子表示装置904(画像、文章、および他のデータの表示用)、メインメモリ906(例えば、ランダムアクセスメモリ(RAM))、記憶装置908(例えば、ハードディスクドライブ)、リムーバブル記憶装置910(例えば、光ディスクドライブ)、ユーザインターフェイスデバイス912(例えば、キーボード、タッチスクリーン、キーパッド、マウス、または他のポインティングデバイスなど)、および通信インターフェイス914(例えば、無線ネットワークインターフェイス)を含みうる。通信インターフェイス914は、リンクを通じてコンピュータシステム900と外部デバイスとの間でソフトウェアおよびデータが転送されることを可能にする。このシステムは、前記のデバイス/モジュールが接続される通信インフラ916(例えば、通信バス、クロスオーバーバー、またはネットワーク)を含んでもよい。
【0063】
通信インターフェイス914を通じて転送される情報は信号の形であってよく、電子信号、電磁信号、光信号、または、信号を伝達し、配線もしくはケーブル、光ファイバ、電話線、携帯電話リンク、高周波リンク、および/もしくは他の通信回線を用いて提供されうる通信リンクを通じて、通信インターフェイス914によって受信されうる他の信号であってよい。そのような通信インターフェイス914を用いて、上記方法の工程を実施する過程で1つ以上のプロセッサ902がネットワークから情報を受信してよい、または、ネットワークに情報を出力してよい。さらに、方法の実施形態は、プロセッサ単体に対して実行されてよい、または、処理の一部を共有するリモートプロセッサと協働して、インターネットなどのネットワークを通じて実行されてよい。
【0064】
「非一時的コンピュータ可読媒体」という用語は一般に、メインメモリ、二次メモリ、リムーバブルストレージ、ならびに記憶装置(例えば、ハードディスク、フラッシュメモリ、ディスクドライブメモリ、CD-ROM、および他の形の永続メモリ)などの媒体を指すのに用いられ、搬送波またはキャリア信号などの一時的対象を含むと解釈されるべきでない。コンピュータ可読コードの例は、機械語(例えば、コンパイラによって生成されたもの)、および、インタプリタを用いてコンピュータによって実行されるより高レベルのコードを含むファイルを含む。コンピュータ可読媒体は、コンピュータデータ信号によってプロセッサに送信されるコンピュータコードであってもよい。
【0065】
いくつかの実施形態において、コンピュータ可読媒体は、ALEチャンバ600に積層を移送するためのコンピュータ可読コード、ALEプロセス(工程104)を実施するためのコンピュータ可読コード、イオンビームエッチングチャンバ700に積層を移送するためのコンピュータ可読コード、イオンビームエッチング(工程108)を実施するためのコンピュータ可読コード、封入チャンバ828に積層200を移送するためのコンピュータ可読コード、積層200を封入するためのコンピュータ可読コード、および、処理ツール800から雰囲気に積層200を取り出すためのコンピュータ可読コードを含んでよい。積層200がエッチングされた後であって、積層200が雰囲気に曝される前に積層を封入することは、積層の様々な層が酸化することを防ぐ。積層200の様々な層の酸化は、デバイスの不良を引き起こす可能性がある。ALEチャンバ600、イオンビームエッチングチャンバ700、および封入チャンバ828と一体化した処理ツール800は、エッチング済みMRAMのより速いスループットを提供する。
【0066】
本開示はいくつかの好ましい実施形態の点から説明されたが、本開示の範囲に該当する変更、修正、並べ替え、および様々な代替同等物がある。本開示の方法および装置を実行するための多くの別の方法があることにも注意されたい。そのため、以下に添付の特許請求の範囲は、本開示の真の精神および範囲に該当する、全てのそのような変更、修正、並べ替え、および様々な代替同等物を含むと解釈されることが意図される。本開示は、以下の形態により実現されてもよい。
[形態1]
マスクに対して積層を選択的にエッチングするための方法であって、
前記積層を少なくとも部分的にエッチングするために原子層エッチングを提供する工程であって、前記原子層エッチングは、少なくともいくらかの残留物を形成する、工程と、
前記積層のイオンビームエッチングを提供する工程であって、前記イオンビームエッチングは、前記原子層エッチングからの前記残留物の少なくともいくらかを除去する、工程と、
を含む、方法。
[形態2]
形態1に記載の方法であって、
前記原子層エッチングを提供する前記工程は、複数のサイクルを含み、各サイクルは、
改質段階であって、
シリコン、ゲルマニウム、炭素、チタン、およびスズからなる群より選択された元素を含むハロゲン含有ガスを含む改質ガスを提供する工程と、
前記改質ガスをプラズマ化する工程であって、前記プラズマの成分は、前記積層の表面の一部を改質して改質表面を形成する、工程と、を含む、改質段階と、
活性化段階であって、前記積層の前記改質表面をエッチングする、活性化段階と、
を含む、方法。
[形態3]
形態2に記載の方法であって、
前記ハロゲン含有ガスは、ヨードシラン類、ブロモシラン類、クロロシラン類、ヒドロクロロシラン類、およびフルオロシラン類からなる群より選択される、方法。
[形態4]
形態2に記載の方法であって、
前記活性化段階は、
活性化ガスを提供する工程と、
前記活性化ガスを活性化する工程と、
を含む、方法。
[形態5]
形態4に記載の方法であって、
前記活性化段階は、さらに、バイアスを印加する工程を含む、方法。
[形態6]
形態2に記載の方法であって、
前記活性化段階は、金属テトレルハロゲン分子を生成する、方法。
[形態7]
形態6に記載の方法であって、
前記金属テトレルハロゲン分子は、金属、シリコン、およびハロゲンを含む、方法。
[形態8]
形態1に記載の方法であって、
前記積層は、少なくとも1つの金属含有層を含む、方法。
[形態9]
形態1に記載の方法であって、
前記積層は、少なくとも1つの遷移金属含有層を含む、方法。
[形態10]
形態1に記載の方法であって、
前記イオンビームエッチングを提供する前記工程は、ガスイオンを連続的に異なる角度で前記積層に向ける工程を含む、方法。
[形態11]
形態10に記載の方法であって、
前記イオンビームエッチングは、前記積層のテーパ部を除去する、方法。
[形態12]
形態10に記載の方法であって、
前記イオンビームエッチングは、前記積層の金属含有層に含浸したハロゲンを除去する、方法。
[形態13]
形態10に記載の方法であって、
前記イオンビームエッチングは、前記積層の金属含有層をエッチングすることなく、前記積層の前記金属含有層に含浸した塩素を除去する、方法。
[形態14]
形態1に記載の方法であって、
前記原子層エッチングを提供する前記工程は、複数のサイクルを含み、各サイクルは、
改質段階であって、
ハロゲン含有ガスを含む改質ガスを提供する工程と、
前記改質ガスをプラズマ化する工程であって、前記プラズマの成分は、前記積層の表面の一部を改質して改質表面を形成する、工程と、を含む、改質段階と、
活性化段階であって、前記積層の前記改質表面をエッチングする、活性化段階と、
を含む、方法。
[形態15]
形態1に記載の方法であって、さらに、
前記原子層エッチングを提供する前に、イオンビーム開口エッチングを提供する工程を含む、方法。
[形態16]
マスクに対して積層を選択的にエッチングするための装置であって、
真空搬送モジュールと、
前記真空搬送モジュールに接続された原子層エッチングチャンバと、
前記真空搬送モジュールに接続されたイオンビームエッチングチャンバと、
前記真空搬送モジュールに接続された封入チャンバと、
前記真空搬送モジュール、前記原子層エッチングチャンバ、前記イオンビームエッチングチャンバ、および前記封入チャンバに制御可能に接続されたコントローラであって、
前記積層を前記原子層エッチングチャンバに移すように前記真空搬送モジュールを制御し、
前記積層の原子層エッチングを提供するように前記原子層エッチングチャンバを制御し、
前記積層を前記原子層エッチングチャンバから前記イオンビームエッチングチャンバに移すように前記真空搬送モジュールを制御し、
前記積層のイオンビームエッチングを提供するように前記イオンビームエッチングチャンバを制御し、
前記積層を前記イオンビームエッチングチャンバから前記封入チャンバに移すように前記真空搬送モジュールを制御し、
前記積層の封入を提供するように前記封入チャンバを制御するように構成されている、コントローラと、
を備える、装置。
[形態17]
形態16に記載の装置であって、
前記コントローラは、さらに、
改質ガスを提供するように前記原子層エッチングチャンバを制御し、
前記改質ガスをプラズマ化するように前記原子層エッチングチャンバを制御し、前記プラズマの成分は、前記積層の表面の一部を改質して改質表面を形成するように構成されている、装置。
[形態18]
形態17に記載の装置であって、
前記コントローラは、さらに、
活性化ガスを提供するように前記原子層エッチングチャンバを制御し、
前記活性化ガスを活性化するように前記原子層エッチングチャンバを制御するよう構成されている、装置。
[形態19]
形態18に記載の装置であって、
前記コントローラは、さらに、バイアスを印加するように前記原子層エッチングチャンバを制御するように構成されている、装置。
図1
図2A
図2B
図2C
図3
図4
図5A
図5B
図5C
図6
図7
図8
図9