(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-01
(45)【発行日】2024-11-12
(54)【発明の名称】後面及び/若しくは前面、並びに/又はバルクの欠陥の同時検出
(51)【国際特許分類】
G01N 21/956 20060101AFI20241105BHJP
H01L 21/66 20060101ALI20241105BHJP
【FI】
G01N21/956 A
H01L21/66 J
【外国語出願】
(21)【出願番号】P 2022184761
(22)【出願日】2022-11-18
【審査請求日】2023-03-20
(32)【優先日】2021-11-18
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2022-11-03
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】516312501
【氏名又は名称】オントゥー イノヴェイション インコーポレイテッド
(74)【代理人】
【識別番号】100094569
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100103610
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100109070
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100067013
【氏名又は名称】大塚 文昭
(74)【代理人】
【識別番号】100086771
【氏名又は名称】西島 孝喜
(74)【代理人】
【氏名又は名称】上杉 浩
(74)【代理人】
【識別番号】100120525
【氏名又は名称】近藤 直樹
(74)【代理人】
【識別番号】100139712
【氏名又は名称】那須 威夫
(74)【代理人】
【識別番号】100151987
【氏名又は名称】谷口 信行
(72)【発明者】
【氏名】フェリックス モールマン
(72)【発明者】
【氏名】マーク ヴァーナー
(72)【発明者】
【氏名】アンドリュー フィリップ フレイザー
【審査官】井上 徹
(56)【参考文献】
【文献】特開2008-032433(JP,A)
【文献】特表2001-516874(JP,A)
【文献】特開2009-145141(JP,A)
【文献】米国特許出願公開第2015/0253256(US,A1)
【文献】米国特許出願公開第2004/0012775(US,A1)
【文献】中国特許出願公開第107976422(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 21/00-21/01
G01N 21/17-21/61
G01N 21/84-21/958
G01B 11/00-11/30
H01L 21/64-21/66
G06T 7/00- 7/90
JSTPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
基板検査のための検査システムであって、前記検査システムが、
第1の角度で基板に向けられ
、前記基板の第1の表面上の第1の場所に集束される第1の波長の光を生成し、前記基板の第1の表面に対して斜角である第2の角度で前記基板に向けられた第2の波長の光を生成する少なくとも1つの照明器と、
前記第2の角度を
前記第1の角度とは独立に調整して、前記第2の波長の前記光を
、前記第1の表面とは異なる前記基板の第2の表面上の指定された場所に集束させる調整システムと、
前記少なくとも1つの照明器からの前記光に応答して前記基板からの後方散乱光を集める検出光学系と、
第1のスペクトルの前記後方散乱光を受光し、前記第1の表面を表す第1の画像を生成し、第2のスペクトルの前記後方散乱光を受光して前記基板の第2の表面又は前記第2の表面近くを表す第2の画像を生成する少なくとも1つの検出器と、を備える、検査システム。
【請求項2】
前記基板が、前記第1の波長の前記光に対して不透明であり、前記第2の波長の前記光に対して少なくとも部分的に透明である、請求項1に記載の検査システム。
【請求項3】
前記検出光学系が、
前記第1の表面からの前記後方散乱光、及び前記第2の表面又は前記第2の表面近くからの前記後方散乱光を集める楕円ミラーであって、前記楕円ミラーが、中を通って前記第2の波長の前記光が前記第2の角度で前記基板に向けられる第1の開口と、中を通って、前記基板によって反射された前記第2の波長の光が前記楕円ミラーを出る第2の開口と、を備えるか、又は前記第2の波長の前記光が、前記楕円ミラーと前記基板の前記第1の表面との間で前記第2の角度で前記基板に向けられる、楕円ミラーと、
前記楕円ミラーによって集められた前記後方散乱光を前記少なくとも1つの検出器に向かって向ける少なくとも1つの折り返しミラーであって、前記少なくとも1つの折り返しミラーが、中を通って前記第1の波長の前記光が前記第1の角度で前記基板に向けられる開口を備える、少なくとも1つの折り返しミラーと、を備える、請求項1に記載の検査システム。
【請求項4】
前記第1の角度が、前記第1の表面に対して垂直な又は垂直に近い角度であり、前記第2のスペクトルの前記後方散乱光が、前記第2の角度で前記基板に向けられた前記第2の波長の前記光によって生み出される、請求項1に記載の検査システム。
【請求項5】
前記第1のスペクトルが可視波長を含み、前記第2のスペクトルが赤外波長を含み、前記第1の波長が可視波長であり、前記第2の波長が赤外波長である、請求項1に記載の検査システム。
【請求項6】
前記少なくとも1つの検出器が、
前記第1のスペクトルの前記後方散乱光を受光する第1の検出器と、
前記第2のスペクトルの前記後方散乱光を受光する第2の検出器と、
前記後方散乱光を受光し、前記第1のスペクトルの前記後方散乱光を前記第1の検出器に向け、前記第2のスペクトルの前記後方散乱光を前記第2の検出器に向ける色フィルタと、を備える、請求項1に記載の検査システム。
【請求項7】
前記調整システムが、前記第2の角度を調整して、前記第1の場所と共有される前記基板のz軸上にある、
前記第2の表面上の前記指定された場所に前記第2の波長の前記光を集束させる、請求項1に記載の検査システム。
【請求項8】
前記調整システムが、前記第2の角度を調整するためにミラーに結合されたアクチュエータを含む、請求項1に記載の検査システム。
【請求項9】
前記第1の画像と前記第2の画像との比較に基づいて、前記第1の表面上の欠陥の残留信号について補正された前記基板の前記第2の表面の上又は近くの欠陥を表す第3の画像を生成するプロセッサ、を更に備える、請求項1に記載の検査システム。
【請求項10】
第1の角度で基板に向けられ
、前記基板の第1の表面上の第1の場所に集束される第1の波長の光を生成することと、
前記基板の第1の表面に対して斜角である第2の角度で前記基板に向けられた第2の波長の光を生成することと、
前記第2の波長の前記光を
、前記第1の表面とは異なる前記基板の第2の表面上の指定された場所に集束させるように前記第2の角度を
前記第1の角度とは独立に調整することと、
前記第1の波長及び前記第2の波長の前記光に応答して、前記基板からの後方散乱光を集めることと、
第1のスペクトルの前記後方散乱光に基づいて、前記第1の表面を表す第1の画像を生成することと、
第2のスペクトルの前記後方散乱光に基づいて、前記基板の第2の表面又は前記第2の表面近くを表す第2の画像を生成することと、を含む、方法。
【請求項11】
前記基板が、前記第1の波長の前記光に対して不透明であり、前記第2の波長の前記光に対して少なくとも部分的に透明である、請求項10に記載の方法。
【請求項12】
前記基板からの前記後方散乱光を集めることが、
前記第1の表面からの前記後方散乱光、及び前記第2の表面又は前記第2の表面近くからの前記後方散乱光を、楕円ミラーを用いて受光することであって、前記楕円ミラーが、中を通って前記第2の波長の前記光が前記第2の角度で前記基板に向けられる第1の開口と、中を通って、前記基板によって反射された前記第2の波長の光が前記楕円ミラーを出る第2の開口と、を備えるか、又は前記第2の波長の前記光が、前記楕円ミラーと前記基板の前記第1の表面との間で前記第2の角度で前記基板に向けられることと、
中を通って前記第1の波長の前記光が前記第1の角度で前記基板に向けられる開口を備える少なくとも1つの折り返しミラーを用いて、前記楕円ミラーによって集められた前記後方散乱光を少なくとも1つの検出器に向かって向けることと、を含む、請求項10に記載の方法。
【請求項13】
前記第1の角度が、前記第1の表面に対して垂直な又は垂直に近い角度であり、前記第1の波長が可視波長であり、前記第2の波長が赤外波長であり、前記第2のスペクトルの前記後方散乱光が、前記第2の角度で前記基板に向けられた前記第2の波長の前記光によって生み出される、請求項10に記載の方法。
【請求項14】
前記第2の角度を調整することが、前記第1の場所と共有される前記基板のz軸上にある、
前記第2の表面上の前記指定された場所に前記第2の波長の前記光を集束させるように前記第2の角度を調整することを含む、請求項10に記載の方法。
【請求項15】
前記第1の画像と前記第2の画像との比較に基づいて、前記第1の表面上の欠陥の残留信号について補正された前記基板の前記第2の表面の上又は近くの欠陥を表す第3の画像を生成することを更に含む、請求項10に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
本出願は、全体が参照により本明細書に組み込まれる、2021年11月18日に出願された「SIMULTANEOUS BACK AND/OR FRONT AND/OR BULK DEFECT DETECTION」と題した米国特許仮出願第63/280,949号に対する35 USC 119の下での優先権を主張するものである。
【0002】
(発明の分野)
本開示は、概して、検査システムに関し、特に、サブミクロン感度で後面、前面、及び/又はバルクの欠陥を同時に検出する高スループット基板検査システムに関する。
【背景技術】
【0003】
半導体及び他の同様の産業では、加工中に基板の非接触評価を提供するために光計測装置を使用することが多い。光学計測は、サンプル又はサンプル上の特徴のうちの1つ以上の特性を決定するためにしばしば使用される。サンプルの別のタイプの評価は、欠陥検査である。サンプル上の粒子又は他の不規則性などの欠陥は、結果として得られるデバイスの性能を妨げる可能性がある。従来、欠陥を検出するために使用される光学ツールは、明視野及び暗視野検査を使用する。明視野及び暗視野検出ツールは、欠陥によって引き起こされる光の散乱に基づいて欠陥を検出する。欠陥検査に使用される光学ツールの改良が望まれている。
【発明の概要】
【0004】
基板の複数の表面を検査するための検査システムは、第1の角度で基板に向けられる第1の波長の光、斜角で基板に向けられる第2の波長の光を生み出す少なくとも1つの照明器を含む。斜角を調整するために、調整システムが存在してもよい。基板は、波長のうちの一方に対して不透明であり、他方の波長に対して少なくとも部分的に透明であり得る。検出光学系は、光に応答して基板の第1の表面及び第2の表面からの後方散乱光を集める。少なくとも1つの検出器が、後方散乱光を受光し、基板の第1の表面を表す第1の画像、及び基板の第2の表面又は第2の表面近くを表す第2の画像を生成する。画像を比較して、第1の表面上の欠陥の残留信号について補正された基板の第2の表面の上又は近くの欠陥を表す第3の画像を生成することができる。
【0005】
一実装形態では、基板検査のための検査システムは、第1の角度で基板に向けられた第1の波長の光を生成し、基板の第1の表面に対して斜角である第2の角度で基板に向けられた第2の波長の光を生成する少なくとも1つの照明器を含む。検査システムにおける調整システムは、第2の角度を調整して、第2の波長の光を指定された場所に集束させる。検査システムは、少なくとも1つの照明器からの光に応答して基板からの後方散乱光を集める検出光学系を含む。検査システムは、第1のスペクトルの後方散乱光を受光し、基板の第1の表面を表す第1の画像を生成し、第2のスペクトルの後方散乱光を受光して基板の第2の表面又は第2の表面近くを表す第2の画像を生成する少なくとも1つの検出器を更に含む。
【0006】
一実装形態では、基板を検査するための方法は、第1の角度で基板に向けられた第1の波長の光を生成することと、基板の第1の表面に対して斜角である第2の角度で基板に向けられた第2の波長の光を生成することとを含む。第2の角度は、第2の波長の光を指定された場所に集束させるように調整され得る。後方散乱光は、第1の波長及び第2の波長の光に応答して基板から集められる。本方法は、第1のスペクトルの後方散乱光に基づいて基板の第1の表面を表す第1の画像を生成することと、第2のスペクトルの後方散乱光に基づいて基板の第2の表面又は第2の表面近くを表す第2の画像を生成することとを含む。
【0007】
一実装形態では、検査システムは、第1の角度で基板に向けられた第1の波長の光を生成するための手段と、基板の第1の表面に対して斜角である第2の角度で基板に向けられた第2の波長の光を生成するための手段とを含む。検査システムは、第2の波長の光を指定された場所に集束させるように第2の角度を調整するための手段を含む。集めるための手段は、第1の波長及び第2の波長の光に応答して基板からの後方散乱光を集める。検査システムは、第1のスペクトルの後方散乱光に基づいて、基板の第1の表面を表す第1の画像を生成するための手段と、第2のスペクトルの後方散乱光に基づいて、基板の第2の表面又は第2の表面近くを表す第2の画像を生成するための手段とを更に含む。
【図面の簡単な説明】
【0008】
【
図1A】それぞれ、前面検査構成及び後面検査構成における検査システムの例を示す。
【
図1B】それぞれ、前面検査構成及び後面検査構成における検査システムの例を示す。
【
図2】2つの異なる波長の光を使用して基板の複数の表面を同時に検査するための2つのチャネルを含む検査システムの部分を示す。
【
図3A】それぞれ、第1の波長を有する光に応答して生み出された基板の第1の表面の画像(欠陥マップ)及び第2の波長を有する光に応答して生み出された基板の第2の表面の画像(欠陥マップ)を示す。
【
図3B】それぞれ、第1の波長を有する光に応答して生み出された基板の第1の表面の画像(欠陥マップ)及び第2の波長を有する光に応答して生み出された基板の第2の表面の画像(欠陥マップ)を示す。
【
図3C】
図3A及び
図3Bに示された画像(欠陥マップ)を比較して、第2の表面の画像(欠陥マップ)内の第1の表面からの欠陥からの残留信号を低減又は除去すること示す。
【
図4】検査システムの検出光学系の一部の詳細図を示す。
【
図5】検査システムの検出光学系の一部の詳細図を示す。
【
図6】基板を検査するための方法を示すフロー図である。
【発明を実施するための形態】
【0009】
光学システムは、様々な検査用途に用いることができる。例えば、半導体及び他の同様の産業では、加工中に基板の非接触評価を提供するために光計測装置を使用することが多い。半導体ウェハなどのサンプルは、例えば、サンプルを照明し、サンプルからの後方散乱光を検出することによって、サンプル上の欠陥を検出するために、処理中に検査され得る。検査システムの1つの重要な性能基準はスループットであり、これはサンプルが典型的には処理中に検査されるからである。しかしながら、検査システムは、典型的には、スループットに関して制限される。例えば、検査システムは、典型的には、サンプルの前側又は後側のいずれかを一度に検査する。したがって、1つを超える表面の検査は、検査時間を増加させ、それによってスループットを低減し、基板との接触を最小限に抑えることは、それによって基板の清浄度を改善する。
【0010】
本明細書で説明するように、高スループットを維持しながら、サンプルの後側、サンプルの前側、及びサンプル(例えば、半導体ウェハ)のバルク特性のうちの2つ以上の同時検査を可能にすることによって、検査システム及び設計に対する改善が提供される。検査システムは、例えば、2つのチャネルを含むことができ、第1のチャネルは、基板の第1の表面上の欠陥を検出するために第1の角度で基板に向けられた第1の波長を有する光を使用することができ、第2のチャネルは、基板の第2の表面上の又は近くの欠陥を検出するために斜角である第2の角度で基板に向けられた第2の波長を有する光を使用することができる。第2の波長を有する光を指定された場所に集束させるように第2の角度を調整するために、調整システムが存在し得る。第1の波長は、対象物の近位/近表面(例えば、ウェハの後側)などの第1の表面上の欠陥を検出するために可視スペクトル内にあってもよく、第2の波長は、対象物の遠位/対向表面(ウェハの前側)の上又は近くの欠陥及び/又はバルク特性を検出するために赤外又は近赤外スペクトル内にあってもよい。第1の波長を有する光は、基板に対して垂直な又は垂直に近い角度に向けられてもよい。
【0011】
本明細書に記載の技術は、照明の二次的な異なる波長セット及び二重目的の欠陥検査に使用され得る検出器を追加する。対象の基板が不透明になるように一次波長を(例えば、可視スペクトル内で)設定し、一方、対象の基板が少なくとも部分的に透明になるように二次波長を(例えば、赤外又は近赤外スペクトル内で)設定することによって、一次波長は近表面上の欠陥検査に使用され得、二次波長は対向表面上の欠陥検査又はバルク特性の測定に使用され得る。加えて、一次及び二次チャネルの両方の比較は、検出された欠陥が近表面上に位置するか(この場合、両方のチャネルが信号を受信する)、又はバルク若しくは対向表面に位置するか(この場合、二次チャネルのみが信号を受信する)を決定することができる。
【0012】
図1Aは、従来の前面検査構成における検査システム100の例示的な部分を示す。検査システム100は、例えば照明デバイス及び検出器を含む検査ヘッド101を含む。検査ヘッド101は、ウェハ102の前面104を照明し、前面104上の欠陥からの後方散乱光を検出する。検査ヘッド101は、照明してウェハの表面近くから後方散乱光を検出するので、検査ヘッド101は、ウェハ102を透過しない波長(例えば、可視スペクトルの)を使用することができ、すなわち、ウェハ102は、検査ヘッド101によって使用される波長に対して不透明である。検査システム100は、ウェハ102を保持し、検査中にウェハ102を回転させる(曲線矢印106によって示されるように)ための回転ウェハチャック(図示せず)を含み得る。例えば、チャックは後側真空チャックとして提供されてもよい。検査ヘッド101は加えて、例えば、中心から半径方向外向きに(矢印108によって示されるように)ウェハ102を横切って走査し得る。検査ヘッド101は、例えば、アーム又はトラック上にあってもよい。
【0013】
図1Bは、後面検査構成における検査システム150の例示的な部分を示す。検査システム150は、例えば、照明デバイス及び検出器を含む検査ヘッド151(
図1Aに示される検査ヘッド101と同様)を含む。検査ヘッド151は、ウェハ152の後面154を照明し、後面154上の欠陥からの後方散乱光を検出する。検査ヘッド101と同様に、検査ヘッド151は、照射してウェハの表面近くから後方散乱光を検出するので、検査ヘッド151は、ウェハ152を透過しない波長(例えば、可視スペクトルの)を使用することができ、すなわち、ウェハ152は、検査ヘッド151によって使用される波長に対して不透明である。検査システム150は、ウェハ152を保持し、検査中にそれを回転させる(曲線矢印156によって示されるように)ための回転ウェハチャック155を含み得る。例えば、チャック155は、エッジクランプとして提供されてもよく、エッジクランプは、ウェハ152の背後にクリアランスを提供してもよい。検査ヘッド151は、例えば、中心から半径方向外向きに(矢印158によって示されるように)ウェハ152を横切って走査し得る。
【0014】
上述したように、
図1A及び
図1Bに示されるような従来の検査システムを使用すると、基板の1つの表面のみが一度に検査される。その結果、上面及び底面の両方が検査される場合、基板の一方の表面は、他方の表面が検査され得る第2の検査システムに基板を移送する前に、1つの検査システムによって検査される。その結果、検査時間が増加し、スループットを低下させ、ウェハ接触を増加させ、汚染のリスクを高める。
【0015】
図2は、2つの異なる波長の光を使用して基板202の複数の表面を同時に検査するための2つのチャネルを含む検査システム200の断面の例示的な部分を示す。検査システム200は、エッジクランプチャック205を有する後面検査構成で示されているが、いくつかの実装形態では、検査システム200は、例えば、後側真空チャックを有する前面検査構成で提供されてもよい。
【0016】
検査システム200は、異なる入射角で基板202に入射する異なる波長の光を生成する少なくとも1つの照明器を含む。例えば、図示されるように、検査システム200は、基板202の底面204に垂直又は垂直に近い入射角で入射する、第1の波長を有する光212を生成する第1の光源210を有する第1のチャネルと、基板202の底面204に斜めの入射角で入射する、第2の波長を有する光222を生成する第2の光源220を有する第2のチャネルとを含む。所望であれば、異なる波長を有する光を生成する単一の光源が使用されてもよく、例えば、色ビームスプリッタを使用して、第1の波長を有する光が第1のチャネルに沿って向けられてもよく、第2の波長を有する光が第2のチャネルに沿って向けられてもよい。
【0017】
第1のチャネルにおける第1の光源210は、例えば、レーザ又は他の適切な高輝度光源であり得る。第1の光源210は、可視スペクトル内であり得る第1の波長で動作する。第1の波長は、検査される基板202の材料の表面特性に基づいて選択され得る。例えば、第1の光源210は、シリコンウェハに対して、例えば400~700nmの光を生み出し得る。第1の光源210と、検出光学系230並びに集束光学系(図示せず)の折り返しミラー211及び折り返しミラー234などの光学要素とは、第1の光源210によって生み出された光212が、検査されている基板202に対して垂直の入射角又は垂直に近い入射角であるように構成され得る。いくつかの実装形態では、第1の光源210及び光学要素は、光212が法線からわずかにずれる(例えば、法線に対して0~10°オフセットする)ように取り付けられ得る。第1の光源210によって生成される第1の波長は、基板202が光212に対して不透明であるように選択され、したがって、第1の光源210は、
図2に示される例では基板202の後面である基板202の近位面204上の欠陥を検出するために使用される。
【0018】
第2のチャネルにおける第2の光源220は、例えば、レーザ又は他の適切な高輝度光源であり得る。第2の光源220は、赤外スペクトル又は近赤外スペクトル内であり得る第2の波長で動作する。第2の波長は、検査される基板202の材料の透過率特性に基づいて選択され得る。例えば、第2の光源220は、シリコンウェハを検査するために、例えば700~1400nmの光を生み出し得る。第2の光源220及び集束光学系(図示せず)などの任意の光学要素は、第2の光源220によって生み出された光222が基板202に対して斜めの入射角で入射するように取り付けられ得る。第2の光源220によって生成される第2の波長は、基板202が光222に対して少なくとも部分的に透明であるように選択され、したがって、第2の光源220は、
図2に示される例では基板202の前面である基板202の遠位/対向表面206の上又は近くの欠陥を検出するために、又は近位面204と遠位/対向表面206との間のバルク内の欠陥を検出するために使用される。例えば赤外又は近赤外スペクトルの第2の波長は、基板202を透過し、したがって、材料の体積内及び/又は遠位/対向表面206上若しくはその近くの欠陥を検出するために使用することができる。したがって、第1の光源210及び第2の光源220は、基板202の前面、後面、及びバルク上の欠陥を検出するために、基板202の同じ場所で同時に動作し得る。
【0019】
第1の光源210は、本明細書では垂直又は垂直に近い光を生み出すものとして説明されているが、いくつかの実装形態では、光源210は、斜角で基板202に入射する光212を生み出し得ることを理解されたい。更に、いくつかの実装形態では、第2の光源220は、垂直又は垂直に近い光222を生み出すように取り付けられてもよく、これは、バルク欠陥を検出するのを助け得る。更に、いくつかの実装形態では、第1の光源210及び第2の光源220は、基板202の異なる側に取り付けられてもよい。例えば、第1の光源210は、図示されるように、可視スペクトルにおいて後面の表面検査を実行するために、基板202の後側に取り付けられてもよく、一方、第2の光源220は、赤外スペクトルにおいて表面及びバルク検査を実行するために、基板202の上側に取り付けられてもよい。
【0020】
検査システム200は、基板202からの後方散乱光を集める検出光学系230を更に含む。第1のチャネル及び第2のチャネルの両方は、
図4を参照して以下に説明されるように、X、Y、Z方向に制限された焦点を有し得る同じ検出光学系230を使用し得る。図示されるように、検出光学系230は、楕円ミラー232及び1つ以上の折り返しミラー234を含み得る。楕円ミラー232は、両方のチャネルからの後方散乱光、例えば、光212に応答して基板202の近位面204によって生み出された後方散乱光214と、光222に応答して基板202の遠位/対向表面206又はバルク材料によって生み出された後方散乱光224(基板202の近位面204からのいくらかの後方散乱光を含み得る)と、を集めることができる。折り返しミラー234は、集められた後方散乱光を1つ以上の検出器に向け直し得る。図示されるように、検出光学系230の折り返しミラー234は、光212が通過して基板202に垂直に入射し得る開口235を含む。いくつかの実装形態では、検出光学系230の楕円ミラー232は、2つのスリットを含み得、1つのスリットは、光222が基板202まで通過するために設けられ、第2のスリットは、基板202から反射された光222が通過するために設けられる。
【0021】
本明細書で説明される例は、集められた後方散乱光が欠陥を表す暗視野撮像の使用に言及する場合があるが、いくつかの実装形態では、強度が低減された集められた反射光が欠陥を表し得る明視野撮像もまた若しくは代替的に使用され得ることを理解されたい。
【0022】
検査システム200は、後方散乱光を受光し、基板202の表面を表す画像を生成する少なくとも1つの検出器を更に含む。例えば、図示されるように、検査システム200は、開口242を通過した後の折り返しミラー234からの後方散乱光214及び224を受光し、波長に基づいて後方散乱光214及び224を分離する色フィルタ240を含む。入射光212に応答して生み出される後方散乱光214は、1つ以上の可視波長を含む第1のスペクトル内にあり得、入射光222に応答して生み出される後方散乱光224は、1つ以上の赤外又は近赤外波長を含む第2のスペクトル内にあり得る。色フィルタ240は、例えば、第1のチャネル内の第1の光源210からの光212に応答して後方散乱光214を第1の検出器216に向け、第2のチャネル内の第2の光源220からの光222に応答して後方散乱光224を第2の検出器226に向けるダイクロイックフィルタであってもよい。したがって、1つの開口242が検出器216及び226の両方に使用され得る。いくつかの実装形態では、色フィルタ240は、各検出器216、226の焦点の前に位置されてもよく、
図2に示す単一の開口242とは対照的に、別個の開口が各検出器216、226に使用されてもよい。独立した開口の使用は、例えば、後方散乱光214及び224が基板の異なるz位置で発生し、したがって異なる焦点を有するので有用であり得る。しかしながら、両方の検出器216、226に対して単一の開口242を使用することは、アーキテクチャを単純化し、空間を低減し、堅牢性を改善するので、わずかな影響があっても望ましい場合がある。
【0023】
色フィルタ240は、後方散乱光を異なるスペクトルに分離し得る。例えば、色フィルタ240は、可視光を第1の検出器216に通過させ、赤外光を第2の検出器226に反射することを可能にし得る。いくつかの実装形態では、色フィルタ240は、可視光を反射し得、赤外光を通過させ得る。他の実装形態では、色フィルタ240は、後方散乱光の波長を分離し得る回折素子と置き換えられてもよく、後方散乱光は、単一の二次元検出器の異なる部分に向けられ、それによって検出される。
【0024】
いくつかの例では、開口を使用して、後方散乱光を集束させることができる。例えば、開口は、楕円ミラーのX、Y焦点を更に制限し得る。開口が小さければ小さいほど、X、Y焦点はより制限される。開口は、X、Y焦点を増加させるために、色フィルタ240の前又は後に配置されてもよい。
【0025】
第1の検出器216は、例えば可視スペクトルの光を検出するように構成され得る。例えば、第1の検出器216は、アバランシェフォトダイオード又は光電子増倍管を含み得る。第2の検出器226は、赤外スペクトルの光を検出するように構成され得る。例えば、第2の検出器226は、赤外線に敏感なインジウムガリウムヒ素(indium gallium arsenide、InGaAs)フォトダイオードなどの赤外線動作に適したアバランシェフォトダイオードを含み得る。
【0026】
第1の検出器216(プロセッサと組み合わせて)は、基板202の近位(後)面204上の欠陥を示す画像を生成し得る。第2の検出器226は(プロセッサと組み合わせて)は、基板202の遠位(前)面206の上又は近くの、若しくはバルク内の欠陥を示す画像を生成し得る。検査システム200によって検査される基板202のX、Y位置に対して、検査システム200は2つの別個の信号を生成し、1つは、第1の光212に応答して生み出される後方散乱光214に対するものであり、第2は、第2の光222に応答して生み出される後方散乱光224に対するものである。
【0027】
加えて、いくつかの実装形態では、検査システム200は、第2の光源220からの光222の角度を調整して、光222を基板202の指定された場所に集束させる調整システム250を含むことができる。図示されるように、第2の光源220からの光222は、調整システム250を使用して、斜めの入射角に向け直され得る。調整システム250は、検査性能(例えば、感度、再現性)を改善するために使用され得、かつ検査システム200の構築及び較正中の物理的アライメント制約を緩和する。調整システム250は、例えば、光222の入射エリアを、例えば光212の入射エリアと適切に位置合わせするために、較正中に使用され得る。調整システム250は、基板202の検査中に動的に動作して、そうでなければ信号の再現性を低下させる可能性がある基板の変形又はミスアライメントを均等化し得る。調整システム250は、例えば、1つ以上の可動ミラーを含み得る。図示されるように、第1のミラー252(例えば、45°ミラー)は、光222を第2のミラー254に向け直すことができる。第2のミラー254は、コンピューティングシステム260などのコンピューティングシステム、又はアライメントセンサ258に埋め込まれたFPGA若しくはロジックなどの別のコントローラによって制御され得るアクチュエータ256(例えば、圧電体)に結合され得る。第2のミラー254の向きは、ランタイム中に自動的に調整されて、基板202内の特定のスポット上に、例えば、z軸に沿って基板202内で変化し得る遠位面206に、第2の光源220を合焦された状態に保ち得る。いくつかの基板202は、例えば、第2の光源220が検査中に調整されて焦点を基板202の指定されたz軸位置に保つことができるように変形されてもよい。調整は、基板202から反射された光222を検出するアライメントセンサ258の出力に基づいて行われ得る。このアライメントセンサ258は、例えば、一次元センサとして提供され得、反射光の位置を測定し得る。別の実装形態では、カメラシステムが、関心領域を(垂直入射又は斜め入射から)監視するか、又は光222が基板に入射する位置を測定することができる。反射光の測定された位置に基づいて、第2のミラー254は、基板202の指定された場所に光222を集束させるように調整され得る。更に、検出光学系の楕円ミラーは、2つのスリットを含み得、1つのスリットは、光222が基板202まで通過するために設けられ、第2のスリットは、反射光が楕円ミラー232を出てアライメントセンサ258に到達するために設けられる。
【0028】
検査システム200は、本明細書で説明されるように基板202の検査を実行するように構成された1つ以上のコンピューティングシステム260を更に含む。1つ以上のコンピューティングシステム260は、基板202の検査中に検出器216、226によって取得された検査データを受信するために、第1の検出器216及び第2の検出器226に結合されている。1つ以上のコンピューティングシステム260は、例えば、ワークステーション、パーソナルコンピュータ、中央処理ユニット又は他の適切なコンピュータシステム、若しくは複数のシステムであり得る。1つ以上のコンピューティングシステム260は、例えば本明細書に記載の方法に従って、検査プロセスを制御し、並びに検査データを分析するように構成され得る。
【0029】
1つ以上のコンピューティングシステム260は、単一のコンピュータシステム又は複数の別個の若しくはリンクされたコンピュータシステムであってもよく、本明細書ではコンピューティングシステム260、少なくとも1つのコンピューティングシステム260、1つ以上のコンピューティングシステム260と互換的に呼ばれることがあることを理解されたい。コンピューティングシステム260は、検査システム200に含まれてもよく、又は接続されてもよく、又は他の方法で関連付けられてもよい。検査システム200の異なるサブシステムは各々、関連するサブシステムに関連付けられたステップを実行するように構成されたコンピューティングシステムを含み得る。例えば、コンピューティングシステム260は、例えばチャック205に結合されたステージ207の移動を制御することによって、検査ヘッド、例えば検査システム200の光学要素の移動を制御することによって、又は、例えば1つ以上のアクチュエータを介してステージ207及び検査ヘッドの両方の移動を制御することによって、基板202の位置決めを制御し得る。ステージ207及び/又は検査ヘッドは、例えば、デカルト(すなわち、X及びY)座標、又は極(すなわち、R及びθ)座標、若しくは2つの何らかの組み合わせのいずれかで水平方向の運動が可能であり得る。いくつかの実装形態では、例えば、ステージ207は回転(R)移動され、一方、検査ヘッドは横方向(θ)に移動される。ステージ207及び/又は検査ヘッド、例えば検査システム200の光学構成要素は、Z座標に沿った垂直運動も可能であり得る。Z座標に沿った検査ヘッドの垂直運動は、後側真空チャックを用いた前側検査において異なる基板タイプ又は厚さへの採用に特に有用であり得る。コンピューティングシステム260は、チャック205の動作を更に制御して、基板202を保持又は解放してもよい。
【0030】
コンピューティングシステム260は、当技術分野で知られている任意の様態で、第1の検出器216及び第2の検出器226に通信可能に結合され得る。例えば、1つ以上のコンピューティングシステム260は、検出器216、226に関連付けられた別個のコンピューティングシステムに結合されてもよい。コンピューティングシステム260は、検査システム200の1つ以上のサブシステム、例えば検出器216、226から検査データ又は情報を受信及び/又は取得するように構成され得る。したがって、伝送媒体が、コンピューティングシステム260と検査システム200の他のサブシステムとの間のデータリンクとして機能し得る。
【0031】
コンピューティングシステム260は、メモリ264と共に少なくとも1つのプロセッサ262、並びにユーザインターフェース(user interface、UI)268を含み、これらはバス261を介して通信可能に結合されている。メモリ264又は他の非一時的コンピュータ使用可能記憶媒体は、その中に具現化されたコンピュータ可読プログラムコード266を含み、本明細書で説明するように、第2の光222の角度を調整し、検出器216及び226によって提供される検査データに基づいて基板の複数の表面の画像を生成及び分析して、欠陥を検出し、検出された欠陥を報告することを含めて、少なくとも1つのコンピューティングシステム260に検査システム200を制御させ、本明細書に記載の分析を含む機能を実行させるために、コンピューティングシステム260によって使用され得る。この詳細な説明において説明された1つ以上の行為を自動的に実装するためのデータ構造及びソフトウェアコードは、本開示に照らして当業者によって実装され、例えば、コンピューティングシステム260などのコンピュータシステムによって使用するためのコード及び/又はデータを記憶することができる任意のデバイス又は媒体であり得るコンピュータ使用可能記憶媒体、例えばメモリ264に記憶され得る。コンピュータ使用可能記憶媒体は、読出し専用メモリ、ランダムアクセスメモリ、ディスクドライブ、磁気テープ、などの磁気及び光学記憶デバイスを含み得るが、これらに限定されない。加えて、本明細書で説明される機能は、特定用途向け集積回路(application specific integrated circuit、ASIC)又はプログラマブルロジックデバイス(programmable logic device、PLD)の回路内で全体的又は部分的に具現化されてもよく、機能は、本明細書で説明されるように動作するASIC又はPLDを作成するために使用され得るコンピュータ理解可能記述子言語で具現化されてもよい。
【0032】
データの分析結果は、報告され得、例えば、基板202と関連付けられたメモリ264内に記憶され、及び/又はUI268、アラーム又は他の出力デバイスを介してユーザに示される。更に、分析の結果は報告され、プロセス装置にフィードフォワード又はフィードバックして、適切な製造ステップを調整して、製造プロセスで検出された任意の変動を補正し得る。コンピューティングシステム260は、例えば、インターネット又は任意の他のコンピュータネットワークへなどの、任意のタイプの通信接続であり得る通信ポート269を含み得る。通信ポート269は、本明細書で説明される機能のうちの任意の1つ以上を実行するようにコンピューティングシステム260をプログラムするために使用される命令を受信するために使用され得、及び/又は、例えば検査結果及び/若しくは命令を伴う信号を、フィードフォワード又はフィードバックプロセスにおいて、外部プロセスツールなどの別のシステムにエクスポートするために使用され得る。
【0033】
図3A及び
図3Bは、例として、それぞれ、第1の検出器216の出力に基づいて生成された画像300(欠陥マップ300と呼ばれることもある)及び第2の検出器226の出力に基づいて生成された画像310(欠陥マップ310と呼ばれることもある)を示す。
図3Aに示された画像300は、第1の光源210からの光212を使用して検出された近位面上の欠陥302、304、306、及び308の例を示す。
図3Bに示された画像310は、第2の光源220からの光222を使用した遠位面上又はその近くの欠陥312、314、及び316、並びに近位側信号の欠陥306及び308からのいくらかの残留信号を示す。
【0034】
したがって、2つの画像300及び310は、例えばコンピューティングシステム260によって比較され得、遠位面の画像内の任意の残留近位側信号を除去することができる。例えば、第1の検出器216及び第2の検出器226からの検査データに基づいて生成された2つの画像300及び310は、互いの上に重ね合わせることができる。画像300及び310の位置は、同じ検出光学系230が使用されるので、位置合わせされるべきである。近位面(
図2に図示された例では後側)で見つかった欠陥は、遠位面(
図2に図示された例では前側)から差し引かれ得る。
【0035】
図3Cは、例として、遠位面の修正された画像320を示す。画像320は、遠位面(ここでは、前面)上の欠陥312、314、及び316のみを示すが、これは、近位面(後面)内の欠陥306及び308からの残留信号が、2つの画像300及び310の比較に基づいて低減又は除去され得るためである。
【0036】
図4は、検出光学系230の第2の光源220及び楕円ミラー232と、基板202とを含む、検査システム200の一部の詳細図を示す。
図4は、第2の光源220によって生み出された斜め入射光222及び基板202の遠位面206から結果として生じる後方散乱光224、並びに第1の光源(
図4には図示せず)によって生み出された垂直(又は垂直に近い)入射光212及び基板202の近位面204から結果として生じる後方散乱光214、を示す。図示されるように、第2の光源220からの光222は、検出光学系230(楕円ミラー232によって示される)のx/y焦点の外側で近位面204に入射することができ、それによって、遠位/対向表面206を除いて光222による低減された欠陥散乱強度を生み出す。言い換えれば、検出光学系230に対する光222の横方向のX、Yオフセットに起因して、第2の光源220からの光222に応答する後方散乱光は、遠位面206から又はその近くから来る信号について検出光学系230によって集められる。
【0037】
また、基板202の近位面204に入射する第2の光源220によって生成された光222は、それ自体のz焦点の外側にあり得、遠位/対向表面206以外での欠陥散乱強度を更に低減する。したがって、第2のチャネルは、遠位/対向表面206において、及びその周りにおいて、増加した信号感度を有する。近位面204上のバルク及び欠陥は、第2のチャネルにおける信号感度を著しく低下させている。したがって、第2の光源220からの光222の斜めの入射角の使用は、同時の前面及び後面検査を可能にする。更に、第2の光源220の入射角を低減することによって(すなわち、その結果、光222はより斜めの角度で入射する)、感度は基板の厚さ全体にわたって増加する。バルク内の欠陥は、強い信号を生成する可能性があり、感度を高めて検出することができる。
【0038】
基板202の材料内の残留吸収に起因して、欠陥信号は、光222が基板202を通って進む距離が遠くなるほど減少する。他方、検出光学系230、例えば楕円ミラー232、のx/y/z焦点と併せた第2の光源220の入射角及び焦点アライメントは、反対の効果を引き起こす、すなわち、欠陥が遠位面206に近いほど、欠陥信号が強くなる。したがって、第2の光源220からの光222の入射角の意図的なアライメントが使用され得、その結果、両方の効果が互いに補償して、基板202を通るz軸に沿って同じ欠陥サイズの同じ強度の信号をもたらすことができる。信号強度は欠陥サイズに相関しており、したがって、検査システム200のサイズ精度は、欠陥のz位置に依存しなくなる可能性がある。
【0039】
図5は、
図2に示された検査システム200と同様であり得るが、斜め光522が通過する開口を有する検出光学系530を含み、基板502を保持するための後側真空チャック505を有する前面検査構成で示されている、検査システム500の一部を示す。色フィルタ及び検出器は、簡略化のために
図5には示されていない。
【0040】
図5は、検出光学系530の折り返しミラー534の開口535を通過する第1の光源510からの垂直(又は垂直に近い)入射光512を示す。
図5は、第2の光源520からの斜め入射光522を更に示す。
図5は、斜め入射光522に対する調整システムを示していないが、必要に応じて調整システムが存在してもよい。図示されるように、後方散乱光514及び524を集める検出光学系530の楕円ミラー532は、光522が通過して基板502に斜めに入射する第1の開口532aと、基板502から反射された光522が楕円ミラー532を出る第2の開口532bとを含む。所望であれば、開口532a及び532bは、入射角の変化に対応するために、例えばスリットのように拡張されてもよい。更に、開口532bは、基板502の近位(上)面504及び遠位(底)面506の両方から反射された光522が楕円ミラー532を通過して出ることができるように、拡張されてもよい。
【0041】
図6は、本明細書で説明する基板検査のための方法を示すフロー
図600である。例えば、本方法は、例えば、
図2及び
図4に示された検査システム200又は
図5に示された検査システム500などの検査システムを使用して、第1の表面(例えば、近位面)及び第2の表面(例えば、遠位面)又は第2の表面近くを検査する。
【0042】
ブロック602において、例えば、
図2に示された第1の光源210又は
図5に示された第1の光源510によって示される第1の波長の光を生成する手段によって、第1の角度で基板に向けられる第1の波長の光が生成される。
【0043】
ブロック604において、例えば、
図2に示された第2の光源220又は
図5に示された第2の光源520によって示される第2の波長の光を生成する手段によって、基板の第1の表面に対して斜角である第2の角度で基板に向けられる第2の波長の光が生成される。
【0044】
ブロック606において、例えば、
図2に示された調整システム250によって示される第2の角度を調整するための手段によって、第2の角度が調整されて、第2の波長の光を指定された場所に集束させる。
【0045】
ブロック608において、例えば、
図2に示された検出光学系230又は
図5に示された検出光学系530によって示される後方散乱光を集めるための手段によって、後方散乱光が、第1の波長及び第2の波長の光に応答して基板から集められる。
【0046】
ブロック610において、例えば、
図2に示された第1の検出器216及びコンピューティングシステム260によって示され、
図3Aに示された画像(欠陥マップ)300によって示される第1の画像を生成するための手段によって、基板の第1の表面を表す第1の画像が、第1のスペクトルの後方散乱光に基づいて生成される。
【0047】
ブロック612において、例えば、
図2に示された第2の検出器226及びコンピューティングシステム260によって示され、
図3Bに示された画像(欠陥マップ)310によって示される第2の画像を生成するための手段によって、基板の第2の表面又は第2の表面近くを表す第2の画像が、第2のスペクトルの後方散乱光に基づいて生成される。
【0048】
少なくとも第1の画像に基づいて、基板の第1の表面上の欠陥が、例えばコンピューティングシステム260によって検出され得る。更に、少なくとも第2の画像に基づいて、第2の表面上(又は第2の表面近く)の欠陥が、例えばコンピューティングシステム260によって検出され得る。いくつかの実装形態では、少なくとも第2の画像に基づいて、第1の表面と第2の表面(又は第2の表面近く)との間のバルク材料内の欠陥が、例えばコンピューティングシステム260によって検出され得る。いくつかの実装形態では、第2の表面(又は第2の表面近く)における欠陥、及び/又は第1の表面と第2の表面(又は第2の表面近く)との間のバルク材料内の欠陥は、第2の画像及び第1の画像を使用して検出され得る。第1の表面及び第2の表面(又は第2の表面近く)上に、及びいくつかの実装形態では、第1の表面と第2の表面との間のバルク材料で検出された欠陥は、基板に関して報告され得、例えば、基板の検査場所又は提供された欠陥の表示に関連付けられたメモリに記憶される。
【0049】
いくつかの実装形態では、基板は、例えば、
図2における光212及び光222を参照して説明したように、第1の波長の光に対して不透明であり、第2の波長の光に対して少なくとも部分的に透明であり得る。
【0050】
いくつかの実装形態では、基板からの後方散乱光は、例えば
図2に示された楕円ミラー232又は
図5に示された楕円ミラー532によって示されるような、楕円ミラーを用いて第1の表面からの後方散乱光及び第2の表面又は第2の表面近くからの後方散乱光を受光することによって集められ得る。加えて、楕円ミラーによって集められた後方散乱光は、例えば、
図2に示された折り返しミラー234及び開口235、又は
図5に示された折り返しミラー534及び開口535によって示されるように、中を通って第1の波長の光が第1の角度で基板に向けられる開口を備える少なくとも1つの折り返しミラーを用いて、少なくとも1つの検出器に向けられ得る。いくつかの実装形態では、楕円ミラーは、例えば
図5に示された楕円ミラー532及び開口532a並びに532bによって示されるように、中を通って第2の波長の光が第2の角度で基板に向けられる第1の開口と、中を通って、基板によって反射された第2の波長の光が楕円ミラーを出る第2の開口とを含み得る。いくつかの実装形態では、第2の波長の光は、例えば、
図2に示された光222及び楕円ミラー232によって示されるように、楕円ミラーと基板の第1の表面との間で第2の角度で基板に向けられ得る。
【0051】
いくつかの実装形態では、第1の角度は、
図2に示すように、第1の表面に対して垂直な又は垂直に近い角度である。いくつかの実装形態では、
図2を参照して説明したように、第1の波長は可視波長であり、第2の波長は赤外波長であり、第2のスペクトルの後方散乱光は、第2の角度で基板に向けられた第2の波長の光によって生み出される。
【0052】
いくつかの実装形態では、第1の波長の光は、基板の第1の表面又はその近くの第1の場所に集束され、第2の角度は、例えば、
図2に示され
図4で説明された調整システム250によって示されるように、第1の場所と共有される基板のz軸上にある基板の第2の表面又はその近くの指定された場所に第2の波長の光を集束させるように第2の角度を調整することによって調整される。
【0053】
いくつかの実装形態では、第1の表面上の欠陥の残留信号について補正された基板の第2の表面の上又は近くの欠陥を表す第3の画像が、例えば
図2を参照して説明され、
図3Cに示された画像(欠陥マップ)320によって示されるように、第1の画像と第2の画像との比較に基づいて生成され得る。
【0054】
この概要は、本特許出願の主題の大要を提供することを意図している。排他的又は網羅的な説明を提供することは意図されていない。詳細な説明は、本特許出願についての更なる情報を提供するために含まれている。
【0055】
本明細書又は添付の付録のうちの1つ以上に記載されている非限定的な態様の各々は、それ自体で成立することができるか、又は本文書に説明される他の態様若しくは他の主題のうちの1つ以上との様々な並べ替え若しくは組み合わせにおいて、組み合わせることができる。
【0056】
上記の詳細な説明は、詳細な説明の一部を形成する添付図面への参照を含む。図面は、例解として、実施され得る特定の実装形態を示す。これらの実装形態は、一般に「例」とも称される。そのような例は、図示又は説明されたものに加えて、要素を含み得る。しかしながら、例は、図示又は説明された要素のみが提供されていることが企図されている。更に、例はまた、本明細書に図示若しくは説明される特定の例(又はその1つ以上の態様)に関してか、又は他の例(又はその1つ以上の態様)に関してのいずれかで図示又は説明される要素(又はその1つ以上の態様)の任意の組み合わせ又は並べ替えを使用することが企図されている。
【0057】
本文書において、「a」又は「an」という用語は、「少なくとも1つの」又は「1つ以上」の任意の他の例又は使用とは独立して、1つ又は2つ以上を含むように、特許文書において一般的であるように使用される。本文書では、「又は」という用語は、非排他的であることを指すのに用いられており、そのため、別段の記載がない限り、「A又はB」は、「AであるがBではない」、「BであるがAではない」、及び「A及びB」を含む。本文書において、「including(含む)」及び「in which」という用語は、「comprising(備える/含む)」及び「wherein」というそれぞれの用語の平易な英語の等価物として使用されている。また、以下の態様では、「including(含む)」及び「comprising(備える/含む)」という用語は、オープンエンドであり、すなわち、ある態様におけるそのような用語の後に列挙された要素に加えて、要素を含むシステム、デバイス、物品、組成物、製剤、又はプロセスが、依然としてその特許請求の範囲に含まれるとみなされる。更に、以下の態様では、「第1」、「第2」、及び「第3」などの用語は、単に標識として使用され、それらの物体に数値要件を課すことを意図するものではない。
【0058】
本明細書に説明される方法の例は、少なくとも部分的に機械実装、又はコンピュータ実装され得る。いくつかの例は、上記の例に説明されるような方法を実行するように電子デバイスを構成するように動作可能な命令で符号化されたコンピュータ可読媒体又は機械可読媒体を含み得る。そのような方法の実装形態は、マイクロコード、アセンブリ言語コード、より高いレベルの言語コードなどのコードを含み得る。そのようなコードは、様々な方法を実行するためのコンピュータ可読命令を含み得る。コードは、コンピュータプログラム製品の部分を形成し得る。更に、一例では、コードは、例えば、実行中又は他の時間に、1つ以上の揮発性、非一時的、又は不揮発性の有形のコンピュータ可読媒体上に有形的に記憶され得る。これらの有形のコンピュータ可読媒体の例としては、ハードディスク、リムーバブル磁気ディスク、リムーバブル光ディスク(例えば、コンパクトディスク及びデジタルビデオディスク)、磁気カセット、メモリカード又はスティック、ランダムアクセスメモリ(random access memory、RAM)、読み取り専用メモリ(read only memory、ROM)などが挙げられ得るが、これらに限定されない。
【0059】
上記の説明は、例解的であり、限定的ではないことを意図している。例えば、上記の例(又はその1つ以上の態様)は、互いに組み合わせて使用され得る。他の実装形態が、上記の説明を検討する際に、例えば、当業者によって、使用され得る。また、上記の発明を実施するための形態では、本開示を効率化するために、様々な特徴が一緒にグループ化され得る。本発明の主題は、特定の開示された実装形態の全ての特徴よりも少ない特徴に存在し得る。したがって、以下の態様は、例又は実装形態として発明を実施するための形態に組み込まれ、各態様は、別個の実装形態としてそれ自体で成立し、そのような実装形態は、様々な組み合わせ又は並び替えで互いに組み合わされ得ることが企図される。したがって、添付の特許請求の範囲の趣旨及び範囲は、前述の説明に限定されるべきではない。