(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-11
(45)【発行日】2024-11-19
(54)【発明の名称】エピタキシャルシリコンウェーハの製造方法
(51)【国際特許分類】
H01L 21/31 20060101AFI20241112BHJP
H01L 21/205 20060101ALI20241112BHJP
H01L 21/316 20060101ALI20241112BHJP
C30B 25/02 20060101ALI20241112BHJP
C30B 29/06 20060101ALI20241112BHJP
【FI】
H01L21/31 B
H01L21/205
H01L21/316 X
H01L21/316 S
C30B25/02
C30B29/06 504A
(21)【出願番号】P 2021140104
(22)【出願日】2021-08-30
【審査請求日】2023-10-16
(73)【特許権者】
【識別番号】302006854
【氏名又は名称】株式会社SUMCO
(74)【代理人】
【識別番号】100115738
【氏名又は名称】鷲頭 光宏
(74)【代理人】
【識別番号】100121681
【氏名又は名称】緒方 和文
(72)【発明者】
【氏名】内田 晋二郎
(72)【発明者】
【氏名】岩本 幸也
【審査官】桑原 清
(56)【参考文献】
【文献】特開2010-135533(JP,A)
【文献】特開2011-044606(JP,A)
【文献】特開2002-009051(JP,A)
【文献】特開2014-041866(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/31
H01L 21/205
H01L 21/316
C30B 25/02
C30B 29/06
(57)【特許請求の範囲】
【請求項1】
ドーパントを含む抵抗率が0.02Ωcm以下のシリコン基板の裏面に裏面酸化膜を形成するステップと、
前記シリコン基板の表面に第1エピタキシャル層を形成するステップと、
前記第1エピタキシャル層の表面に第1表面酸化膜を形成するステップと、
前記第1表面酸化膜をパターニングして前記第1エピタキシャル層の表面を部分的に露出させるステップと、
前記第1エピタキシャル層の露出面に第2表面酸化膜を形成するステップと、
前記第1表面酸化膜と共に前記第2表面酸化膜をドライエッチングにより除去することにより前記第1エピタキシャル層の表面に凹部からなるアライメントマークを形成するステップと、
前記第1エピタキシャル層の表面に残留する前記第1表面酸化膜をウェットエッチングにより除去するステップと、
前記アライメントマークの位置を基準にして、前記第1エピタキシャル層の表面の所定の領域に不純物拡散層を形成するステップと、
前記第1エピタキシャル層の表面に第2エピタキシャル層を形成して前記不純物拡散層を埋め込むステップとを備えることを特徴とするエピタキシャルシリコンウェーハの製造方法。
【請求項2】
前記裏面酸化膜が形成された前記シリコン基板の裏面側を静電チャックした状態で前記ドライエッチングを行う、
請求項1に記載のエピタキシャルシリコンウェーハの製造方法。
【請求項3】
前記ドライエッチングを行う直前における前記裏面酸化膜と前記第1表面酸化膜との膜厚差が200nm以下である、
請求項1又は2に記載のエピタキシャルシリコンウェーハの製造方法。
【請求項4】
前記第1エピタキシャル層を形成する直前における前記裏面酸化膜の厚さが400nm以上である、
請求項1乃至3のいずれか一項に記載のエピタキシャルシリコンウェーハの製造方法。
【請求項5】
前記第2エピタキシャル層を形成する直前における前記裏面酸化膜の厚さが400nm以上である、
請求項1乃至4のいずれか一項に記載のエピタキシャルシリコンウェーハの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、エピタキシャルシリコンウェーハ及びその製造方法に関し、特に、不純物がイオン注入された埋め込み拡散層を有するエピタキシャルシリコンウェーハの製造方法に関する。
【背景技術】
【0002】
チョクラルスキー法(CZ法)や浮遊帯域溶融法(FZ法)により製造されたシリコン単結晶インゴットから得られるシリコンウェーハに不純物拡散層を形成し、その上からエピタキシャル層を気相成長させて、バイポーラデバイス、BiCMOSデバイス、パワーIC等のデバイス用のエピタキシャルシリコンウェーハを得る技術が知られている。例えば、特許文献1には埋め込み拡散層の形成方法の一例が開示されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
多量のドーパントを含む低抵抗率(0.02Ωcm以下)のシリコン基板を用いてエピタキシャルシリコンウェーハを製造する場合、エピタキシャル層の気相成長中にシリコン基板中のドーパントが外方拡散してエピタキシャル層中に取り込まれる、いわゆるオートドープが問題となる。また、オートドープはエピタキシャル層形成時だけでなく、デバイス製造プロセスにおいても問題となる。オートドープを防止するためには、シリコン基板の裏面に厚さが200~800nm程度の酸化膜が形成されていることが必要である。
【0005】
しかしながら、エピタキシャル層の表面に酸化膜が形成されている場合において、この酸化膜をウェットエッチングにより除去しようとすると、シリコン基板の裏面に形成されたオートドープ防止用の酸化膜も一緒に除去されてしまい、シリコン基板の裏面に十分な厚さの裏面酸化膜を残すことができないという問題がある。
【0006】
エピタキシャル層の表面に形成される酸化膜は、例えば、エピタキシャル層の表面に凹部(段差パターン)を形成するための酸化膜マスクとして用いられる。凹部は、酸化膜マスクを用いたエピタキシャル層のパターニングにより形成することができ、埋め込み拡散層の形成位置を特定するためのアライメントマークとして機能する。また、エピタキシャル層の表面には、不純物拡散層を形成する際に犠牲酸化膜が形成されることもある。このようなエピタキシャル層の表面に形成される酸化膜をウェットエッチングにより除去しようとすると、酸化膜マスクと共にシリコン基板の裏面側の酸化膜も除去されてしまう。特にエピタキシャル層の表面に酸化膜が厚く形成され、裏面酸化膜との膜厚差が小さい場合には、裏面酸化膜の消滅又は薄化によるオートドープの問題が顕著である。
【0007】
したがって、本発明の目的は、シリコン基板の裏面側に適切な厚さの裏面酸化膜を残しながら表面酸化膜を除去することが可能な、埋め込み拡散層を有するエピタキシャルシリコンウェーハの製造方法を提供することにある。また、本発明の目的は、低抵抗率のシリコン基板を用いて構成され、且つエピタキシャル層の抵抗率が安定した、埋め込み拡散層を有するエピタキシャルシリコンウェーハを提供することにある。
【課題を解決するための手段】
【0008】
上記課題を解決するため、本発明によるエピタキシャルシリコンウェーハの製造方法は、ドーパントを含む抵抗率が0.02Ωcm以下のシリコン基板の裏面に裏面酸化膜を形成するステップと、前記シリコン基板の表面に第1エピタキシャル層を形成するステップと、前記第1エピタキシャル層の表面に第1表面酸化膜を形成するステップと、前記第1表面酸化膜をドライエッチングするステップと、前記第1表面酸化膜をドライエッチングした後又は前において前記第1エピタキシャル層の表面の所定の領域に不純物拡散層を形成するステップと、前記第1エピタキシャル層の表面に第2エピタキシャル層を形成して前記不純物拡散層を埋め込むステップとを備えることを特徴とする。
【0009】
本発明によれば、第1表面酸化膜を除去する際に裏面酸化膜も一緒に除去されてしまうことで裏面酸化膜が消滅又は薄化してしまう事態を防止することができる。したがって、エピタキシャル成長中にシリコン基板中のドーパントが外方拡散して第2エピタキシャル層の抵抗率が変動するオートドープの問題を解決することができる。
【0010】
本発明によるエピタキシャルシリコンウェーハの製造方法は、前記第1表面酸化膜を形成した後であって前記不純物拡散層を形成する前に、前記第1表面酸化膜をパターニングして前記第1エピタキシャル層の表面の所定の領域を露出させるステップと、前記第1エピタキシャル層の露出面に第2表面酸化膜を形成するステップと、前記第1表面酸化膜と共に前記第2表面酸化膜をドライエッチングにより除去することにより前記第1エピタキシャル層の表面に凹部からなるアライメントマークを形成するステップと、前記第1エピタキシャル層の表面に残留する前記第1表面酸化膜をウェットエッチングにより除去するステップとをさらに備えることが好ましい。本発明によれば、アライメントマークを形成するための酸化膜マスクとして用いられる第1表面酸化膜を除去する際に裏面酸化膜の消滅又は薄化を防止して裏面酸化膜のオートドープ防止機能を維持することができる。
【0011】
本発明によるエピタキシャルシリコンウェーハの製造方法は、前記第1エピタキシャル層を形成した後であって前記第1表面酸化膜を形成する前に、レジストマスクを用いたパターニングにより前記第1エピタキシャル層の表面に凹部からなるアライメントマークを形成するステップをさらに備え、前記第1表面酸化膜は、前記アライメントマークが形成された前記第1エピタキシャル層の表面に形成され、前記不純物拡散層の形成は、前記第1表面酸化膜をドライエッチングする前に行われることが好ましい。本発明によれば、不純物拡散層を形成するための犠牲酸化膜として用いられる第1表面酸化膜を除去する際に裏面酸化膜の消滅又は薄化を防止して裏面酸化膜のオートドーム防止機能を維持することができる。
【0012】
本発明によるエピタキシャルシリコンウェーハの製造方法は、前記裏面酸化膜が形成された前記シリコン基板の裏面側を静電チャックに吸着させた状態で前記ドライエッチングを行うことが好ましい。このように、シリコン基板の裏面側を静電チャックに吸着させた状態でドライエッチングを実施することにより、裏面酸化膜の消滅又は薄化を防止しながら表面酸化膜を除去することができる。
【0013】
本発明によるエピタキシャルシリコンウェーハの製造方法は、前記ドライエッチングの後にウェットエッチングを行って前記第1エピタキシャル層の表面に残留する前記第1表面酸化膜をさらに除去するステップをさらに備え、前記第2エピタキシャル層を形成するステップは前記ウェットエッチングの後に行われることが好ましい。このように、ドライエッチングの後にウェットエッチングを行うことにより、第1表面酸化膜を完全に除去することができる。また、ウェットエッチングによる裏面酸化膜のエッチング量を減らすことにより、シリコン基板の裏面に十分な厚さの裏面酸化膜を残すことができる。
【0014】
本発明において、前記ドライエッチングを行う直前における前記裏面酸化膜と前記第1表面酸化膜との膜厚差は200nm以下であることが好ましい。このように、裏面酸化膜と第1表面酸化膜との膜厚差が小さい場合でも、裏面酸化膜の厚さを十分に確保しながら表面酸化膜を除去することができる。
【0015】
前記第1エピタキシャル層を形成する直前における前記裏面酸化膜の厚さは400nm以上であることが好ましい。これにより、第1エピタキシャル層の気相成長中のオートドープを防止することができる。
【0016】
前記第2エピタキシャル層を形成する直前における前記裏面酸化膜の厚さは400nm以上であることが好ましい。これにより、第2エピタキシャル層の気相成長中のオートドープを防止することができる。
【0017】
また、本発明によるエピタキシャルシリコンウェーハは、ドーパントを含む抵抗率が0.02Ωcm以下のシリコン基板と、前記シリコン基板の表面に形成されたエピタキシャル層と、前記エピタキシャル層の内部に埋め込まれた不純物拡散層と、前記エピタキシャル層の表面に形成された凹部からなるアライメントマークと、前記シリコン基板の裏面に形成された厚さが400nm以上の裏面酸化膜とを備えることを特徴とする。
【0018】
本発明によれば、エピタキシャルシリコンウェーハの製造過程で裏面酸化膜がエピタキシャル層のオートドープを防止するための保護膜として有効に機能するので、エピタキシャル層の抵抗率が安定した高品質な埋め込み不純物拡散層を有するエピタキシャルシリコンウェーハを提供することができる。また、デバイス製造プロセスにおいてもオートドープを防止するのに十分な厚さの裏面酸化膜を具えたエピタキシャルシリコンウェーハとなる。
【発明の効果】
【0019】
本発明によれば、シリコン基板の裏面側に所望の厚さの裏面酸化膜を残しながら表面酸化膜を確実に除去することが可能な、埋め込み拡散層を有するエピタキシャルシリコンウェーハの製造方法を提供することができる。また、本発明によれば、低抵抗率のシリコン基板を用いて構成され、エピタキシャル層の抵抗率が安定した、埋め込み拡散層を有するエピタキシャルシリコンウェーハを提供することにある。
【図面の簡単な説明】
【0020】
【
図1】
図1は、本発明の実施の形態によるエピタキシャルシリコンウェーハの構成を示す略断面図である。
【
図2】
図2は、本発明の実施の形態によるエピタキシャルシリコンウェーハの製造方法を概略的に説明するための工程図である。
【
図3】
図3は、エピタキシャルシリコンウェーハの各製造工程実施後の表面酸化膜及び裏面酸化膜の厚さの変化を示す棒グラフである。
【発明を実施するための形態】
【0021】
以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。
【0022】
図1は、本発明の実施の形態によるエピタキシャルシリコンウェーハの構成を示す略断面図である。
【0023】
図1に示すように、本実施形態によるエピタキシャルシリコンウェーハ10は、埋め込み拡散層を有するエピタキシャルウェーハであって、シリコン基板11と、シリコン基板11の表面11aに形成されたエピタキシャル層12と、エピタキシャル層12中に埋め込まれた不純物拡散層13と、エピタキシャル層12の表面に形成されたアライメントマーク14と、シリコン基板11の裏面11bに形成された裏面酸化膜15とを備えている。
【0024】
シリコン基板11は、p型又はn型のドーパントを含む抵抗率が0.02Ωcm以下の単結晶シリコンウェーハである。ドーパントはp型ドーパントであるボロン(B)又はガリウム(Ga)であってもよく、n型ドーパントであるリン(P)、アンチモン(Sb)又はヒ素(As)であってもよい。さらに、シリコン基板11には同一の導電型又は逆の導電型を有する複数種類のドーパントが含まれていてもよく、窒素や炭素などのドーパント以外の不純物が含まれていてもよい。このような低抵抗率のシリコン基板は、バイポーラデバイス、BiCMOSデバイス、パワーIC等の基板材料として好適である。
【0025】
エピタキシャル層12は、シリコン基板11の表面11aに気相成長させた単結晶シリコン薄膜である。エピタキシャル層12の厚さは1~50μmであることが好ましい。エピタキシャル層12は、特性が異なる複数のエピタキシャル層が積層された多層構造であってもよい。エピタキシャル層12はp型ドーパント(ボロン)あるいはn型ドーパント(リン、砒素、アンチモン)を含み、その抵抗率は0.1~100Ωcmであることが好ましい。通常、エピタキシャル層12の抵抗率はシリコン基板11よりも高く設定される。
【0026】
不純物拡散層13は、エピタキシャル層12中にn型又はp型の不純物(ドーパント)を拡散させた層である。不純物拡散層13はシリコン基板11上の所定の領域に選択的に形成されている。不純物拡散層13の厚さ(深さ)は特に限定されないが、0.1~10nmであることが好ましい。
【0027】
アライメントマーク14は、エピタキシャル層12中に埋め込まれた不純物拡散層13の形成位置に対する基準位置を示すために設けられるものである。アライメントマーク14は、エピタキシャル層12の表面に形成された凹部(段差パターン)からなり、例えば平面視で十字形状を有している。アライメントマーク14の平面形状は特に限定されず、画像処理により認識しやすい形状であればどのような形状であってもよい。
【0028】
裏面酸化膜15は、オートドープ防止用の保護膜であり、シリコン基板11の裏面11bの全面を覆っている。シリコン基板11の裏面11bが露出している場合、エピタキシャル層12の気相成長中にシリコン基板11中のドーパントが裏面11b側から揮散して表面11a側に回り込み、エピタキシャル層12中に取り込まれることでエピタキシャル層12の抵抗率を変動(低下)させる原因となる。しかし、シリコン基板11の裏面に裏面酸化膜15が形成されている場合には、エピタキシャル層12の抵抗率の変動を防止することができる。
【0029】
裏面酸化膜15の初期厚さは400nm以上であることが好ましい。裏面酸化膜15の初期厚さが400nm以下の場合には、その後の加工工程で裏面酸化膜15が薄くなったときにオートドープ抑制効果を維持できないおそれがあるからである。
【0030】
図2は、本発明の実施の形態によるエピタキシャルシリコンウェーハ10の製造方法を概略的に説明するための工程図である。
【0031】
図2に示すように、本実施の形態によるエピタキシャルシリコンウェーハ10の製造では、まず抵抗率が0.02Ωcm以下のシリコン基板11を用意する(ステップS1)。シリコン基板11は、例えばCZ法やFZ法で育成されたシリコン単結晶インゴットを所定の厚さスライスした後、研削、研磨、エッチング、洗浄等の加工工程を経ることにより製造することができる。シリコン単結晶インゴットの製造では、所望の結晶直径、結晶方位、抵抗率等が得られるように、結晶育成条件が適宜設定される。
【0032】
次に、シリコン基板11の裏面11bに裏面酸化膜15を形成する(ステップS2)。裏面酸化膜15の形成方法は特に限定されないが、例えばシリコン基板11の裏面11bに酸化膜を枚葉式常圧CVD(Chemical Vapor Deposition)により形成した後、シリコン基板11の表面11aに回り込んだ酸化膜を研磨して除去することにより形成することができる。裏面酸化膜15の初期厚さは400nm以上であることが好ましい。
【0033】
次に、シリコン基板11の表面11aに第1エピタキシャル層12Aを気相成長法により形成する(ステップS3)。第1エピタキシャル層12Aの厚さは0.4~30μmであることが好ましい。第1エピタキシャル層12Aの具体的な形成方法は特に限定されないが、例えば、シリコン基板11がセットされた反応室内に原料ガスとしてのSiHCl3を水素キャリアガスと共に供給することにより形成することができる。第1エピタキシャル層12Aの気相成長中はシリコン基板11が約1100~1200℃の高温に加熱されるため、多量のドーパントを含む低抵抗率のシリコン基板11を用いる場合にはオートドープの問題がある。しかし、シリコン基板11の裏面11bに厚さが400nm以上の十分な厚さの裏面酸化膜15が形成されているので、オートドープを防止することができる。
【0034】
次に、第1エピタキシャル層12Aの表面に第1表面酸化膜16Aを形成する(ステップS4)。第1表面酸化膜16Aは熱酸化により形成することができる。第1表面酸化膜16Aの初期厚さは200~1000nmであることが好ましい。その後、フォトリソグラフィ及びドライエッチングにより第1表面酸化膜16Aをパターニングして酸化膜マスクを形成する(ステップS5)。こうして、第1エピタキシャル層12Aの表面の一部の領域を露出させる。
【0035】
次に、第1エピタキシャル層12Aの露出面を熱酸化して第2表面酸化膜16Bを形成する(ステップS6)。第2表面酸化膜16Bの厚さは200~1000nmであることが好ましい。このとき、第1表面酸化膜16Aも厚くなるが、その増加分は第2表面酸化膜16Bの厚さと同じではなく、第2表面酸化膜16Bの厚さ未満となる。
【0036】
次に、第2表面酸化膜16Bをドライエッチングにより除去することにより、第1エピタキシャル層12Aの表面にアライメントマーク14を形成する(ステップS7)。アライメントマーク14の平面形状は特に限定されないが、例えば十字パターンが好適である。
【0037】
第2表面酸化膜16Bの除去時には第1表面酸化膜16Aも一緒に除去される。本実施形態では、第1表面酸化膜16Aは完全に除去されず、図示のように、第1エピタキシャル層12Aの表面に薄く残っているが、完全に除去されてもよい。
【0038】
第2表面酸化膜16Bのドライエッチングではシリコン基板11の裏面11b側を静電チャック20に吸着させた状態で第1表面酸化膜16Aのドライエッチングを行うので、裏面酸化膜15はエッチングされない。したがって、裏面酸化膜15の膜厚を維持しながら第1及び第2表面酸化膜16A,16Bを除去することができる。
【0039】
第1表面酸化膜16Aが厚く形成され、ドライエッチングを行う直前における裏面酸化膜15と第1表面酸化膜16Aとの膜厚差は200nm以下である場合、第1表面酸化膜16Aをウェットエッチングで完全に除去しようとすると、厚さが200nm以上の裏面酸化膜15を残すことができない。しかし、ドライエッチングであれば200nm以上の裏面酸化膜15を残すことが可能である。
【0040】
次に、ウェットエッチングを行って第1エピタキシャル層12Aの表面に残留する第1表面酸化膜16Aを完全に除去する(ステップS8)。ウェットエッチングでは第1表面酸化膜16Aのみならず裏面酸化膜15もエッチングされるが、エッチング量を数百nmにできるため、シリコン基板11の裏面11bには十分な厚さの裏面酸化膜15が残る。
【0041】
次に、第1エピタキシャル層12Aの表面の所定の領域に不純物拡散層13を形成する(ステップS9)。不純物拡散層13は、フォトリソグラフィによって形成した所望の領域にp型又はn型の不純物(ドーパント)をイオン注入した後、不純物を熱拡散させることにより形成することができる。
【0042】
次に、第1エピタキシャル層12A上に第2エピタキシャル層12Bをさらに成長させる(ステップS10)。第2エピタキシャル層12Bの厚さは0.4~30μmであることが好ましい。第2エピタキシャル層12Bも第1エピタキシャル層12Aと同様に形成することができる。こうして、不純物拡散層13が埋め込まれたエピタキシャル層12が形成される。また、第1エピタキシャル層12Aの表面の段差パターンも第2エピタキシャル層12Bに引き継がれ、第2エピタキシャル層12Bの表面にはアライメントマーク14が形成される。以上により、本実施形態によるエピタキシャルシリコンウェーハ10が完成する。
【0043】
第2エピタキシャル層12Bの気相成長中はシリコン基板11が約1100~1200℃の高温に加熱されるため、多量のドーパントを含む低抵抗率のシリコン基板11を用いる場合には、オートドープの問題がある。しかし、シリコン基板11の裏面11bに厚さが400nm以上の十分な厚さの裏面酸化膜15が形成されているので、オートドープを防止することができる。
【0044】
上記のように、エピタキシャル層12の表面に形成された酸化膜(第1表面酸化膜16Aおよび第2表面酸化膜16B)をウェットエッチングで除去しようとすると、裏面酸化膜15まで除去されてしまい、その後のエピタキシャル工程でシリコン基板11中のドーパントが外方拡散してエピタキシャル層12に取り込まれるおそれがある。しかし、本実施形態においては、第1表面酸化膜16Aおよび第2表面酸化膜16Bをドライエッチングにより除去するので、裏面酸化膜15の消滅又は薄化を防止してオートドープの問題を解決することができる。
【0045】
以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。例えば、第1エピタキシャル層12Aを形成した後であって第1表面酸化膜16Aを形成する前に、第1エピタキシャル層12Aの表面にアライメントマーク14を形成するステップを設けても良いし、不純物拡散層13の形成を第1表面酸化膜16Aのドライエッチング前に行っても良い。
【実施例】
【0046】
CZ法により製造された直径300mmの<100>シリコンウェーハからなるシリコン基板を用意した。このシリコン基板はn型ドーパントである砒素(As)を多量に含むもので、抵抗率は0.003Ωcmであった。
【0047】
次に、シリコン基板の裏面に約400nmの裏面酸化膜(LTO膜)を形成し、さらにシリコン基板の表面にリン(P)をドープした抵抗率が3.0Ωcm、厚さが9μmの第1エピタキシャル層をCVD(Chemical Vapor Deposition)法により形成した。
【0048】
その後、第1エピタキシャル層の表面に厚さ496nmの第1表面酸化膜を熱酸化により形成した。この熱酸化により裏面酸化膜も厚くなり、裏面酸化膜の厚さは約400nmから648nmに増加した。この第1表面酸化膜をフォトリソグラフィ及びドライエッチングにより加工してアライメントマークに対応する開口パターンを形成した。
【0049】
次に、シリコン基板を熱酸化して第1エピタキシャル層の露出面に厚さ約500nmの第2表面酸化膜を形成した。この熱酸化により裏面酸化膜及び第1表面酸化膜も厚くなり、裏面酸化膜の厚さは648nmから839nmに、また第1表面酸化膜の厚さは496nmから721nmにそれぞれ増加した。
【0050】
次に、ドライエッチングにより第2表面酸化膜を除去して凹部からなるアライメントマークを形成した。このドライエッチングにより、第1表面酸化膜の厚さも721nmから118nmまで減少したが、裏面酸化膜の厚さは839nmのままであった。その後、ウェットエッチングにより第1表面酸化膜を完全に除去した。このとき、第1表面酸化膜のエッチング量が200nm程度となるようにエッチング条件を制御した。これにより、裏面酸化膜の厚さが839nmから562nmまで減少した。
【0051】
次に、レジストマスクを用いたボロン(B)の選択的なイオン注入により第1エピタキシャル層の表面の所定の領域に不純物拡散層を形成した。続いて、第1エピタキシャル層上にリンをドープした抵抗率3Ωcm、厚さ4μmの第2エピタキシャル層を形成し、さらにリンをドープした抵抗率0.8Ωcm、厚さ5μmの第3エピタキシャル層を形成した。
【0052】
図3は、エピタキシャルシリコンウェーハの各製造工程実施後の表面酸化膜及び裏面酸化膜の厚さの変化を示す棒グラフであって、各工程における一対の棒グラフのうち左側のグラフは第1表面酸化膜の厚さ、右側のグラフは裏面酸化膜の厚さをそれぞれ示している。
図3から明らかなように、裏面酸化膜はエピタキシャルシリコンウェーハの完成まで初期膜厚400nmを下回ることがなく、十分な厚さの裏面酸化膜を残すことができることが分かった。また、第1~第3エピタキシャル層の形成後に拡がり抵抗測定器で測定した表面のエピ層の抵抗率分布に異常が見られず、オートドープが発生していないことを確認できた。
【符号の説明】
【0053】
10 エピタキシャルシリコンウェーハ
11 シリコン基板
11a シリコン基板の表面
11b シリコン基板の裏面
12 エピタキシャル層
12A 第1エピタキシャル層
12B 第2エピタキシャル層
13 不純物拡散層
14 アライメントマーク
15 裏面酸化膜
16A 第1表面酸化膜
16B 第2表面酸化膜
17 レジストマスク
20 静電チャック