IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ クリー インコーポレイテッドの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-12
(45)【発行日】2024-11-20
(54)【発明の名称】炭化ケイ素結晶材料の転位分布
(51)【国際特許分類】
   C30B 29/36 20060101AFI20241113BHJP
   C30B 23/06 20060101ALI20241113BHJP
【FI】
C30B29/36 A
C30B23/06
【請求項の数】 42
(21)【出願番号】P 2022546447
(86)(22)【出願日】2021-01-12
(65)【公表番号】
(43)【公表日】2023-03-27
(86)【国際出願番号】 US2021013022
(87)【国際公開番号】W WO2021154484
(87)【国際公開日】2021-08-05
【審査請求日】2022-09-12
(31)【優先権主張番号】16/775,407
(32)【優先日】2020-01-29
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】592054856
【氏名又は名称】ウルフスピード インコーポレイテッド
【氏名又は名称原語表記】WOLFSPEED,INC.
(74)【代理人】
【識別番号】100118902
【弁理士】
【氏名又は名称】山本 修
(74)【代理人】
【識別番号】100106208
【弁理士】
【氏名又は名称】宮前 徹
(74)【代理人】
【識別番号】100196508
【弁理士】
【氏名又は名称】松尾 淳一
(74)【代理人】
【識別番号】100133765
【弁理士】
【氏名又は名称】中田 尚志
(72)【発明者】
【氏名】フレーブニコフ,ユーリ
(72)【発明者】
【氏名】レナード,ロバート・タイラー
(72)【発明者】
【氏名】バルカス,エリフ
(72)【発明者】
【氏名】グリフィス,スティーブン
(72)【発明者】
【氏名】ツベトコフ,バレリ
(72)【発明者】
【氏名】ペイズリー,マイケル
【審査官】大西 美和
(56)【参考文献】
【文献】特開2018-039715(JP,A)
【文献】国際公開第2017/057742(WO,A1)
【文献】Sumakeris J. J. et al,Dislocation Characterization in 4H-SiC Crystals,Materials Science Forum,2016年05月24日,Vol. 858,pp 393-396
(58)【調査した分野】(Int.Cl.,DB名)
C30B 1/00-35/00
(57)【特許請求の範囲】
【請求項1】
炭化ケイ素(SiC)ウェハであって、少なくとも145ミリメートル(mm)である直径と、幅が1mmであり、外径が前記SiCウェハの中心から3mm~50mmを含む範囲内のウェハ半径方向位置に相当するいずれの環状リング部においても1平方センチメートル(cm)あたり3000以下である全転位密度(TDD)と、を有し、
前記TDDは、マイクロパイプ、貫通刃状転位、貫通らせん転位、及び基底面転位の合計数である、
炭化ケイ素(SiC)ウェハ。
【請求項2】
前記TDDが、幅が1mmであり、前記外径が前記SiCウェハの前記中心から3mmの位置~前記SiCウェハの周縁部から2mmの位置を含む範囲内のウェハ半径方向位置に相当するいずれの環状リング部においても、1cmあたり3000以下である、請求項1に記載のSiCウェハ。
【請求項3】
前記TDDが、幅が1mmであり、前記外径が前記SiCウェハの前記中心から3mm~50mmを含む範囲内の前記ウェハ半径方向位置に相当するいずれの環状リング部においても、1cmあたり2500以下である、請求項1に記載のSiCウェハ。
【請求項4】
前記TDDが、幅が1mmであり、前記外径が前記SiCウェハのすべてのウェハ半径方向位置の少なくとも50%に対する前記ウェハ半径方向位置に相当するいずれの環状リング部においても、1cmあたり2000以下である、請求項1に記載のSiCウェハ。
【請求項5】
前記TDDが、幅が1mmであり、前記外径が前記SiCウェハのすべての半径方向位置の少なくとも50%に対する前記ウェハ半径方向位置に相当するいずれの環状リング部においても、1cmあたり1500以下である、請求項1に記載のSiCウェハ。
【請求項6】
前記直径が、145mm~205mmを含む範囲内である、請求項1に記載のSiCウェハ。
【請求項7】
前記直径が、145mm~155mmを含む範囲内である、請求項1に記載のSiCウェハ。
【請求項8】
4H-SiCウェハを含む、請求項1に記載のSiCウェハ。
【請求項9】
半絶縁性SiCを含む、請求項1に記載のSiCウェハ。
【請求項10】
n型SiCを含む、請求項1に記載のSiCウェハ。
【請求項11】
前記TDDが、1000cm以上である、請求項1に記載のSiCウェハ。
【請求項12】
炭化ケイ素(SiC)ウェハであって、少なくとも145ミリメートル(mm)である直径と、ウェハ領域において0.3以下である全転位密度(TDD)の変動係数と、を有し、
前記ウェハ領域は、幅が1mmの環状リング部に分割され、前記SiCウェハの中心から3mm及び前記SiCウェハの周縁部から2mmのウェハ半径方向位置による境界線で囲まれている領域であり、
前記変動係数は、前記環状リング部における平均TDD値に対する標準偏差の比として定義され、前記TDDは、マイクロパイプ、貫通刃状転位、貫通らせん転位、及び基底面転位の合計数である、
炭化ケイ素(SiC)ウェハ。
【請求項13】
前記変動係数が、0.2以下である、請求項12に記載のSiCウェハ。
【請求項14】
前記変動係数が、0.1以上である、請求項12に記載のSiCウェハ。
【請求項15】
前記TDDが、幅が1mmであり、外径が前記SiCウェハの前記中心から3mm~50mmを含む範囲内のウェハ半径方向位置に相当するいずれの環状リング部においても、1平方センチメートル(cm)あたり3000以下である、請求項12に記載のSiCウェハ。
【請求項16】
前記TDDが、幅が1mmであり、外径が前記SiCウェハのすべてのウェハ半径方向位置の少なくとも50%に対する前記ウェハ半径方向位置に相当するいずれの環状リング部においても、1平方センチメートル(cm)あたり2000以下である、請求項12に記載のSiCウェハ。
【請求項17】
4H-SiCウェハを含む、請求項12に記載のSiCウェハ。
【請求項18】
半絶縁性SiCを含む、請求項12に記載のSiCウェハ。
【請求項19】
n型SiCを含む、請求項12に記載のSiCウェハ。
【請求項20】
前記直径が、145mm~155mmを含む範囲内である、請求項12に記載のSiCウェハ。
【請求項21】
前記直径が、145mm~205mmを含む範囲内である、請求項12に記載のSiCウェハ。
【請求項22】
炭化ケイ素(SiC)ブールであって、145ミリメートル(mm)~180mmを含む範囲内の直径、及び50mm超のブール高さを有し、
前記SiCブールの前記ブール高さの少なくとも75%が、複数の第一のSiCウェハを提供するように構成され、前記複数の第一のSiCウェハの各第一のSiCウェハは、前記第一のSiCウェハの直径で定義される前記第一のSiCウェハの中心を含み、且つ前記第一のSiCウェハの周縁部から2mmのウェハ半径方向位置による半径を持つ境界線で囲まれたウェハ領域に対して、1平方センチメートル(cm)あたり4600以下の全転位密度(TDD)を有し、
前記TDDは、マイクロパイプ、貫通刃状転位、貫通らせん転位、及び基底面転位の合計数である、炭化ケイ素(SiC)ブール。
【請求項23】
前記TDDが、1cmあたり1000以上である、請求項22に記載のSiCブール。
【請求項24】
前記SiCブールの前記ブール高さの少なくとも40%が、複数の第二のSiCウェハを提供するように構成され、前記複数の第二のSiCウェハの各第二のSiCウェハは、前記第二のSiCウェハの直径で定義される前記第二のSiCウェハの中心を含み、且つ前記第二のSiCウェハの周縁部から2mmのウェハ半径方向位置による半径を持つ境界線で囲まれたウェハ領域に対して、1平方センチメートル(cm)あたり3000以下の全転位密度(TDD)を有する、請求項22に記載のSiCブール。
【請求項25】
前記TDDが、1cmあたり1000以上である、請求項23に記載のSiCブール。
【請求項26】
前記ブール高さが、60mm~300mmを含む範囲内である、請求項22に記載のSiCブール。
【請求項27】
前記ブール高さが、55mm~80mmを含む範囲内である、請求項22に記載のSiCブール。
【請求項28】
前記ブール高さが、60mm~70mmを含む範囲内である、請求項22に記載のSiCブール。
【請求項29】
前記ブール高さが、65mm以下である、請求項22に記載のSiCブール。
【請求項30】
前記ブール高さが、55mm以上且つ65mm以下である、請求項22に記載のSiCブール。
【請求項31】
炭化ケイ素(SiC)ブールであって、145ミリメートル(mm)~180mmを含む範囲内の直径、及び40mm以上のブール高さを有し、
前記SiCブールの前記ブール高さの少なくとも50%は、複数の第一のSiCウェハを製造するように構成され、前記複数の第一のSiCウェハの各第一のSiCウェハは、前記第一のSiCウェハの直径で定義される前記第一のSiCウェハの中心を含み、且つ前記第一のSiCウェハの周縁部から2mmのウェハ半径方向位置による半径を持つ境界線で囲まれたウェハ領域に対して、1平方センチメートル(cm)あたり4600以下の全転位密度(TDD)を有し、
前記TDDは、マイクロパイプ、貫通刃状転位、貫通らせん転位、及び基底面転位の合計数である、
炭化ケイ素(SiC)ブール。
【請求項32】
前記ブール高さが、40mm~300mmを含む範囲内である、請求項31に記載のSiCブール。
【請求項33】
前記ブール高さが、40mm~80mmを含む範囲内である、請求項31に記載のSiCブール。
【請求項34】
前記TDDが、1cmあたり1000以上である、請求項31に記載のSiCブール。
【請求項35】
前記SiCブールの前記ブール高さの少なくとも80%が、1cmあたり4600以下の平均TDDを有する複数のSiCウェハを製造するように構成されている、請求項31に記載のSiCブール。
【請求項36】
前記SiCブールの前記ブール高さの少なくとも40%が、複数の第二のSiCウェハを製造するように構成され、前記複数の第二のSiCウェハの各第二のSiCウェハは、前記第二のSiCウェハの直径で定義される前記第二のSiCウェハの前記中心を含み、且つ前記第二のSiCウェハの前記周縁部から2mmのウェハ半径方向位置による半径を持つ境界線で囲まれたウェハ領域に対して、1cmあたり3000以下の平均TDDを有する、請求項31に記載のSiCブール。
【請求項37】
前記TDDが、1cmあたり1000以上である、請求項36に記載のSiCブール。
【請求項38】
炭化ケイ素(SiC)ウェハであって、145mm以上である直径を有し、前記SiCウェハの直径で定義される前記SiCウェハの中心を含み、且つ前記SiCウェハの周縁部から2ミリメートル(mm)のウェハ半径方向位置による半径を持つ境界線で囲まれたウェハ領域に対して、1平方センチメートル(cm)あたり3500以下の全転位密度(TDD)を有し、
前記TDDは、マイクロパイプ、貫通刃状転位、貫通らせん転位、及び基底面転位の合計数である、
炭化ケイ素(SiC)ウェハ。
【請求項39】
前記TDDが、1cmあたり500以上である、請求項38に記載のSiCウェハ。
【請求項40】
前記TDDが、1cmあたり2500以下である、請求項38に記載のSiCウェハ。
【請求項41】
前記TDDが、1cmあたり1500以下である、請求項38に記載のSiCウェハ。
【請求項42】
180mm以下である直径をさらに有する、請求項38に記載のSiCウェハ。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、結晶材料に関し、より詳細には、炭化ケイ素結晶材料における転位分布に関する。
【背景技術】
【0002】
炭化ケイ素(SiC)は、多くの魅力的な電気的及び熱物理学的特性を呈する。SiCは、その物理的強度及び化学的浸食に対する高い耐性、さらには耐放射性、高絶縁破壊電界、比較的広いバンドギャップ、高飽和電子ドリフト速度、高動作温度、並びにスペクトルの青色、紫色、及び紫外領域における高エネルギー光子の吸収と放出を含む様々な電気的特性のために特に有用である。シリコン及びサファイアを含む従来のウェハ又は基板材料と比較すると、SiCは、そのような特性のために、パワーエレクトロニクスデバイス、高周波デバイス、及びオプトエレクトロニクスデバイスなどの高出力密度半導体デバイスのためのウェハ又は基板の製造に対してより適するものとなっている。SiCは、ポリタイプと称される多くの異なる結晶構造で存在し、ある特定のポリタイプ(例:4H-SiC及び6H-SiC)は、六方晶構造を有している。
【0003】
SiCが優れた材料特性を呈する一方で、SiCを成長させるために必要とされる結晶成長技術は、他の結晶材料のための従来の成長プロセスと比べて非常に異なっており、著しくより困難なものである。シリコン及びサファイアなどの半導体製造に用いられる従来の結晶材料は、非常により低い融点を有しているため、大口径の結晶材料を製造することができる溶融原料物質からの直接結晶成長技術を行うことが可能である。対照的に、バルク結晶SiCは、種結晶を用いた高温での昇華成長プロセスによって製造されることが多いが、この場合の様々な課題として、中でも、不純物の取り込み、熱及び結晶応力に伴う構造的欠陥、並びに異なるポリタイプの形成が挙げられる。典型的なSiC成長技術では、基材及び原料物質の両方が、反応坩堝の内部に配置される。坩堝が加熱されると発生する熱勾配によって、原料物質から基材に向かう物質の気相の動きが促進され、続いて基材上で凝縮して、バルク結晶成長が得られる結果となる。SiCにドーパントとして不純物を導入可能であること、及びこれらのドーパントによってある特定の特性を制御可能であることは公知である。SiCの昇華成長の場合、ドーパントは、このプロセスから製造されるSiC結晶中にドーパントが存在するような様々な方法で、チャンバー中に導入され得る。プロセスは、特定の用途に対して適切な濃度のドーパントが得られるように制御される。バルク結晶成長の後、SiCの個々のウェハは、SiCのバルク結晶インゴット又はブールをスライスすることによって得ることができ、個々のウェハは、続いて、ラッピング又は研磨などのさらなるプロセスに供され得る。
【0004】
SiCウェハの独特の特性によって、高出力及び/又は高周波半導体デバイスのアレイの設計及び製造が可能となる。継続する開発によって、SiCウェハの製造は、ますます広がりつつある商業的用途のためのそのような半導体デバイスの製造を可能とするレベルの成熟度にまで到達した。半導体デバイス産業が成長を続けていることから、有効径がより大きいSiCウェハが望まれている。SiCウェハの有効径は、SiCの材料組成物中のある特定の構造的欠陥、さらにはある特定のウェハ形状特性によって制限され得る。材料組成物中の構造的欠陥としては、中でも、転位(例:マイクロパイプ、貫通刃状、貫通らせん、及び/又は基底面転位)、六角形ボイド(hexagonal voids)、及び積層欠陥が挙げられ得る。SiCに付随するウェハ形状特性としては、ウェハの平坦度と関連し得るワープ、ボウ、及び厚さ変動が挙げられ得る。これらの様々な構造的欠陥及びウェハ形状特性は、続いて従来のSiCウェハ上に形成される半導体デバイスの製造及び適切な動作にとって有害であり得る結晶応力に寄与し得る。そのような結晶応力は、一般に、ウェハ半径の二乗に比例し、その結果、高品質の大口径SiC半導体ウェハを経済的に製造することは困難である。
【0005】
本技術分野では、従来のSiCウェハに伴う課題を克服しながら、より大口径の改善されたSiCウェハ、及び関連する半導体デバイスが求められ続けている。
【発明の概要】
【0006】
改善された転位分布をもたらす炭化ケイ素(SiC)ウェハ、SiCブール、及び関連する方法が開示される。転位密度の低下及びブールの長さ方向にわたる転位均一性の改善を示すSiCブールが提供される。対応するSiCウェハは、低下された全転位密度(TDD)値を、改善されたTDD半径方向均一性と共に有する。SiC結晶材料の成長条件は、原料物質を、成長の過程で存在する原料物質の量が典型的に必要とされることになる量よりも著しく高い過飽和量で提供することを含む。そのようなSiC結晶材料及び関連する方法は、大口径SiCブール及び結晶品質が改善された対応するSiCウェハを提供するのに適している。
【0007】
1つの態様では、SiCウェハは、少なくとも145ミリメートル(mm)である直径と、幅が1mmであり、外径がSiCウェハの中心から3mm~50mmを含む範囲内のウェハ半径方向位置に相当するいずれの環状リング部においても1平方センチメートル(cm)あたり3000以下である全転位密度(TDD)と、を有する。ある特定の実施形態では、TDDは、幅が1mmであり、外径がSiCウェハの中心から3mmの位置~SiCウェハの周縁部から2mmの位置を含む範囲内のウェハ半径方向位置に相当するいずれの環状リング部においても、1cmあたり3000以下である。ある特定の実施形態では、TDDは、幅が1mmであり、外径がSiCウェハの中心から3mm~50mmを含む範囲内のウェハ半径方向位置に相当するいずれの環状リング部においても、1cmあたり2500以下である。ある特定の実施形態では、TDDは、幅が1mmであり、外径がSiCウェハのすべてのウェハ半径方向位置の少なくとも50%に対するウェハ半径方向位置に相当するいずれの環状リング部においても、1cmあたり2000以下である。ある特定の実施形態では、TDDは、幅が1mmであり、外径がSiCウェハのすべての半径方向位置の少なくとも50%に対するウェハ半径方向位置に相当するいずれの環状リング部においても、1cmあたり1500以下である。ある特定の実施形態では、直径は、145mm~205mmを含む範囲内である。ある特定の実施形態では、直径は、145mm~155mmを含む範囲内である。ある特定の実施形態では、SiCウェハは、4H-SiCウェハを含む。ある特定の実施形態では、SiCウェハは、半絶縁性SiCを含む。ある特定の実施形態では、SiCウェハは、n型SiCを含む。ある特定の実施形態では、TDDは、1cmあたり1000以上である。
【0008】
別の態様では、SiCウェハは、少なくとも145mmである直径と、幅が1mmの環状リング部に分割されるウェハ領域において0.3以下であるTDDの変動係数と、を有し、このウェハ領域は、SiCウェハの中心から3mm及びSiCウェハの周縁部から2mmのウェハ半径方向位置による境界線で囲まれている。ある特定の実施形態では、変動係数は、0.2以下である。ある特定の実施形態では、変動係数は、0.1以上である。ある特定の実施形態では、TDDは、幅が1mmであり、外径がSiCウェハの中心から3mm~50mmを含む範囲内のウェハ半径方向位置に相当するいずれの環状リング部においても、1cmあたり3000以下である。ある特定の実施形態では、TDDは、幅が1mmであり、外径がSiCウェハのすべてのウェハ半径方向位置の少なくとも50%に対するウェハ半径方向位置に相当するいずれの環状リング部においても、1cmあたり2000以下である。ある特定の実施形態では、SiCウェハは、4H-SiCウェハを含む。ある特定の実施形態では、SiCウェハは、半絶縁性SiCを含む。ある特定の実施形態では、SiCウェハは、n型SiCを含む。ある特定の実施形態では、直径は、145mm~155mmを含む範囲内である。ある特定の実施形態では、直径は、145mm~205mmを含む範囲内である。
【0009】
別の態様では、SiCブールは、145mm~180mmを含む範囲内の直径、及び50mm超のブール高さを有する。ある特定の実施形態では、SiCブールの高さの少なくとも75%は、複数のSiCウェハを提供するように構成され、複数のSiCウェハの各SiCウェハは、SiCウェハの中心を含み、且つSiCウェハの周縁部から2mmのウェハ半径方向位置による半径を持つ境界線で囲まれたウェハ領域に対して、1cmあたり4600以下のTDDを有する。ある特定の実施形態では、TDDは、1cmあたり1000以上である。ある特定の実施形態では、SiCブールの高さの少なくとも40%は、複数のSiCウェハを提供するように構成され、複数のSiCウェハのうちの各SiCウェハは、SiCウェハの中心を含み、且つSiCウェハの周縁部から2mmのウェハ半径方向位置による半径を持つ境界線で囲まれたウェハ領域に対して、1平方センチメートルあたり3000以下のTDDを有する。ある特定の実施形態では、TDDは、1cmあたり1000以上である。ある特定の実施形態では、ブール高さは、60mm~300mmを含む範囲内である。ある特定の実施形態では、ブール高さは、55mm~80mmを含む範囲内である。ある特定の実施形態では、ブール高さは、60mm~70mmを含む範囲内である。ある特定の実施形態では、ブール高さは、65mm以下である。ある特定の実施形態では、ブール高さは、55mm以上且つ65mm以下である。
【0010】
別の態様では、SiCブールは、145mm~180mmを含む範囲内の直径、及び40mm以上のブール高さを有し、SiCブールの高さの少なくとも50%は、複数のSiCウェハを製造するように構成され、複数のSiCウェハの各SiCウェハは、SiCウェハの中心を含み、且つSiCウェハの周縁部から2mmのウェハ半径方向位置による半径を持つ境界線で囲まれたウェハ領域に対して、1cmあたり4600以下のTDDを有する。ある特定の実施形態では、ブール高さは、40mm~300mmを含む範囲内である。ある特定の実施形態では、ブール高さは、40mm~80mmを含む範囲内である。ある特定の実施形態では、TDDは、1cmあたり1000以上である。ある特定の実施形態では、SiCブールの高さの少なくとも80%は、1cmあたり4600以下の平均TDDを有する複数のSiCウェハを製造するように構成される。ある特定の実施形態では、SiCブールの高さの少なくとも40%は、複数のSiCウェハを製造するように構成され、複数のSiCウェハの各SiCウェハは、SiCウェハの中心を含み、且つSiCウェハの周縁部から2mmのウェハ半径方向位置による半径を持つ境界線で囲まれたウェハ領域に対して、1cmあたり3000以下の平均TDDを有する。ある特定の実施形態では、TDDは、1cmあたり1000以上である。
【0011】
別の態様では、SiCウェハは、SiCウェハの中心を含み、且つSiCウェハの周縁部から2mmのウェハ半径方向位置による半径を持つ境界線で囲まれたウェハ領域に対して、1cmあたり3500以下のTDDを有し、SiCウェハは、種結晶から測定して40mm以上のブール位置から取られる。ある特定の実施形態では、ブール位置は、40mm~300mmを含む範囲内、又は40mm~80mmを含む範囲内、又は40mm~65mmを含む範囲内である。ある特定の実施形態では、TDDは、1cmあたり500以上である。ある特定の実施形態では、TDDは、1cmあたり2500以下、又は1cmあたり1500以下である。ある特定の実施形態では、SiCウェハは、145mm以上且つ180mm以下である直径を有する。
【0012】
別の態様では、いかなる上述の個々の若しくは合わせた態様、並びに/又は本明細書で述べる様々な別個の態様及び特徴も、さらなる利点のために組み合わされてよい。本明細書で開示されるいかなる様々な特徴及び要素も、本明細書において相反する内容が示されていない限り、1又は複数の他の開示される特徴及び要素と組み合わされてよい。
【0013】
当業者であれば、添付の図面と合わせて好ましい実施形態の以下の詳細な記述を読むことで、本開示の範囲を理解し、そのさらなる態様を認識するであろう。
本明細書に組み込まれ、その一部を形成する添付の図面は、本開示のいくつかの態様を示すものであり、記述内容と合わせて、本開示の原理を説明する役割を有する。
【図面の簡単な説明】
【0014】
図1A図1Aは、本明細書で開示される実施形態に従う結晶炭化ケイ素(SiC)を成長させる方法を示す。
図1B図1Bは、本明細書で開示される実施形態に従う結晶炭化ケイ素(SiC)を成長させる方法を示す。
図2図2は、従来のワイヤソーツールに収容され、ワイヤソーイングプロセスを受けている結晶インゴットの斜視図を提供する第一のフレーム、及びワイヤソーイングプロセスによって得られた複数のウェハの斜視図を提供する第二のフレームを含む。
図3図3は、4H-SiCなどの六方晶における座標系を示す結晶面の図の第一の斜視図である。
図4図4は、c面に対して平行ではない面を示す、六方晶における結晶面の図の第二の斜視図である。
図5A図5Aは、c面に対する微傾斜ウェハの方位を示す、ウェハ方位の図の斜視図である。
図5B図5Bは、インゴットの一部分に重ね合わせた図5Aの微傾斜ウェハの単純化した断面図である。
図6A図6Aは、結晶面を示す矢印を重ね合わせた例示的SiCウェハの平面図である。
図6B図6Bは、結晶面を示す矢印を重ね合わせた例示的SiCウェハの平面図である。
図7図7はレーザー分離のために結晶材料の内部にレーザー放射を集光するように構成された例示的レーザーツールの模式的斜視図である。
図8図8は、図1Bの図に類似するSiC成長システムの断面図であり、原料物質と種結晶との間の蒸気フラックスを示す矢印が追加されている。
図9図9は、過飽和量の蒸気フラックスを種結晶に提供するように構成された原料物質を含むSiC成長システムの断面図である。
図10図10は、図8のSiC成長システムよりも深い坩堝を用いて過飽和量の蒸気フラックスを種結晶に提供するように構成されたSiC成長システムの断面図である。
図11図11は、図8のSiC成長システムよりも幅の広い坩堝を用いて過飽和量の蒸気フラックスを種結晶に提供するように構成されたSiC成長システムの断面図である。
図12A図12Aは、本明細書で開示される実施形態に従う例示的なSiC結晶ブールの斜視図である。
図12B図12Bは、図8のSiC結晶及び図9の過飽和成長条件のSiC結晶について述べたように成長した結晶SiCにおいて、ブール位置による平均全転位密度(TDD)の違いを示す比較プロットである。
図13A図13Aは、図8のSiC結晶について述べたように成長したSiCウェハに対するTDD値を示すコンタープロットである。
図13B図13Bは、図9の過飽和成長条件のSiC結晶について述べたように成長したSiCウェハに対するTDD値を示すコンタープロットである。
図13C図13Cは、log10スケールで再描画したTDD値による図13Aのコンタープロットである。
図13D図13Dは、図13Cと同じlog10スケールで再描画したTDD値による図13Bのコンタープロットである。
図14A図14Aは、図13AのSiCウェハを横切る半径方向位置による全TDD値を示すプロットである。
図14B図14Bは、図13BのSiCウェハを横切る半径方向位置による全TDD値を示すプロットである。
【発明を実施するための形態】
【0015】
以下に示す実施形態は、実施形態を当業者が実践可能とするために必要である情報を表し、実施形態を実践する最良モードを示す。添付の図面に照らして以下の記述を読むことによって、当業者であれば、本開示の発想を理解し、本明細書で特に取り扱わないこれらの発想の応用も認識するであろう。これらの発想及び応用が、本開示及び添付の請求項の範囲内に包含されることは理解されたい。
【0016】
第一の、第二の、などの用語が、様々な要素を記載するために本明細書で用いられ場合があるが、これらの要素は、これらの用語によって限定されるべきではないことは理解される。これらの用語は、1つの要素を別の要素と区別するためだけに用いられるものである。例えば、本開示の範囲から逸脱することなく、第一の要素が第二の要素と称されることも可能であり、同様に、第二の要素が第一の要素と称されることも可能である。本明細書で用いられる場合、「及び/又は」の用語は、それに付随して列挙される項目の1又は複数のあらゆるすべての組み合わせを含む。
【0017】
層、領域、又は基材などの要素が、別の要素の「上に」存在する又は「上へ」延びているとして言及される場合、それは、他の要素の上に直接存在してよく、若しくは直接上へ延びていてよく、又は介在する要素が存在してもよいことは理解される。対照的に、要素が、別の要素の「直接上に」存在する又は「直接上へ」延びているとして言及される場合は、介在する要素は存在しない。同様に、層、領域、又は基材などの要素が、別の要素の「上方に」存在する又は「上方に」延びているとして言及される場合、それは、他の要素の上方に直接存在してよく、若しくは直接上方に延びていてよく、又は介在する要素が存在してもよいことは理解される。対照的に、要素が、別の要素の「直接上方に」存在する又は「直接上方に」延びているとして言及される場合は、介在する要素は存在しない。また、要素が、別の要素と「接続されている」又は「結合されている」として言及される場合、それは、他の要素と直接接続若しくは結合されていてよく、又は介在する要素が存在してもよいことは理解される。対照的に、要素が、別の要素と「直接接続されている」又は「直接結合されている」として言及される場合は、介在する要素は存在しない。
【0018】
「下」又は「上」又は「上側」又は「下側」又は「水平」又は「垂直」などの相対的な用語は、本明細書において、図に示されるように、1つの要素、層、又は領域と別の要素、層、又は領域との関係性を述べるために用いられ得る。これらの用語及び上記で考察した用語は、図に示される方向に加えて、デバイスの異なる方向も包含することを意図していることは理解される。
【0019】
本明細書で用いられる専門用語は、特定の実施形態について述べることのみを目的とするものであり、本開示を限定することを意図するものではない。本明細書で用いられる場合、単数形「1つの(a)」、「1つの(an)」、及び「その(the)」は、文脈からそれ以外が明らかに示されない限り、複数形も含むことを意図している。「含む(comprises)」、「含んでいる(comprising)」、「含む(includes)」、及び/又は「含んでいる(including)」の用語は、本明細書で用いられる場合、記載される特徴、整数、工程、操作、要素、及び/又は成分の存在を指定するが、1若しくは複数の他の特徴、整数、工程、操作、要素、成分、及び/若しくはこれらの群の存在又は追加を除外するものではないことはさらに理解される。
【0020】
本開示の実施形態の模式図を参照して、実施形態について本明細書で述べる。その場合、層及び要素の実際の寸法は異なる場合があり、例えば製造技術及び/又は許容差の結果として、図の形状からの変動が考えられる。例えば、正方形又は長方形として図示される又は記述される領域は、丸い又は曲がった特徴を有してよく、直線として示される領域は、ある程度の不規則性を有し得る。したがって、図に示される領域は、模式的であり、その形状は、デバイスの領域の正確な形状を示すことを意図するものではなく、本開示の範囲を限定することを意図するものでもない。図間での共通の要素は、本明細書において共通の符号で示される場合があり、その後は再度記載されない場合がある。
【0021】
特に定めのない限り、本明細書で用いられるすべての用語(技術用語及び科学用語を含む)は、本開示が属する技術分野の当業者によって一般的に理解されるものと同じ意味を有する。本明細書で用いられる用語は、本明細書及び該当技術の文脈におけるそれらの意味と一致する意味を有するものとして解釈されるべきであり、本明細書において明示的にそのように定めのない限り、理想化された又は過剰に形式的な意味で解釈されるものではないことはさらに理解される。
【0022】
改善された転位分布をもたらす炭化ケイ素(SiC)ウェハ、SiCブール、及び関連する方法が開示される。転位密度の低下及びブールの長さ方向にわたる転位均一性の改善を示すSiCブールが提供される。対応するSiCウェハは、低下された全転位密度(TDD)値を、改善されたTDD半径方向均一性と共に有する。SiC結晶材料の成長条件は、原料物質を、成長の過程で存在する原料物質の量が典型的に必要とされることになる量よりも著しく高い過飽和量で提供することを含む。そのようなSiC結晶材料及び関連する方法は、大口径SiCブール及び結晶品質が改善された対応するSiCウェハを提供するのに適している。
【0023】
SiCは、常圧では液体状態を有さず、直接固体から気体へ変換し、固体に戻ることから、成長させることが非常に困難な結晶材料であり得る。このことにより、SiCは、液相成長が利用不可であるという点で、ほとんどの材料と異なっている。SiC結晶成長の別の主たる課題は、SiCで観察される積層欠陥エネルギーが非常に低いことであり、そのため、さらなる原子の面及びそれに伴う欠陥構造が結晶格子中に非常に容易に導入される。この低い積層欠陥エネルギーが、SiCの従来の物理的気相輸送成長で用いられる非常に高い温度と組み合わされることで、局所的応力場から利用可能なエネルギーが積層欠陥を発生させるのに要するエネルギーよりも低い状態で成長を維持することが困難となる。SiCにおける結晶応力は、多くの因子によって制御可能である。応力は、結晶高さに比例して、及び直径の二乗に比例して増加し得ることから、結晶高さ及び結晶直径が重要な役割を果たし得る。従来のSiC成長技術は、直径100及び150ミリメートル(mm)のSiC結晶を実現してきた。そのようなSiC結晶の寸法は、高密度の転位が形成されるSiC結晶に対する臨界分解せん断応力を超える結晶応力が誘導されることを防止するために、制限され得る。本明細書で開示されるように、より大口径のSiC結晶(例:≧150mm)の場合、直径が増加される量に対して過剰に結晶応力が増加し得ることから、成長の過程においてより短い結晶高さで製造される。この点に関して、従来の結晶成長技術は、より大口径なものに合わせたスケール変更が必ずしも可能ではない。
【0024】
SiCのための種結晶を用いた昇華成長プロセスの一般的態様は、充分に確立されている。このため、結晶成長の分野の当業者であれば、特にSiC成長及び関連システムの分野の当業者であれば、ある技術又はプロセスの具体的詳細が、多くの該当する状況、処理条件、及び設備構成に応じて様々となり得ることは認識される。したがって、本明細書で与えられる記述は、当業者であれば、提供された開示内容に基づいて、過度な実験を行うことなく、本明細書で開示される様々な実施形態を実行し、使用することができるという認識の下、一般的で概略的な意味で最も適切に与えられる。加えて、当業者であれば、本明細書で述べるタイプのSiC昇華システムが、様々な標準的構成で市販されていることも認識される。別の選択肢として、昇華システムは、必要である場合又は該当する場合、カスタム構成で設計し、実行されてもよい。したがって、本明細書で述べる実施形態は、昇華システムの特定のサブセットにも、又は特定のいかなるシステム構成にも限定されない。そうではなく、昇華システムの多くの異なるタイプ及び構成が、本明細書で開示される実施形態に従う結晶SiC材料の成長に用いられ得る。
【0025】
図1A及び図1Bは、本明細書で開示される実施形態に従う結晶を成長させる方法を示す。図1Aでは、坩堝100が原料物質102を含有し、坩堝100の内部が、成長ゾーンとして働く。原料物質102としては、シリコン(Si)、カーボン(C)、SiC、シリコン化合物、カーボン化合物、又はこれらのいずれか若しくはすべての、固体、粉末、及び気体の1つ以上の組み合わせを含むがこれらに限定されない様々ないかなる形態であってもよい組み合わせ、などの適切ないずれの材料も挙げられ得る。ドーパント(例:中でも、窒素(N))及び歪み調整成分(例:中でも、ゲルマニウム(Ge)、スズ(Sn)、ヒ素(As)、及びリン(P))などの他の所望に応じて存在してよい元素も、原料物質102に含まれていてよい。歪み調整成分は、存在する場合、好ましくは、等電子である、又はドーパントと同じ多数キャリア型(例:n型又はp型、ドナー又はアクセプタ)を有する。別の選択肢として、他の元素のうちの1つ、一部、又はすべてが、原料物質102に含まれる以外の方法で、成長ゾーンに導入されてもよい。結晶SiCなどの種結晶104は、坩堝の蓋110の近くに配置されてよく、この蓋は、続いて、図1Aの破線矢印によって示されるように、坩堝100の上に配置される。この方法により、種結晶104は、坩堝100が加熱される際、坩堝100中、原料物質102の上方に吊り下げられる。他の装置では、種結晶104は、坩堝100の底又は側面に沿って、など、坩堝100内のどこに配置されてもよい。
【0026】
結晶成長の過程で、原料物質102は昇華し、種結晶104上でSiCを形成する。昇華は、原料物質102が、様々な温度範囲の中でも、1200℃~3000℃、又は1800℃~3000℃、又は1800℃~2500℃、又は1800℃~2000℃、又は2000℃~2200℃を含む範囲内の温度に加熱されると発生し得る。原料物質102の温度が上昇されている間、種結晶104の成長面の温度は、同様に原料物質102の温度に近い温度まで上昇される。典型的には、種結晶104の成長面は、様々な温度範囲の中でも、1200℃~3000℃、又は1800℃~3000℃、又は1800℃~2500℃、又は1700℃~2400℃、又は1800℃~2000℃、又は2000℃~2200℃を含む範囲内の温度に加熱される。成長プロセスの過程で、坩堝100は、減圧状態までゆっくり脱気される。ある特定の実施形態では、成長は、様々な圧力範囲の中でも、0.1トル~50トル、又は0.1トル~25トル、又は0.1トル~15トル、又は1トル~15トルを含む範囲内の圧力で実施されてよい。成長温度及び成長圧力は、一般に、互いに変更されてよい。例えば、成長条件に応じて、より高い成長温度が、より高い成長圧力を伴っていてよく、又はより低い成長温度が、より低い成長圧力を伴っていてもよい。原料物質102及び種結晶104の成長面を、それらの対応する温度に充分な時間にわたって維持することによって、所望されるポリタイプの単結晶SiCの巨視的成長が、種結晶104の上で形成され得る。
【0027】
図1Bを参照すると、SiC結晶112が、物理的気相輸送プロセスを用いて、坩堝100中の原料物質102の昇華から成長される。結晶成長は、SiC結晶112の成長がある特定の長さに到達するまで行われる。この長さ(又は種結晶104からの高さ)は、部分的には、用いられることになっている形成後の加工の種類に依存する。長さは、構造的結晶欠陥を含むSiC結晶112の様々な結晶品質特性によっても制限され得る。SiC結晶112の成長が停止される時点はまた、坩堝100のサイズ及び種類、並びに原料物質102中に存在する場合のドーパント及び歪み調整成分の濃度などのパラメータにも依存する。この時点は、実験的成長を、得られたSiC結晶112を検査して不純物の濃度を特定することと合わせて行うことによって、前もって決定することができる。SiC結晶112が所望されるサイズに到達した後、システムは、圧力を上げて戻すために不活性ガスで充填されてよく、温度は、中間の温度まではゆっくりと、その後室温まではより素早く低下されてよい。ある特定の実施形態では、中間の温度は、様々な温度の中でも、成長温度の約90%、又は80%、又は70%であってよい。中間の温度としては、様々な温度範囲の中でも、150℃~2000℃、又は150℃~1200℃、又は150℃~500℃、又は175℃~225℃の範囲が挙げられ得る。得られるSiC結晶112は、結晶ブール又はインゴットを形成し得る。
【0028】
SiCの昇華成長は、様々な成長システム、サイズの異なる坩堝、様々な材料の異なる種類の坩堝、及び様々な加熱方法の使用によって達成されてよい。具体的な成長温度及び圧力は、当業者であれば、これらの可変要素に合わせるように適合させることができる。典型的なケースでは、坩堝の種類又はサイズなどのような可変要素が変更される場合、上述したように、特定のシステムに対する最良の成長条件を決定するために、いくつかの実験的成長を行う必要があり得る。結晶成長後、SiC結晶112は、ブール又はインゴットと称される場合もあるバルク結晶材料を形成する。
【0029】
様々なマイクロエレクトロニクス、オプトエレクトロニクス、及びマイクロファブリケーションには、様々な有用なシステムを製造するための出発構造として、結晶材料の薄層が必要である。バルク結晶材料から結晶材料の薄層を形成するための様々な方法としては、ソーイング及びレーザー分離技術が挙げられる。ある特定の実施形態では、結晶ブール又はインゴットから薄層(例:ウェハ又は基板)を切り出すための方法は、ワイヤソーの使用を含む。ワイヤソーイング技術は、Si、サファイア、及びSiCなどの様々な結晶材料に適用されてきた。ワイヤソーツールは、1つ又は多くのガイドローラーの溝に通される極細スチールワイヤ(典型的には、0.2mm以下の直径を有する)を含み得る。2種類のスライシング法、すなわち、遊離砥粒スライシング及び固定砥粒スライシングが存在する。遊離砥粒スライシングは、高速で動いているスチールワイヤにスラリー(典型的には、油中の砥粒懸濁液)を適用することを含み、それにより、ワイヤと工作物との間での砥粒の回転運動の結果、ブール又はインゴットが切断される。固定砥粒スライシングの場合は、ダイヤモンド砥粒が固定されたワイヤが、水溶性冷却液体(すなわち、スラリーではない)のみを必要とする方法で用いられ得る。高効率の平行スライシングにより、単一のスライシング手順で多数のウェハを製造することが可能となる。図2は、ローラー118A~118Cの間に延び、インゴット120を同時にソーイングして各々がインゴット120の端面120’に対して概略平行である面を有する複数の薄片(例:ウェハ122A~122G)とするように配列された平行ワイヤセクション116を含む、典型的なワイヤソーツール114を示す。ソーイングプロセスの過程で、ローラー118A~118Cによって支持されたワイヤセクション116は、インゴット120の下にあるホルダー126に向かって下方向124に押し付けられ得る。端面120’がインゴット120の結晶c面に対して平行であり、ワイヤセクション116が端面120’に対して平行にインゴット120をソーイングする場合、得られるウェハ122A~122Gの各々は、結晶c面に対して平行である「オンアクシス(on-axis)」端面120’’を有する。ワイヤソーイングは、分離プロセスに関連する様々な応力を導入する可能性があり、それらは、特に大口径ウェハの場合、得られるウェハの形状に影響を与える。
【0030】
図3は、4H-SiCなどの六方晶における座標系を示す結晶面の第一の斜視図であり、図中、エピタキシャル結晶成長の[0001](垂直)方向に対応するc面((0001)面)は、m面((1-100)面)及びa面((11-20)面)の両方に対して直角であり、r面((1-102)面)に対しては直角ではない。オフカットの小さい(例:結晶c面から0.5度未満)オンアクシスSiCウェハは、SiCさらには他の材料(例:窒化アルミニウム(AlN)及び他の第III族窒化物)のホモエピタキシャル層の高品質エピタキシャル成長のための成長基材として用いられることが多い。
【0031】
結晶c面に対して平行ではない端面を有する微傾斜(オフカット又は「オフアクシス」としても知られる)ウェハを製造することも可能である。様々な角度(例:0.1度、0.25度、0.5度、0.75度、1度、2度、4度、6度、8度、又はそれ以上)のオフカットである微傾斜ウェハ(例:SiCの)は、SiCさらには他の材料(例:AlN及び他の第III族窒化物)のホモエピタキシャル層の高品質エピタキシャル成長のための成長基材として用いられることが多い。微傾斜ウェハは、c軸からずれた方向にブール又はインゴットを成長させることによって(例:微傾斜種結晶材料上に成長させて、インゴットの側壁に対して直角にインゴットをソーイングする)、又はオンアクシスの種結晶材料でインゴットの成長を開始し、インゴットの側壁に対する直角からずれた角度でインゴットをソーイング又は切断することによって製造され得る。
【0032】
図4は、c面に対して平行ではない面128を示す、六方晶における結晶面の図の第二の斜視図であり、図中、ベクトル130(面128に対して直角)は、[0001]方向から傾き角β傾いており、傾き角βは、[11-20]方向に向かって(僅かに)傾いている。
【0033】
図5Aは、c面((0001)面)に対する微傾斜ウェハ132の方位を示す、ウェハ方位の図の斜視図であり、図中、ベクトル130A(ウェハ面132’に対して直角)は、[0001]方向から傾き角β傾いている。この傾き角βは、(0001)面とウェハ面132’の投射線(projection)134との間に及ぶ直交傾斜(orthogonal tilt)(又は方位差角)βに等しい。図5Bは、インゴット135(例:微傾斜ウェハ132が画定され得る基準となる(0001)面に対して平行である端面135’を有するオンアクシスインゴット)の一部分に重ね合わせた微傾斜ウェハ132の単純化した断面図である。図5Bは、微傾斜ウェハ132のウェハ面132’が、(0001)面に対して傾き角βずれていることを示している。
【0034】
図6A及び図6Bは、上側面136’(例:(0001)面(c面)に対して平行であり、[0001]方向に対して直角である)を含み、横の境界が概略円形のエッジ136’’(直径Φを有する)である例示的SiCウェハ136-1及び136-2の平面図である。図6Aでは、SiCウェハ136-1の円形エッジ136’’は、(11-20)面に対して直角、[11-20]方向に対して平行である主フラット138(長さLを有する)含む。図6Bでは、SiCウェハ136-2の円形エッジ136’’は、図6Aに示される主フラット138の代わりに、ノッチ140を含む。特定の用途に応じて、ノッチ140は、SiCウェハ136-2が加工され得る様々な半導体製造ツールとの互換性のために提供され得る。既に述べたように、SiCウェハ136-1、136-2は、c面とずれていてもよい(例:c面に対して斜めの角度でオフアクシスであってもよい)。
【0035】
ウェハ又は基板をバルク結晶材料から分離するための別の方法は、バルク結晶材料中にレーザーによる表層損傷を形成し、続いてレーザーによる表層損傷に沿ってバルク結晶材料からウェハを分離することを含む、レーザー分離技術を含む。結晶材料中に表層損傷を形成するためのツールは、結晶材料の内部にレーザー放射を集光することを可能とするものであり、及び結晶材料に対してレーザーを横方向に移動可能とするものである。典型的なレーザー損傷パターンは、結晶材料内のある深さで、互いに対して横方向に間隔を置いた平行ラインの形成を含み得る。集光深さ、レーザー出力、移動速度、及び表層損傷ライン間隔などのパラメータを調節して、レーザー損傷を付与することができるが、ある特定の因子の調節は、トレードオフを含む。レーザー出力の増加は、破壊し易さを向上させ得る(例:完全な破壊に要する応力を低下させることによって)より大きい表層損傷を付与する傾向にあるが、より大きい表層損傷は、破壊によって露出する面に沿った面不規則性を増加させ、そのため、そのような面を続いての加工(例:電子デバイスへの組み込みのため)のために充分に平滑とするために、追加の加工が必要となる可能性があり、この追加の加工は、さらなるカーフロスに繋がる。表層レーザー損傷ラインの横方向間隔を減少させることも、破壊し易さを向上させ得るが、レーザー損傷ライン間の間隔を減少させると、基板とレーザーとの間の移動パス数が増加することで、ツールのスループットが低下する。そのようなレーザー分離技術は、ワイヤソーイング技術と比較して、カーフロスを低減させ得る。カーフロスとは、バルク結晶材料から個々のウェハを形成することに伴う材料ロスの合計量を意味する。
【0036】
図7は、表層損傷146を形成するために結晶材料144(例:SiCなど)の内部にレーザー放射を集光するように構成されたレーザーツール142の一例の模式的斜視図である。結晶材料144は、上側面144’及び反対側にある下側面144’’を含み、表層損傷146は、上側面144’と下側面144’’との間の結晶材料144の内部に形成される。レーザー放射148は、レンズアセンブリ150によって集光されて、集光ビーム152が得られ、その焦点は、結晶材料144の内部に存在する。そのようなレーザー放射148は、適切ないかなる周波数(典型的には、ナノ秒、ピコ秒、又はフェムト秒範囲)及びビーム強度のパルスとされてもよく、結晶材料144のバンドギャップ未満の波長とすることで、その表面よりも下の標的とする深さでレーザー放射148を集光することが可能となる。焦点では、ビームサイズ及び短パルス幅の結果、エネルギー密度が、表層損傷146を形成する非常に局所的な吸収をもたらすのに充分に高くなる。集光ビーム152の焦点を結晶材料144内の所望される深さに調節するために、レンズアセンブリ150の1又は複数の特性が変更され得る。破線によって模式的に示されるように、表層損傷146を所望される方向154へ進行させるために、レンズアセンブリ150と結晶材料144との間の相対的な横方向の動き(例:横移動)が行われ得る。そのような横方向の動きは、以降で記載するようなパターンを含む様々なパターンで繰り返され得る。
【0037】
本明細書で用いられる場合、「基板」又は「ウェハ」は、単結晶半導体材料などの結晶材料を意味する。ある特定の実施形態では、基板は、(i)1又は複数の半導体材料層のエピタキシャル堆積を支持するために表面加工(例:ラッピング及び研磨)を行うのに充分な厚さ、及び所望に応じて(ii)剛性キャリアから分離される場合は、自立するのに充分な厚さ、を有し得る。ある特定の実施形態では、基板は、概略円柱形状若しくは円形状を有してよく、及び/又は以下の厚さ:200ミクロン(μm)、300μm、350μm、500μm、750μm、1mm、2mm、又はこれらを超える若しくはこれら未満の厚さ、のうちの少なくとも約1又は複数の厚さを有してよい。ある特定の実施形態では、基板は、2つのより薄い基板に分割可能であるより厚い基板を含み得る。ある特定の実施形態では、基板は、複数の電気動作デバイスを備えたデバイスウェハの一部としてウェハ上に1又は複数のエピタキシャル層(所望に応じて、1又は複数の金属接点と共に)が配置されたより厚い基板又はウェハの一部であってもよい。デバイスウェハは、本開示の態様に従って分割されて、より薄いデバイスウェハと第二のより薄いウェハとが得られてよく、第二のより薄いウェハ上には、続いて、1又は複数のエピタキシャル層(所望に応じて、1又は複数の金属接点と共に)が形成され得る。ある特定の実施形態では、大口径ウェハ又は基板は、145mm以上、若しくは150mm以上、若しくは195mm以上、若しくは200mm以上、若しくは300mm以上、若しくは450mm以上、又は145mm~455mm、若しくは195mm~455mm、若しくは145mm~205mmを含む範囲内の直径を有し得る。ある特定の実施形態では、ウェハ又は基板は、直径が145mm以上、又は150mm以上、又は195mm以上、又は200mm以上であり、厚さが100μm~1000μmの範囲内、又は100μm~800μmの範囲内、又は100μm~600μmの範囲内、又は150μm~500μmの範囲内、又は150μm~400μmの範囲内、又は200μm~500μmの範囲内、又は300μm~1000μmの範囲内、又は500μm~2000μmの範囲内、又は500μm~1500μmの範囲内、又は本明細書で指定する他のいずれかの厚さ範囲若しくは他のいずれかの厚さ値である、4H-SiCを含み得る。ある特定の実施形態では、「基板」及び「ウェハ」の用語は、ウェハが、典型的には、その上に形成され得る半導体デバイスのための基板として用いられることから、交換可能に用いられてよい。このため、基板又はウェハは、より大きいバルク結晶材料又は基板から分離された自立する結晶材料を意味し得る。
【0038】
相対的な寸法に関して、「およそ」の用語は、直径寸法からプラス又はマイナス5mmなどのある特定の許容差以内の公称寸法を意味するものと定義される。例えば、本明細書で用いられる場合、直径「150mm」のウェハは、145mm~155mmを含む直径範囲を包含してよく、直径「200mm」のウェハは、195mm~205mmを含む直径範囲を包含してよく、直径「300mm」のウェハは、295mm~305mmを含む直径範囲を包含してよく、直径「450mm」のウェハは、445mm~455mmを含む直径範囲を包含してよい。さらなる実施形態では、そのような許容差はこれより小さくてもよく、プラス若しくはマイナス1mm又はプラス若しくはマイナス0.25mmなどである。
【0039】
本明細書で開示される実施形態は、単結晶及び多結晶の両方の種類の様々な結晶材料の基板又はウェハに適用することができる。ある特定の実施形態では、基板又はウェハは、立方晶、六方晶、及び他の結晶構造を含んでよく、オンアクシス及びオフアクシスの結晶方位を有する結晶材料を含んでもよい。例示的な実施形態は、4H-SiC又は6H-SiCなどの六方晶構造を有する単結晶半導体材料を含み得る。本明細書の以降で述べる様々な例示的実施形態は、SiC全体について、又は具体的に4H-SiCについて言及するが、他の適切な結晶材料が用いられてもよいことは理解されたい。様々なSiCポリタイプの中で、4H-SiCポリタイプは、その高い熱伝導率、広いバンドギャップ、及び等方性の電子移動度のために、パワーエレクトロニクスデバイスにおいて特に魅力的である。本明細書で開示される実施形態は、オンアクシスSiC(すなわち、そのc面からの意図的な角度のずれがない)又はオフアクシスSiC(すなわち、典型的には、c軸などの成長軸からゼロではない角度で、典型的には0.5~10度の範囲内、又は2~6度若しくは別のサブ範囲などのそのサブ範囲内でずれている)に適用することができる。本明細書で開示されるある特定の実施形態は、オンアクシス4H-SiC、又はオフカットが1~10度若しくは2~6度を含む範囲内又は約2、4、6、若しくは8度である微傾斜(オフアクシス)4H-SiCを用い得る。
【0040】
本明細書で開示される実施形態はまた、ドープ結晶半導体材料(例:N-ドープ導電性SiC及び/又はP-ドープSiC)、共ドープ、及び/又は未ドープ結晶半導体材料(例:半絶縁性SiC又は高抵抗率SiC)のいずれにも適用され得る。ある特定の実施形態では、SiCブール及びSiCウェハを含むSiC結晶材料は、中でも1×1017cm-3~1×1021cm-3を含む範囲内、又は1×1017cm-3~3×1018cm-3を含む範囲内、又は1×1018cm-3~1×1019cm-3の範囲内、又は1×1018cm-3~3×1018cm-3の範囲内、又は1×1017cm-3未満の濃度でのN型ドープ(窒素などの意図的な及び意図的ではないドーパントを含む)を含み得る。ある特定の実施形態では、N-ドープSiC結晶材料は、0.001Ω・cm~0.05Ω・cmを含む範囲内、又は0.001Ω・cm~0.03Ω・cmを含む範囲内、又は0.005Ω・cm~0.05Ω・cmの範囲内、又は0.005Ω・cm~0.03Ω・cmの範囲内の抵抗率を有し得る。他の実施形態では、半絶縁性SiCブール及び半絶縁性SiCウェハを含むより高い抵抗率のSiC結晶材料は、少なくとも1500Ω・cm、又は少なくとも5000Ω・cm、又は少なくとも50,000Ω・cm、又は少なくとも1×10Ω・cm、又は少なくとも1×10Ω・cm、又は少なくとも1×10Ω・cm、又は1500Ω・cm~1×10Ω・cmを含む範囲内、又は1×10Ω・cm~1×10Ω・cmを含む範囲内の抵抗率を有する、意図的ではないドープ又は未ドープのSiCを含み得る。半絶縁性SiCウェハは、バナジウム(V)、アルミニウム(Al)、又はこれらの組み合わせでドープされていてよい。共ドープSiCウェハは、実施形態に応じて、中でもN、Al、及びVなどの2つ以上のドーパントの組み合わせを含み得る。
【0041】
結晶SiCは、中でも、転位(例:中でも、マイクロパイプ、貫通刃状、貫通らせん、及び/又は基底面転位)、六角形ボイド、及び積層欠陥を含む様々な構造的結晶欠陥を含み得る。構造的結晶欠陥は、結晶成長の過程で、及び/又は成長後の冷却の過程で形成される可能性があり、結晶SiCの材料格子構造中に1又は複数の不連続部が形成される。そのような構造的結晶欠陥は、SiCウェハ上に続いて形成される半導体デバイスの製造、適切な動作、デバイスの歩留まり、及び信頼性にとって有害であり得る。様々な構造的結晶欠陥の存在は、自立するSiCウェハに応力をもたらす可能性があり、それは、ウェハ形状における様々なずれに寄与し得る(例:平坦度特性の低下)。ウェハ形状に対するさらなるずれは、既に述べたように、ワイヤカッティング又はレーザー分離技術のいずれかによってブール又はインゴットからウェハを分離する過程で形成され得る。
【0042】
バルク成長の過程で、結晶欠陥は、最初、SiCブールの種結晶に近い部分において、より高い密度で形成する傾向にある。成長が種結晶から離れる方向へさらに進行するに従って、結晶欠陥密度は、SiCブールの中央部分で低下し得るものであり、その後、SiCブールの初期の部分に近いレベル又はそれよりもさらに高いレベルにまで上昇する。これに関して、SiCブールの中央部分から、最も有用なSiCウェハが典型的には得られ、一方全体としてのブール長さは、特に大口径ブールの場合に、欠陥密度の上昇によって制限され得る。本明細書で開示される実施形態によると、成長の後期も含めて欠陥密度の低下が示され、それによって、より低い欠陥密度のSiCウェハの生産量が増加するより長いSiCブールの成長を可能とするSiCブールに対する成長条件が提供される。ある特定の実施形態では、そのような成長条件は、原料物質を、成長の過程で存在する原料物質の量が典型的に成長に必要とされることになる量よりも著しく高い過飽和量で提供することを含む。この成長状態では、原料物質の増加された部分は、成長するSiCブールに組み込まれない場合があり、それによって、坩堝内の寄生堆積(parasitic deposition)で失われ得る、又は存在する場合は坩堝をある特定の圧力に維持しながらの排気を通して失われ得る廃棄原料物質の量が増加する。本明細書で開示されるように、そのような過飽和原料の条件での成長は、これまでは浪費的であると見なされてきたが、転位密度が低下した結晶SiC及び全体長さがより長いSiCブールを提供することができる。このことは、欠陥密度が有効ブール長さを制限し得る145mm超などの大口径SiCブールの場合に特に有用であり得る。
【0043】
図8は、図1Bについて記載したSiC結晶112を形成するために用いられる坩堝100、原料物質102、種結晶104、及び坩堝蓋110を含むSiC成長システム156の断面図である。原料物質102及び種結晶104の両方は、一般に、坩堝100の中に含有され、原料物質102は、種結晶104に対して上に、下に、又は隣接して配置され得る。ある特定の実施形態では、坩堝100は、Si-及びC-含有ガスに対して比較的安定である材料から作製され得る。ある特定の実施形態では、坩堝100は、中でも、グラファイト、炭化タンタル(TaC)-及び炭化ニオブ(NbC)-コーティンググラファイト、並びに固体TaC及びNbCのうちの1又は複数を含み得る。ある特定の実施形態では、坩堝100は、ガスの漏出を防ぐために密封されていてよく、又は坩堝100から一部のガスを流出させるように部分的に開いていてもよい。ある特定の実施形態では、坩堝100は、誘導加熱を可能とするために電気伝導性であってよく、一方他の実施形態では、放射加熱が用いられてもよく、さらに他の実施形態では、誘導加熱と放射加熱との組み合わせが用いられてもよい。ある特定の実施形態では、坩堝100内での温度プロファイルは、系への熱注入量が考慮され、且つ断熱バッフルの使用によって熱流が制御されるように、制御され得る。ある特定の実施形態では、原料物質102は、坩堝100内で温度勾配が作り出されるように、種結晶104よりも高い温度に維持され得る。この温度勾配は、Si-及びC-含有ガス種を含有する蒸気フラックス158の原料物質102から種結晶104への輸送を起こす補助となる。原料物質102が昇華して種結晶104上で凝縮し、SiC結晶112を形成する際に、蒸気フラックス158が、原料物質102から種結晶104へのガス流によって送られてもよい。ある特定の実施形態では、ガス原料は、種結晶104と相互作用を起こすように構成成分の部分にガスを分解可能とするために、高温領域を通して送られてよく、又は様々なガス種は、種結晶104と直接相互作用を起こしてもよい。ある特定の実施形態では、ガスの分解プロセスを補助するために、1又は複数の高周波電界が用いられる。
【0044】
SiC結晶112の成長条件は、典型的には、Si及びC構成成分を種結晶104上に堆積させるために蒸気フラックス158を種結晶104に供給することによって実施することができる。これを実現するための方法は多く存在し、本明細書で述べる実施形態は、SiC結晶成長のある特定の態様を変更して、SiCブール及び得られるSiCウェハにおける結晶欠陥を低減するために提供される。蒸気フラックス158は、多結晶SiC;単結晶SiC;Si及びCのポリマー;Si対C比1:1若しくは比1:1の20%許容差範囲内のSi及びC粉末の混合物;Si対C比が1:1又は比1:1の20%許容差範囲内であるSiC、Si、及びC粉末の混合物;アモルファス若しくは結晶SiC(例:多結晶又は単結晶)のパック(pucks)又は塊;及びSiCの多孔質メッシュのうちの1又は複数が挙げられ得る原料物質102の加熱を通してSiC、SiC、SiC、及びSiガスのうちの1又は複数を発生させることによって提供され得る。ある特定の実施形態では、上述した原料物質102とは別に又はこれに加えて蒸気フラックス158を供給するために、ガス原料が用いられてもよい。そのようなガス原料としては、SiH、Si、SiCl、SiClH、SiCl、CH、C、及びSi(CHなどの1又は複数の種が挙げられ得る。ガス原料及び固体原料の組み合わせを含む実施形態では、Si又はCの供給の一部がガスによって供給されることから、固体原料中のSi対Cの比は、1:1から離れるように変更されてもよい。
【0045】
ある特定の実施形態では、これらの原料は、主として純SiCを含んでよいが、結晶の意図的なドープ、表面エネルギーの改変、点欠陥の意図的な生成、及び格子サイズの改変を実現するために、不純物が多くの場合添加され得る。これらの不純物としては、周期律表のほとんどいかなる元素も挙げられ得るものであり、多くの場合、p型ドープを導入するためのホウ素(B)などの第III族元素、又はn型ドープ導入のためのN、Ge及びSnを含む原子半径のより大きい原子、V、並びに一部のランタニドが、表面エネルギーの改変、及び得られる結晶格子パラメータサイズの変化、又は深い準位の電気的欠陥の誘導のために含まれ得る。
【0046】
図9は、結晶成長に必要である量よりも多い過飽和量の蒸気フラックス164を種結晶104に提供するように構成された原料物質162を含むSiC成長システム160の断面図である。ある特定の実施形態では、原料物質162は、図8の原料物質102よりも高い密度を有し得る。これに関して、増加した量の蒸気フラックス164が、それ以外は類似の成長条件で、種結晶104に提供され得る。他の実施形態では、原料物質162は、図8の原料物質102に類似の密度を有していてよく、温度及び圧力などの1又は複数の成長条件を変更することによって、増加された量の蒸気フラックス164が提供され得る。例えば、坩堝100内の全体温度が上昇されてよく、又は原料物質162の温度が、種結晶104に対して上昇されてもよい。ある特定の実施形態では、坩堝100内の成長圧力が低下されて、増加された蒸気フラックス164が提供され得る。加えて、増加された蒸気フラックス164は、上記で述べたように、原料物質162の密度の上昇、成長温度の上昇、及び成長圧力の低下の1又は複数の組み合わせによって提供され得る。蒸気フラックス164は、過飽和の状態で提供されることから、種結晶104から離れた位置の坩堝100内で寄生堆積が発生し得る、又は一部の蒸気フラックス164が、堆積又は昇華することなく、SiC成長システム160の排気を通して排出され得る。過飽和の蒸気フラックス164を提供することによって、特にSiC結晶166が種結晶104から離れる方向へさらに成長を続けるに従って、図8のSiC結晶112よりも欠陥密度が低下したSiC結晶166が形成され得る。
【0047】
図10は、図8のSiC成長システム156の坩堝100よりも深い坩堝172を用いて過飽和量の蒸気フラックス170を種結晶104に提供するように構成されたSiC成長システム168の断面図である。図示されるように、より深い寸法の坩堝172を提供することによって、種結晶104に対する原料物質162の量が増加され得る。これに関して、種結晶104に対する原料物質162の全体体積が増加されて、増加された量の蒸気フラックス170が提供され得る。ある特定の実施形態では、原料物質162は、図8の原料物質102と同じ密度を有し得る。ある特定の実施形態では、蒸気フラックス170の量は、図9において述べたように、原料物質162の密度の上昇、成長温度の上昇、及び成長圧力の低下の1又は複数の組み合わせを提供することによってさらに増加され得る。
【0048】
図11は、図8のSiC成長システム156の坩堝100よりも幅の広い坩堝178を用いて過飽和量の蒸気フラックス176を種結晶104に提供するように構成されたSiC成長システム174の断面図である。図示されるように、より幅広い寸法の坩堝178を提供することによって、種結晶104に対する原料物質162の量が増加され得る。図10のより深い坩堝172と同様に、種結晶104に対する原料物質162の全体体積が増加されて、増加された量の蒸気フラックス176が提供され得る。ある特定の実施形態では、原料物質162は、図8の原料物質102と同じ密度を有し得る。ある特定の実施形態では、蒸気フラックス176の量は、図9において述べたように、原料物質162の密度の上昇、成長温度の上昇、及び成長圧力の低下の1又は複数の組み合わせを提供することによってさらに増加され得る。
【0049】
図12Aは、本明細書で開示される実施形態に従う例示的なSiC結晶ブール180の斜視図である。図示されるように、SiC結晶ブール180は、第一の端面182、第一の端面182の反対側にある第二の端面184、それらの間にありSiC結晶ブール180の周囲に沿った概略円筒形状を形成し得る側面186、及び中心軸線188を含む。用途に応じて、第一の端面182は、結晶c面に相当してよく、中心軸線188は、[0001]方向に相当していてよい。他の実施形態では、第一の端面182は、結晶c面に対してオフアクシス面に相当してよく、又は第一の端面182は、SiCの他の結晶面に相当してもよい。成長の過程で、第二の端面184が、種結晶(例:図9の104)に最も近い位置でまず成長し、SiC結晶ブール180の残りの部分が、種結晶(例:図9の104)から離れる方向に成長する。ブール長さ又は高さ190は、第二の端面184から第一の端面182まで測定されてよく、ブール径192は、第一の端面182を横切って測定されてよい。図12Aにおいて、SiC結晶ブール180から分離され得る例示的SiCウェハ194の位置を示すために、曲線の破線がSiC結晶ブール180上に重ね合わされている。
【0050】
結晶成長の過程で、中でも、転位(例:マイクロパイプ、貫通刃状、貫通らせん、及び/又は基底面転位)、六角形ボイド、及び積層欠陥を含む様々な構造的結晶欠陥が、SiC結晶ブール180の材料組成物中に形成され得る。本明細書で述べるように、TDD又は全転位密度は、SiC材料の任意の領域におけるすべてのマイクロパイプ及び他の転位(例:貫通刃状、貫通らせん、及び/又は基底面転位)の合計数として定義され得る。SiC結晶ブール180の任意の領域又は区域におけるTDD数を定量化するために、SiC結晶ブール180から分離された1又は複数のSiCウェハに対して欠陥特性評価が実施される。さらなる実施形態では、SiCブール180の異なる垂直位置からの複数のSiCウェハが定量化されて、SiCブール180に対する全体としてのTDDプロファイルが得られ得る。ある特定の実施形態では、TDD値の特性評価のためにシンクロトロンX線トポグラフィ(SXRT)が用いられ得るが、SXRTは、典型的には素早く結果を得る必要のある製造環境においては、必ずしも実用的ではない場合がある。エッチングをベースとする転位特性評価は、より広いウェハ領域にわたってより素早く結果を得るためにより一般的に用いられているが、エッチングをベースとした場合の結果の解釈は、SXRTのものよりも正確性に劣る可能性がある。例えば、いくつかのエッチングをベースとする転位特性評価技術において、エッチンングは、間隔の狭いマイクロパイプを一緒にしてしまう可能性があり、それによって、実際には2つ以上あるマイクロパイプが、単一のマイクロパイプとしてカウント、報告される。これに関して、多くの既存の文献の報告は、SiC材料に対して実際のTDD値よりも少なく報告されている可能性がある。エッチングをベースとする転位特性評価結果の正確性を確保するために、各転位タイプに伴う認識可能で独特な特徴を生成するエッチングプロトコルが開発されてきた。
【0051】
SiCのエッチングによって、認識可能で、SXRTなどの他の特性評価法と相関可能であるエッチピットなどの特徴が明らかとなる。エッチングをベースとする特性評価は、エッチピットを正確に描写すること、対応する欠陥タイプを識別すること、及びそれらを手作業で、又は自動顕微鏡ツールを用いてカウントすること、によって達成され得る。ウェハのエッチングは、有効ウェハ領域を実質的に破壊するものであり、高コストであり、腐食性化学物質を必要とし、実現可能なプロセスを維持するために常に注意を払う必要がある。これに関して、実際には、ブールあたり僅かに数枚の犠牲ウェハしか典型的にはサンプリングされない。例として、SiCウェハに対する欠陥特性評価を実施するために、SiCウェハのカーボン面(C面)がエッチングされて広がった欠陥が強調され、続いてSiCウェハが画像処理される。例えば、n型ドープSiCウェハ(>1017cm又は≒1017cm)は、溶融塩(KOH/EOH)でエッチングされてよく、その後、SiCウェハは、スキャンされ、欠陥検出のために画像処理される。観察されたエッチピット及び欠陥は次に、手作業で又は自動欠陥認識によって転位タイプについて識別され、カウントされ、報告される。光学スキャナー、又は手動若しくは自動光学顕微鏡が、画像からの欠陥のカウントのために用いられ得る。適切にドープされていない材料の場合(低ドープn型、又は絶縁性及びp型)、この方法は、エッチング法による欠陥の描写が不充分であることから、うまく機能しない場合がある。加えて、SiCウェハのシリコン面(Si-面)も、Si-面からのエッチングの特徴を描写するためにエッチングされ得る。Si-面のエッチングは、マイクロパイプ及び基底面転位のより正確なカウントを提供し得る一方、C-面のエッチングは、貫通らせん転位のより正確なカウントを提供し得る。このように、TDDのエッチングをベースとする転位特性評価に対する正確性の改善は、代表的SiCウェハのC-面及びSi-面の両方からの識別された欠陥のカウントを組み合わせることを含むべきである。正確なTDDカウントのためのエッチングをベースとする特性評価プロトコルのさらなる考察は、Materials Science Forum 858 (2016) 393に公開されたSumakeris et al.による“Dislocation Characterization in 4H-SiC Crystals”に見出され得る。SiCウェハのTDD値を特性評価するために用いられ得る別の特性評価技術は、その全内容が参照により本明細書に援用される「NONDESTRUCTIVE CHARACTERIZATION FOR CRYSTALLINE WAFERS」と題する2020年1月23日に出願された米国特許出願第16/750,358号に示されるように、破壊的にエッチングされたウェハ画像での欠陥識別について学習させたディープ畳み込みニューラルネットワーク(DCNN)を用いてSiCウェハの非破壊画像を解析することを含み得る。
【0052】
図12Bは、図8のSiC結晶112及び図9の過飽和成長条件のSiC結晶166について述べたように成長した結晶SiCにおいて、ブール位置による平均TDDの違いを示す比較プロットである。両データセット共に、SiC結晶112、166は、4H-SiC材料を含む。x軸は、SiCウェハを取った対応するブール位置をmmの単位で表し、ブール位置は、ブールが成長する元となった種結晶からの距離として測定する。SiC結晶112に対して得られたデータセットは、およそ150mmのブール径で成長した代表的な数のSiCブールからのデータを含む。比較の目的で、およそ150mmのブール径である代表的な数のSiCブールを、SiC結晶166の成長条件に従って成長させた。y軸は、対応するブール位置の各々で得られたSiCウェハに対する1平方センチメートル(cm)あたりの平均TDD値を表す。個々のSiCウェハの各々において、TDDは、SiCウェハの中心を含み、且つSiCウェハの周縁部から2mmのウェハ半径方向位置による半径を持つ境界線で囲まれたウェハ領域に対して特定した。図示されるように、SiC結晶112、166の両方に対するデータセットは、成長が種結晶により近い低い方のブール位置(例:10mm)において、増加した平均TDD値を示している。ブールが、最初に種結晶から離れる方向へ成長するに従って(例:10mm~約20mm)、両データセット共に、概略低下する平均TDD値を示している。SiC結晶112のデータセットは、約40mmのブール位置で平均TDD値の急な上昇を示し、それによってブール高さが制限されるが、SiC結晶166のデータセットは、ブール位置が70mmに近づくに従って、平均TDDの継続的な低下を示している。加えて、SiC結晶166のデータセットは、より高いブール位置(例:50mm超~65mm)における平均TDD値の継続的な低下に加えて、すべての共通ブール位置(例:10~50mm)において、SiC結晶112のデータセットと比較して非常に低い平均TDD値を呈している。例えば、SiC結晶166のデータセットに含まれる個々のSiCブールは、ブール位置8.3mmで1cmあたり4572のTDD値、24.3mmで1cmあたり2529のTDD値、及び41.5mmで1cmあたり1611のTDD値を含む。これに関して、40mm以上のブール高さにおいては、個々のSiCブールの高さの少なくとも40%又は少なくとも50%又は少なくとも75%又は少なくとも80%は、複数のSiCウェハを提供するように構成され、複数のSiCウェハの各SiCウェハは、1cmあたり4600以下のTDD、又は1cmあたり1000~1cmあたり4600を含む範囲内のTDDを有する。加えて、個々のSiCブールの高さの少なくとも40%は、複数のSiCウェハを提供するように構成され、複数のSiCウェハの各SiCウェハは、1cmあたり3000以下のTDD、又は1cmあたり1000~1cmあたり3000を含む範囲内のTDDを有する。ある特定の実施形態では、SiC結晶166のための過飽和成長条件が適用されて、非常に低い平均TDD値を有する300mmもの高さのブール高さのものが製造され得る。ある特定の実施形態では、ブール高さは、60mm~300mmを含む範囲内、又は55mm~80mmを含む範囲内、又は60mm~80mmを含む範囲内、又は60mm~70mmを含む範囲内、又は50mm超且つ65mm以下、若しくは55mm以上且つ65mm以下の範囲内である。ある特定の実施形態では、上述のブール径は、145mm~180mmを含む範囲内である。図12Bにさらに示されるように、40mm以上のブール位置から取られるSiCウェハは、1cmあたり3500以下のTDDを有し得る。そのようなTDD値に対するブール位置は、40mm~300mm、又は40mm~80mm、又は50mm~65mm、又は60mm~300mm、又は60mm~80mmを含む範囲内であり得る。TDD値は、実施形態に応じて、1cmあたり500又はそれ未満という低さであり得る。SiCウェハは、さらに、1cmあたり2500以下、又は1cmあたり1500以下のTDDを有し得る。
【0053】
図13Aは、図8のSiC結晶112について述べたように成長したSiCウェハ196に対するTDD値を示すコンタープロットである。比較のために、図13Bは、図9の過飽和成長条件のSiC結晶166について述べたように成長したSiCウェハ198に対するTDD値を示すコンタープロットである。比較の目的で、およそ150mm径であるSiCウェハ196、198を選択した。この方法では、図13A及び図13Bの両コンタープロットにおけるx軸及びy軸は、+及び-のmm値で示され、0mmは、SiCウェハ196、198の中心点を表す。SiCウェハ196、198は、成長時に種結晶から最も遠くに形成されたブールの端部に近い位置で、それぞれのブールから取ったものである。図13A及び図13Bにおいて、TDD値のコンタースケールは、比較の目的で意図的に同一としている。図13A及び図13Bに示される結果は、ウェハ全体に対して5mm×5mm正方形領域のグリッドを画定するx-yマッピング法によって特定している。そのような正方形領域のうちの4つを、ウェハの射線中心(radial center)に合わせて配置する。ウェハエッジから2mmの周縁領域、並びに主及び/又は副ウェハフラットに対応するさらなる領域を含む除外領域はカウントしない。図示されるように、SiCウェハ196は、ウェハ中心近く及びウェハ周縁部分に沿って、著しくTDDが増加した領域を呈している。同じスケールで、SiCウェハ198に対するTDD値は、図13Bにおいてほとんど検出不可である。これに関して、図13BのSiCウェハ198は、図13AのSiCウェハ196よりも著しく低く及び均一なTDD値をウェハ領域全体にわたって呈している。
【0054】
図13C及び図13Dは、それぞれ、log10スケールで再描画したTDD値による図13A及び図13Bのコンタープロットを示す。図示されるように、図13Cのコンタープロットは、ウェハ中心近く及びウェハ周縁部分に沿って、同じく急激に高くなっているTDDの領域を呈している。図13Dでは、log10スケールによって、SiCウェハ198におけるTDD変動の視認性が改善されている。特に、SiCウェハ198は、急激に高くなっているTDDの領域をまったく有しないことから、均一性が著しく改善されている。
【0055】
図14Aは、図13AのSiCウェハ196を横切る半径方向位置によるTDD値を示すプロットである。比較のために、図14Bは、図13BのSiCウェハ198を横切る半径方向位置によるTDD値を示すプロットである。図14A及び図14Bの各々において、y軸は、1cmあたりのTDDを表し、x軸は、mmの単位でのウェハ半径方向位置を表し、0の値は、ウェハ中心に相当し、75の値は、ウェハエッジに相当する。図14Aに示される結果は、半径方向マッピング法(radial mapping methodology)によって特定し、ウェハ半径方向位置は、環状リング部の外径(mmの単位)を示し、外径からの環状リング部の幅は、1mmに設定している。例外は、3mmのウェハ半径方向位置が、ウェハ中心(0mm)を含む円に相当することであり、なぜなら、そのような位置にある環状リング部は、正確な結果を得るのに面積が小さすぎる可能性があるからである。別の例外は、主及び/又は副ウェハフラットに相当する除外領域が入り込んでいる外側のウェハ半径方向位置の部分はカウントされないということである。
【0056】
図14Aでは、TDD値は、0mm(ウェハ中心)~10mmの半径方向位置において、1cmあたり4500超の、10mm~25mmの半径方向位置において、1cmあたり6000超の、及び60mm~75mm(ウェハエッジ)の半径方向位置において、やはり1cmあたり6000超のシャープなピークを示している。図14Bでは、SiCウェハ198は、ウェハ中心から3mm~50mmを含む範囲内、若しくは3mm~70mmを含む範囲内のいずれの半径方向位置においても、又はウェハ中心から3mm~ウェハの周縁部から2mmを含む範囲内のSiCウェハ198のいずれの半径方向位置においても、1cmあたり5000以下、又は1cmあたり4000以下、又は1cmあたり3000以下、又は1cmあたり2500以下、又は1cmあたり1000~1cmあたり4000を含む範囲内であるTDD値を呈している。図14Bにおいて、TDDデータは、周縁部の除外リング分2mmを考慮して、73mmの半径方向位置まで提供されている。ある特定の実施形態では、TDD値は、SiCウェハ198の中心から50mm以内又は70mm以内のいずれの半径方向位置においても、1cmあたり3000以下、又は1cmあたり2500以下、又は1cmあたり1000~1cmあたり3000を含む範囲内である。特に、SiCウェハ198は、10mm~57mmの間でこれらを含むいずれの半径方向位置においても、1cmあたり2000以下のTDDを呈する。言い換えると、TDDは、幅が1mmであり、外径がSiCウェハ198のすべての半径方向位置の少なくとも50%又は少なくとも60%に対するウェハ半径方向位置に相当するいずれの環状リング部においても、1cmあたり2000以下である。さらに、SiCウェハ198は、13mm~50mmの間でこれらを含むいずれの半径方向位置においても、1cmあたり1500以下のTDDを呈する。言い換えると、TDDは、幅が1mmであり、外径がSiCウェハ198のすべての半径方向位置の少なくとも40%又は少なくとも50%に対するウェハ半径方向位置に相当するいずれの環状リング部においても、1cmあたり1500以下である。
【0057】
本明細書で開示されるように、SiC結晶の過飽和成長条件によって、著しく改善された均一性のTDD分布を有するSiCブール及び結果としてSiCウェハが得られ得る。TDD均一性を特性評価するための1つの方法は、特定のSiCウェハにおける標準偏差の平均TDD値に対する比として定義されるTDDの変動係数を定量化することを含む。これに関して、TDDの変動係数は、平均TDDに対するTDDの変動の度合いを示し得る。例えば、図13A図13C、及び図14Aのプロットで表されるSiCウェハ196は、幅1mmの環状リング部に分割されるウェハ領域に対して1cmあたり1576の算出されたTDD標準偏差及び1cmあたり3338の平均TDD値を有し、このウェハ領域は、SiCウェハ196の中心から3mm及びSiCウェハ196の周縁部から2mmのウェハ半径方向位置による境界線で囲まれている。これに関して、SiCウェハ196のTDDの変動係数は、0.472である。比較として、図13B図13D、及び図14Bのプロットで表されるSiCウェハ198は、幅1mmの環状リング部に分割されるウェハ領域に対して1cmあたり449の算出されたTDD標準偏差及び1cmあたり1612の平均TDD値を有し、このウェハ領域は、SiCウェハ198の中心から3mm及びSiCウェハ198の周縁部から2mmのウェハ半径方向位置による境界線で囲まれている。このように、SiCウェハ198のTDDの変動係数は、0.28であり、SiCブールが上述の過飽和成長条件に従って成長される場合に、TDDが著しくより均一な分布となることを示している。ある特定の実施形態では、変動係数は、0.2以下、又は0.1以上且つ0.3以下の範囲内である。TDDの均一性を特性評価するための別の方法は、各SiCウェハに対する標準偏差値を単純に特性評価することを含み得る。
【0058】
上記の例は、およそ150mm径のSiCウェハに対して提供されるものであるが、例示的な実施形態は、およそ150mm未満又はおよそ150mm超を含む他の径のSiCウェハに対しても適用可能である。ある特定の実施形態では、SiCウェハは、およそ200mm、又はおよそ300mm、又はおよそ450mmの径を有し得る。例示的な実施形態は、例で提供した4H-SiCに加えて、6H-SiCを含むがこれに限定されないSiCの他のポリタイプにも適用可能である。既に述べたように、本明細書で開示される実施形態は、ドープ結晶半導体材料(例:N-ドープ導電性SiC及び/又はP-ドープSiC)、共ドープ、及び/又は未ドープ結晶半導体材料(例:半絶縁性SiC又は高抵抗率SiC)のいずれにも適用可能である。
【0059】
上記態様、並びに/又は本明細書で述べる様々な別個の態様及び特徴のいずれも、さらなる利点のために組み合わされてよいことは考慮される。本明細書で開示される様々な実施形態のいずれも、本明細書において相反する内容が示されていない限り、1又は複数の他の開示される実施形態と組み合わされてよい。
【0060】
当業者であれば、本開示の好ましい実施形態に対する改善及び改変を認識するであろう。そのような改善及び改変はすべて、本明細書及び以下の請求項に開示される趣旨の範囲内であると見なされる。
図1A
図1B
図2
図3
図4
図5A
図5B
図6A
図6B
図7
図8
図9
図10
図11
図12A
図12B
図13A
図13B
図13C
図13D
図14A
図14B