IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ インテル・コーポレーションの特許一覧

特許7600503高アスペクト比な、急峻なドーパントプロファイルを有するn型ソースまたはドレイン構造
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-09
(45)【発行日】2024-12-17
(54)【発明の名称】高アスペクト比な、急峻なドーパントプロファイルを有するn型ソースまたはドレイン構造
(51)【国際特許分類】
   H01L 21/336 20060101AFI20241210BHJP
   H01L 29/78 20060101ALI20241210BHJP
   H01L 21/8234 20060101ALI20241210BHJP
   H01L 27/088 20060101ALI20241210BHJP
   H01L 21/8238 20060101ALI20241210BHJP
   H01L 27/092 20060101ALI20241210BHJP
   H01L 29/786 20060101ALI20241210BHJP
   H01L 29/417 20060101ALI20241210BHJP
   H01L 29/423 20060101ALI20241210BHJP
   H01L 29/49 20060101ALI20241210BHJP
【FI】
H01L29/78 301S
H01L29/78 301X
H01L27/088 D
H01L27/088 B
H01L27/092 F
H01L27/092 C
H01L29/78 616L
H01L29/78 616K
H01L29/78 616V
H01L29/78 618C
H01L29/50 M
H01L29/58 G
【請求項の数】 20
【外国語出願】
(21)【出願番号】P 2020104080
(22)【出願日】2020-06-16
(65)【公開番号】P2021052173
(43)【公開日】2021-04-01
【審査請求日】2023-06-13
(31)【優先権主張番号】16/580,941
(32)【優先日】2019-09-24
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】591003943
【氏名又は名称】インテル・コーポレーション
(74)【代理人】
【識別番号】110000877
【氏名又は名称】弁理士法人RYUKA国際特許事務所
(72)【発明者】
【氏名】ライアン キーチ
(72)【発明者】
【氏名】アナンド エス.マーシー
(72)【発明者】
【氏名】ニコラス ジー.ミヌティーロ
(72)【発明者】
【氏名】スレシュ ヴィシュワナート
(72)【発明者】
【氏名】ムハンマド ハサン
(72)【発明者】
【氏名】ビスワジート グハ
(72)【発明者】
【氏名】スブリナ ラフィケ
【審査官】戸川 匠
(56)【参考文献】
【文献】米国特許出願公開第2018/0323259(US,A1)
【文献】米国特許出願公開第2018/0277448(US,A1)
【文献】米国特許出願公開第2015/0325648(US,A1)
【文献】特開2000-307113(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/336
H01L 21/8234
H01L 21/8238
H01L 27/088
H01L 27/092
H01L 29/417
H01L 29/423
H01L 29/49
H01L 29/78
H01L 29/786
(57)【特許請求の範囲】
【請求項1】
鉛直に並ぶ水平ナノワイヤと、
前記鉛直に並ぶ水平ナノワイヤの周囲にあるゲートスタックと、
前記鉛直に並ぶ水平ナノワイヤの第1端部にある第1エピタキシャルソースまたはドレイン構造と、
前記鉛直に並ぶ水平ナノワイヤの第2端部にある第2エピタキシャルソースまたはドレイン構造と、を備え、前記第1エピタキシャルソースまたはドレイン構造および前記第2エピタキシャルソースまたはドレイン構造は、シリコン、リンおよびヒ素を含み、リンの原子濃度は、ヒ素の原子濃度と実質的に同一である、
集積回路構造。
【請求項2】
リンの前記原子濃度は1E20原子/cmより大きく、ヒ素の前記原子濃度は5E19原子/cmより大きい、請求項1に記載の集積回路構造。
【請求項3】
前記第1エピタキシャルソースまたはドレイン構造および前記第2エピタキシャルソースまたはドレイン構造は、ヒ素の深度と実質的に同一なリンの深度を有する、請求項1または2に記載の集積回路構造。
【請求項4】
リンの前記深度は、ヒ素の前記深度のナノメートル以内に存在する、請求項3に記載の集積回路構造。
【請求項5】
前記第1エピタキシャルソースまたはドレイン構造および前記第2エピタキシャルソースまたはドレイン構造は、.35mOhm・cmより小さい抵抗率を有する、請求項1から4のいずれか一項に記載の集積回路構造。
【請求項6】
前記ゲートスタックの第1および第2の側にそれぞれ沿って、第1および第2誘電体ゲート側壁スペーサをさらに含む、
請求項1から5のいずれか一項に記載の集積回路構造。
【請求項7】
前記第1エピタキシャルソースまたはドレイン構造上の第1導電性コンタクトと、
前記第2エピタキシャルソースまたはドレイン構造上の第2導電性コンタクトと、をさらに含む、
請求項1から6のいずれか一項に記載の集積回路構造。
【請求項8】
鉛直に並ぶ水平ナノワイヤと、
前記鉛直に並ぶ水平ナノワイヤの周囲にあるゲートスタックと、
前記鉛直に並ぶ水平ナノワイヤの第1端部にある第1エピタキシャルソースまたはドレイン構造と、前記鉛直に並ぶ水平ナノワイヤの第2端部にある第2エピタキシャルソースまたはドレイン構造と、を含み、
前記第1エピタキシャルソースまたはドレイン構造および前記第2エピタキシャルソースまたはドレイン構造は、シリコン、リンおよびヒ素を含み、
前記第1エピタキシャルソースまたはドレイン構造は、前記鉛直に並ぶ水平ナノワイヤを超えて横方向へ延びる第1部分を備え、前記鉛直に並ぶ水平ナノワイヤより上に鉛直に延びる第2部分を備え、前記第2部分は、前記第1部分の水平方向厚さより大きい鉛直方向厚さを備え、
前記第2エピタキシャルソースまたはドレイン構造は、前記鉛直に並ぶ水平ナノワイヤを超えて横方向に延びる第1部分を備え、前記鉛直に並ぶ水平ナノワイヤより上に鉛直に延びる第2部分を備え、前記第2部分は、前記第1部分の水平方向厚さより大きい鉛直方向厚さを備える、
集積回路構造。
【請求項9】
前記第1エピタキシャルソースまたはドレイン構造および前記第2エピタキシャルソースまたはドレイン構造は、シリコンリンおよびヒ素を含み、リンの原子濃度は、ヒ素の原子濃度と実質的に同一である、請求項8に記載の集積回路構造。
【請求項10】
前記ゲートスタックの第1および第2の側にそれぞれ沿って、第1および第2誘電体ゲート側壁スペーサをさらに含む、請求項8または9に記載の集積回路構造。
【請求項11】
前記第1エピタキシャルソースまたはドレイン構造上の第1導電性コンタクトと、
前記第2エピタキシャルソースまたはドレイン構造上の第2導電性コンタクトとをさらに含む、
請求項8から10のいずれか一項に記載の集積回路構造。
【請求項12】
基板と、
前記基板に結合された構成要素とを含み、前記構成要素は、集積回路構造を含み、前記集積回路構造は、
鉛直に並ぶ水平ナノワイヤと、
前記鉛直に並ぶ水平ナノワイヤの周囲にあるゲートスタックと、
前記鉛直に並ぶ水平ナノワイヤの第1端部にある第1エピタキシャルソースまたはドレイン構造と、
前記鉛直に並ぶ水平ナノワイヤの第2端部にある第2エピタキシャルソースまたはドレイン構造と、を含み、前記第1エピタキシャルソースまたはドレイン構造および前記第2エピタキシャルソースまたはドレイン構造は、シリコン、リンおよびヒ素を含み、リンの原子濃度は、ヒ素の原子濃度と実質的に同一である、
コンピューティングデバイス。
【請求項13】
前記基板に結合されたメモリをさらに含む、
請求項12に記載のコンピューティングデバイス。
【請求項14】
前記基板に結合された通信チップをさらに含む、
請求項12または13に記載のコンピューティングデバイス。
【請求項15】
前記基板に結合されたカメラをさらに含む、
請求項12から14のいずれか一項に記載のコンピューティングデバイス。
【請求項16】
前記基板に結合されたバッテリをさらに含む、
請求項12から15のいずれか一項に記載のコンピューティングデバイス。
【請求項17】
前記基板に結合されたアンテナをさらに含む、
請求項12から16のいずれか一項に記載のコンピューティングデバイス。
【請求項18】
前記構成要素は、パッケージされた集積回路ダイである、請求項12から17のいずれか一項に記載のコンピューティングデバイス。
【請求項19】
前記構成要素は、プロセッサ、通信チップ、およびデジタルシグナルプロセッサから成る群から選択される、請求項12から18のいずれか一項に記載のコンピューティングデバイス。
【請求項20】
前記コンピューティングデバイスは、携帯電話、ラップトップ、デスクトップコンピュータ、サーバ、およびセットトップボックスから成る群から選択される、請求項12から19のいずれか一項に記載のコンピューティングデバイス。
【発明の詳細な説明】
【技術分野】
【0001】
本開示の複数の実施形態は、次世代型集積回路構造の製造の分野にあり、特に、急峻なドーパントプロファイルを有するソースまたはドレイン構造を備える集積回路構造の分野にある。
【背景技術】
【0002】
過去数十年にわたり、集積回路内のフィーチャのスケーリングは、成長を続ける半導体産業を後押しする駆動力であった。よりいっそう微細なフィーチャにスケーリングすることにより、半導体チップの限定された面積における機能ユニットの密度を増大させることが可能となる。例えば、トランジスタのサイズを縮小することで、より多数のメモリまたはロジックデバイスをチップ上に組み込むことが可能となり、製造される製品の能力の増大をもたらす。しかしながら、これまで以上の能力を目指すには、問題がないわけではない。各デバイスの性能を最適化する必要性が、ますます重要になっている。
【0003】
集積回路デバイスの製造において、トライゲートトランジスタなどのマルチゲートトランジスタは、デバイス寸法が縮小を続けるにつれて、より広く用いられるようになった。従来プロセスにおいて、トライゲートトランジスタは一般的に、バルクシリコン基板またはシリコンオンインシュレータ基板のいずれかの上に製造される。場合によっては、より低コストであり、またより複雑性の低いトライゲート製造プロセスが可能になるということに起因して、バルクシリコン基板が好まれる。別の態様において、10ナノメートル(nm)ノードより下のマイクロエレクトロニクスデバイス寸法スケーリングとして、移動性改善および短チャネルの制御を維持することは、デバイスの製造に課題を提供する。デバイスを製造するように使用されるナノワイヤは、改善された短チャネルの制御を提供する。
【0004】
しかしながら、影響を生じさせることなくマルチゲートおよびナノワイヤトランジスタをスケーリングすることにはなっていない。マイクロエレクトロニクス回路のこれらの基本構成単位の寸法が低減するにつれて、および、所与の領域において製造される非常に多くの基本構成単位の数が増大するにつれて、これらの構成単位をパターン化するために使用されるリソグラフィプロセスに対する制約が大きくなってきている。特に、半導体スタックにおいてパターニングされたフィーチャの最小寸法(重大な寸法)と、そのようなフィーチャの間の間隔との間で、トレードオフがあり得る。
【0005】
従来の、および、現在の知られている製造プロセスにおける変動性により、10ナノメートルノードまたは10ナノメートル未満ノードの範囲までさらに延びる可能性が制限され得る。その結果、将来のテクノロジーノードに必要な機能構成要素の製造には、新しい方法の導入、または、現在の製造プロセスへの新しい技術の統合、または、現在の製造プロセスの置き換えが必要と成り得る。
【図面の簡単な説明】
【0006】
図1A】ナノワイヤデバイスに対するフィンFETデバイスの従来のエピタキシャル成長を示す。
【0007】
図1B】本開示の一実施形態による、開始ナノワイヤ構造、一体化されたEPI成長を備えるナノワイヤ構造、および、一体化されていないEPI成長を備えるナノワイヤ構造、の断面図を示す。
【0008】
図2A】本開示の一実施形態による、(a)シリコン構造上にリンでドープされたシリコンエピタキシャル成長結果、および(b)シリコン構造上にリンおよびヒ素で共ドープされたシリコンエピタキシャル成長結果の、トップダウンスキャニング電子顕微鏡(SEM)画像を含む。
【0009】
図2B】本開示の一実施形態による、(a)シリコン構造上にリンでドープされたシリコンエピタキシャル成長結果、および(b)シリコン構造上にリンおよびヒ素で共ドープされたシリコンエピタキシャル成長結果の、断面スキャニング電子顕微鏡(SEM)画像を含む。
【0010】
図2C】本開示の一実施形態による、図2Bの画像(b)の部分の拡大図である。
【0011】
図2D】本開示の一実施形態による、深度(ナノメートル)の関数としての濃度(原子/cm)のプロットを含む。
【0012】
図2E】本開示の一実施形態による、深度(ナノメートル)の関数としての濃度(原子/cm)のプロットを含む。
【0013】
図3A】本開示の別の実施形態による、一対の半導体フィンの上方にある複数のゲート線の平面図を示す。
【0014】
図3B】本開示の一実施形態による、図3Aの軸a‐a'に沿って切断された断面図を示す。
【0015】
図4】本開示の別の実施形態による、NMOSデバイスのためのトレンチコンタクトを備える集積回路構造の断面図を示す。
【0016】
図5】本開示の一実施形態による、隆起したソースまたはドレイン領域上に導電性コンタクトを備える集積回路構造の断面図を示す。
【0017】
図6A】本開示の一実施形態による、様々な集積回路構造の断面図を示し、各々は、上層絶縁キャップ層を含むトレンチコンタクトと、上層絶縁キャップ層を含むゲートスタックとを有する。
図6B】本開示の一実施形態による、様々な集積回路構造の断面図を示し、各々は、上層絶縁キャップ層を含むトレンチコンタクトと、上層絶縁キャップ層を含むゲートスタックとを有する。
【0018】
図7A】本開示の一実施形態による、ナノワイヤベースの集積回路構造の3次元断面図を示す。
【0019】
図7B】本開示の一実施形態による、a-a'軸に沿って切断された、図7Aのナノワイヤベースの集積回路構造のソースまたはドレイン断面図を示す。
【0020】
図7C】本開示の一実施形態による、b‐b'軸に沿って切断された、図7Aのナノワイヤベースの集積回路構造の断面チャネル図を示す。
【0021】
図8A】本開示の一実装による、コンピューティングデバイスを示す。
【0022】
図8B】本開示の1または複数の実施形態を含む、インターポーザを示す。
【0023】
図9】本開示の一実施形態による、本明細書において説明される、または、本明細書において説明される1または複数の特徴を含む、1または複数のプロセスによって製造されたICを利用するモバイルコンピューティングプラットフォームの等角図である。
【0024】
図10】本開示の一実施形態による、フリップチップがマウントされたダイの断面図を示す。
【発明を実施するための形態】
【0025】
リンおよびヒ素による共ドーパントに基づく急峻なドーパントプロファイルなどの、急峻なドーパントプロファイルを有するソースまたはドレイン構造を備える集積回路構造が、説明される。以下の説明において、本開示の実施形態の十分な理解を提供すべく、具体的な統合および材料のレジームなど、多数の具体的な詳細が説明される。当業者には、本開示の実施形態がこれらの具体的な詳細なしに実践され得ることは明らかであろう。他の例において、本開示の実施形態を不必要に不明瞭としないようにするべく、集積回路設計レイアウトなどのよく知られている特徴は、詳細には説明されていない。さらに、図面に示される様々な実施形態は例示的に表現したものであって、必ずしも原寸に比例して描かれてはいないことが理解されるべきである。
【0026】
以下の「発明を実施するための形態」は、本質的に単に例示であり、主題の実施形態またはそのような実施形態の適用および使用を限定することは意図されない。本明細書で使用されるとき、「例示的(exemplary)」という語は、「実施例、実例、または例示としての役割を果たすこと」を意味する。本明細書で例示的として説明される実装形態はいずれも、必ずしも他の実装形態よりも好ましいかまたは有利なものとして解釈されるべきではない。さらに、上述の「技術分野」、「背景技術」、「発明の概要」、または以下の「発明を実施するための形態」で提示される、いかなる明示的または黙示的な理論によっても、束縛されることを意図するものではない。
【0027】
本明細書は、「1つの実施形態(one embodiment)」または「実施形態(an embodiment)」への参照を含む。「1つの実施形態では(in one embodiment)」または「一実施形態において(in an embodiment)」という語句の出現は、必ずしも、同一の実施形態を指すものではない。特定の特徴、構造、または特性は、本開示と一貫する任意の好適な方式で組み合わせられ得る。
【0028】
用語以下の段落は、本開示(添付の特許請求の範囲を含む)に見られる用語についての定義または文脈を提供する。
【0029】
「備える(Comprising)」。この用語は、オープンエンド型である。この用語が添付の特許請求の範囲において使用される場合、追加の構造または工程を除外しない。
【0030】
「~ように構成された(Configured To)」。様々なユニットまたは構成要素が、1または複数のタスクを実行する「ように構成された」として記述または特許請求されることがある。そのような文脈において、「ように構成される」は、ユニットまたは構成要素が、動作の最中にそれらの1または複数のタスクを実行する構造を含むことを示すことによって、構造を暗示するために使用される。したがって、ユニットまたは構成要素は、指定されたユニットまたは構成要素が現在動作していない(例えば、起動していない、または、アクティブでない)ときでさえも、タスクを実行するように構成されていると言うことができる。ユニットまたは回路または構成要素が、1または複数のタスクを実行する「ように構成されている」と記述することは、そのユニットまたは構成要素について、米国特許法第112章第6段落を援用しないことを明示的に意図する。
【0031】
「第1」、「第2」など本明細書で使用するとき、これらの用語は、それらの後の名詞に関する符号として使用されるものであり、いずれのタイプの(例えば、空間的、時間的、論理的などの)順序付けも示唆するものではない。
【0032】
「結合される」。以下の説明は、素子またはノードまたは特徴が共に「結合される」ことについて言及する。本明細書において使用されるとき、別段の明示的な記載がない限り、「結合される」は、1つの要素またはノードまたはフィーチャが、別の要素またはノードまたはフィーチャに直接的または間接的に結び付けられている(または、直接的または間接的に通信している)ことを意味するものであり、必ずしも機械的な結合である必要はない。
【0033】
さらに、特定の用語法はまた、以下の説明において参照目的のためにのみ使用される場合があり、それゆえ、限定的であることは意図されない。例えば、「上」、「下」、「上方」、および「下方」などの用語は、参照された図面内での方向を指す。「前方」、「後方」、「後部」、「側方」、「外方向」、「内方向」などの用語は、説明対象のコンポーネントを説明する文書および関連する図面を参照することにより明らかになる、一貫しているが任意の座標系における、コンポーネントの一部の向きまたは位置、または、その両方を説明するものである。そのような用語は、具体的に上述された語、それらの派生語、および類似の意味の語を含み得る。
【0034】
「抑制」。本明細書で使用されるとき、抑制は、減少または最小化された効果を説明するために使用される。構成要素または特徴が、作用、動作、若しくは状態を抑制するものとして説明されるとき、それは、完全に、その結果若しくは成果または将来の状態を完全に阻止し得るものである。さらに、「抑制」は、そうでなければ生じ得る成果、性能、または、効果の減少または低減もまた指し得る。したがって、構成要素、要素、または特徴が、結果または状態を抑制するとして言及されるとき、これらの構成要素、要素、または特徴は、その結果または状態を完全に阻止または排除する必要はない。
【0035】
本明細書において説明される実施形態は、基板工程(FEOL)の半導体処理および構造に関連し得る。FEOLは、個別デバイス(例えば、トランジスタ、コンデンサ、抵抗器など)が半導体基板または層にパターニングされる、集積回路(IC)製造の第1部分である。FEOLは、一般的に、金属インターコネクト層の堆積まで(ただし、これを含まない)のすべてを包含する。最後のFEOL工程の後、典型的には、分離された(例えば、いかなるワイヤもない)トランジスタを有するウェハが結果として生じる。
【0036】
本明細書において説明される実施形態は、配線工程(BEOL)の半導体処理および構造に関連し得る。BEOLは、個別デバイス(例えば、トランジスタ、コンデンサ、抵抗器など)がウェハ上の配線、例えば、1または複数のメタライゼーション層と相互接続される、IC製造の第2部分である。BEOLは、コンタクト、絶縁層(誘電体)、金属レベル、および、チップ‐パッケージ間接続のためのボンディング部位を含む。製造段階のBEOL部分においては、コンタクト(パッド)、インターコネクトワイヤ、ビア、および、誘電体構造が形成される。現代のICプロセスにおいて、10より多くの金属層がBEOLにおいて追加され得る。
【0037】
後述される実施形態は、FEOL処理および構造、BEOL処理および構造、または、FEOL処理および構造とBEOL処理および構造との両方に適用され得る。特に、例示的な処理スキームが、FEOL処理の状況を使用して示され得るが、そのようなアプローチは、BEOL処理にもまた適用され得る。同様に、例示的な処理スキームは、BEOL処理の状況を使用して示され得るが、そのようなアプローチは、FEOL処理にもまた適用され得る。
【0038】
本開示の1または複数の実施形態によれば、高スケールトランジスタデバイスのための、急峻なドーパントプロファイルを有する、高アスペクト比なN型ソースまたはドレイン構造が説明される。1または複数の実施形態において、高スケールトランジスタのための、その場のリン(P)およびヒ素(As)共ドープエピタキシャルソースまたはドレイン構造が説明される。
【0039】
文脈を提供すると、最先端のトランジスタデバイスは、高くリンでドーピングされた、デバイスのソースまたはドレイン(S/D)領域に関する選択的エピタキシャル層(EPI)を活用する。層の、同様の{001}および{111}成長率は、幅広い「マッシュルーム」モホロジー(例えば、必須な層の高さと共に取得された、対応する顕著な横方向成長)をもたらし得る。高い高さ/幅アスペクト比を有する高導電性nMOS層は、p-to-nのS/D短絡およびデバイスピッチにおける限定を回避すべく、フィンスペーサの欠如に起因して、ナノワイヤ(NW)/ナノリボン(NR)構造を特に必要とする。
【0040】
従来のアプローチは、(1)n-epi充填を減少させて、外側への成長に限定すること、および/または、(2)フィンピッチを増加させて、所望のepi充填を可能にすること、を含んでいた。観察される、対応する不利な点は、(1)ナノワイヤ/ナノリボン(NW/NR)製品上でn-epi充填が単に減少することが、均一なソース-ドレイン充填において、および後の金属コンタクトにおいて、顕著な困難をもたらし得ること、および/または、(2)高いドーピングのモホロジーに対応するように大きいフィンピッチを維持して、選択的n-epi層が技術およびムーアの法則のリミッタであること、を含む。
【0041】
本開示の一実施形態によれば、急な{111}成長率から大きな高さ/幅アスペクト比モホロジーを提供するように、選択的エピタキシャルな、リンおよびヒ素で共ドープされたSiソース/ドレイン層が実装される。結果として生じる狭いnEPI S/D領域は、p-to-n短絡を回避し、金属ラップアラウンドから柱状構造に大きいコンタクト領域を可能にする。本明細書で説明されるものなどのn-epi層モホロジーの実施形態を実装する利点は、ナノリボンおよびナノワイヤに基づく次世代デバイスに関し、ムーアの法則のリミッタを除去することを含み得る。ナノリボンおよびナノワイヤに基づくそのようなデバイスは、増加したコンタクト領域および低減したフィンピッチのために高アスペクト比で最適化された、一貫して均一なソース/ドレインを必要とするかもしれないことが、理解されるべきである。さらに、デバイス性能および密度は、本明細書で説明された実施形態の実装において、並行して改善され得る。
【0042】
一実施形態において、性能最適化がモホロジー最適化と同等であるエピタキシャルで選択的に共ドープされたSi:As,P膜に関して、成長レジームが説明される。ソース/ドレイン層は、増大したコンタクト領域、改善された均一性、低減された欠陥および拡散、および/または、増大したデバイス密度のために使用され得る。一実施形態において、膜性能は、最先端のnMOSソース/ドレイン材料と比較して、SiをAsおよびPと共ドープすることからの抵抗率および活性キャリア濃度を約20%改善することから派生される。最良に理解されるものとして、シリコン(Si)格子において、リン(P)をより小さくすることと、ヒ素(As)をより大きくすることとを組にすると、活性化および下流アニールにおける欠陥およびドーパント拡散が減少する。さらに、成長速度論の変化は、高アスペクト比成長を可能にし、必須のnEPI高さが、比較的はるかに狭い横方向プロファイルで実現する。したがって、pMOSおよびnMOSフィンが共により近くにもたらされ得、ムーアの法則スケーリングを促進する。
【0043】
本明細書で説明される実施形態は、(例えば、フィンFETデバイスと比較して)典型的にはフィンスペーサが存在しない、ナノワイヤおよびナノリボンデバイスのスケーリング、および、nMOS領域の横方向成長の増強を可能にするように実装され得る。文脈を提供するように、図1Aは、ナノワイヤデバイスに対しての、フィンFETデバイスに関する従来のエピタキシャル成長を示す。
【0044】
図1Aの左手側方を参照すると、基板102より上にフィンFET構造100の断面図が示される。フィンFET構造100は、シャロートレンチ分離構造104より上にフィンスペーサ106を含む。フィンスペーサ106は、フィンネック108および限定されるマッシュルーム110へのエピタキシャル成長を制限する。シャロートレンチ分離構造104より上の所与の合計エピタキシャル高さy1に関して、対応するマッシュルーム幅x1が観察される。
【0045】
図1Aの右手側方を参照すると、基板102より上のマルチナノワイヤ構造120の断面図が示される(ページへのナノワイヤ122は破線の円で図示される)。マルチナノワイヤ構造120は、シャロートレンチ分離構造104より上にフィンスペーサを含まない。フィンスペーサがない場合、エピタキシャル成長が、大きく幅広いマッシュルーム124をもたらす。シャロートレンチ分離構造104より上の所与の合計エピタキシャル高さy2に関して、対応するマッシュルーム幅x2が観察される。
【0046】
構造100および120を比較すると、所与の同一の高さy1=y2において、x2はx1よりも実質的に大きい。スペーサ106を有するフィンFET構造100は、横方向EPI成長を制限し、高いフィン密度を可能にする。しかしながら、ナノワイヤ構造120上のEPI充填は、フィンスペーサの欠如に起因して、はるかに広いEPI成長を有する。EPI成長において、横方向幅の増大は、デバイス密度を制限する。
【0047】
短絡を回避するための、ナノワイヤ/ナノリボンデバイスに関する高アスペクト比nEPIの有効性は、NWまたはNR端部におけるEPI形成を見ることによって示され得る。例として、図1Bは、本開示の一実施形態による、開始ナノワイヤ構造、一体化されたEPI成長を備えるナノワイヤ構造、および一体化されていないEPI成長を備えるナノワイヤ構造の断面図を示す。
【0048】
図1Bの構造150を参照すると、開始構造は、交互する犠牲シリコンゲルマニウム層154およびシリコンナノワイヤ層156を備えるシリコン基板152を含む。構造150は、EPIソースまたはドレイン成長に関するナノワイヤスタックの端部を提供する。犠牲シリコンゲルマニウム層154は、例えば、リプレースメントゲートプロセスの最中に実行されるナノワイヤリリースプロセスにおいて、最終的に除去され得ることが、理解されるべきである。しかしながら、EPI成長のときには、EPI成長がリプレースメントゲートプロセスの前に実行される場合、犠牲シリコンゲルマニウム層154が存在し得る。
【0049】
図1Bの構造160を参照すると、P型構造は、交互する犠牲シリコンゲルマニウム層164Aおよびシリコンナノワイヤ層166Aを備えるシリコン基板162を含む。P型エピタキシャル領域168A(例えば、ホウ素ドープされたシリコンEPI)は、交互する犠牲シリコンゲルマニウム層164Aおよびシリコンナノワイヤ層166Aの端部に形成される。N型構造は、交互する犠牲シリコンゲルマニウム層164Bおよびシリコンナノワイヤ層166Bを備えるシリコン基板162を含む。N型エピタキシャル領域168B(例えば、リンでドープされたシリコンEPI)が、交互する犠牲シリコンゲルマニウム層164Bおよびシリコンナノワイヤ層166Bの端部に形成される。N型エピタキシャル領域168Bは、鉛直に並ぶ水平ナノワイヤ166Bを超えて横方向に延びる第1部分x3と、鉛直に並ぶ水平ナノワイヤ166Bより上に鉛直に延びる第2部分y3とを有する。特定の実施形態において、図示されるように、第2部分y3は、第1部分x3の水平方向厚さより小さいか、または等しい鉛直方向厚さを有する。結果として、N型エピタキシャル領域168Bは、d1のデバイス間隔でP型エピタキシャル領域168Aと不利に一体化される。
【0050】
図1Bの構造170を参照すると、P型構造は、交互する犠牲シリコンゲルマニウム層174Aおよびシリコンナノワイヤ層176Aを備えるシリコン基板172を含む。P型エピタキシャル領域178A(例えば、ホウ素ドープされたシリコンEPI)は、交互する犠牲シリコンゲルマニウム層174Aおよびシリコンナノワイヤ層176Aの端部に形成される。N型構造は、交互する犠牲シリコンゲルマニウム層174Bおよびシリコンナノワイヤ層176Bを備えるシリコン基板172を含む。N型エピタキシャル領域178B(例えば、リンおよびヒ素で共ドープされたシリコンEPI)が、交互する犠牲シリコンゲルマニウム層174Bおよびシリコンナノワイヤ層176Bの端部に形成される。N型エピタキシャル領域178Bは、鉛直に並ぶ水平ナノワイヤ176Bを超えて横方向に延びる第1部分x4と、鉛直に並ぶ水平ナノワイヤ176Bより上に鉛直に延びる第2部分y4とを有する。特定の実施形態において、図示されるように、第2部分y4は、第1部分x4の水平方向厚さより大きい鉛直方向厚さを有する。結果として、N型エピタキシャル領域178Bは、d1のデバイス間隔で、およびd2のデバイス間隔でさえも、P型エピタキシャル領域178Aとの間にギャップ180を形成し得、ここで、d2はd1より小さい。
【0051】
再び図1Bの構造170を参照すると、本開示の一実施形態によれば、集積回路構造は鉛直に並ぶ水平ナノワイヤ176Bを含む。ゲートスタックは鉛直に並ぶ水平ナノワイヤの周囲にあり、そのようなゲートスタックの例は以下でより詳細に説明される。エピタキシャルソースまたはドレイン構造178Bは、鉛直に並ぶ水平ナノワイヤ176Bの端部にある。エピタキシャルソースまたはドレイン構造178Bは、シリコン、リンおよびヒ素を含む。そのような一実施形態において、リンの原子濃度は実質的にヒ素の原子濃度と同一である。特定の実施形態において、エピタキシャルソースまたはドレイン構造178Bは、鉛直に並ぶ水平ナノワイヤ176Bを超えて横方向に延びる第1部分x4と、鉛直に並ぶ水平ナノワイヤ176Bより上に鉛直に延びる第2部分y4とを有する。特定の実施形態において、第2部分y4は、第1部分x4の水平方向厚さより大きい鉛直方向厚さを有する。
【0052】
本明細書で説明されるコンセプトをさらに示すと、NW/NRデバイスのためのnEPIモホロジーは、NW/NRスタック端部上でのnEPIの「マッシュルーム」モホロジー(必要な高さと共に取得された、顕著な横方向成長)が隣接デバイスとのS/D短絡を導くという問題を含み得る。一実施形態において、急な{111}成長率から派生した大きな高さ/幅アスペクト比モホロジーを有する共ドープされたnEPI膜は、狭いnEPI S/D領域をもたらす。モホロジーは、S/D短絡を回避し、金属ラップアラウンドから、大きいコンタクト領域のために、結果として生じる柱状S/D構造を可能にするように、実装され得る。
【0053】
図2Aは、本開示の一実施形態による、(a)シリコン構造上にリンでドープされたシリコンエピタキシャル成長結果、および(b)シリコン構造上にリンおよびヒ素で共ドープされたシリコンエピタキシャル成長結果の、トップダウンスキャニング電子顕微鏡(SEM)画像を含む。図2Aを参照すると、リンでドープされたシリコンエピタキシャル成長に関する位置200Aにおける横方向成長は、リンおよびヒ素で共ドープされたシリコンエピタキシャル成長に関する位置200Bにおける横方向成長よりも、実質的に大きい。nEPI領域の間のスペースの幅(黒い領域)は、リンおよびヒ素で共ドープされたシリコン構造に関して増大する。
【0054】
さらに比較例として、図2Bは、本開示の一実施形態による、(a)シリコン構造上にリンでドープされたシリコンエピタキシャル成長結果、および(b)シリコン構造上にリンおよびヒ素で共ドープされたシリコンエピタキシャル成長結果の、断面スキャニング電子顕微鏡(SEM)画像を含む。
【0055】
図2Bの画像(a)を参照すると、P型構造210はナノワイヤ212端部においてpEPI領域214を含む。隣接するN型構造216は、リンでドープされたnEPI領域218を含む。リンでドープされたnEPI領域218は、pEPI領域214より実質的に広く、隣接するpEPI領域214と不用意な一体化をもたらすことがある。対照的に、図2Bの画像(b)を参照すると、デバイス220はナノワイヤ端部においてpEPI領域222を備えるP型構造を含む。隣接するN型構造は、ナノワイヤ端部において、リンおよびヒ素で共ドープされたnEPI領域224を含む。リンおよびヒ素で共ドープされたnEPI領域224は、pEPI領域222とおよそ同一の幅であり、図2Bの画像(a)のリンでドープされたnEPI領域218よりも実質的に狭い。
【0056】
図2Cは、本開示の一実施形態による、図2Bの画像(b)の部分の拡大図である。図2Cを参照すると、リンおよびヒ素で共ドープされたnEPI領域224は、pEPI領域222よりわずかにだけ広く(例えば、37.86nm対34.29nm)、隣接するリンおよびヒ素で共ドープされたnEPI領域224とpEPI領域222との間で実質的なギャップ(例えば、27.14nm)が保持されることを可能にする。
【0057】
再び図2Aから図2Cを参照すると、基本的に一致するNおよびP高さを実現する一方、リンおよびヒ素で共ドープされたnEPI領域224の異方性が、n-to-p短絡を減少させ得、トランジスタ密度の増大を可能にし得ることが、理解されるべきである。ナノワイヤの場合に関して図示したが、本明細書で説明された実施形態は、NWデバイス、NRデバイス、ゲートオールアラウンドデバイス、フィンFETデバイスなどに実装できることが、理解されるべきである。特定の実施形態において、集積回路構造は鉛直に並ぶ水平ナノワイヤを含む。エピタキシャルソースまたはドレイン構造224は、鉛直に並ぶ水平ナノワイヤの端部にある。エピタキシャルソースまたはドレイン構造は、シリコン、リンおよびヒ素を含む。そのような一実施形態において、リンの原子濃度は、実質的にヒ素の原子濃度と同一である。特定の実施形態において、エピタキシャルソースまたはドレイン構造は、鉛直に並ぶ水平ナノワイヤを超えて横方向に延びる第1部分を有し、鉛直に並ぶ水平ナノワイヤより上に鉛直に延びる第2部分を備え、第2部分は、第1部分の水平方向厚さより大きい鉛直方向厚さを備える。
【0058】
さらに文脈を提供すると、現代のトランジスタ技術においてゲート長(L)が縮小するにつれ、デバイス全体の抵抗のうちチャネルに起因する割合は、縮小し続けている。外部抵抗Rextは、したがって、デバイス抵抗の大きなソースになり、デバイス性能を限定するのに大きな役割を果たす。Rextを最小にすることを助けるように、Pドーパント濃度が1-5×1021原子/cm範囲にあるエピタキシャルN型Siが、活性ドーパント濃度を2-9×1020原子/cm以上に最大化すべく、ソースまたはドレイン(S/D)において使用される。ドーパントのリン(P)原子を活性化させるように使用される高温アニールの最中、Pはデバイスのチャネルの深くへ拡散し得る。したがって、そうしなければ不十分なIon/Ioff挙動をもたらす、ドーパントのチャネルへのオーバーランのいくらかの制御または抑制を維持すべく、多くの場合、ドーパント活性化のために作成された犠牲があり、したがって、S/D抵抗率がある。理想的に、エピタキシャルS/Dは、低抵抗率を維持するように試みる一方、P拡散なしで成長し得る。そのような必要に対処することは、本明細書で説明された実施形態において、空隙に介在されるPマイグレーションを限定し、場合によって高ドーピングされたPの場合よりも下の値にさえ抵抗率を減少させるために、選択性のエピタキシャルS/D膜へのPおよびAsの共ドープの有効性に誘導され得る、および/または、そこから恩恵を受け得る。観察される抵抗率を低減することは、Pのみでドーピングされた構造に対しての、PおよびAsの共ドープ構造の欠陥密度の低減に起因し得る。
【0059】
本開示の一実施形態によれば、本明細書で説明される共ドープされた実施形態に関するドーピングのレベルは、[P]と[As]のそれぞれに関して5×1019-1.5×1021原子/cmの範囲である。前述した挙動が観察されるのは広範囲であり得ることが、理解されるべきである。膜は、複数の前駆体(例えば、三級ブチルアルシン、1-3%アルシン、ホスフィン、ジクロロシラン、テトラクロロシラン、塩酸)を使用して、100-700Torrで600-800℃に及ぶ広範囲なプロセス条件で成長し得る。
【0060】
活性化アニールのときの、共ドープされたSi:As,Pのドーパント拡散の、Si:Pと比較しての違いは測定可能である。さらに、結果として生じる低減されたドーパントの拡散プロファイルは、高スケールのデバイスにおいて改善された短いチャネル効果を提供する、チャネルへのS/D界面において、より急峻な先端をもたらし得る。例として、図2Dは、本開示の一実施形態による、深度(ナノメートル)の関数としての濃度(原子/cm)のプロット230を含む。図2Eは、本開示の一実施形態による、深度(ナノメートル)の関数としての濃度(原子/cm)のプロット240を含む。特に、図2Dおよび2Eは、それぞれ、Pドープされた、およびP/Asで共ドープされた、Si膜のSIMS拡散ドーパント深度プロファイルを示す。具体的に、図2Eは、2つのドーパント濃度がおよそ同等であるそのような共ドープ膜における、[P]および[As]のSIMSプロファイルを図示する。1200℃のフラッシュアニール後に、約10ナノメートルで拡散されたPが1×1020原子/cmであるSi:P膜(図2D、プロット230)と比較すると、共ドープされたSi:P,As膜(図2E、プロット240)は、同一アニール処理に関して軽微な拡散(例えば、1nmまたはより少ない)を示す。
【0061】
本明細書に説明された1または複数の実施形態によれば、ソースまたはドレイン構造形成は、シリコン、リンおよびヒ素を含むエピタキシャル材料の成長を含む。一実施形態において、ソースまたはドレイン構造は、堆積の最中(例えば、その場で)か、またはその後の堆積(例えば、注入によって)の最中のいずれか、または両者において、リンおよびヒ素原子で共ドープされたシリコンで構成される。そのような一実施形態において、ホスフィンおよびアルシンは、その場で共ドープされたシリコンエピタキシャル堆積プロセスにおいて、リンおよびヒ素ドーパントを提供するための前駆体として使用される。一実施形態において、エピタキシャル構造のリンの原子濃度は1E20原子/cmより大きく、ヒ素エピタキシャル構造の原子濃度は5E19原子/cmより大きい。一実施形態において、ソースまたはドレイン構造は、ヒ素の深度と実質的に同一の、リンの深度を有する。そのような一実施形態において、リンの深度は、ヒ素の深度の約1ナノメートル以内に存在する。そのような別の実施形態において、リンの深度とヒ素の深度との間の示差は、ヒ素の深度の5%より小さい。一実施形態において、ソースまたはドレイン構造は、約0.35mOhm・cmより小さい抵抗率を有する。一実施形態において、ヒ素およびリンの共ドーパントとしての使用は、ソースまたはドレイン構造から集積回路構造のチャネル領域へのリンの拡散を、実質的に制限するか、または完全に阻止する。そのような一実施形態において、ソースまたはドレイン構造からチャネル領域へのリンの拡散の程度は、1ナノメートルより小さく、いくつかの実施形態において、0から0.5ナノメートルの間である。
【0062】
別の態様において、本明細書で説明されるソースまたはドレイン構造は、ナノワイヤおよびナノリボン以外のアーキテクチャに基づく集積回路構造のために、例えば、フィンベースのデバイスのために実装され得る。一例において、図3Aは本開示の別の実施形態による、一対の半導体フィンの上方にある複数のゲート線の平面図を示す。
【0063】
図3Aを参照すると、複数のアクティブゲート線304が、複数の半導体フィン300の上方に形成される。ダミーゲート線306が、複数の半導体フィン300の端部にある。ゲート線304/306の間の間隔308は、ソースまたはドレイン領域351、352、353および354などのソースまたはドレイン領域に、導電性コンタクトを提供するように、トレンチコンタクトが配置され得る位置である。一実施形態において、複数のゲート線304/306のパターン、または、複数の半導体フィン300のパターンが、格子構造として説明される。一実施形態において、格子状パターンは、複数のゲート線304/306、および/または、一定のピッチで離間し、一定の幅を有する複数の半導体フィン300のパターン、または、その両方を含む。
【0064】
図3Bは、本開示の一実施形態による、図3Aの軸a‐a'に沿って切断された断面図を示す。
【0065】
図3Bを参照すると、複数のアクティブゲート線364が、基板360より上に形成される半導体フィン362の、上方に形成される。ダミーゲート線366が、半導体フィン362の端部にある。誘電体層370は、ダミーゲート線366の外にある。トレンチコンタクト材料397は、アクティブゲート線364の間にあり、ダミーゲート線366とアクティブゲート線364との間にある。埋め込まれた下方ソースまたはドレイン構造368、および対応するキャッピング半導体層369は、アクティブゲート線364の間の半導体フィン362内にあり、ダミーゲート線366およびアクティブゲート線364の間にある。一実施形態において、埋め込まれた下方ソースまたはドレイン構造368は、図1Bのソースまたはドレイン構造178Bに関連して上記されるものなどの、および/または本明細書に説明された他の実施形態などの、構造および/または組成を有する。
【0066】
アクティブゲート線364は、ゲート誘電体構造398/399、仕事関数ゲート電極部374、および充填ゲート電極部376、ならびに誘電体キャッピング層378を含む。誘電体スペーサ380は、アクティブゲート線364およびダミーゲート線366の側壁をライニングする。
【0067】
別の態様において、例えばソースまたはドレイン領域についての、トレンチコンタクト構造が説明される。一例において、図4は、本開示の別の実施形態による、NMOSデバイスのためのトレンチコンタクトを備える集積回路構造の断面図を示す。
【0068】
図4を参照すると、集積回路構造450は、シリコンゲルマニウムフィンなどのフィン452を備える。ゲート誘電体層454はフィン452の上方にある。ゲート電極456はゲート誘電体層454の上方にある。一実施形態において、ゲート電極456は、コンフォーマルな導電層458および導電充填物460を含む。一実施形態において、誘電体キャップ462はゲート電極456の上方にあり、ゲート誘電体層454の上方にある。ゲート電極は、第1側面456Aと、第1側面456Aに対向する第2側面456Bとを有する。誘電体スペーサは、ゲート電極456の側壁に沿っている。一実施形態において、図示されるように、ゲート誘電体層454はさらに、誘電体スペーサ463の第1のものと、ゲート電極456の第1側面456Aとの間に、および、誘電体スペーサ463の第2のものと、ゲート電極456の第2側面456Bとの間にある。一実施形態において、図示されないが、熱または化学酸化シリコンまたは二酸化シリコン層などの薄い酸化物層は、フィン452とゲート誘電体層454との間にある。
【0069】
第1半導体ソースまたはドレイン領域464および第2半導体ソースまたはドレイン領域466はそれぞれ、ゲート電極456の第1の側部456Aおよび第2の側部456Bに隣接する。一実施形態において、図示されるように、第1半導体ソースまたはドレイン領域464および第2半導体ソースまたはドレイン領域466はそれぞれ、埋め込まれたエピタキシャル下方領域または半導体層495または497をキャッピングする対応するソースまたはドレインを含み、フィン452の凹部465および467に形成される。一実施形態において、埋め込まれた下方ソースまたはドレイン構造464および466は、図1Bのソースまたはドレイン構造178Bに関連して上記されたもの、および/または本明細書で説明された他の実施形態などの、構造および/または組成を有する。
【0070】
第1トレンチコンタクト構造468および第2トレンチコンタクト構造470は、それぞれ、ゲート電極456の第1の側部456Aおよび第2の側部456Bに隣接する、第1半導体ソースまたはドレイン領域464および第2半導体ソースまたはドレイン領域466の上方にある。第1トレンチコンタクト構造468および第2トレンチコンタクト構造470は双方ともに、U字形金属層472と、U字形金属層472の上にあって全体の上方にあるT字形金属層474とを含む。一実施形態において、U字形金属層472およびT字形金属層474は組成が異なる。そのような一実施形態において、U字形金属層472はチタンを含み、T字形金属層474はコバルトを含む。一実施形態において、第1トレンチコンタクト構造468および第2トレンチコンタクト構造470は、双方ともに、T字形金属層474上に第3金属層476をさらに含む。そのような一実施形態において、第3金属層476およびU字形金属層472は同一の組成を有する。特定の実施形態において、第3金属層476およびU字形金属層472はチタンを含み、T字形金属層474はコバルトを含む。
【0071】
第1トレンチコンタクトビア478は、第1トレンチコンタクト468に電気的に接続される。特定の実施形態において、第1トレンチコンタクトビア478は、第1トレンチコンタクト468の第3金属層476上にあり、それと結合される。第1トレンチコンタクトビア478はさらに、誘電体スペーサ463のうち1つの一部の上方にあり、それとコンタクトし、誘電体キャップ462の一部の上方にあり、それとコンタクトする。第2トレンチコンタクトビア480は、第2トレンチコンタクト470と電気的に接続される。特定の実施形態において、第2トレンチコンタクトビア480は、第2トレンチコンタクト470の第3金属層476上にあり、それと結合される。第2トレンチコンタクトビア480はさらに、誘電体スペーサ463のうちの別の一部の上方にあり、それとコンタクトし、誘電体キャップ462の別の一部の上方にあり、それとコンタクトする。
【0072】
一実施形態において、金属シリサイド層482は、それぞれ、第1トレンチコンタクト構造468と第1半導体ソースまたはドレイン領域464との直接の間にあり、第2トレンチコンタクト構造470と第2半導体ソースまたはドレイン領域466との直接の間にある。一実施形態において、金属シリサイド層482はチタンおよびシリコンを含む。特定のそのような実施形態において、第1半導体ソースまたはドレイン領域464および第2半導体ソースまたはドレイン領域466は、第1および第2のN型半導体ソースまたはドレイン領域である。一実施形態において、金属シリサイド層482はさらに、リンまたはヒ素、またはリンおよびヒ素の双方を含む。
【0073】
本明細書において説明される1または複数の実施形態は、ラップアラウンド半導体コンタクトのための金属化学気相成長の使用に関連する。実施形態は、化学気相成長(CVD)、プラズマ強化化学気相成長(PECVD)、原子層堆積(ALD)、導電性コンタクト製造、または、薄膜うちの1または複数に適用され得る、または、それらを含み得る。特定の実施形態は、コンフォーマルなソースまたはドレインコンタクトを提供するべく、コンタクト金属の低温(例えば、500℃より低い、または、400~500℃の範囲)化学気相成長を使用する、チタンまたは同様の金属層の製造を含み得る。そのようなコンフォーマルなソースまたはドレインコンタクトの実装は、3次元(3D)トランジスタ相補的金属酸化膜半導体(CMOS)性能を改善し得る。
【0074】
文脈を提供すると、半導体コンタクト層に対する金属は、スパッタリングを使用して堆積され得る。スパッタリングは、視線方向(line of sight)プロセスであり、3Dトランジスタ製造には、あまり適していないことがあり得る。知られているスパッタリングソリューションは、デバイスコンタクト面において、金属‐半導体の接合が不十分、または、不完全であり、堆積の入射角度が斜めになる。本開示の1または複数の実施形態によれば、3次元のコンフォマリティを提供し、金属半導体接合接触領域を最大化するべく、コンタクト金属の製造のために低温化学気相成長プロセスが実装される。結果として生じる、より大きい接触領域は、接合部の抵抗を減少させ得る。実施形態は、非平面トポグラフィを有する半導体表面上の堆積を含み得て、領域のトポグラフィは、それ自体の表面の形状およびフィーチャを指し、非平面トポグラフィは、非平坦である、表面の形状およびフィーチャ、または、表面の形状およびフィーチャの一部、すなわち、全体が平坦であるわけではない表面の形状およびフィーチャを含む。一実施形態において、堆積は、比較的高いゲルマニウム成分を備える、ソースまたはドレイン構造の半導体表面上にある。
【0075】
本明細書に説明される実施形態は、ラップアラウンドコンタクト構造の製造を含み得る。そのような一実施形態において、化学気相成長、プラズマ強化化学気相成長、原子層堆積またはプラズマエンハンスト原子層堆積によって、トランジスタソースドレインコンタクト上にコンフォーマルに堆積された純粋な金属の使用が説明される。そのようなコンフォーマルな堆積は、トランジスタデバイスの性能を改善するべく、金属半導体コンタクトの利用可能な領域を増大させ、抵抗を減少させるために使用され得る。一実施形態において、比較的低温の堆積は、最小化された、単位領域あたりの接合部の抵抗をもたらす。
【0076】
本明細書に説明されるように、金属層堆積プロセスを伴う統合スキームを使用して、様々な集積回路構造が製造され得ることを理解されたい。本開示の一実施形態によれば、集積回路構造を製造する方法は、RFソースを有する化学気相成長(CVD)チャンバにおいて基板を提供することを含み、基板はその上にフィーチャを有する。当該方法はまた、基板のフィーチャの上にチタン(Ti)層を形成するために、テトラクロロチタン(TiCl)と水素(H)とを反応させる段階を備える。一実施形態において、チタン層は、98%またはそれより大きいチタン、および、0.5~2%の塩素を含む全原子組成を有する。代替的な実施形態において、ジルコニウム(Zr)、ハフニウム(Hf)、タンタル(Ta)、ニオブ(Nb)またはバナジウム(V)の高純度金属層を製造するために、類似のプロセスが使用される。
【0077】
本開示の一実施形態によれば、基板のフィーチャは、半導体ソースまたはドレイン構造を露出するソースまたはドレインコンタクトトレンチである。チタン層(または、他の高純度金属層)は、半導体ソースまたはドレイン構造のための導電性コンタクト層である。そのような実装の例示的な実施形態は、図5に関連して後述される。
【0078】
図5は、本開示の一実施形態による、隆起したソースまたはドレイン領域上の導電性コンタクトを備える、集積回路構造の断面図を示す。
【0079】
図5を参照すると、半導体構造550は、基板554より上にゲート構造552を含む。ゲート構造552は、ゲート誘電体層552A、仕事関数層552B、およびゲート充填552Cを含む。ソース領域558およびドレイン領域560は、ゲート構造552の対向する側面上にある。ソースまたはドレインコンタクト562は、ソース領域558およびドレイン領域560に電気的に接続され、層間誘電体層564またはゲート誘電体スペーサ566の一方または両方によって、ゲート構造552と別々に離間する。ソース領域558およびドレイン領域560は、基板554のエッチングされた領域において形成される、エピタキシャルな、または埋め込まれた下方材料領域、および、半導体層502をキャッピングする、対応するソースまたはドレインを含む。埋め込まれた下方ソースまたはドレイン領域558および560は、図1Bのソースまたはドレイン構造178Bに関連して上記されるもの、および/または本明細書で説明される他の実施形態などの、構造および/または組成を有する。
【0080】
一実施形態において、ソースまたはドレインコンタクト562は、上記のものなどの高純度金属層562Aと、導電性トレンチ充填材料562Bとを含む。一実施形態において、高純度金属層562Aは、98%またはより大きいチタンを含む全原子組成を有する。そのような一実施形態において、高純度金属層562Aの全原子組成はさらに、0.5~2%の塩素を含む。一実施形態において、高純度金属層562Aの厚さの変動は、30%またはより小さい。一実施形態において、導電性トレンチ充填材料562Bは、これらに限定されないが、Cu、Al、W、Co、または、それらの合金などの導電性材料から構成される。
【0081】
別の態様において、コンタクトオーバーアクティブゲート(COAG)構造およびプロセスが説明される。本開示の1または複数の実施形態は、半導体構造またはデバイスのゲート電極のアクティブ部分の上方に配置された1または複数のゲートコンタクト構造(例えば、ゲートコンタクトビア)を有する半導体構造またはデバイスに関連する。本開示の1または複数の実施形態は、半導体構造またはデバイスのゲート電極のアクティブ部分の上方に形成される1または複数のゲートコンタクト構造を有する半導体構造またはデバイスを製造する方法に関連する。本明細書において説明されるアプローチは、アクティブゲート領域の上方のゲートコンタクト形成を可能にすることによって、標準セル領域を減少させるために使用され得る。1または複数の実施形態において、ゲート電極にコンタクトするために製造されるゲートコンタクト構造は、自己整合ビア構造である。
【0082】
一実施形態において、集積回路構造、半導体構造またはデバイスは、限定されないが、フィンFETまたはトライゲートデバイスなどのような非プレーナ型デバイスである。このような実施形態において、対応する半導体のチャネル領域は、3次元物体から構成されるか、または3次元物体に形成される。そのような一実施形態において、ゲート線のゲート電極スタックは、少なくとも3次元物体の頂面、および、その一対の側壁を包囲する。別の実施形態において、少なくともチャネル領域は、ゲートオールアラウンドデバイスの中などの、ディスクリートな3次元物体となるように作成される。そのような一実施形態において、複数のゲート線のゲート電極スタックの各々は、チャネル領域を完全に包囲する。
【0083】
より一般的には、1または複数の実施形態は、活性トランジスタゲートのすぐ上にゲートコンタクトビアをランディングするためのアプローチ、および、それから形成される構造に関連する。そのようなアプローチは、コンタクトの目的で、分離したゲート線を延ばす必要性を排除し得る。そのようなアプローチはまた、別個のゲートコンタクト(GCN)層がゲート線または構造からの信号を伝導する必要性を排除し得る。一実施形態において、上のフィーチャの除去は、トレンチコンタクト(TCN)の中にコンタクト金属を凹設し、プロセスフローにおいて追加誘電体材料(例えばTILA)を導入することによって実現される。追加誘電体材料は、ゲート整合コンタクトプロセス(GAP)処理スキームにおけるトレンチコンタクト整合に既に使用されているゲート誘電体材料キャップ層(例えばGILA)とは異なるエッチング特性を有するトレンチコンタクト誘電体キャップ層として含まれる。
【0084】
一実施形態において、集積回路構造を提供することは、既存のゲートパターンと基本的に完全に整合されたコンタクトパターンの形成を含むが、一方で、非常に厳しい位置合わせ余裕度を伴うリソグラフィ工程の使用を排除する。そのような一実施形態において、このアプローチは、本質的に高選択性ウェットエッチング(例えば、ドライエッチングまたはプラズマエッチングに対して)の使用を可能にして、コンタクト開口を生成する。一実施形態において、コンタクトパターンは、コンタクトプラグのリソグラフィ工程と組み合わせて、既存のゲートパターンを利用することにより形成される。そのような一実施形態において、本アプローチは、他のアプローチに使用されるような、コンタクトパターンを生成するための、そうでなければ重大なリソグラフィ工程の必要性の排除を可能にする。一実施形態において、トレンチコンタクトグリッドは、別個にパターニングされるのではなく、むしろポリ(ゲート)線の間に形成される。例えば、そのような一実施形態において、トレンチコンタクトグリッドは、ゲート格子パターニング後だが、ゲート格子カット前に形成される。
【0085】
さらに、ゲートスタック構造は、リプレースメントゲートプロセスによって製造され得る。そのようなスキームにおいて、ポリシリコンまたは窒化シリコンピラー材料などのダミーゲート材料は除去され、恒久的なゲート電極材料に置き換えられ得る。そのような一実施形態において、恒久的なゲート誘電体層は、前の処理から持ち越されることに対して、このプロセスにおいてもまた形成される。一実施形態において、ダミーゲートは、ドライエッチングまたはウェットエッチングプロセスによって除去される。一実施形態において、ダミーゲートは多結晶シリコンまたは非晶質シリコンで構成され、SFを含むドライエッチングプロセスによって除去される。別の実施形態において、ダミーゲートは、多結晶シリコンまたは非晶質シリコンから構成され、含水NHOHまたは水酸化テトラメチルアンモニウムを含むウェットエッチングプロセスで除去される。一実施形態において、ダミーゲートは窒化シリコンから構成され、含水リン酸を含むウェットエッチングで除去される。
【0086】
一実施形態において、本明細書で説明された1または複数のアプローチは、集積回路構造に到達すべく、ダミーおよびリプレースメントコンタクトプロセスと組み合わせて、ダミーおよびリプレースメントゲートプロセスを基本的に意図している。そのような一実施形態において、恒久的なゲートスタックの少なくとも一部の高温アニールを可能にすべく、リプレースメントコンタクトプロセスは、リプレースメントゲートプロセスの後に実行される。例えば、特定のそのような実施形態において、恒久的なゲート構造のうち少なくとも一部のアニールは、例えばゲート誘電体層が形成された後に、約600℃より高い温度で実行される。アニールは、恒久的なコンタクトの形成前に実行される。
【0087】
絶縁ゲートキャップ層と絶縁トレンチコンタクトキャップ層との間の異なる構造的関係が製造され得ることを理解されたい。例として、図6Aおよび6Bは、本開示の一実施形態による、様々な集積回路構造の断面図を示し、各々は、上層絶縁キャップ層を含むトレンチコンタクトと、上層絶縁キャップ層を含むゲートスタックとを有する。
【0088】
図6Aおよび6Bを参照すると、集積回路構造600Aおよび600Bはそれぞれ、シリコンゲルマニウムフィンなどのフィン602を含む。断面図として図示されているが、フィン602は頂部602Aおよび側壁(示される視点のページの奥および手前)を有することを理解されたい。第1ゲート誘電体層604および第2ゲート誘電体層606は、フィン602の頂部602Aの上方にあり、フィン602の側壁に横方向に隣接する。第1ゲート電極608および第2ゲート電極610はそれぞれ、第1ゲート誘電体層604および第2ゲート誘電体層606の上方にあり、フィン602の頂部602Aの上方にあり、フィン602の側壁に横方向に隣接する。第1ゲート電極608および第2ゲート電極610は各々、仕事関数設定層などの、コンフォーマルな導電層609Aと、コンフォーマルな導電層609Aより上にある導電充填物材料609Bとを含む。第1ゲート電極608および第2ゲート電極610は両方とも、第1側面612と、第1側面612に対向する第2側面614とを有する。第1ゲート電極608および第2ゲート電極610はまた、両方とも、頂面618を備える絶縁キャップ616を有する。
【0089】
第1誘電体スペーサ620は、第1ゲート電極608の第1側面612に隣接する。第2誘電体スペーサ622は、第2ゲート電極610の第2側面614に隣接する。半導体ソースまたはドレイン領域624は、第1誘電体スペーサ620および第2誘電体スペーサ622に隣接する。トレンチコンタクト構造626は、第1誘電体スペーサ620および第2誘電体スペーサ622に隣接する半導体ソースまたはドレイン領域624の上方にある。一実施形態において、半導体ソースまたはドレイン領域624は、図1Bソースまたはドレイン構造178Bに関連して上記で説明されたもの、および/または、本明細書で説明された他の実施形態などの、構造および/または組成を有する。
【0090】
トレンチコンタクト構造626は、導電性構造630上の絶縁キャップ628を含む。トレンチコンタクト構造626の絶縁キャップ628は、第1ゲート電極608および第2ゲート電極610の絶縁キャップ616の頂面618と実質的に同一平面にある頂面629を有する。一実施形態において、トレンチコンタクト構造626の絶縁キャップ628は、第1誘電体スペーサ620および第2誘電体スペーサ622における凹部632の中に横に延びる。このような実施形態において、トレンチコンタクト構造626の絶縁キャップ628は、トレンチコンタクト構造626の導電性構造630を覆う。しかしながら、他の実施形態において、トレンチコンタクト構造626の絶縁キャップ628は、第1誘電体スペーサ620および第2誘電体スペーサ622における凹部632の中へ横方向に延びず、したがって、トレンチコンタクト構造626の導電性構造630を覆わない。
【0091】
図6Aおよび6Bに図示されるように、トレンチコンタクト構造626の導電性構造630は、長方形でないことがあり得ることを理解されたい。例えば、トレンチコンタクト構造626の導電性構造630は、図6Aの射影に示される導電性構造630Aについて示される形状と類似の、または、同一の断面形状を有し得る。
【0092】
一実施形態において、トレンチコンタクト構造626の絶縁キャップ628は、第1ゲート電極608および第2ゲート電極610の絶縁キャップ616の組成とは異なる組成を有する。そのような一実施形態において、トレンチコンタクト構造626の絶縁キャップ628は、シリコン炭化物材料などの炭化物材料を含む。第1ゲート電極608および第2ゲート電極610の絶縁キャップ616は、シリコン窒化物材料などの窒化物材料を含む。
【0093】
一実施形態において、図6Aに図示されるように、第1ゲート電極608および第2ゲート電極610の両方の絶縁キャップ616は、トレンチコンタクト構造626の絶縁キャップ628の底面628Aより下にある底面617Aを有する。別の実施形態において、図6Bに図示されるように、第1ゲート電極608および第2ゲート電極610の両方の絶縁キャップ616は、トレンチコンタクト構造626の絶縁キャップ628の底面628Bと実質的に同一平面にある底面617Bを有する。別の実施形態において、図示されないが、第1ゲート電極608および第2ゲート電極610の両方の絶縁キャップ616は、トレンチコンタクト構造626の絶縁キャップ628の底面より下にある底面を有する。
【0094】
一実施形態において、トレンチコンタクト構造626の導電性構造630は、U字形金属層634と、U字形金属層634の全体の上および全体の上方にあるT字形金属層636と、T字形金属層636上の第3金属層638とを含む。トレンチコンタクト構造626の絶縁キャップ628は、第3金属層638上にある。そのような一実施形態において、第3金属層638およびU字形金属層634は、チタンを含み、T字形金属層636は、コバルトを含む。特定のそのような実施形態において、T字形金属層636はさらに、炭素を含む。
【0095】
一実施形態において、金属シリサイド層640は、トレンチコンタクト構造626の導電性構造630と、半導体ソースまたはドレイン領域624との間に直接挟まれる。そのような一実施形態において、金属シリサイド層640はチタンおよびシリコンを含む。特定のそのような実施形態において、半導体ソースまたはドレイン領域624はN型半導体ソースまたはドレイン領域である。
【0096】
3つの鉛直に配置されたナノワイヤを備える例示的な集積回路構造を強調するように、図7Aは、本開示の一実施形態による、ナノワイヤベースの集積回路構造の3次元断面図を示す。図7Bは、図7Aのナノワイヤベースの集積回路構造をa-a'軸に沿って切り出した断面ソースまたはドレイン図を示す。図7Cは、図7Aのナノワイヤベースの集積回路構造をb‐b'軸に沿って切り出した断面チャネル図を示す。
【0097】
図7Aを参照すると、集積回路構造700は、基板702の上に、1または複数の鉛直に積層されたナノワイヤ(704の組)を含む。一実施形態において、図示されるように、緩和バッファ層702C、欠陥修正層702B、および下方基板部分702Aが、図示されるように基板702に含まれる。最も下のナノワイヤの下にあり、基板702から形成される任意のフィンは、例示目的でナノワイヤ部分を強調する目的のため、図示されない。本明細書の実施形態は、単一ワイヤデバイスと複数ワイヤデバイスの両方を目標とする。例として、ナノワイヤ704A、704Bおよび704Cを備える、3ナノワイヤベースのデバイスが、例示の目的で示される。記載の便宜上、ナノワイヤ704Aは、記載がナノワイヤの1つに重点が置かれる例として使用される。1つのナノワイヤの複数の特質が説明される場合、複数のナノワイヤに基づいた複数の実施形態は、ナノワイヤのそれぞれについて、同一または本質的に同一の複数の特質を有するであろうことが理解されるべきである。
【0098】
ナノワイヤ704の各々は、ナノワイヤのチャネル領域706を含む。チャネル領域706は長さ(L)を有する。図7Cを参照すると、チャネル領域はまた、長さ(L)に直交する外周(Pc)も有する。図7Aおよび7Cの両方を参照すると、ゲート電極スタック708は、各チャネル領域706の全周(Pc)を包囲する。ゲート電極スタック708は、チャネル領域706とゲート電極との間に、ゲート誘電体層と共にゲート電極を含む(図示されていない)。一実施形態において、チャネル領域は、それがゲート電極スタック708によって完全に包囲されており、下層にある基板材料または上層にあるチャネル製造材料などの介在する材料が何もない。という点において離散している。したがって、複数のナノワイヤ704を有する複数の実施形態においては、ナノワイヤのチャネル領域706はまた、互いに対して離散している。
【0099】
図7Aおよび7Bの両方を参照すると、集積回路構造700は非ディスクリートなソースまたはドレイン領域710/712の対を含む。非ディスクリートなソースまたはドレイン領域710/712の対は、鉛直に積層された複数のナノワイヤ704のチャネル領域706のいずれの側面上にもある。さらに、非ディスクリートなソースまたはドレイン領域710/712の対は、鉛直に積層された複数のナノワイヤ704のチャネル領域706に関して隣接する。そのような一実施形態において、図示されないが、非ディスクリートなソースまたはドレイン領域710/712の対は、エピタキシャル成長がチャネル領域706を超えて延びるナノワイヤ部分上に、およびその間にあり、ナノワイヤ端部はソースまたはドレイン構造内に示されるという点で、チャネル領域706に関して直接的に鉛直に隣接する。別の実施形態において、図7Aに図示されるように、非ディスクリートなソースまたはドレイン領域710/712の対は、それらがナノワイヤの間ではなく、ナノワイヤの端部において形成されるという点で、チャネル領域706に関して間接的に鉛直に隣接する。一実施形態において、非ディスクリートなソースまたはドレイン領域710/712は、図1Bのソースまたはドレイン構造178Bに関連して上記で説明されるなどの、および/または本明細書で説明された他の実施形態などの、構造および/または組成を有する。
【0100】
一実施形態において、図示されるように、ソースまたはドレイン領域710/712は、ナノワイヤ704の各チャネル領域706に関して個別ではなくディスクリートでないソースまたはドレイン領域があるという点で、非ディスクリートである。したがって、複数のナノワイヤ704を備える実施形態において、ナノワイヤのソースまたはドレイン領域710/712は、各ナノワイヤに関するディスクリートに対して、グローバルな、または一体化された、ソースまたはドレイン領域である。すなわち、非ディスクリートなソースまたはドレイン領域710/712は、単一の一体化されたフィーチャが複数の(この場合、3つの)ナノワイヤ704のための、および、より特に、1つより多くの別個のチャネル領域706のための、ソースまたはドレイン領域として使用されるという意味で、グローバルである。一実施形態において、図7Bに図示されるように、別個のチャネル領域706の長手と直交する断面斜視図から、非ディスクリートなソースまたはドレイン領域710/712の各対は、底部のテーパ部分と頂部のバーテックス部分とを有する、およそ長方形の形状である。他の実施形態において、しかしながら、ナノワイヤのソースまたはドレイン領域710/712は、比較的大きく、なおも離散した、こぶなどの、非鉛直に一体化されたエピタキシャル構造である。
【0101】
本開示の一実施形態によれば、および図7Aおよび7Bに図示されるように、集積回路構造700は、コンタクト714の対をさらに含み、非ディスクリートなソースまたはドレイン領域710/712の対の一方上に各コンタクト714がある。そのような一実施形態において、鉛直の観点で、各コンタクト714は、非ディスクリートなソースまたはドレイン領域710/712にそれぞれ完全に包囲される。別の態様において、図7Bに図示されるように、非ディスクリートなソースまたはドレイン領域710/712の全周は、コンタクト714とコンタクトのためにアクセス可能ではないことがあり、コンタクト714は、したがって、非ディスクリートなソースまたはドレイン領域710/712を部分的にのみ包囲する。対照的な実施形態において、図示されないが、非ディスクリートなソースまたはドレイン領域710/712の全周が、a-a'軸に沿って切断されたものとして、コンタクト714によって包囲される。
【0102】
図7Aを再び参照すると、一実施形態において、集積回路構造700はスペーサ716の対をさらに含む。図示されるように、スペーサ716の対の複数の外側部分は、非ディスクリートなソースまたはドレイン領域710/712の複数の部分からはみ出し得、スペーサ716の対の下に、非ディスクリートなソースまたはドレイン領域710/712の「埋め込まれた」複数の部分を提供する。また図示されるように、非ディスクリートなソースまたはドレイン領域710/712の埋め込まれた複数の部分は、スペーサ716の対の全体の下に延びなくともよい。
【0103】
基板702は、集積回路構造の製造のために好適な材料で構成され得る。一実施形態において、基板702は、シリコン、ゲルマニウム、シリコンゲルマニウム、ゲルマニウムスズ、シリコンゲルマニウムスズ、またはIII-V化合物半導体材料を含み得るが、それには限定されない、単一結晶の材料で構成される下部バルク基板を含む。二酸化シリコン、窒化シリコン、または酸窒化シリコンを含むが、それには限定されない材料で構成される上側絶縁層が、下部バルク基板上にある。したがって、構造700は絶縁基板上の開始半導体から製造され得る。あるいは、構造700は、バルク基板から直接形成され、局所的な酸化は、上記で説明された上側絶縁層に代わって電気的絶縁部分を形成するように使用される。別の代替的な実施形態において、構造700はバルク基板から直接形成され、ドーピングは、その上にナノワイヤなどの、電気的に分離されたアクティブ領域を形成するように使用される。そのような一実施形態において、第1ナノワイヤ(すなわち、基板に最も近い)は、オメガFETタイプの構造の形態である。
【0104】
一実施形態において複数のナノワイヤ704は、後述するように、ワイヤまたはリボンのサイズであってよく、角型または丸型の角を有してよい。一実施形態において、ナノワイヤ704は、限定されないが、シリコン、ゲルマニウム、またはこれらの組み合わせなどの材料で構成される。そのような一実施形態において、ナノワイヤは単結晶である。例えば、シリコンナノワイヤ704に関して、単結晶ナノワイヤは、グローバルな向き(100)、例えば、z方向の<100>平面に基づき得る。後述するように、他の向きもまた考えられ得る。一実施形態において、ナノワイヤ704の寸法は、断面斜視図から、ナノスケールである。例えば、特定の実施形態において、ナノワイヤ704の最小寸法は、約20ナノメートルより小さい。一実施形態において、ナノワイヤ704は特にチャネル領域706において、歪んだ材料で構成される。
【0105】
図7Cを参照すると、一実施形態において、各チャネル領域706は、幅(Wc)および高さ(Hc)を有し、幅(Wc)は高さ(Hc)とおよそ同一である。すなわち、両方の場合において、チャネル領域706は正方形同様の、または、角が丸い場合は、円同様の断面プロファイルである。別の態様において、全体として説明されたようなナノリボンの場合などでは、チャネル領域の幅および高さは同一である必要はない。
【0106】
本願の全体にわたって説明されるように、基板は、製造プロセスに耐えることができ、かつ、その中を電荷が移動できる半導体材料から構成され得る。一実施形態において、本明細書において記述される基板は、アクティブ領域を形成すべく、限定されないが、リン、ヒ素、ホウ素、またはこれらの組み合わせなどの電荷キャリアでドーピングされた結晶シリコン、シリコン/ゲルマニウム、またはゲルマニウム層で構成されたバルク基板である。一実施形態において、そのようなバルク基板におけるシリコン原子の濃度は、97%より大きい。別の実施形態において、バルク基板は、別個の結晶基板の上に成長されたエピタキシャル層、例えば、ホウ素をドーピングされたバルクシリコン単結晶基板の上に成長されたシリコンエピタキシャル層で構成される。バルク基板は代替的に、III‐V族材料から構成され得る。一実施形態において、バルク基板は、限定されないが、窒化ガリウム、ガリウムリン、ガリウムヒ素、インジウムリン、インジウムアンチモン、インジウムガリウムヒ素、アルミニウムガリウムヒ素、インジウムガリウムリン、またはこれらの組み合わせなどのIII‐V族材料で構成される。一実施形態において、バルク基板はIII‐V族材料で構成され、電荷キャリアドーパント不純物原子は、限定されないが、炭素、シリコン、ゲルマニウム、酸素、硫黄、セレン、またはテルルなどである。
【0107】
本願全体にわたって説明されるように、シャロートレンチ分離領域またはサブフィン分離領域などの分離領域は、最終的には、下層バルク基板から恒久的なゲート構造の部分を電気的に分離するか、またはこれらの分離に寄与する、またはフィンのアクティブ領域を分離するなど、下層バルク基板内に形成されたアクティブ領域を分離する好適な材料で構成され得る。例えば、一実施形態において、分離領域は、これらに限定されないが、二酸化シリコン、酸窒化シリコン、窒化シリコン、炭素ドーピング窒化シリコンまたはそれらの組み合わせなど、誘電体材料の1または複数の層から構成されている。
【0108】
本願全体にわたって説明されるように、ゲート線またはゲート構造は、ゲート誘電体層およびゲート電極層を含むゲート電極スタックから構成され得る。一実施形態において、ゲート電極スタックのゲート電極は、金属ゲートから構成され、ゲート誘電体層は、高k材料から構成される。例えば、一実施形態において、ゲート誘電体層は、限定されないが、酸化ハフニウム、酸窒化ハフニウム、ケイ酸ハフニウム、酸化ランタン、酸化ジルコニウム、ケイ酸ジルコニウム、酸化タンタル、チタン酸バリウムストロンチウム、チタン酸バリウム、チタン酸ストロンチウム、酸化イットリウム、酸化アルミニウム、酸化鉛スカンジウムタンタル、ニオブ酸鉛亜鉛、またはそれらの組み合わせなどの材料から構成される。さらに、ゲート誘電体層の一部は、半導体基板のいくつかの頂部層から形成された自然酸化物の層を含み得る。一実施形態において、ゲート誘電体層は、頂部の高k部分と、半導体材料の酸化物から構成される下部とから構成される。一実施形態において、ゲート誘電体層は、酸化ハフニウムの上部と、二酸化シリコンまたは酸窒化シリコンの底部とから構成される。いくつかの実装例において、ゲート誘電体の一部は、基板の表面に対して実質的に平行な底部と、基板の頂面に対して実質的に垂直な2つの側壁部とを含む「U」字形構造で構成されてよい。
【0109】
一実施形態において、ゲート電極は、限定されないが、金属窒化物、金属炭化物、金属シリサイド、金属アルミナイド、ハフニウム、ジルコニウム、チタン、タンタル、アルミニウム、ルテニウム、パラジウム、白金、コバルト、ニッケル、または導電性金属酸化物などの金属層で構成される。特定の実施形態において、ゲート電極は、金属の仕事関数設定層より上に形成された非仕事関数設定充填材料から構成される。ゲート電極層は、トランジスタがPMOSトランジスタであるか、または、NMOSトランジスタであるかどうかに応じて、P型仕事関数金属またはN型仕事関数金属から成り得る。いくつかの実装において、ゲート電極層は、2またはより多くの金属層のスタックから成り得、1または複数の金属層は、仕事関数金属層であり、少なくとも1つの金属層は、導電性の充填層である。PMOSトランジスタでは、ゲート電極に使用され得る金属は、これらに限定されなが、ルテニウム、パラジウム、白金、コバルト、ニッケル、および、例えばルテニウム酸化物などの導電性金属酸化物を含む。P型金属層は、仕事関数が約4.9eVから約5.2eVまでの間であるPMOSゲート電極の形成を可能にする。NMOSトランジスタでは、ゲート電極に使用され得る金属は、限定されないが、ハフニウム、ジルコニウム、チタン、タンタル、アルミニウム、これらの金属の合金、並びにハフニウム炭化物、ジルコニウム炭化物、チタン炭化物、タンタル炭化物、およびアルミニウム炭化物などのこれらの金属の炭化物を含む。N型金属層は、仕事関数が約3.9eVから約4.2eVまでの間であるNMOSゲート電極の形成を可能にする。いくつかの実装において、ゲート電極は、基板の表面に対して実質的に平行な底部と、基板の頂面に対して実質的に垂直な2つの側壁部分とを含むU字形構造で構成され得る。別の実装例において、ゲート電極を形成する金属層のうちの少なくとも1つは、基板の頂面に対して実質的に平行であり、基板の頂面に対して実質的に垂直な側壁部を含まない単にプレーナ型の層であり得る。本開示のさらなる実装において、ゲート電極は、U字形構造およびプレーナ型の、非U字形構造の組み合わせで構成され得る。例えば、ゲート電極は、1または複数のプレーナ型の非U字形層の上に形成される1または複数のU字形金属層から成り得る。
【0110】
本願全体にわたって説明されるように、ゲート線またはゲート電極スタックと関連したスペーサは、最終的には、自己整合コンタクトなどの隣接する導電性コンタクトから恒久的なゲート構造を電気的に分離するか、またはこの分離に寄与する好適な材料で構成され得る。例えば、一実施形態において、スペーサは、二酸化シリコン、酸窒化シリコン、窒化シリコンまたは炭素ドーピング窒化シリコンなどの誘電体材料から構成されるが、これに限定されない。
【0111】
一実施形態において、本明細書において説明されるアプローチは、非常に厳しい位置合わせ余裕度を伴うリソグラフィ工程の使用を排除する一方、既存のゲートパターンに非常によく整合されるコンタクトパターンの形成を伴い得る。そのような一実施形態において、このアプローチは、本質的に高い選択性ウェットエッチング(例えば、ドライエッチングまたはプラズマエッチングに対して)の使用を可能にして、コンタクト開口を生成する。一実施形態において、コンタクトパターンは、コンタクトプラグのリソグラフィ工程と組み合わせて、既存のゲートパターンを利用することにより形成される。そのような一実施形態において、本アプローチは、他のアプローチに使用されるような、コンタクトパターンを生成するための、そうでなければ重大なリソグラフィ工程の必要性の排除を可能にする。一実施形態において、トレンチコンタクトグリッドは、別個にパターニングされるのではなく、むしろポリ(ゲート)線の間に形成される。例えば、そのような一実施形態において、トレンチコンタクトグリッドは、ゲート格子パターニング後だが、ゲート格子カット前に形成される。
【0112】
ピッチ分割処理およびパターニングスキームが、本明細書において説明される実施形態を可能にするために実装され得る、または、本明細書において説明される実施形態の一部として含まれ得る。ピッチ分割パターニングは、典型的には、ピッチ2分割、ピッチ4分割などを指す。ピッチ分割スキームは、FEOL処理、BEOL処理、または、FEOL(デバイス)およびBEOL(メタライゼーション)両方の処理に適用され得る。本明細書において説明される1または複数の実施形態によれば、光学リソグラフィは、予め定義されたピッチで、一方向(例えば、厳密に一方向であるか、または、主に一方向であるかのいずれか)の線を印刷するために最初に実装される。次に、ピッチ分割処理は、線密度を増大させるための技法として実装される。
【0113】
一実施形態において、フィン、ゲート線、金属線、ILD線またはハードマスク線についての「格子構造」という用語は、本明細書において、密なピッチ格子構造を指すために使用される。そのような一実施形態において、密なピッチは、選択されたリソグラフィを通して直接達成可能であるわけではない。例えば、選択されたリソグラフィに基づくパターンが最初に形成され得るが、当分野において知られているように、スペーサマスクパターニングを使用することによって、ピッチが2分割され得る。またさらに、2回目のスペーサマスクパターニングによって元のピッチが4分割されてよい。したがって、本明細書において説明される格子状パターンは、実質的に一貫したピッチだけ離間した、実質的に一貫した幅を有する金属線、ILD線またはハードマスク線を有し得る。例えば、いくつかの実施形態において、ピッチの変動は10パーセント以内、幅の変動は10パーセント以内であり、いくつかの実施形態において、ピッチの変動は5パーセント以内、幅の変動は5パーセント以内であろう。パターンは、ピッチ2分割若しくはピッチ4分割によって、または、他のピッチ分割のアプローチによって製造され得る。一実施形態において、格子は、必ずしも単一のピッチであるとは限らない。
【0114】
一実施形態において、本説明全体で使用されるように、層間誘電体(ILD)材料は、誘電体若しくは絶縁体材料の層から構成され、またはこれを含む。適した誘電体材料の例は、限定されないが、シリコン酸化物(例えば二酸化シリコン(SiO))、ドーピングシリコン酸化物、フッ化シリコン酸化物、炭素ドーピングシリコン酸化物、当分野において知られている様々な低誘電率の誘電体材料、およびこれらの組み合わせを含む。層間誘電体材料は、例えば化学気相成長(CVD)、物理気相成長(PVD)などの技法によって、または、他の堆積方法によって形成され得る。
【0115】
一実施形態において、本説明全体にわたってもまた使用されるように、金属線またはインターコネクト線材料(およびビア材料)は、1または複数の金属または他の導電性構造から構成される。一般的な例は、銅とそれを包囲するILD材料との間にバリア層を含んでよく、または含まなくてよい銅線および構造の使用である。本明細書で使用される金属という用語は、合金、スタック、および複数の金属の他の組み合わせを含む。例えば、金属インターコネクト線は、バリア層(例えば、Ta、TaN、Ti、または、TiNのうちの1または複数を含む層)、異なる金属または合金のスタックなどを含み得る。したがって、インターコネクト線は、単一材料層であり得るか、または、導電性ライナ層および充填層を含む複数の層から形成され得る。電気めっき、化学気相成長または物理気相成長など、任意の好適な堆積プロセスが、インターコネクト線を形成するために使用され得る。一実施形態において、インターコネクト線は、これらに限定されないが、Cu、Al、Ti、Zr、Hf、V、Ru、Co、Ni、Pd、Pt、W、Ag、Au、または、それらの合金などの導電性材料から構成される。また、インターコネクト線は、当分野において、配線、ワイヤ、ライン、金属、または単に、インターコネクトと呼ばれることがある。
【0116】
一実施形態において、本説明全体にわたってもまた使用されるように、ハードマスク材料は、層間誘電体材料とは異なる誘電体材料から構成される。一実施形態において、異なる成長またはエッチング選択性を互いに、および、下層誘電体および金属層に提供するべく、異なるハードマスク材料が、異なる領域において使用され得る。いくつかの実施形態において、ハードマスク層は、シリコン窒化物層(例えば、窒化シリコン)もしくはシリコン酸化物層、またはその両方、またはこれらの組み合わせを含む。他の適した材料は、炭素ベースの材料を含んでよい。別の実施形態において、ハードマスク材料は、金属種を含む。例えば、ハードマスクまたは他の上層の材料は、チタン窒化物または別の金属(例えば窒化チタン)の層を含み得る。潜在的には、より少ない量の酸素などの他の材料が、これらの層の1または複数に含まれ得る。あるいは、当分野において知られている他のハードマスク層が、特定の実装に応じて使用され得る。ハードマスク層は、CVD、PVD、または他の堆積方法によって形成されてよい。
【0117】
一実施形態において、本説明全体にわたってもまた使用されるように、リソグラフィ工程は、193nm液浸リソグラフィ(i193)、極端紫外線(EUV)リソグラフィ、または、電子ビーム直接描画(EBDW)リソグラフィ、または、同様のものを使用して実行される。ポジ型レジストまたはネガ型レジストが使用され得る。一実施形態において、リソグラフィマスクは、トポグラフィマスキング部分、反射防止コーティング(ARC)層、および、フォトレジスト層から構成される3層マスクである。特定のそのような実施形態において、トポグラフィマスキング部分は、炭素ハードマスク(CHM)層であり、反射防止コーティング層はシリコンARC層である。
【0118】
上記のプロセスのすべての態様が、本開示の実施形態の趣旨および範囲に収まるように実践される必要はないことは理解されるべきである。例えば、一実施形態において、ダミーゲートは、ゲートスタックの活性部分の上方にゲートコンタクトを製造する前に、形成される必要は全くない。上記のゲートスタックは、実際は最初に形成されたように恒久的なゲートスタックであり得る。また、本明細書に説明されるプロセスは、1または複数の半導体デバイスを製造するべく使用され得る。半導体デバイスは、トランジスタまたは同様のデバイスであり得る。例えば、一実施形態において、半導体デバイスは、ロジックまたはメモリ用の金属酸化物半導体(MOS)トランジスタ、またはバイポーラトランジスタである。また、一実施形態において、半導体デバイスは、トライゲートデバイス、独立してアクセスされるダブルゲートデバイス、フィンFET、ナノワイヤデバイス、またはナノリボンデバイスなどの、3次元アーキテクチャを有する。1または複数の実施形態は、10ナノメートル(10nm)テクノロジーノード、および、10ナノメートル(10nm)未満のテクノロジーノードでの半導体デバイスの製造に特に有用であり得る。
【0119】
FEOL層または構造の製造のための、追加の、または、中間の工程は、リソグラフィ、エッチング、薄膜堆積、平坦化(化学機械的研磨(CMP)など)、拡散、メトロロジ、犠牲層の使用、エッチングストップ層の使用、平坦化ストップ層の使用、または、マイクロエレクトロニクスコンポーネント製造に関連するその他任意の措置などの標準マイクロエレクトロニクス製造プロセスを含み得る。また、先行のプロセスフローについて説明されたプロセス工程は、代替的な順序で実践され得ること、すべての工程が実行される必要があるわけではないこと、または、追加のプロセス工程が実行され得ること、または、その両方があり得ることを理解されたい。
【0120】
上の例示的なFEOLの実施形態では、一実施形態において、10ナノメートルまたは10ナノメートル未満のノード処理が、テクノロジードライバとしての製造スキーム、および、結果として生じる構造において、直接実装されることを理解されたい。他の実施形態において、BEOLの10ナノメートルまたは10ナノメートル未満の処理要件により、FEOLを検討することが推進され得る。例えば、FEOL層およびデバイスのための材料選択およびレイアウトは、BEOL処理に対応する必要があり得る。そのような一実施形態において、例えば、FEOL層において形成されるが、BEOL層の高密度メタライゼーションによって共に結合されるトランジスタ構造におけるフリンジ容量を減少させるべく、BEOL層の高密度メタライゼーションに対応するために、材料選択およびゲートスタックアーキテクチャが選択される。
【0121】
本明細書において開示される実施形態は、多種多様な異なるタイプの集積回路またはマイクロエレクトロニクスデバイスを製造するために使用され得る。そのような集積回路の例は、限定されないが、プロセッサ、チップセットコンポーネント、グラフィックスプロセッサ、デジタルシグナルプロセッサ、マイクロコントローラなどを含む。他の実施形態においては、半導体メモリが製造され得る。さらに、集積回路または他のマイクロエレクトロニクスデバイスは、当分野において知られている多種多様な電子デバイスにおいて使用され得る。例えば、コンピュータシステム(例えば、デスクトップ、ラップトップ、サーバ)、セルラー電話、パーソナル電子機器などである。集積回路は、バスおよびシステムの他の構成要素と結合され得る。例えば、プロセッサは、1または複数のバスによって、メモリ、チップセットなどと結合され得る。プロセッサ、メモリ、およびチップセットの各々は、潜在的に、本明細書で開示されるアプローチを使用し製造され得る。
【0122】
図8Aは、本開示の一実装によるコンピューティングデバイス800Aを示す。コンピューティングデバイス800Aは基板802Aを収容する。基板802Aは、これに限定されないが、プロセッサ804Aおよび少なくとも1つの通信チップ806Aを含む、多数の構成要素を含み得る。プロセッサ804Aは、基板802Aに対して物理的および電気的に結合される。いくつかの実装例においては、少なくとも1つの通信チップ806Aもまた、基板802Aに対して物理的および電気的に結合される。さらなる実装例においては、通信チップ806Aはプロセッサ804Aの一部である。
【0123】
その複数の用途に応じて、コンピューティングデバイス800Aは、その他の構成要素を含んでよい。これらの構成要素は、基板802Aに対して物理的および電気的に結合されてよいし、あるいは結合されなくてもよい。これらの他の構成要素は、限定されないが、揮発性メモリ(例えば、DRAM)、不揮発性メモリ(例えば、ROM)、フラッシュメモリ、グラフィックスプロセッサ、デジタルシグナルプロセッサ、暗号プロセッサ、チップセット、アンテナ、ディスプレイ、タッチスクリーンディスプレイ、タッチスクリーンコントローラ、バッテリ、オーディオコーデック、ビデオコーデック、電力増幅器、全地球測位システム(GPS)デバイス、コンパス、加速度計、ジャイロスコープ、スピーカ、カメラ、および(ハードディスクドライブ、コンパクトディスク(CD)、デジタル多用途ディスク(DVD)などの)大容量記憶装置を含む。
【0124】
通信チップ806Aによって、コンピューティングデバイス800Aへのデータ転送およびコンピューティングデバイス800Aからのデータ転送に対して無線通信が可能となる。「無線」という用語およびその派生語は、非ソリッド媒体を通して変調された電磁放射を使用してデータを通信し得る回路、デバイス、システム、方法、技法、通信チャネルなどを説明するために使用されてよい。いくつかの実施形態においては関連するデバイスがいかなるワイヤも含まないこともあるだろうが、この用語は、これらのデバイスがワイヤを全く含まないということを暗示するものではない。通信チップ806Aは、限定されないが、Wi‐Fi(IEEE802.11ファミリ)、WiMAX(登録商標)(IEEE802.16ファミリ)、IEEE802.20、ロングタームエボリューション(LTE)、Ev‐DO、HSPA+、HSDPA+、HSUPA+、EDGE、GSM(登録商標)、GPRS、CDMA、TDMA、DECT、ブルートゥース(登録商標)、これらの派生物、ならびに3G、4G、5Gおよびそれ以降の世代として指定された任意の他の無線プロトコルを含む多数の無線規格またはプロトコルのいずれかを実装し得る。コンピューティングデバイス800Aは、複数の通信チップ806Aを含み得る。例えば、第1通信チップ806Aは、Wi-Fiおよびブルートゥースなどのより短い距離の無線通信に専用化されてよいし、第2通信チップ806Aは、GPS、EDGE、GPRS、CDMA、WiMAX、LTE、Ev-DO、およびその他などのより長い距離の無線通信に専用化されてよい。
【0125】
コンピューティングデバイス800Aのプロセッサ804Aは、プロセッサ804A内にパッケージ化された集積回路ダイを含む。本開示の複数の実施形態のいくつかの実装において、プロセッサ804Aの集積回路ダイは、本開示の実装によって構築された集積回路構造などの、1または複数の構造を含む。「プロセッサ」という用語は、レジスタまたはメモリまたはその両方からの電子データを処理して、当該電子データをレジスタまたはメモリまたはその両方に格納され得る他の電子データに変換する、任意のデバイスまたはデバイスの一部を指し得る。
【0126】
通信チップ806Aもまた、通信チップ806A内にパッケージ化された集積回路ダイを含む。本開示の別の実装によれば、通信チップ806Aの集積回路ダイは、本開示の実装によって構築される。
【0127】
さらなる実装において、コンピューティングデバイス800Aの中に収容される別のコンポーネントは、本開示の複数の実施形態の実装にしたがって構築される集積回路ダイを含み得る。
【0128】
様々な実施形態において、コンピューティングデバイス800Aは、ラップトップ、ネットブック、ノートブック、ウルトラブック、スマートフォン、タブレット、パーソナルデジタルアシスタント(PDA)、ウルトラモバイルPC、携帯電話、デスクトップコンピュータ、サーバ、プリンタ、スキャナ、モニタ、セットトップボックス、エンタテインメントコントロールユニット、デジタルカメラ、ポータブル音楽プレーヤ、またはデジタルビデオレコーダであり得る。さらなる実装において、コンピューティングデバイス800Aは、データを処理するその他任意の電子デバイスであり得る。
【0129】
図8Bは、本開示の1または複数の実施形態を含むインターポーザ800Bを示す。インターポーザ800Bは、第1基板802Bを第2基板804Bに架橋するように使用される、介在する基板である。第1基板802Bは、例えば、集積回路ダイであり得る。第2基板804Bは、例えば、メモリモジュール、コンピュータマザーボード、または、別の集積回路ダイであり得る。一般的に、インターポーザ800Bの目的は、接続をより幅広いピッチに広げること、または接続を異なる接続にリルートすることである。例えば、インターポーザ800Bは、後で第2基板804Bに結合可能なボールグリッドアレイ(BGA)806Bに、集積回路ダイを結合し得る。いくつかの実施形態において、第1基板および第2基板802B/804Bは、インターポーザ800Bの対向する側面に取り付けられる。他の実施形態において、第1基板および第2基板802B/804Bは、インターポーザ800Bの同一の側面に取り付けられる。そして、さらなる実施形態において、3またはより多くの基板が、インターポーザ800Bを通じて相互接続される。
【0130】
インターポーザ800Bは、エポキシ樹脂、グラスファイバ強化エポキシ樹脂、セラミック材料、またはポリイミドなどのポリマー材料で形成され得る。さらなる実装において、インターポーザ800Bは、シリコン、ゲルマニウム、並びに他のIII‐V族およびIV族材料などの、半導体基板に使用される上記された材料と同一の材料を含み得る、交互に重なる強固または柔軟な材料で形成され得る。
【0131】
インターポーザ800Bは、金属インターコネクト808B、および限定されないが、シリコン貫通ビア(TSV)812Bを含むビア810Bを含み得る。インターポーザ800Bは、パッシブデバイスおよびアクティブデバイスの両方を含む埋め込みデバイス814Bをさらに含み得る。そのようなデバイスには、限定されないが、コンデンサ、デカップリングコンデンサ、抵抗器、インダクタ、ヒューズ、ダイオード、変圧器、センサ、および静電放電(ESD)デバイスが含まれる。無線周波数(RF)デバイス、電力増幅器、電力管理デバイス、アンテナ、アレイ、センサおよびMEMSデバイスなどの、より複雑なデバイスもまたインターポーザ800B上に形成され得る。本開示の実施形態によれば、本明細書において開示される装置またはプロセスは、インターポーザ800Bの製造、または、インターポーザ800Bに含まれるコンポーネントの製造において使用され得る。
【0132】
図9は、本開示の一実施形態による、本明細書において説明される、または、本明細書において説明される1または複数の特徴を含む、1または複数のプロセスによって製造された集積回路(IC)を利用するモバイルコンピューティングプラットフォーム900の等角図である。
【0133】
モバイルコンピューティングプラットフォーム900は、電子データ表示、電子データ処理、または無線電子データ伝送の各々のために構成された任意のポータブルデバイスであり得る。例えば、モバイルコンピューティングプラットフォーム900は、タブレット、スマートフォン、ラップトップコンピュータ、などのいずれかであり得、例示的な実施形態においてはタッチスクリーン(容量式、誘導式、抵抗式など)であるディスプレイスクリーン905、チップレベル(SoC)またはパッケージレベルの統合システム910、およびバッテリ913を含み得る。示されるように、より高いトランジスタパッキング密度によって可能とされる統合システム910において統合のレベルがより大きくなるにつれて、バッテリ913または、ソリッドステートドライブなどの不揮発性ストレージによって占められ得るモバイルコンピューティングプラットフォーム900の部分がより大きくなるか、または、プラットフォーム機能の改善のためにトランジスタゲートのカウントが大きくなる。同様に、統合システム910における各トランジスタのキャリア移動性がより大きくなるほど、機能がより高くなる。したがって、本明細書において説明される技法は、モバイルコンピューティングプラットフォーム900における性能および形態の要因の改善を可能にし得る。
【0134】
統合システム910は、展開図面920においてさらに示される。例示的な実施形態において、パッケージングされたデバイス977は、本明細書において説明される1または複数のプロセスによって製造される、または、本明細書において説明される1または複数の特徴を含む、少なくとも1つのメモリチップ(例えば、RAM)、または、少なくとも1つのプロセッサチップ(例えば、マルチコアマイクロプロセッサおよび/またはグラフィックスプロセッサ)を含む。パッケージングされたデバイス977はさらに、電力管理集積回路(PMIC)915、ワイドバンドRF(無線)送信器および/または受信器を含むRF(無線)集積回路(RFIC)925(例えば、送信経路上の電力増幅器および受信経路上の低ノイズ増幅器をさらに含むデジタルベースバンドおよびアナログフロントエンドモジュールを含む)、並びに、それらのコントローラ911のうちの1または複数と共に、基板960に結合される。機能上、PMIC915は、バッテリ電力制御、DC‐DC変換などを実行し、したがって、バッテリ913に結合された入力と、すべての他の機能モジュールに電流供給を提供する出力とを有する。さらに示されるように、例示的な実施形態では、RFIC925は、多数の無線規格またはプロトコルのいずれかを実装するように提供されるアンテナに結合された出力を有し、そのようなワイヤレス標準またはプロトコルは、限定されないが、Wi‐Fi(IEEE802.11ファミリ)、WiMAX(登録商標)(IEEE802.16ファミリ)、IEEE802.20、ロングタームエボリューション(LTE)、Ev‐DO、HSPA+、HSDPA+、HSUPA+、EDGE、GSM(登録商標)、GPRS、CDMA、TDMA、DECT、ブルートゥース(登録商標)、それらの派生物、ならびに3G、4G、および5G以降として指定される任意の他の無線プロトコルを含む。代替的な実装形態では、これらの基板レベルモジュールの各々は、パッケージングされたデバイス977のパッケージ基板に結合された別個のIC上、またはパッケージングされたデバイス977のパッケージ基板に結合された単一のIC(SoC)の内部に集積され得る。
【0135】
別の態様において、半導体パッケージは、集積回路(IC)チップまたはダイを保護するために、また、外部回路との電気的インタフェースをダイに提供するために使用される。より小さい電子デバイスへの需要が増加するにつれて、半導体パッケージは、さらに小さくなるようにさえ設計され、より大きい回路密度をサポートする必要がある。さらに、より高い性能のデバイスへの需要の結果、その後の組み立て処理に適合した、薄いパッケージングプロファイル、および、小さい全体的な反りを可能にする、改善された半導体パッケージの必要性が生じる。
【0136】
一実施形態において、セラミックまたは有機パッケージ基板へのワイヤボンディングが使用される。別の実施形態において、ダイをセラミックまたは有機パッケージ基板にマウントするために、C4プロセスが使用される。特に、半導体デバイスと基板との間のフリップチップ相互接続を提供するために、C4半田ボール接続を実装できる。フリップチップまたはコントロールドコラプスチップコネクション(C4)は、ワイヤボンドの代わりに半田バンプを利用する、集積回路(IC)チップ、MEMS、または、コンポーネントなどの半導体デバイスに使用されるマウントのタイプである。半田バンプは、基板パッケージの頂面上に配置されるC4パッド上に堆積される。半導体デバイスを基板にマウントするべく、半導体デバイスは、マウントする領域上で、活性面が下に向くように反転される。半田バンプは、半導体デバイスを基板に直接接続するために使用される。
【0137】
図10は、本開示の一実施形態による、フリップチップがマウントされたダイの断面図を示す。
【0138】
図10を参照すると、装置1000は、本開示の一実施形態による、本明細書において説明される1または複数のプロセスによって製造される、または、本明細書において説明される1または複数の特徴を含む、集積回路(IC)などのダイ1002を含む。ダイ1002は、メタライズされたパッド1004をその上に含む。セラミックまたは有機基板などのパッケージ基板1006は、その上に接続部1008を含む。ダイ1002およびパッケージ基板1006は、メタライズされたパッド1004に結合された半田ボール1010、および接続1008によって電気的に接続される。アンダーフィル材料1012は、半田ボール1010を包囲する。
【0139】
フリップチップの処理は、いくつかの追加的な工程を有するが、従来のIC製造に類似し得る。製造プロセスの終盤に、半田をより受けやすくするために、取り付けパッドが金属化される。典型的には、これは複数の処理から構成される。次に、半田の小さい点が、金属化されたパッドの各々の上に堆積される。次に、チップは通常通り、ウェハから切り取られる。フリップチップを回路に取り付けるべく、チップが反転され、下層電子基板または回路基板上のコネクタに半田の点が下向きに接触する。次に、典型的には、超音波、または、代替的にはリフローソルダリングプロセスを使用して、半田が再融解され、電気的接続をもたらす。また、これにより、チップの回路と下層マウントとの間に小さいスペースが残る。大部分の場合、次に、電気的に絶縁する接着剤が「アンダーフィル」され、より強い機械的接続を提供し、ヒートブリッジを提供し、それにより、チップ、および、システムの残りの部分の示差加熱に起因して半田接合部が応力を受けないことを保証する。
【0140】
他の実施形態において、より新しいパッケージング、および、シリコン貫通ビア(TSV)およびシリコンインターポーザなどの、ダイとダイとの間のインターコネクトアプローチが実装されることにより、本開示の一実施形態による、本明細書において説明される1または複数のプロセスにしたがって製造される、または、本明細書において説明される1または複数の特徴を含む、集積回路(IC)を組み込む高性能マルチチップモジュール(MCM)およびシステムインパッケージ(SiP)を製造する。
【0141】
したがって、本開示の実施形態は、説明された、急峻なドーパントプロファイルを有するソースまたはドレイン構造を備える集積回路構造と、急峻なドーパントプロファイルを有するソースまたはドレイン構造を備える集積回路構造を製造する方法とを含む。
【0142】
特定の実施形態について上記したが、これらの実施形態は、特定の特徴に関連して単一の実施形態のみが説明されている場合さえも、本開示の範囲を限定することは意図されない。本開示で提供される特徴の例は、別段の定めがある場合を除き、限定的であることよりも、むしろ例示的であることを意図するものである。上記の説明は、本開示の恩恵を有する当業者にとって明らかであるように、そのような代替物、修正物、および、均等物を包含することが意図されている。
【0143】
本開示の範囲は、本明細書に記載された課題のいずれかまたはすべてを緩和するか否かにかかわらず、本明細書に(明示的または暗示的に)開示される任意の特徴若しくは特徴の組み合わせまたはそれらの任意の一般化を含む。したがって、本願(または、それに対する優先権を主張する出願)の出願手続きの最中に、任意のそのような特徴の組み合わせに対する新しい請求項が考案され得る。具体的には、添付の特許請求の範囲を参照して、従属請求項による特徴を、独立請求項の特徴と組み合わせてよく、それぞれの独立請求項による特徴を、単に添付の特許請求の範囲で列挙される具体的な組み合わせのみではなく、任意の適切な方式で組み合わせてよい。
【0144】
以下の例は、さらなる実施形態に関する。異なる実施形態の様々な特徴が、様々な異なる適用に適合すべく、包含されたいくつかの特徴、および、除外された他の特徴と様々に組み合わされ得る。
【0145】
例示的実施形態1:集積回路構造は、鉛直に並ぶ水平ナノワイヤを含む。ゲートスタックは、鉛直に並ぶ水平ナノワイヤの周囲にある。第1エピタキシャルソースまたはドレイン構造は、鉛直に並ぶ水平ナノワイヤの第1端部にある。第2エピタキシャルソースまたはドレイン構造は、鉛直に並ぶ水平ナノワイヤの第2端部にある。第1および第2エピタキシャルソースまたはドレイン構造は、シリコン、リンおよびヒ素を含み、リンの原子濃度は、ヒ素の原子濃度と実質的に同一である。
【0146】
例示的実施形態2:例示的実施形態1の集積回路構造は、リンの原子濃度が1E20原子/cmより大きく、ヒ素の原子濃度が5E19原子/cmより大きい。
【0147】
例示的実施形態3:例示的実施形態1または2の集積回路構造において、第1および第2エピタキシャルソースまたはドレイン構造は、ヒ素の深度と実質的に同一なリンの深度を有する。
【0148】
例示的実施形態4:例示的実施形態3の集積回路構造において、リンの深度は、ヒ素の深度の約1ナノメートル以内に存在する。
【0149】
例示的実施形態5:例示的実施形態1、2、3または4の集積回路構造において、第1および第2ソースまたはドレイン構造は、約0.35mOhm・cmより小さい抵抗率を有する。
【0150】
例示的実施形態6:例示的実施形態1、2、3、4または5の集積回路構造において、ゲートスタックの第1および第2の側にそれぞれ沿って、第1および第2誘電体ゲート側壁スペーサをさらに含む。
【0151】
例示的実施形態7:例示的実施形態1、2、3、4、5または6の集積回路構造において、第1エピタキシャルソースまたはドレイン構造上の第1導電性コンタクト、および第2エピタキシャルソースまたはドレイン構造上の第2導電性コンタクトをさらに含む。
【0152】
例示的実施形態8:集積回路構造は、鉛直に並ぶ水平ナノワイヤを含む。ゲートスタックは、鉛直に並ぶ水平ナノワイヤの周囲にある。第1エピタキシャルソースまたはドレイン構造は、鉛直に並ぶ水平ナノワイヤの第1端部にある。第1エピタキシャルソースまたはドレイン構造は、
鉛直に並ぶ水平ナノワイヤを超えて横方向へ延びる第1部分を有し、鉛直に並ぶ水平ナノワイヤより上に鉛直に延びる第2部分を備え、第2部分は、第1部分の水平方向厚さより大きい鉛直方向厚さを備える。第2エピタキシャルソースまたはドレイン構造は、鉛直に並ぶ水平ナノワイヤの第2端部にある。第2エピタキシャルソースまたはドレイン構造は、鉛直に並ぶ水平ナノワイヤを超えて横方向に延びる第1部分を有し、鉛直に並ぶ水平ナノワイヤより上に鉛直に延びる第2部分を備え、第2部分は、第1部分の水平方向厚さより大きい鉛直方向厚さを備える。
【0153】
例示的実施形態9:例示的実施形態8の集積回路構造において、第1および第2エピタキシャルソースまたはドレイン構造は、シリコン、リンおよびヒ素を含み、リンの原子濃度は、ヒ素の原子濃度と実質的に同一である。
【0154】
例示的実施形態10:例示的実施形態8または9の集積回路構造において、ゲートスタックの第1および第2の側にそれぞれ沿って、第1および第2誘電体ゲート側壁スペーサをさらに含む。
【0155】
例示的実施形態11:例示的実施形態8、9または10の集積回路構造において、第1エピタキシャルソースまたはドレイン構造上の第1導電性コンタクト、および第2エピタキシャルソースまたはドレイン構造上の第2導電性コンタクトをさらに含む。
【0156】
例示的実施形態12:コンピューティングデバイスは、基板および基板に結合された構成要素を含む。構成要素は集積回路構造を含む。集積回路構造は、鉛直に並ぶ水平ナノワイヤを含む。ゲートスタックは、鉛直に並ぶ水平ナノワイヤの周囲にある。第1エピタキシャルソースまたはドレイン構造は、鉛直に並ぶ水平ナノワイヤの第1端部にある。第2エピタキシャルソースまたはドレイン構造は、鉛直に並ぶ水平ナノワイヤの第2端部にある。第1および第2エピタキシャルソースまたはドレイン構造は、シリコン、リンおよびヒ素を含み、リンの原子濃度は、ヒ素の原子濃度と実質的に同一である。
【0157】
例示的実施形態13:例示的実施形態12のコンピューティングデバイスは、基板に結合されたメモリをさらに含む。
【0158】
例示的実施形態14:例示的実施形態12または13のコンピューティングデバイスは、基板に結合された通信チップをさらに含む。
【0159】
例示的実施形態15:例示的実施形態12、13または14のコンピューティングデバイスは、基板に結合されたカメラをさらに含む。
【0160】
例示的実施形態16:例示的実施形態12、13、14または15のコンピューティングデバイスは、基板に結合されたバッテリをさらに含む。
【0161】
例示的実施形態17:例示的実施形態12、13、14、15または16のコンピューティングデバイスは、基板に結合されたアンテナをさらに含む。
【0162】
例示的実施形態18:例示的実施形態12、13、14、15、16または17のコンピューティングデバイスにおいて、構成要素はパッケージされた集積回路ダイである。
【0163】
例示的実施形態19:例示的実施形態12、13、14、15、16、17または18のコンピューティングデバイスにおいて、構成要素はプロセッサ、通信チップ、およびデジタルシグナルプロセッサから成る群から選択される。
【0164】
例示的実施形態20:例示的実施形態12、13、14、15、16、17、18または19のコンピューティングデバイスにおいて、コンピューティングデバイスは、携帯電話、ラップトップ、デスクトップコンピュータ、サーバおよびセットトップボックスから成る群から選択される。
図1A
図1B
図2A
図2B
図2C
図2D
図2E
図3A
図3B
図4
図5
図6A
図6B
図7A
図7B
図7C
図8A
図8B
図9
図10