IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社東京精密の特許一覧

特許7602713パーティクル計測装置、三次元形状測定装置、プローバ装置、パーティクル計測システム及びパーティクル計測方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-11
(45)【発行日】2024-12-19
(54)【発明の名称】パーティクル計測装置、三次元形状測定装置、プローバ装置、パーティクル計測システム及びパーティクル計測方法
(51)【国際特許分類】
   G01B 11/24 20060101AFI20241212BHJP
   G01B 11/28 20060101ALI20241212BHJP
   H01L 21/66 20060101ALI20241212BHJP
【FI】
G01B11/24 A
G01B11/28 Z
H01L21/66 J
H01L21/66 B
【請求項の数】 9
(21)【出願番号】P 2021032413
(22)【出願日】2021-03-02
(65)【公開番号】P2022133631
(43)【公開日】2022-09-14
【審査請求日】2023-12-28
(73)【特許権者】
【識別番号】000151494
【氏名又は名称】株式会社東京精密
(74)【代理人】
【識別番号】100083116
【弁理士】
【氏名又は名称】松浦 憲三
(74)【代理人】
【識別番号】100170069
【弁理士】
【氏名又は名称】大原 一樹
(74)【代理人】
【識別番号】100128635
【弁理士】
【氏名又は名称】松村 潔
(74)【代理人】
【識別番号】100140992
【弁理士】
【氏名又は名称】松浦 憲政
(72)【発明者】
【氏名】林 菜摘
(72)【発明者】
【氏名】森井 秀樹
(72)【発明者】
【氏名】吉田 徹夫
(72)【発明者】
【氏名】木村 季文
【審査官】信田 昌男
(56)【参考文献】
【文献】特開2014-175345(JP,A)
【文献】特開2005-134204(JP,A)
【文献】特開2003-68813(JP,A)
【文献】特開2004-69645(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01B 11/00-11/30
H01L 21/66
(57)【特許請求の範囲】
【請求項1】
ウェーハの電気的特性を検査するために前記ウェーハの電極パッドにプローブ針がコンタクトした際に発生するパーティクルを計測するパーティクル計測装置であって、
前記プローブ針がコンタクトしたプローブ針跡を含む前記電極パッドの表面形状を示すパッド表面形状データを取得する取得部と、
前記取得部が取得した前記パッド表面形状データに基づき、前記電極パッドの表面の中から前記パーティクルの計測の基準となるパッド基準面を検知する検知部と、
前記取得部が取得した前記パッド表面形状データに基づき、前記電極パッドの表面形状における前記パッド基準面から陥没している凹部の体積と、前記パッド基準面から突出している凸部の体積を計算する凹凸計算部と、
前記凹凸計算部が計算した前記凹部の体積と前記凸部の体積との体積差からパーティクル発生量を算出するパーティクル発生量算出部と、
を備える、パーティクル計測装置。
【請求項2】
前記ウェーハに含まれる複数の前記電極パッドについて前記パーティクル発生量算出部がそれぞれ算出した前記パーティクル発生量を積算する第1積算部と、
前記第1積算部が積算したパーティクル積算値を第1閾値と比較した結果に基づき、前記検査の結果に異常が生じる可能性を示す情報を出力する第1出力部と、
を更に備える、請求項1に記載のパーティクル計測装置。
【請求項3】
前記ウェーハの電気的特性を検査したプローバ装置毎に前記パーティクル発生量を積算する第2積算部と、
前記第2積算部が前記プローバ装置毎に積算したパーティクル積算値を第2閾値と比較した結果に基づき、前記検査の結果に異常が生じる可能性のあるプローバ装置を示す情報を出力する第2出力部と、
を更に備える請求項1又は2に記載のパーティクル計測装置。
【請求項4】
前記ウェーハの電気的特性を検査するために用いられたプローブカード毎に前記パーティクル発生量を積算する第3積算部と、
前記第3積算部が前記プローブカード毎に積算したパーティクル積算値を第3閾値と比較した結果に基づき、前記検査の結果に異常が生じる可能性のあるプローブカードを示す情報を出力する第3出力部と、
を更に備える請求項1から3のいずれか1項に記載のパーティクル計測装置。
【請求項5】
前記ウェーハの電気的特性を検査するために用いられたプローブカードが有するプローブ針毎に前記パーティクル発生量を積算する第4積算部と、
前記第4積算部が前記プローブ針毎に積算したパーティクル積算値を第4閾値と比較した結果に基づき、前記検査の結果に異常が生じる可能性のあるプローブ針を示す情報を出力する第4出力部と、
を更に備える請求項1から4のいずれか1項に記載のパーティクル計測装置。
【請求項6】
プローブ針がコンタクトしたプローブ針跡を含む前記電極パッドの表面形状を示すパッド表面形状データを作成する非接触三次元測定部と、
請求項1から5のいずれか1項に記載のパーティクル計測装置を備える、
三次元形状測定装置。
【請求項7】
プローブ針がコンタクトしたプローブ針跡を含む前記電極パッドの表面形状を示すパッド表面形状データを作成する非接触三次元測定部と、
請求項1から5のいずれか1項に記載のパーティクル計測装置と、
を備える、プローバ装置。
【請求項8】
ウェーハの電気的特性を検査するために前記ウェーハの電極パッドにプローブ針をコンタクトさせる、1以上のプローバ装置と、
前記プローブ針がコンタクトしたプローブ針跡を含む前記電極パッドの表面形状を示すパッド表面形状データを作成する非接触三次元測定装置と、
請求項1から5のいずれか1項に記載のパーティクル計測装置と、
を備える、パーティクル計測システム。
【請求項9】
ウェーハの電気的特性を検査するために前記ウェーハの電極パッドにプローブ針がコンタクトした際に発生するパーティクルを計測するパーティクル計測方法であって、
前記プローブ針がコンタクトしたプローブ針跡を含む前記電極パッドの表面形状を示すパッド表面形状データを取得し、
前記パッド表面形状データに基づき、前記電極パッドの表面の中から前記パーティクルの計測の基準となるパッド基準面を検知し、
前記パッド表面形状データに基づき、前記電極パッドの表面形状における前記パッド基準面から陥没している凹部の体積と、前記パッド基準面から突出している凸部の体積を計算し、
前記凹部の体積と前記凸部の体積との体積差からパーティクル発生量を算出する、
ことを備えるパーティクル計測方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体ウェーハに複数形成された半導体チップの電気的特性を検査する際に生じたパーティクルの発生量を計測する技術に関する。
【背景技術】
【0002】
半導体製造工程は、多数の工程を有し、品質保証及び歩留まりの向上のために、各種の製造工程で各種の検査が行われる。例えば、半導体ウェーハ(以下、ウェーハと称する)に複数の半導体チップ(以下、チップと称する)が形成された段階で、ウェーハレベル検査が行われる。
【0003】
ウェーハレベル検査は、プローブカードに形成された多数の針状のプローブ(以下、プローブ針という)を各チップの電極パッドにコンタクト(接触)させるプローバ装置を使用して行われる。プローブ針はテストヘッドの端子に電気的に接続されており、テストヘッドからプローブ針を介して各チップに電源及びテスト信号を供給するとともに、各チップからの出力信号をテストヘッドで検出して正常に動作するかを測定する。
【0004】
このようなウェーハレベル検査が行われた後、プローブ針が電極パッドに正常にコンタクトしたか否かを判定することを目的として、電極パッド上に形成された針跡をカメラによって撮像し、その撮像した画像から電極パッドの針跡を検出する技術が開示されている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2009-289818号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
ところで、プローバ装置において、電極パッドに対するプローブ針のコンタクト時に、プローブ針が電極パッドの表面の一部を削り取ることによってパーティクル(微細粒子)が発生する場合がある。このパーティクルには、電極パッドの表面に形成された酸化膜や金属膜などが含まれる。パーティクルは、ウェーハ上に残ると回路の誤動作の原因になる。また、パーティグルがプローブ針の針先等に付着する場合もある。この場合には、プローブ針による電気的特性の測定に悪影響を与える。
【0007】
そのため、従来のプローバ装置では、電極パッドに対するプローブ針のコンタクト時に発生したパーティクルによる影響を低減するために、例えばプロービング動作回数(プローブ針のコンタクト回数)をカウントし、プロービング動作回数が一定数に達した場合、または、ウェーハレベル検査の結果が悪化した場合に、プロー装置内の清掃や、プローブ針の針先の清掃などを行っていた。
【0008】
しかし、プローバ装置におけるパーティクル発生量はプロービング動作の際の運動学的な条件(例えば、プローブ針のオーバードライブ量)などにも依存しており、プロービング動作回数では実際のパーティクル発生量とは相関が低い。そのため、無駄な清掃の実施による時間の浪費や清掃不足の問題がある。また、ウェーハレベル検査の結果が悪化してからでは遅く、検査効率が低下する要因となる。
【0009】
特許文献1に開示された技術は、プローブ針が電極パッドに正常にコンタクトしたか否かを判定するために電極パッドの針跡を検出する技術にすぎず、プローバ装置において発生するパーティクルの発生状況を把握することは困難である。
【0010】
本発明はこのような事情に鑑みてなされたもので、ウェーハの電極パッドにプローブ針がコンタクトすることによって生じるパーティクルの発生状況を把握することが可能なパーティクル計測装置、三次元形状測定装置、プローバ装置、パーティクル計測システム及びパーティクル計測方法を提供することを目的とする。
【課題を解決するための手段】
【0011】
上記課題を解決するために、本発明の一態様に係るパーティクル計測装置は、ウェーハの電気的特性を検査するためにウェーハの電極パッドにプローブ針がコンタクトした際に発生するパーティクルを計測する。このパーティクル計測装置は、プローブ針がコンタクトしたプローブ針跡を含む電極パッドの表面形状を示すパッド表面形状データを取得する取得部と、取得部が取得したパッド表面形状データに基づき、電極パッドの表面の中からパーティクルの計測の基準となるパッド基準面を検知する検知部と、取得部が取得したパッド表面形状データに基づき、電極パッドの表面形状における基準面から陥没している凹部の体積と、パッド基準面から突出している凸部の体積を計算する凹凸計算部と、凹凸計算部が計算した凹部の体積と凸部の体積との体積差からパーティクル発生量を算出するパーティクル発生量算出部を備える。これにより、電極パッドにプローブ針がコンタクトした際に生じたパーティクルの発生状況を把握することが可能になる。
【0012】
好ましくは、パーティクル計測装置は、ウェーハに含まれる複数の電極パッドについてパーティクル発生量算出部がそれぞれ算出したパーティクル発生量を積算する第1積算部と、第1積算部が積算したパーティクル積算値を第1閾値と比較した結果に基づき、検査の結果に異常が生じる可能性を示す情報(警告)を出力する第1出力部とを、更に備える。
【0013】
パーティクル計測装置はパーティクル発生量を定量的に管理し、検査の結果に異常が生じる可能性がある場合は警告を出力するため、操作者は清掃が必要になったウェーハについて適切に清掃することができる。ひいては、半導体の製造工程の効率を向上させることが可能になる。
【0014】
好ましくは、パーティクル計測装置は、ウェーハの電気的特性を検査したプローバ装置毎にパーティクル発生量を積算する第2積算部と、第2積算部がプローバ装置毎に積算したパーティクル積算値を第2閾値と比較した結果に基づき、検査の結果に異常が生じる可能性のあるプローバ装置を示す情報を出力する第2出力部と、を更に備える。
【0015】
パーティクル計測装置は、パーティクル発生量をプローバ装置毎に定量的に管理し、検査の結果に異常が生じる可能性があるプローバ装置について警告を出力するため、操作者は、清掃が必要になったプローバ装置又はプローブ針について適切に清掃することができる。ひいては、半導体の製造工程の効率を向上させることが可能になる。
【0016】
好ましくは、パーティクル計測装置は、ウェーハの電気的特性を検査するために用いられたプローブカード毎にパーティクル発生量を積算する第3積算部と、第3積算部がプローブカード毎に積算したパーティクル積算値を第3閾値と比較した結果に基づき、検査の結果に異常が生じる可能性のあるプローブカードを示す情報を出力する第3出力部と、を更に備える。
【0017】
パーティクル計測装置は、プローブカード毎にパーティクル発生量を定量的に管理し、検査の結果に異常が生じる可能性があるプローブカードついて警告を出力するため、操作者は交換が必要なプローブカードについて適切に交換することができる。ひいては、半導体の製造工程の効率を向上させることが可能になる。
【0018】
好ましくは、パーティクル計測装置は、ウェーハの電気的特性を検査するために用いられたプローブカードが有するプローブ針毎にパーティクル発生量を積算する第4積算部と、第4積算部がプローブ針毎に積算したパーティクル積算値を第4閾値と比較した結果に基づき、検査の結果に異常が生じる可能性のあるプローブ針を示す情報を出力する第4出力部と、を更に備える。
【0019】
パーティクル計測装置は、プローブ針毎にパーティクル発生量を定量的に管理し、検査の結果に異常が生じる可能性があるプローブ針について警告を出力するため、操作者は、プローブカードを清掃する際に、清掃が必要なプローブ針を適切に清掃することができる。プローブカードを効率的に清掃することができるため、半導体の製造工程の効率を一層向上させることができる。
【0020】
好ましくは、三次元形状測定装置は、プローブ針がコンタクトしたプローブ針跡を含む電極パッドの表面形状を示すパッド表面形状データを作成する非接触三次元測定部と、本発明の各実施形態に係るパーティクル計測装置とを備える。
【0021】
好ましくは、プローバ装置は、プローブ針がコンタクトしたプローブ針跡を含む電極パッドの表面形状を示すパッド表面形状データを作成する非接触三次元測定部と、本発明の各実施形態に係るパーティクル計測装置とを備える。パーティクル計測装置をプローバ装置に搭載することにより、検査が終了したウェーハを搬送せずにプローバ装置にロードしたままの状態で効率的にパーティクルを計測することができる。更に、ウェーハを検査する際に使用するレシピ(ウェーハのサイズ、チップの配置等の各種パラメータ)を引き継いで使用することができるため、この点でも効率的にパーティクルを計測することができる。
【0022】
好ましくは、パーティクル計測システムは、ウェーハの電気的特性を検査するためにウェーハの電極パッドにプローブ針をコンタクトさせる、1以上のプローバ装置と、プローブ針がコンタクトしたプローブ針跡を含む電極パッドの表面形状を示すパッド表面形状データを作成する非接触三次元測定装置と、本発明の各実施形態に係るパーティクル計測装置とを備える。
【0023】
上記課題を解決するために、本発明の他の一態様に係るパーティクル計測方法は、ウェーハの電気的特性を検査するためにウェーハの電極パッドにプローブ針がコンタクトした際に発生するパーティクルを計測する。このパーティクル計測方法は、プローブ針がコンタクトしたプローブ針跡を含む電極パッドの表面形状を示すパッド表面形状データを取得することと、パッド表面形状データに基づき、電極パッドの表面の中からパーティクルの計測の基準となるパッド基準面を検知することと、パッド表面形状データに基づき、電極パッドの表面形状におけるパッド基準面から陥没している凹部の体積と、パッド基準面から突出している凸部の体積を計算することと、凹部の体積と凸部の体積との体積差からパーティクル発生量を算出することと、を備える。これにより、電極パッドにプローブ針がコンタクトした際に生じたパーティクルの発生状況を把握することが可能になる。
【発明の効果】
【0024】
本発明によれば、ウェーハの電気的検査を行うためにウェーハの電極パッドにプローブ針がコンタクトした際に生じたパーティクルの発生状況を把握することが可能になる。
【図面の簡単な説明】
【0025】
図1図1は、第1実施形態に係るパーティクル計測システムの概要図である。
図2図2は、第1実施形態に係るプローバ装置の概略構成図である。
図3図3は、第1実施形態に係る三次元形状測定装置の概略構成図である。
図4図4は、パーティクル発生量の算出原理を説明する図である。
図5図5は、第1実施形態に係るパーティクルの計測手順の一例を示すフローチャートである。
図6図6は、パッド表面形状データの一例を示す図である。
図7図7は、針跡領域の決定及びパッド基準面の検知方法の一例を示す図である 。
図8図8は、パッド基準面の検知方法の更なる一例を示す図である。
図9図9は、パッド基準面の検知方法の更なる一例を示す図である。
図10図10は、第2実施形態に係るパーティクル計測システムの概要図である。
図11図11は、第2実施形態に係るプローバ装置の概略構成図である。
図12図12は、第2実施形態に係るパーティクル計測装置の概略構成図である。
図13図13は、第2実施形態におけるデータベースの一例を示す図である。
図14図14は、第2実施形態に係るパーティクルの計測手順の一例を示すフローチャートである。
図15図15は、第2実施形態に係るパーティクルの計測手順の一例を示すフローチャートである。
図16図16は、第3実施形態におけるデータベースの一例を示す図である。
図17図17は、第3実施形態に係るパーティクルの計測手順の一例を示すフローチャートである。
図18図18は、第3実施形態に係るパーティクルの計測手順の一例を示すフローチャートである。
図19図19は、第4実施形態に係る三次元形状測定装置の概略構成図である。
図20図20は、第4実施形態におけるデータベースの一例を示す図である。
図21図21は、第4実施形態に係るパーティクルの計測手順の一例を示すフローチャートである。
図22図22は、電極パッドのサンプリング方法の一例を説明する図である。
図23図23は、電極パッドのサンプリング方法の更なる一例を説明する図である。
図24図24は、電極パッドのサンプリング方法の更なる一例を説明する図である。
【発明を実施するための形態】
【0026】
以下、図面に従って本発明の実施形態について説明する。以下の説明において、基本的に同じ構成を有する部材には同じ参照符号を付す。
【0027】
[第1実施形態]
まず、本発明の第1実施形態に係るパーティクル計測装置について説明する。図1は、第1実施形態に係るパーティクル計測システム1000の構成図である。パーティクル計測システム1000は、プローバ装置100と三次元形状測定装置(パーティクル計測装置)200とを備える。プローバ装置100と三次元形状測定装置200との間には、ウェーハWを搬送する搬送装置(不図示)が設けられている。図1において、X方向、Y方向及びZ方向は互いに直交する方向であり、X方向は水平方向、Y方向はX方向に直交する水平方向、Z方向は鉛直方向である。後述する他の図も同様である。
【0028】
図2はプローバ装置100の概略構成図である。プローバ装置100は、ステージ(チャックを含む)120、ステージ移動機構130、プローブカード140、制御部150、操作部160、及び表示部170を備える。
【0029】
ステージ120は、ウェーハWを吸着可能な保持面(吸着面)を有する。ステージ移動機構130は、ステージ120の下面(保持面とは反対側の面)を支持する。ステージ移動機構130は、XYZ方向に移動可能であり、かつ、θ方向(Z方向周りの回転方向)に回転可能に構成される。これにより、ステージ120の保持面に吸着保持されたウェーハWは、ステージ移動機構130により、ステージ120と一体となってXYZ方向に移動及びθ方向に回転可能である。
【0030】
プローブカード140は、ステージ120に対向する位置に設けられており、ステージ120の保持面に対して平行に配置される。プローブカード140は、ステージ120に対向する面に複数のプローブ針141が形成されている。更に、プローブカード140はテストヘッド180を介して不図示のテスタ本体と接続されている。
【0031】
ウェーハWには複数のチップCが形成されており、各チップCは1以上の電極パッドPを備える。ステージ移動機構130によりステージ120をXYZ方向に移動又はθ方向に回転させることにより、各プローブ針141を対応する電極パッドPにコンタクトさせるようにウェーハWとプローブカード140との位置合わせを行う。
【0032】
制御部150は、例えば、パーソナルコンピュータ、ワークステーション、PLC(Programmable Logic Controller)等により実現される。制御部150は、プローバ装置100の各部の動作を制御するCPU(Central Processing Unit)、ROM(Read Only Memory)、制御プログラムを格納する不図示のストレージデバイス(例えば、HDD(Hard Disk Drive)又はSSD(Solid State Drive)等)及びCPUの作業領域として使用可能なSDRAM(Synchronous Dynamic Random Access Memory)を含んでいる。制御部150は、操作部160を介して操作者による操作入力を受け付け、操作入力に応じた制御信号をプローバ装置100の各部に送信して各部の動作を制御する。
【0033】
操作部160は、操作者による操作入力を受け付ける手段であり、例えば、キーボード、マウス又はタッチパネル等を含んでいる。
【0034】
表示部170は、プローバ装置100の操作のための操作GUI(Graphical User Interface)及び画像を表示する装置である。表示部170としては、例えば、液晶ディスプレイを用いることができる。
【0035】
プローバ装置100によりプローブ針141と電極パッドPとの位置合わせ及びコンタクトが行われた後、テストヘッド180、プローブカード140及びプローブ針141を介して、テスタ本体から電気信号をチップCに送り、ウェーハW上のチップCの電気的特性の検査を行う。電気的特性の検査結果は、表示部170を介して操作者に通知される。
【0036】
ウェーハW上のチップCの電気的特性の検査が終了した後、ウェーハWは不図示の搬送装置によりプローバ装置100から三次元形状測定装置200に搬送される。
【0037】
次に、図3を用いて本発明の第1実施形態に係る三次元形状測定装置200の構成について説明する。三次元形状測定装置200は、ステージ220、ステージ移動機構230、制御部250、操作部260、表示部270、非接触三次元測定部280及び記憶部290を備える。
【0038】
ステージ220は、ウェーハWを吸着可能な保持面(吸着面)を有する。ステージ移動機構230は、ステージ220の下面(保持面とは反対側の面)を支持する。ステージ移動機構230は、XYZ方向に移動可能であり、かつ、θ方向(Z方向周りの回転方向)に回転可能に構成される。これにより、ステージ220の保持面に吸着保持されたウェーハWは、ステージ移動機構230により、ステージ220と一体となってXYZ方向に移動及びθ方向に回転可能である。
【0039】
チップCの電気的特性の検査の後、電極パッドPの表面上にはプローブ針141によって形成されたプローブ針跡M(図4参照)が残る。非接触三次元測定部280は、このプローブ針跡Mを含む電極パッドPの表面の三次元形状を非接触で測定し、測定結果をパッド表面形状データとして記憶部290に格納する。あるいは、非接触三次元測定部280は、パッド表面形状データを直接に制御部250に出力することにしてもよい。
【0040】
非接触三次元測定部280は、任意の測定手法を採用することが可能である。例えば、測定手法として、白色干渉法、フォーカスバリエーション法、SD-OCT法 (Spectral Domain Optical Coherence Tomography)、FD-OCT法 (Fourier Domain Optical Coherence Tomography)、レーザー共焦点法、三角測量法、光切断法、パターン投影法、光コム(Optical Comb)法等が挙げられる。
【0041】
本実施形態では、非接触三次元測定部280として、白色干渉法を用いて測定対象物(本例では電極パッドP)の表面形状を非接触により三次元測定する表面形状測定装置が好適に適用される。白色干渉法を用いた表面形状測定装置は、波長幅が広い白色光(可干渉性の少ない低コヒーレンス光)を光源として用い、マイケルソン型やミロー型などの干渉計を用いて測定対象物の被測定面の三次元形状を非接触により測定する。このような表面形状測定装置は、例えば特開2016-080564号公報、特開2016-161312号公報等に開示されており、公知であるので具体的な説明は省略する。
【0042】
制御部250は、パッド表面形状データを解析することにより、プローバ装置100において発生したパーティクル(微細粒子)の発生量を算出する。このパーティクルは、電極パッドPに対するプローブ針141のコンタクト時に、プローブ針141が電極パッドPの表面の一部(酸化膜や金属膜など)を削り取ることによって生じるものである。制御部250は、三次元測定制御部251と、取得部252と、検知部253と、凹凸計算部254と、パーティクル発生量算出部(本発明のパーティクル発生量算出部及び各積算部に相当)255と、判定部(本発明の各出力部に相当)256とを備える。狭義には、取得部252と、検知部253と、凹凸計算部254と、パーティクル発生量算出部255と、判定部256とが、本発明のパーティクル計測装置に相当する。広義には、三次元形状測定装置200全体が本発明のパーティクル計測装置に相当する。
【0043】
操作部260は、操作者による操作入力を受け付ける手段であり、例えば、キーボード、マウス又はタッチパネル等を含んでいる。
【0044】
表示部270は、三次元形状測定装置200の操作のための操作GUI(Graphical User Interface)及び画像を表示する装置である。表示部270としては、例えば、液晶ディスプレイを用いることができる。
【0045】
三次元測定制御部251は、非接触三次元測定部280による三次元測定を制御する。取得部252は、非接触三次元測定部280又は記憶部290から、電極パッドPの表面の三次元形状を示すパッド表面形状データを取得する。検知部253は、取得部252が取得したパッド表面形状データに基づいてパーティクルの計測の基準となるパッド基準面を検知する。
【0046】
凹凸計算部254は、取得部252が取得したパッド表面形状データに基づいて電極パッドPの表面形状においてパッド基準面から陥没している部分の体積と、パッド基準面から突出している部分の体積とを計算する。以下、パッド基準面から陥没している部分(つまり、パッド基準面より高さが低い)を凹部と称し、パッド基準面から突出している(つまり、パッド基準面より高さが高い)部分を凸部と称する。
【0047】
パーティクル発生量算出部255は、凹凸計算部254が計算した凸部の体積と凹部の体積との体積差からパーティクル発生量を算出する。判定部256は、パーティクル発生量算出部255が算出したパーティクル発生量を積算し、その積算値が所定の閾値を超えているか否かを判定する。この所定の閾値は、予め設定される値であり、例えば、工場出荷時に設定されてもよいし、ユーザによって設定又は変更されてもよい。
【0048】
制御部250は、例えば、パーソナルコンピュータ、ワークステーション、PLC(Programmable Logic Controller)等により実現される。制御部250は、CPU(Central Processing Unit)、ROM(Read Only Memory)、制御プログラムを格納する不図示のストレージデバイス(例えば、HDD(Hard Disk Drive)又はSSD(Solid State Drive)等)及びCPUの作業領域として使用可能なSDRAM(Synchronous Dynamic Random Access Memory)を含んでいる。制御部250は、操作部260を介して操作者による操作入力を受け付け、操作入力に応じた制御信号を三次元形状測定装置200の各部に送信して各部の動作を制御する。
【0049】
判定部256による判定結果は表示部20に出力される。ユーザは、表示に応じてウェーハWの清掃、プローバ装置100の清掃、プローブ針141の清掃等の必要な処理を行う。
【0050】
[パーティクル発生量の算出原理]
以下、図4を用いて本発明におけるパーティクル発生量の算出原理について説明する。図4は、プローブ針141によって平面形状の電極パッドPの表面が削られることにより形成されるプローブ針跡Mを模式的に示す。
【0051】
図4に示すように、プローブ針跡Mは、電極パッドPのパッド基準面Rよりも高さが高い凸部MPと、パッド基準面Rよりも高さが低い凹部MRとを有する。なお、パッド基準面Rは、後述の方法によって、電極パッドPからプローブ針跡Mがある領域を除いた領域の平均高さから検知することができる。
【0052】
電極パッドPから剥離したパーティクルが発生していない場合、理論上、凹部MRの体積VMRと凸部MPの体積VMPとは一致する。そこで、本発明では、電極パッドPの表面の三次元形状から、プローブ針跡Mの凸部MPの体積VMPと凹部MRの体積VMRとを算出し、両者の差をパーティクル発生量として算出する。ここで、凸部MPの体積VMPと凹部MRの体積VMRとを正確に測定するために、本発明では、非接触三次元測定部280を用いてプローブ針跡Mを含む電極パッドPの表面の三次元形状を非接触で測定する。
【0053】
なお、図4において、プローブ針141の一例としてカンチレバー式プローブ針を示すが、プローブ針141を限定する趣旨ではない。本発明は任意の種類のプローブ針141に適用可能である。プローブ針141の他の種類として、例えば、棒状の針である垂直針、及び、複数の針先を有するクラウン針等が挙げられる。
【0054】
また、図4では、電極パッドPの一例として平面形状の電極パッドを示すが、電極パッドPを限定する趣旨ではない。本発明は任意の種類の電極パッドPに適用可能である。電極パッドPの他の種類として、例えば、凸形状の曲面(例えば半球状)を有するバンプパッドが挙げられる。電極パッドPがバンプパッドである場合、大域的形状のパッド基準面Rからの差分を算出することにより、凸部MPの体積VMPと凹部MRの体積VMRとを算出することができる。
【0055】
[パーティクルの計測手順]
次に、図5を用いて第1実施形態におけるパーティクル計測手順について説明する。まず、対象となるウェーハWを三次元形状測定装置200にロードする。つまり、三次元形状測定装置200のステージ220にウェーハWを載置(吸着保持)し、非接触三次元測定部280とステージ220上のウェーハWとを対向させる(ステップS10)。続いて、積算値ΣΔVをリセットする(ステップS11)。ステージ移動機構230によってステージ220を移動又は回転させて、非接触三次元測定部280と測定すべき電極パッドPとの間の位置決めを行う。更に、非接触三次元測定部280によってその電極パッドPの表面の三次元形状を測定して数値化し、パッド表面形状データを作成する(ステップS12)。
【0056】
図6に、非接触三次元測定部280によって得られる電極パッドPのパッド表面形状データの一例を示す。図6は、電極パッドPがXY平面に対してほぼ平行な表面に形成された針跡Mの示すパッド表面形状データである。図6の符号6Aは、XY平面上に各XY座標における高さ方向の位置(Z軸座標値)を示したグラフであり、画素のZ軸座標値の絶対値が大きいほど濃い網掛けが付けられている。図6の符号6Bは、符号6Aに示すグラフをXYZ直交座標系に表したグラフである。
【0057】
続いて、制御部250の取得部252は、非接触三次元測定部280から直接に、又は記憶部290を介して間接にパッド表面形状データを取得する。制御部250の検知部253は、取得部252が取得したパッド表面形状データに基づき、電極パッドPの表面の中から、凹部と凸部との区別の基準となるパッド基準面Rを検知する(ステップS13)。
【0058】
より具体的には、検知部253は、パッド表面形状データにおいて、周囲の画素のZ軸座標値と大きく異っているZ軸座標値を有する画素を中心とする領域を針跡領域RM(図7参照)を特定する。続いて、検知部253は、パッド表面形状データから針跡領域RMを除き、残った領域のZ軸座標値の平均値(平均Z軸座標値)を算出する。そして、この平均Z軸座標値を有するXY平面をパッド基準面Rとして検知する。
【0059】
ここで、検知部253は、任意の公知技術を用いて針跡領域RMを決定することができる。例えば、検知部253は、パッド表面形状データのXY平面グラフにおいて、Z軸座標値の絶対値が所定値を超えている画素及びそれら画素から一定距離内の画素を囲む矩形を針跡領域RMとしてもよい。より具体的には、例えば、図7に示すように、検知部253は、図6の符号6Aに示すXY平面グラフにおいてZ軸座標値の絶対値が10を超えている画素及びそれら画素に隣接する画素を囲む矩形を針跡領域RMとしてもよい。
【0060】
また、例えば、検知部253は、パッド表面形状データ内の画素のZ軸座標値の頻度を示すヒストグラムを作成し、最頻値付近の画素について平均Z軸座標値を算出してもよい。図8は、図7に示すパッド表面形状データについて作成されたZ軸座標値の頻度を示すヒストラグラムであり、横軸はZ軸座標値を示し、縦軸は各Z軸座標値を有する画素の数(頻度)を示す。図8に示すヒストグラムではZ軸座標値0近傍が最も頻度が高いため、検知部253は、Z軸座標値が-10から+10までの間である画素について、Z軸座標値の平均値を算出する。また、例えば、検知部253は、Z軸座標値の最大値及び最小値を有する画素から一定の距離内を針跡領域RMとしてもよい。
【0061】
上記において、電極パッドPがXY平面に略平行な平面形状である場合におけるパッド基準面Rを検知する方法について説明した。続いて、電極パッドPが傾斜している、或いは平面形状以外の形状を有する場合におけるパッド基準面Rの検知方法について説明する。
【0062】
図9は、電極パッドPがXY平面に対して傾斜している場合に得られるパッド表面形状データの一例を示し、図9の符号9Aは、図6の符号6Aと同様に、XY平面上に各XY座標における高さ方向の位置(Z軸座標値)を示したグラフである。
【0063】
電極パッドPがXY平面に対して傾斜している又は平面以外の形状を有する場合、例えば、まず、検知部253は、図7を用いて説明した方法でパッド表面形状データから針跡領域RMを除く。続いて、検知部253は、パッド表面形状データの残った領域(図9の符号9B参照)のXYZ座標値を最小二乗法で近似することによりパッド基準面Rを示す近似式を得る。図9の符号9Bに示すグラフの場合、近似結果は以下のようになる。
【0064】
Z(X,Y)=aX+bY+c a=0.2,b=1.0,c=4.2
なお、パッド基準面Rの検知方法はこの例示に限定されず、任意の公知技術を採用可能である。
【0065】
検知部253によってパッド基準面Rが検知されると、制御部250の凹凸計算部254は、取得部252が取得したパッド表面形状データに基づき、電極パッドPのうち針跡領域RMを含む領域について、パッド基準面Rを基準として部MPの体積VMPと部MRの体積VMRとを計算する(ステップS14)。
【0066】
例えば、電極パッドPが傾斜している或いは平面形状以外の形状を有する場合、凹凸計算部254は、検知部253が算出したパッド基準面Rを表す近似式「Z(X,Y)=aX+bY+c」と、以下の式(1)及び式(2)を用いて、部MPの体積VMPと部MRの体積VMRとを計算することができる。
【0067】
【数1】
【0068】
【数2】
【0069】
なお、パッド基準面Rが傾斜していない場合、上記式(1)及び式(2)中のZ=aX+bY+cは定数の平均Z軸座標値(ステップS13の説明参照)に置換可能であるため、式(1)及び式(2)は簡略化される。置換後の式は自明であるため、省略する。
【0070】
続いて、パーティクル発生量算出部255は、凹凸計算部254が計算した凸部MPの体積VMPと凹部MRの体積VMRとの体積差ΔVを計算する(ステップS15)。この体積差ΔVは、現在、測定している電極パッドPからのパーティクル発生量に相当する。更に、パーティクル発生量算出部255は、算出した体積差ΔVを積算値ΣΔVに加算する(ステップS16)。
【0071】
続いて、パーティクル発生量算出部255は、他に測定すべき電極パッドPがあるか否か判定する(ステップS17)。例えば、操作者(又は製造者)は予め測定対象となる電極パッドPを指定する情報を記憶部290に登録しておき、パーティクル発生量算出部255はこの情報に基づいてステップS17の判定を行う。あるいは、その都度、操作者の入力に基づいてステップS17の判定を行ってもよい。あるいは、制御部250は測定すべき電極パッドPを所定の法則に従って自動的に決定し、パーティクル発生量算出部255は、この決定に基づいてステップS17の判定を行うこととしてもよい。測定すべき電極パッドPの決定については後述する。
【0072】
他に測定すべき電極パッドPがあると判定された場合(ステップS17:NO)、処理はステップS12に戻る。他に測定すべき電極パッドPがないと判定された場合(ステップS17:YES)、判定部256は、積算値ΣΔVが所定の第1閾値より大きいか否か判定する(ステップS18)。積算値ΣΔVが所定の第1閾値以下であると判定された場合(ステップS18:NO)、そのウェーハWについての処理は終了する。
【0073】
積算値ΣΔVが所定の第1閾値より大きいと判定された場合(ステップS18:YES)判定部256はチップCの品質に影響が生じる可能性を示す情報(以下、警告と称する)を表示部70に出力する(ステップS19)。警告を受けて、操作者は必要に応じてウェーハWを清掃し、そのウェーハWについての処理を終了する。
【0074】
従来、パーティクル発生量を定量的に管理する方法がなかったため、無駄な清掃の実施による時間の浪費や清掃不足の問題があった。
【0075】
一方、第1実施形態に係る三次元形状測定装置200はウェーハWからのパーティクル発生量を定量的に管理し、パーティクル発生量が所定の閾値を超えた場合に警告を出力するため、操作者は、清掃が必要になったウェーハWについて適切に清掃することができる。ひいては、半導体の製造工程の効率を向上させることが可能になる。
【0076】
[第1実施形態の変形例]
第1実施形態において、プローバ装置100と三次元形状測定装置200とを別体とし、プローバ装置100と三次元形状測定装置200とを備えるパーティクル計測システム1000を構成している。しかし、プローバ装置100に非接触三次元測定部280及び制御部250の機能を追加することにより、プローバ装置100とパーティクル計測装置とを1つの装置で実現することも可能である。
【0077】
この場合、ウェーハW上のチップCの電気的特性の検査が終了した後、ステージ120にウェーハWを吸着保持させた状態のまま、ステージ移動機構130によりステージ120をプローブカード140に対向する位置から非接触三次元測定部280に対向する位置に移動させる。その後、非接触三次元測定部280によりプローブ針跡Mを含む電極パッドPの表面の三次元形状を非接触で測定する。その後の処理は第1実施形態と同様である。なお、ステージ120を移動させる代わりに、ステージ120の位置を固定して、プローブカード140及びテストヘッド80と、非接触三次元測定部280とを移動させるようにしてもよい。
【0078】
第1実施形態の変形例によれば、上記の第1実施形態で実現される効果に加えて、パーティクル計測装置を安価に実現することが可能であるという利点がある。また、ウェーハWをプローバ装置100から三次元形状測定装置200へ搬送し、ロードする必要がないため、効率的にパーティクルを計測することができる。更に、ウェーハWを検査する際に使用するレシピ(ウェーハWのサイズ、チップCの配置等の各種パラメータ)を引き継いで使用することができるため、第1実施形態よりも効率的にパーティクルを計測することができる。
【0079】
[第2実施形態]
次に、本発明の第2実施形態に係るパーティクル計測装置について説明する。第1実施形態ではウェーハWについてパーティクル発生量を管理することにより、清掃が必要になったウェーハWを適切に清掃することを可能にしている。しかし、複数のプローバ装置を用いて複数のウェーハW上のチップCの電気的特性の検査を行うこともある。このような場合に、第2実施形態では、1台のパーティクル計測装置がプローバ装置毎にパーティクル発生量を管理することにより、清掃が必要になったプローバ装置を適切に清掃することを可能にする。
【0080】
図10は、第2実施形態に係るパーティクル計測システム2000の構成図である。パーティクル計測システム2000は、複数のプローバ装置2100-i(iは1以上の自然数)と、三次元形状測定装置2200とを備える。三次元形状測定装置2200と、複数のプローバ装置2100-iとは、有線及び/又は無線のネットワークNを介して互いに接続されている。更に、三次元形状測定装置2200と、複数のプローバ装置2100-iとの間には、ウェーハWを搬送する搬送装置(不図示)が設けられている。なお、図10では、例として、3つのプローバ装置2100-1、2100-2及び2100-3を示すが、複数のプローバ装置2100-iの数を限定する趣旨ではない。
【0081】
以下、図11を用いて各プローバ装置2100-iの構成について説明する。図11に示すようにプローバ装置2100-iは、図2に示すプローバ装置100に、更にウェーハID読取部300を加えたものである。
【0082】
各ウェーハWは、ウェーハWを識別する情報であるウェーハIDを有する。ウェーハIDは、例えば、印字、彫り込み、一次元バーコード、二次元バーコード、RFID、ICタグ等によって各ウェーハWに付与されている。ウェーハID読取部300は、ウェーハIDの種類に応じて設けられており、各ウェーハWに付されたウェーハIDを読み出す。例えば、ウェーハIDが二次元バーコードである場合、ウェーハID読取部300はバーコードリーダである。ウェーハID及びウェーハID読取部300には任意の公知技術を利用可能であり、ここでは説明を省略する。
【0083】
また、各プローバ装置2100-iは、それぞれのプローバ装置2100-iを識別する情報であるプローバIDを有する。
【0084】
図12に第2実施形態に係る三次元形状測定装置(パーティクル計測装置)2200の構成について説明する。図12に示すように三次元形状測定装置2200の構成は、図3に示す三次元形状測定装置200の構成に更に、ウェーハID読取部310を加えたものである。ウェーハID読取部310はウェーハID読取部300と同様であるため、ウェーハID読取部310についての説明は省略する。
【0085】
第2実施形態において三次元形状測定装置2200の制御部250は、プローバ装置2100-i毎にパーティクル発生量をデータベースで管理する。図13に、記憶部290に保存されるデータベースの一例を示す。図13に示すように、記憶部290は、ウェーハIDデータベース320と、積算値データベース330とを有する。ウェーハIDデータベース320は、ウェーハWを識別するウェーハIDと、そのウェーハWを検査する際に用いられたプローバ装置2100-iを識別するプローバIDとを、関連付けて格納する。積算値データベース330は、プローバ装置2100-i毎にパーティクル発生量の積算値ΣΔVを格納する。
【0086】
次に、図14及び図15を用いて第2実施形態におけるパーティクル計測手順について説明する。第2実施形態では、パーティクル計測に先立ち、ウェーハIDの登録を行う。以下、図14を用いて、ウェーハIDの登録手順について説明する。
【0087】
まず、各プローバ装置2100-iがプロービング動作を行う際に、各プローバ装置2100-iのウェーハID読取部300はウェーハWからウェーハIDを読み取る(ステップS30)。続いて、各プローバ装置2100-iはそのウェーハWについてプロービング動作を行い、更にウェーハWの検査が行われる(ステップS31)。検査が終わると、ステップS30で読み取ったウェーハWのウェーハIDと、そのプローバ装置2100-iのプローバIDとを、三次元形状測定装置2200に送信する(ステップS32)。三次元形状測定装置2200は受信したウェーハIDとプローバIDとを関連付けて、記憶部290のウェーハIDデータベース320に保存する(ステップS33)。この登録手順によって、図13に示すようなデータベースが作成される。
【0088】
続いて、検査が終わったウェーハWは不図示の搬送部によって三次元形状測定装置2200に搬送され、そのウェーハWについてパーティクル計測が行われる。
【0089】
続いて、図15を用いて第2実施形態におけるパーティクル計測について説明する。図15に示すように、第2実施形態では、図5に示す第1実施形態のステップS11、S16、及びS18からS19、がそれぞれステップS34、S35、及びS36からS38に置き換えられている。図15の他のステップは第1実施形態の図5のステップS12からS15と同様であるため、説明を省略する。
【0090】
まず、ウェーハWが三次元形状測定装置2200に搬送され、三次元形状測定装置2200にロードされると(ステップS10)、三次元形状測定装置200のウェーハID読取部310は、ウェーハWからウェーハIDを読み取る(ステップS34)。次に、第1実施形態と同様にステップS12からステップS15を行い、パーティクル発生量ΔVを計算する。
【0091】
続いて、パーティクル発生量ΔVが計算されると(ステップS15)、制御部250のパーティクル発生量算出部255は、記憶部290のウェーハIDデータベース320から、ステップS34で読み取ったウェーハIDに関連付けられているプローバIDを取得する。続いて、パーティクル発生量算出部255は、記憶部290の積算値データベース330を参照し、取得したプローバIDに対応する積算値ΣΔVに、ステップS15で計算したパーティクル発生量ΔVを加算して、積算値ΣΔVを更新する(ステップS35)。
【0092】
その後、他に測定すべき電極パッドPがないと判定された場合(ステップS17:YES)、判定部256は、ステップS35で計算した積算値ΣΔVが所定の第2閾値を超えているか否か判定する(ステップS36)。
【0093】
ここで、第1実施形態ではウェーハWについてパーティクル発生量を管理しているが、第2実施形態ではプローバ装置2100-i毎にパーティクル発生量を管理しているため、第2実施形態のステップS36で用いられる第2閾値は、第1実施形態で用いられる第1閾値とは必ずしも一致しない。
【0094】
この第2閾値は、第1閾値と同様に予め設定される値である。第2閾値は、工場出荷時に適宜設定されてもよいし、ユーザによって任意の時期に適宜設定・変更されてもよい。プローバ装置2100-iにパーティクルが一定量以上蓄積するとウェーハWの検査に影響を与える恐れがあるが、操作者(又は製造者)は検査に影響を与えうるパーティクル発生量をプローバ装置2100-iの使用実績によって経験的に知ることができる。そのため、操作者は経験に基づいて第2閾値を設定してもよい。
【0095】
ステップS36において積算値ΣΔVが所定の第2閾値を超えていると判定された場合、判定部256は、ステップS35で取得したプローバIDとともに、プローバIDに対応するプローバ装置2100-iを特定する情報と、警告とを表示部70に出力する(ステップS37)。警告を受けて、操作者は必要に応じてプローバ装置2100-iを清掃する。清掃が行われた場合、判定部256は、積算値データベース330に記憶されている、清掃したプローバ装置2100-iに対応する積算値ΣΔVをリセットし(ステップS38)、その後、そのウェーハWについての処理を終了する。
【0096】
従来、パーティクル発生量を定量的に管理する方法がなかったため、本来清掃が不要なプローバ装置2100-iを清掃してしまったり、逆にプローバ装置2100-iの清掃が不足してしまったりしていた。これにより、半導体の製造工程の効率が低下していた。
【0097】
一方、本発明の第2実施形態に係る三次元形状測定装置2200はウェーハWからのパーティクル発生量を定量的にプローバ装置2100-i毎に管理し、パーティクル発生量が所定の第2閾値を超えたプローバ装置2100-iの清掃を促す警告を出力する。これにより、操作者は、清掃が必要になったプローバ装置2100-iについて適切に清掃することができる。ひいては、半導体の製造工程の効率を向上させることが可能になる。
【0098】
[第2実施形態の変形例]
第2実施形態では、警告を受けた操作者は必要に応じてプローバ装置2100-iの清掃を行うが、ステップS36において用いる第2閾値を適宜変更することにより、第2実施形態とは異なるタイミングで警告を出力してもよい。第2実施形態の変形例では、プローバ装置2100-iの清掃の代わりに、プローバ装置2100-iに搭載されているプローブカード140のプローブ針141の清掃を促すことができるように、第2閾値を別の閾値に調整してもよい。第2実施形態の変形例によれば、操作者は、清掃が必要なプローブ針141について適切に清掃することができる。ひいては、半導体の製造工程の効率を向上させることが可能になる。
【0099】
[第3実施形態]
第2実施形態ではプローバ装置毎にパーティクル発生量を管理することによりプローバ装置の清掃の要否を判定している。しかし、1台のプローバ装置において複数のプローブカードを用いることがある。第3実施形態では、プローバ装置に搭載されるプローブカード毎にパーティクル発生量を管理することによりプローブカードの交換を適切に行うことを可能にする。
【0100】
第3実施形態に係るパーティクル計測システム(不図示)は、第2実施形態に係るプローバ装置2100と三次元形状測定装置2200とを備える。プローバ装置2100及び三次元形状測定装置2200の構成は、第2実施形態と同様であるため、これらについての説明を省略する。
【0101】
第3実施形態では、各プローブカード140-j(jは1以上の自然数)はプローブカードを識別する情報であるプローブカードIDを有する。プローブカード140-jを搭載する際、プローバ装置2100は、プローブカード140-jのプローブカードIDを取得する。プローブカードIDの取得は、例えば、操作者による入力により行われる。或いは、上記のウェーハIDと同様な方法で不図示の読取部により各プローバ装置2100-iが自動的にプローブカードIDをプローブカード140-jから読み取ってもよい。
【0102】
図16に、第3実施形態において記憶部290に保存されるデータベースの一例を示す。図16に示すように、第3実施形態では、記憶部290は、ウェーハIDデータベース340と、積算値データベース350とを有する。ウェーハIDデータベース340は、ウェーハWを識別するウェーハIDと、そのウェーハWを検査する際に用いられるプローブカード140-jを識別するプローブカードIDとを、関連付けて格納する。積算値データベース350は、プローブカード140-j毎にパーティクル発生量の積算値ΣΔVを格納する。
【0103】
図17及び図18を用いて、第3実施形態におけるパーティクル計測の手順について説明する。第2実施形態と同様に、第3実施形態においてもウェーハIDの登録を行う。図17に示すように、第3実施形態におけるウェーハIDの登録手順は、図14に示す第2実施形態における登録手順とほぼ同じである。相違点は、第2実施形態では図14に示すステップS32及びS33おいてプローバIDが送信及び保存されるが、第3実施形態では図17に示すステップS40及びS41においてプローブカードIDが送信及び保存されることである。登録手順によって図16に示すウェーハIDデータベース340が作成される。
【0104】
続いて、検査が終わったウェーハWは不図示の搬送部によって三次元形状測定装置2200に搬送され、そのウェーハWについてパーティクル計測が行われる。図18に示すように、第3実施形態におけるパーティクル計測手順は、図15に示す第2実施形態におけるパーティクル計測手順とほぼ同じである。相違点は、図15のステップS35からS38が、図18ではステップS42からS45に変更されていることである。
【0105】
以下、第2実施形態との相違点についてのみ説明する。まず、第3実施形態ではステップS42において、パーティクル発生量算出部255は、記憶部290のウェーハIDデータベース340を参照して、ステップS34で読み取ったウェーハIDに対応するプローブカードIDを取得する。更に、パーティクル発生量算出部255は、記憶部290の積算値データベース350を参照して、取得したプローブカードIDに対応する積算値ΣΔVに、ステップS15で計算したパーティクル発生量ΔVを加算して、積算値ΣΔVを更新する。
【0106】
その後、他に測定すべき電極パッドPがないと判定された場合(ステップS17:YES)、ステップS43において、制御部250の判定部256は、積算値ΣΔVが所定の第3閾値を超えているか否か判定する。ここで、第3閾値は、第1及び第2実施形態で用いられる第1及び第2閾値とは異なる値でもよい。第3閾値は、予め設定される値である。第3閾値は、工場出荷時に適宜設定されてもよいし、ユーザによって任意の時期に適宜設定・変更されてもよい。プローブカード140-jはパーティクルが一定量以上に蓄積すると寿命になり交換が必要になるが、操作者(又は製造者)はプローブカード140-jの交換が必要になるパーティクル発生量をプローブカード140-jの使用実績によって経験的に知ることができる。例えば、操作者は経験に基づいて第3閾値を設定する。
【0107】
更に、ステップS44においてプローブカードIDとともに、プローブカードIDに対応するプローブカード140-jを特定する情報と、警告とを表示部170に出力する。
【0108】
警告を受けて、操作者は必要に応じてプローブカード140-jを交換する。交換が行われた場合、ステップS45において、判定部256は、積算値データベース350に記憶されている交換したプローブカード140-jに対応する積算値ΣΔVをリセットし、その後、そのウェーハWについての処理を終了する。
【0109】
従来、予め定められた頻度でプローブカードを交換していたため、本来不必要な場合にもプローブカードを交換する場合があった。一方、第3実施形態によれば、プローブカード140-j毎にパーティクル発生量を管理することにより、交換が必要なプローブカード140-jについて適切に交換することができる。ひいては、半導体の製造工程の効率を向上させることが可能になる。
【0110】
[第3実施形態の変形例]
第3実施形態と第2実施形態とを組み合わせてもよい。これにより、プローブカード140-jを搭載するプローバ装置2100-iを管理することが可能になる。この場合、記憶部290は、図1に示すウェーハIDデータベース340及び積算値データベース350に加えて、更に、プローブカードIDとプローバIDとを関連付けて格納するプローバIDデータベース(不図示)を備える。
【0111】
第3実施形態と第2実施形態との組み合わせでは、例えば、交換が必要になったプローブカード140-jのプローブカードIDと、そのプローブカード140-jを搭載しているプローバ装置2100-iのプローバIDと、プローブカード140-jの交換を促す警告とを、表示部70に出力する。これにより、複数のプローバ装置2100-iを備えるパーティクル計測システムにおいても、プローブカード140-jについて適切に交換することができる。
【0112】
[第4実施形態]
第3実施形態では、プローバ装置に搭載されるプローブカード毎にパーティクル発生量を管理する。ここで、プローブカードのプローブ針にはパーティクルが付着するが、ウェーハWの種類毎に使用されるプローブ針の種類は異なるため、パーティクルの付着量はプローブ針によって異なる。第4実施形態では、プローブ針毎にパーティクル付着量としてパーティクル発生量を管理することが可能である。
【0113】
第4実施形態に係るパーティクル計測システムは、第2実施形態に係るプローバ装置2100と第4実施形態に係る三次元形状測定装置4200とを備える。プローバ装置2100の構成は上述の通りであるため、説明を省略する。
【0114】
以下、図19を用いて第4実施形態に係る三次元形状測定装置4200の構成について説明する。図19に示すように、第4実施形態に係る三次元形状測定装置4200は、第2実施形態に係る三次元形状測定装置2200に電極パッドPの位置情報を取得する位置情報取得部400を追加したものである。以下の説明では、例として、位置情報をXY座標として説明する。
【0115】
電極パッドPの位置情報(XY座標)の取得方法としては、例えばステージ移動機構230の駆動量からXY座標を取得する方法、非接触三次元測定部280によってXY座標を取得する方法、不図示のカメラによって撮影したチップCの画像からXY座標を取得する方法等が挙げられる。これらは公知技術であるため、ここでは説明を省略する。
【0116】
第4実施形態に係る三次元形状測定装置4200の制御部250は、プローブ針141-k(kは自然数)毎のパーティクル発生量をデータベースで管理する。図20に、記憶部290に保存されるデータベースの一例を示す。図20に示すように、記憶部290は、ウェーハ種類データベース420と、針データベース430と、積算値データベース440とを有する。
【0117】
ウェーハ種類データベース420は、ウェーハWを識別するウェーハIDと、ウェーハWの種類を識別するウェーハ種類IDとを、関連付けて格納する。針データベース430は、ウェーハWの種類毎にウェーハW上の電極パッドPの配置情報を格納する。
【0118】
具体的には、電極パッドPの配置情報は、ウェーハW上の各電極パッドPについて、電極パッドPを識別するパッドIDと、電極パッドPのXY座標及びその電極パッドPにコンタクトするプローブ針141-kを識別する針IDとを、含む。ここで、XY座標は、例えば、ウェーハWの所定の位置又はチップCの所定の位置を基準とする相対的な座標でもよい。
【0119】
ウェーハ種類データベース40及び積算値データベース440は、予め操作者又は製造者によって記憶部290に登録され、必要に応じて更新される。積算値データベース440は、プローブ針141-k毎にパーティクル発生量の積算値ΣΔVを格納する。
【0120】
次に、図21を用いて、第4実施形態におけるパーティクル計測の手順について説明する。第4実施形態におけるパーティクル計測の手順は第2実施形態とほぼ同様であるが、図15のステップS34の後に、ステップS50が追加され、図1のステップS35、からS38の代わりに、ステップS51からS54が行われる点が異なる。
【0121】
以下、第2実施形態との相違点についてのみ説明する。第4実施形態では、ステップS34でウェーハIDを読み取った後、ステップS50において、位置情報取得部400は、測定すべき電極パッドPのXY座標を取得する。ここで、取得するXY座標は、記憶部290のウェーハ種類データベース420に格納されているXY座標と同じ位置を基準とする相対位置でもよい。
【0122】
続いて、ステップS12からステップS15を行った後、ステップS51において、パーティクル発生量算出部255は、記憶部290のウェーハ種類データベース420から、ステップS34で読み取ったウェーハIDに関連付けられているウェーハ種類IDを取得する。更に、パーティクル発生量算出部255は、針データベース430を参照し、そのウェーハ種類IDに対応する電極パッドPの配置情報に基づいて、ステップS50で取得したXY座標を有する電極パッドPにコンタクトするプローブ針141-kを識別する針IDを取得する。更に、パーティクル発生量算出部255は、積算値データベース440を参照し、取得した針IDに対応する積算値ΣΔVに、ステップS15で算出したパーティクル発生量ΔVを加算して、積算値ΣΔVを更新する(ステップS51)。
【0123】
その後、他に測定すべき電極パッドPがないと判定された場合(ステップS17:YES)、判定部256は、ステップS51で計算した積算値ΣΔVが所定の第4閾値を超えているか否か判定する(ステップS52)。ここで、第4閾値は、第1から第3実施形態で用いられる第1から第3閾値とは異なる値でもよい。第4閾値は、予め設定される値であり、工場出荷時に適宜設定されてもよいし、ユーザによって任意の時期に適宜設定・変更されてもよい。プローブ針141-kにパーティクルが一定量以上付着するとウェーハWの検査に影響を与える恐れがあるが、操作者(又は製造者)は検査に影響を与えうるパーティクル発生量をプローバ装置2100-iの使用実績によって経験的に知ることができる。そのため、操作者は経験に基づいて第4閾値を設定してもよい。
【0124】
積算値ΣΔVが所定の第4閾値を超えていると判定された場合(ステップS52:YES)、判定部256は、ステップS50で取得した電極パッドPの座標と、その座標に対応するプローブ針141-kを特定する情報と、警告とを表示部70に出力する(ステップS53)。警告を受けた操作者は必要に応じてプローブカード140を清掃する。
【0125】
従来、プローブ針141-k毎にパーティクル発生量を定量的に管理する方法がなかった。一方、本発明の第4実施形態によれば、プローブ針141-k毎にパーティクル発生量を定量的に管理することができるため、プローブカード140を清掃する際に、清掃が必要なプローブ針141-kを適切に清掃することができる。これにより、プローブカード140を効率的に清掃することができるため、半導体の製造工程の効率を向上させることができる。
【0126】
[測定対象となる電極パッドの決定]
上記の第1から第4実施形態では、測定対象となる電極パッドPについてパーティクル計測を行っている。操作者(又は製造者)はこの測定対象となる電極パッドPを任意に決定することが可能である。例えば、ウェーハW上の全ての電極パッドPを測定対象としてもよいし、全ての電極パッドPのうちの一部をサンプリングし、測定対象としてもよい。全ての電極パッドPのうちの一部を測定対象とする場合、各実施形態に係る三次元形状測定装置200、220、4200の記憶部290に、測定対象となる電極パッドPのサンプリングに関する情報が予め記憶される。電極パッドPをサンプリングすることにより、パーティクル計測に要する時間を短縮することができるため、半導体の製造工程の効率を一層向上させることができる。
【0127】
全ての電極パッドPのうちの一部を測定対象とする場合、無作為に電極パッドPをサンプリングしてもよいし、操作者のニーズに応じた任意の法則に従って電極パッドPをサンプリングしてもよい。以下、法則に従った電極パッドPのサンプリング手法の例について説明する。
【0128】
[第1サンプリング手法]
まず、図22を用いて第1サンプリング手法について説明する。ウェーハW上には複数のチップがあるが、第1サンプリング手法ではウェーハW上の特定のチップCに含まれる全ての電極パッドPを測定対象としてサンプリングする。例えば、図22に示す例では、ウェーハW上の複数のチップCのうち、太い実線で示す特定のチップCに含まれる4つの電極パッドPの全てを測定対象としてサンプリングする。なお、図22では特定のチップCとして1つのチップCだけが示されているが、当然ながら、複数のチップCが特定のチップCとして決定されてもよい。
【0129】
第1サンプリング手法によれば、ウェーハW上の特定のチップCに含まれる全ての電極パッドPに対してパーティクル計測を行うため、チップC全体で均等なサンプリングとなる。延いては、精度良くウェーハW全体でのパーティクル発生量を推測することができる。
【0130】
[第2サンプリング手法]
次に、図23を用いて第2サンプリング手法について説明する。ウェーハW上には複数のチップCがあるが、プローバ装置100、2100、2100-iによるプロービング動作において、ウェーハWの全体を一度にプロービング動作できない場合がある。この場合、複数回プロービング動作を行うが、第2サンプリング手法では複数回のプロービング動作のうち、1回以上の特定のプロービング動作においてコンタクトされた全ての電極パッドPを測定対象としてサンプリングする。
【0131】
図23は、プローバ装置100、2100、2100-iに搭載されたプローブカード140が2つのチップCを同時にプロービング動作できる場合におけるサンプリングの一例を示す。図23において、1回のプロービング動作の範囲は破線で囲まれており、2つのチップCが含まれている。ウェーハW上には7つのチップCがあるため、4回プロービング動作を行う必要がある。図23に示す例では、4回のプロービング動作のうちの特定の1回のプロービング動作においてコンタクトされた8つの電極パッドPの全てを測定対象としてサンプリングする。なお、図23では1回のプロービング動作においてコンタクトされる電極パッドPだけをサンプリングしているが、当然ながら、複数回のプロービング動作においてコンタクトされる電極パッドPを測定対象としてサンプリングしてもよい。
【0132】
第2サンプリング手法によれば、1回のプロービング動作においてコンタクトされる電極パッドPの全てに対してパーティクル計測を行うため、プローブ針141に依存してパーティクル発生量が異なる場合でも、精度良くウェーハW全体でのパーティクル発生量を推測することができる。
【0133】
[第3サンプリング手法]
次に、図24を用いて第3サンプリング手法について説明する。例えば、プローブ針141がカンチレバー式プローブ針である場合、全てのプローブ針141は電極パッドPに対して同じ方向からコンタクトするとは限らない。第3サンプリング手法では、全ての電極パッドPから、コンタクトする方向毎に一定の割合の電極パッドPを測定対象としてサンプリングする。
【0134】
図24は、複数のプローブ針141が、チップC上の複数の電極パッドPに対して複数の異なる方向からコンタクトしている場合におけるサンプリングの一例を示す。図24に示す例では、上下左右のそれぞれの方向から3つのプローブ針141(全部で12つのプローブ針141)が各々電極パッドPにコンタクトする。図24において、同じ方向からコンタクトするプローブ針141は、破線で囲まれている。
【0135】
図24に示す例では、上下左右それぞれのコンタクト方向から1つの電極パッドPを測定対象としてサンプリングする。図24において、測定対象としてサンプリングされた電極パッドPを太い実線で示す。このサンプリングにより、全てのプローブ針141のうちの3分の1のプローブ針141に対応する電極パッドが測定対象となる。
【0136】
なお、図24では各コンタクト方向につき1つの電極パッドP(3分の1の割合)を測定対象としてサンプリングしているが、当然ながら、各方向につき複数の電極パッドPをサンプリングしてもよい。
【0137】
プローブ針141と電極パッドPとのコンタクト状態はウェーハWとプローブ針141との相対姿勢と運動方向で決められる。そのため、プローブ針141と電極パッドPとがコンタクトする方向によってパーティクル発生量は影響を受けやすい。そこで、複数のコンタクト方向のそれぞれから一定の割合の電極パッドPをサンプリングすることにより、コンタクト方向によるパーティクル発生量の測定結果の偏りを低減する。これにより、高精度にウェーハW全体でのパーティクル発生量を推測することができる。
【0138】
[発明の効果]
以上で説明したように、第1実施形態によれば、ウェーハWからのパーティクル発生量を定量的に管理することが可能になる。更に、パーティクル発生量が所定の閾値を超えた場合に警告を出力するため、操作者は、清掃が必要になったウェーハWについて適切に清掃することができる。ひいては、半導体の製造工程の効率を向上させることが可能になる。
【0139】
ここで、プローバ装置100に非接触三次元測定部280及び制御部250の機能を追加することにより、プローバ装置100とパーティクル計測装置とを1つの装置で実現することも可能である。これにより、パーティクル計測装置を安価に実現することが可能である。更に、ウェーハWをプローバ装置100から三次元形状測定装置200へ搬送し、三次元形状測定装置200にロードする必要がないため、効率的にパーティクルを計測することができる。更に、ウェーハWを検査する際に使用するレシピ(ウェーハWのサイズ、チップの配置等の各種パラメータ)を引き継いで使用することができるため、より効率的にパーティクルを計測することができる。
【0140】
第2実施形態によれば、ウェーハWからのパーティクル発生量を定量的にプローバ装置2100-i毎に管理し、パーティクル発生量が所定の閾値を超えたプローバ装置2100-iを特定する情報と、警告とを出力する。これにより、操作者は、清掃が必要になったプローバ装置2100-i又はプローブ針141について適切に清掃することができる。ひいては、半導体の製造工程の効率を向上させることが可能になる。
【0141】
第3実施形態によれば、プローブカード140-j毎にパーティクル発生量を管理することにより、パーティクル発生量が所定の閾値を超えたプローブカード140-jを特定する情報と、警告とを出力する。これにより、交換が必要なプローブカード140-jについて適切に交換することができる。ひいては、半導体の製造工程の効率を向上させることが可能になる。
【0142】
第4実施形態によれば、プローブ針141-k毎にパーティクル発生量を定量的に管理することにより、パーティクル発生量が所定の閾値を超えたプローブ針141-kを特定する情報と、警告とを出力する。これにより、プローブカード140を清掃する際に、清掃が必要なプローブ針141-kを適切に清掃することができる。プローブカード140を効率的に清掃することができるため、半導体の製造工程の効率を一層向上させることができる。
【0143】
ここで、各実施形態を互いに組み合わせてもよい。例えば、第3実施形態と第2実施形態とを組み合わせてもよい。これにより、プローブカード140-jを搭載するプローバ装置2100-iを管理することが可能になる。
【0144】
各実施形態において、ウェーハW上のチップCが有する全ての電極パッドPを測定対象としてもよいし、全ての電極パッドPのうちの一部をサンプリングし、測定対象としてもよい。電極パッドPをサンプリングすることにより、パーティクル計測に要する時間を短縮することができるため、半導体の製造工程の効率を一層向上させることができる。
【0145】
以上、本発明の例に関して説明してきたが、本発明は上述した実施の形態に限定されず、本発明の精神を逸脱しない範囲で種々の変形が可能であることは言うまでもない。
【符号の説明】
【0146】
100、2100、2100-i…プローバ装置、120、220…ステージ、230…ステージ移動機構、140、140-j…プローブカード、141、141-k…プローブ針、150、250…制御部、160、260…操作部、170、270…表示部、180…テストヘッド、200、2200、4200…三次元形状測定装置、251…三次元測定制御部、252…取得部、253…検知部、254…凹凸計算部、255…パーティクル発生量算出部、256…判定部、290…記憶部、300、310…ウェーハID読み取り部、320、340…ウェーハIDデータベース、330、350、440…積算値データベース、400…位置情報取得部、420…ウェーハ種類データベース、430…針データベース、1000、2000…パーティクル計測システム、C…チップ、M…プローブ針跡、P…電極パッド、W…ウェーハ、R…パッド基準面、RM…針跡領域
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24