(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-11
(45)【発行日】2024-12-19
(54)【発明の名称】プラズマ点源のアレイによってワークピースを処理するためのプラズマリアクタ
(51)【国際特許分類】
H05H 1/46 20060101AFI20241212BHJP
【FI】
H05H1/46 A
H05H1/46 M
H05H1/46 L
(21)【出願番号】P 2023079118
(22)【出願日】2023-05-12
(62)【分割の表示】P 2021012633の分割
【原出願日】2016-06-12
【審査請求日】2023-06-02
(32)【優先日】2015-09-28
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】390040660
【氏名又は名称】アプライド マテリアルズ インコーポレイテッド
【氏名又は名称原語表記】APPLIED MATERIALS,INCORPORATED
【住所又は居所原語表記】3050 Bowers Avenue Santa Clara CA 95054 U.S.A.
(74)【代理人】
【識別番号】100101502
【氏名又は名称】安齋 嘉章
(72)【発明者】
【氏名】カーティク ラマスワミー
(72)【発明者】
【氏名】ローレンス ウォン
(72)【発明者】
【氏名】スティーブン レーン
(72)【発明者】
【氏名】ヤン ヤン
(72)【発明者】
【氏名】スリニバス ディー ネマニ
(72)【発明者】
【氏名】プラブラム ゴパルラジャ
【審査官】今井 彰
(56)【参考文献】
【文献】特開2007-095536(JP,A)
【文献】特開平09-199486(JP,A)
【文献】特開平09-115882(JP,A)
【文献】特開2013-191593(JP,A)
【文献】米国特許出願公開第2012/0289054(US,A1)
【文献】特表2015-505421(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H05H 1/00-1/54
(57)【特許請求の範囲】
【請求項1】
プラズマリアクタであって、
対称軸を有する下部処理部と、下部処理部から上方へ延びるキャビティのアレイとを有する処理チャンバであって、
各キャビティは細長く、下部処理部の対称軸に平行に延び、
各キャビティは他の各キャビティの外側に配置され、
キャビティのアレイは独立して制御される複数の局所的プラズマ点源のアレイであり、プラズマ点源は外側ゾーンと内側ゾーンを含む複数の同心ゾーンに配置され、内側ゾーンは外側ゾーンより少ない局所的プラズマ点源を有する処理チャンバと、
処理チャンバの下部処理部内のワークピース支持体と、
異なるガス種の複数のガス源と、
複数のガス入口であって、各ガス入口はそれぞれのキャビティに開口している複数のガス入口と、
複数のガス源を複数のガス入口に結合するガス分配器であって、
ガス分配器は、それぞれのガス入口のためのそれぞれのバルブを有する複数のバルブを備え、
それぞれのバルブは、それぞれのガス入口を複数のガス源のうちの1つに選択的に接続しているガス分配器と、
電源と、
それぞれのキャビティごとにそれぞれの導体を備える導体のアレイであって、
それぞれの導体はキャビティのアレイのそれぞれの単一のキャビティに隣接して囲んでいる導体のアレイと、
電源と導体のアレイとの間に結合された電力分配器であって、
電力分配器は、電源の出力と導体のアレイとの間に結合された複数のスイッチを備え、
複数のスイッチはそれぞれの導体ごとにスイッチを備えている電力分配器と、
ユーザ定義の指示に従って、複数のバルブを個別に制御し、複数のスイッチを個別に制御して、処理チャンバの下部処理部から上方へ延びる複数のキャビティの各々においてガス種及びプラズマ生成の独立した制御を提供するプロセッサとを備え
、
プロセッサは導体のアレイに提供されるガス流と電力のON/OFFデューティサイクルを制御し、電力のON/OFFデューティサイクルの分布とガス流ON/OFFデューティサイクルの分布は、処理速度分布が最小値を有する場所で最大値を有し、処理速度分布が最大値を有する場所で最小値を有する、プラズマリアクタ。
【請求項2】
処理チャンバは、下部処理部から上方へ延びるキャビティのアレイを画定する複数の誘電体キャビティ壁を備えている、請求項1に記載のプラズマリアクタ。
【請求項3】
電源はRF電力発生器を備え、それぞれの導体は、対応するそれぞれのキャビティの内部から、誘電体キャビティ壁のうちの対応するそれぞれの1つによって分離されている、請求項2に記載のプラズマリアクタ。
【請求項4】
導体のアレイは、RF電力をキャビティのアレイに容量結合するための電極のアレイである、請求項3に記載のプラズマリアクタ。
【請求項5】
電極のアレイの各電極は円筒を形成し、円筒は対称軸に平行な軸を有し、それぞれのキャビティを囲んでいる、請求項4に記載のプラズマリアクタ。
【請求項6】
導体のアレイは、RF電力をキャビティのアレイに誘導結合するためのコイルアンテナのアレイである、請求項3に記載のプラズマリアクタ。
【請求項7】
コイルアンテナのアレイの各コイルアンテナは、対称軸に平行な軸を有する円筒の形に巻かれたコイルを形成している、請求項6に記載のプラズマリアクタ。
【請求項8】
処理チャンバは、下部処理部から上方へ延びるキャビティのアレイの一部を画定する複数の導電性キャビティ壁を備え、
導電性キャビティ壁は導体のアレイを提供している、請求項1に記載のプラズマリアクタ。
【請求項9】
電源は直流電力発生器であり、
導体のアレイの各導体は直流放電用の電極である、請求項8に記載のプラズマリアクタ。
【請求項10】
処理チャンバは複数の誘電体キャビティ壁を備え、誘電体キャビティ壁は導電性キャビティ壁の上と下に配置されている、請求項8に記載のプラズマリアクタ。
【発明の詳細な説明】
【関連出願の相互参照】
【0001】
本出願は、カーティク・ラマスワミー(Kartik Ramaswamy)らによって2015年9月28日に出願され、「プラズマ点表面のアレイによってワークピースを処理するためのプラズマリアクタ(A PLASMA REACTOR FOR PROCESSING A WORKPIECE WITH AN ARAY OF PLASMA POINT SURFACES)」と題された米国特許出願第14/867,240号の優先権を主張する。
【背景】
【0002】
(技術分野)
本開示は、半導体ウェハ等のワークピースのプラズマ処理、及び処理の不均一性の低減に関する。
【0003】
(背景議論)
従来のプラズマ処理では、処理されるウェハは、異なるエッチング環境に起因する局所的な非均一性(まさに、非均一な応力、(堆積プロセスに対する)非均一な膜組成、非均一なCD(構造のクリティカルディメンジョン))に苦しむ可能性がある。これは、入ってくるウェハ間の違い又は(例えば、回転するウェハが前縁部と後縁部の半径方向の滞留時間差又は異なる局所的温度を見るカルーセルスタイルの処理チャンバ内において)処理チャンバの特性の違いに起因する可能性がある。
【概要】
【0004】
プラズマリアクタは、処理チャンバ及び処理チャンバ内のワークピース支持体であって、チャンバはワークピース支持体に対向する下側天井を含む処理チャンバ及びワークピース支持体と、下側天井の上にあり下側天井に対向する上側天井と、上側天井の上にあるガス分配器と、上側天井と下側天井との間で複数のキャビティを画定する複数のキャビティ壁であって、ガス分配器は、複数のキャビティのうちのそれぞれ1つまでの複数のガス流路を含む複数のキャビティ壁と、複数のキャビティのうちのそれぞれ1つと整列された下側天井内の複数の出口孔と、複数のキャビティのうちのそれぞれ1つに隣接するそれぞれの電力アプリケータと、電源と、電力アプリケータのそれぞれ1つに結合された複数の電力導体と、電源と複数の電力導体の間に結合された電力分配器とを含む。
【0005】
一実施形態では、複数のキャビティ壁は、誘電体キャビティ壁を含む。
【0006】
更なる一実施形態では、電源は、RF電力発生器を含み、それぞれの電力アプリケータのうちのそれぞれ1つは、複数のキャビティ壁のうちの対応する1つの内部から複数のキャビティ壁のうちの対応する1つによって分離されている。
【0007】
一実施形態では、電力アプリケータは、複数のキャビティのうちの対応する1つにRF電力を結合するための電極を含む。本実施形態では、各電極は、複数のキャビティの対応する1つの一部を取り囲む。
【0008】
別の一実施形態では、電力アプリケータは、複数のキャビティのうちの対応する1つにRF電力を誘導結合するためのコイルアンテナを含む。本実施形態では、コイルアンテナは、複数のキャビティのうちの対応する1つの一部の周りでらせん状に巻かれた導体を含むことができる。
【0009】
更に別の一実施形態では、電源は、直流電力発生器であり、電力アプリケータのうちのそれぞれ1つは、直流放電用の電極を含み、誘電体キャビティ壁のうちのそれぞれ1つは、対応する電極を複数のキャビティのうちの対応する1つの内部に露出させるように構成される。
【0010】
一実施形態では、電力分配器は、電力発生器の出力と電力導体のうちのそれぞれ1つとの間で結合された複数のスイッチを含む。
【0011】
一実施形態では、プラズマリアクタは、ユーザが定義した命令に応じて複数のスイッチを個別に制御するプロセッサを更に含む。
【0012】
一実施形態では、プラズマリアクタは、処理ガス源と、処理ガス源と複数のキャビティのうちのそれぞれ1つとの間に結合された複数のバルブを含むガス分配器とを含む。処理ガス源は、異なるガス種の複数のガス源を含むことができ、複数のバルブのうちのそれぞれ1つは、複数のガス源のうちのそれぞれ1つと複数のキャビティのうちのそれぞれ1つとの間に結合される。一実施形態では、プラズマリアクタは、ユーザが定義した命令に応じて複数のバルブを個別に制御するプロセッサを含む。
【0013】
一実施形態では、プラズマリアクタは、プラズマの副生成物を複数のキャビティに送るために結合されたリモートプラズマ源を更に含む。
【0014】
一実施形態では、処理チャンバは、円筒形の側壁を更に含み、リアクタは、円筒形の側壁の周りに巻かれたコイルアンテナを含む誘導結合プラズマ源と、インピーダンス整合器を介してコイルアンテナに結合されたRF電力発生器を更に含む。
【0015】
一実施形態では、プラズマリアクタは、処理チャンバ及び前記処理チャンバ内のワークピース支持体と、ワークピース支持体の上にあるガス分配器と、ガス分配器の下にある複数のキャビティを画定する複数のキャビティ壁であって、ガス分配器は、複数のキャビティのうちのそれぞれ1つまでの複数のガス流路を含む複数のキャビティ壁と、複数のキャビティのうちのそれぞれ1つに隣接するそれぞれの電力アプリケータと、電源と、電力アプリケータのそれぞれ1つに結合された複数の電力導体と、電源と複数の電力導体の間に結合された電力分配器と、処理ガス源と、処理ガス源と複数のキャビティのうちのそれぞれ1つとの間に結合された複数のバルブを含むガス分配器とを含む。
【0016】
更なる一実施形態では、ワークピースの表面上に分布したプラズマ点源のアレイを含むプラズマリアクタ内でワークピースを処理する方法は、ワークピース上でプラズマ処理を実行する工程と、ワークピースの表面全域に亘って処理速度の空間分布の不均一性を観察する工程と、(a)プラズマの点源のアレイの中で、プラズマ源の電力レベルの配分を調整する工程、又は、(b)プラズマの点源のアレイの中で、ガス流の配分を調整する工程のうちの少なくとも1つを実行することによって不均一性を低減する工程とを含む。
【図面の簡単な説明】
【0017】
本発明の例示的な実施形態が達成される方法を詳細に理解することができるように、上記に簡単に要約した本発明のより具体的な説明を、その実施形態を参照して行うことができる。実施形態は添付図面に示されている。特定の周知のプロセスは、本発明を不明瞭にしないために、本明細書で説明されていないことを理解すべきある。
【
図1A】プラズマ点源のアレイを有する第1実施形態の簡略図である。
【
図1B】
図1Aの実施形態におけるプラズマ点源の拡大平面図である。
【
図2B】プラズマ点源のアレイの異なる配置を示す。
【
図3】プラズマ点源がプラズマ直流放電を使用する一実施形態を示す。
【
図4】プラズマ点源が誘導結合を使用する一実施形態を示す。
【
図5】リモートプラズマ源を使用する
図1Aの実施形態の変形例を示す。
【
図6】リモートプラズマ源を使用する
図4の実施形態の変形例を示す。
【
図7】プラズマ点源のアレイに加えて、チャンバ幅の誘導結合源を有する
図1Aの実施形態の変形例を示す。
【0018】
理解を促進するために、図面に共通する同一の要素を示す際には可能な限り同一の参照番号を使用している。一実施形態の要素及び構成を更なる説明なしに他の実施形態に有益に組み込んでもよいと理解される。しかしながら、添付図面は本発明の例示的な実施形態を示しているに過ぎず、したがってこの範囲を制限していると解釈されるべきではなく、本発明は他の等しく有効な実施形態を含み得ることに留意すべきである。
【詳細な説明】
【0019】
(序論)
プラズマ源は、独立して制御される多数の局所的プラズマ点源又は局所的プラズマ点源のアレイからなり、これはユーザ定義の領域上で荷電粒子種(電子、負イオン及び正イオン)の空間的及び時間的な制御を可能にする。
【0020】
空間的及び時間的制御を可能にするプラズマ源の使用は、局所的不均一性の補正を可能にする。これは、荷電粒子及びラジカルが生成される異なるプラズマ点源においてプラズマ生成をスイッチON又はOFFすることによって達成することができる。その代わりに又は更に、これは、異なるプラズマ点源への処理ガスの流れを変化させることによって達成することができる。例えば、ガス流をスイッチON又はOFFすることができる、及び/又は各プラズマ点源に対するガス混合物を変更することができる。ユーザは、局所的プラズマ点源でイオン化又は分解されるガスを選択することができる。ユーザは更に、放電の時間又は持続時間を選択することができる。
【0021】
異なる同時局所的ガス放電で異なるガス化学物質を並行して操作すること(空間的制御)によって、又は同じ局所的放電で局所的にガス化学物質を変更することによって、局所的な放電化学物質を変更することができる。
【0022】
ワークピース(ウェハ)全体を一定の負のDCバイアスにするが、局所的にイオンを引きつけて、注入、又はエッチング又は堆積させることができる。
【0023】
プラズマ点源のアレイは、従来の非局所的プラズマ源(例えば、容量結合大型電極プラズマ源又は誘導結合プラズマ源)と組み合わせることができ、リアルタイムにプラズマ生成の局所的不均一性を修正することができる。
【0024】
プラズマ点源のアレイは、リモートプラズマ源(例えば、リモートラジカル源)と組み合わせることができる。ラジカル処理工程は、組成及び局所的滞留時間を変化させることができるプラズマ処理工程が続くことができる。過去の解決策は、基板ホルダ内の局所加熱素子を流れる電流を変化させることによる温度の局所的変化に集中してきた。本明細書に記載の実施形態は、既存の解決策に追加して、局所的な化学物質を有効にし、反応を高速化するために温度のみに依存するのではなく、荷電粒子及びラジカルの生成に影響を与える。
【0025】
(実施形態)
図1A及び
図1Bは、RF周波数を使用して容量結合された複数のプラズマ点源90を有する一実施形態を示す。点源90は、様々な構成(例えば、円形(
図2A)又はパイ形状(
図2B))で配置することができる。
図1Aの実施形態は、円筒形の側壁102、下部天井104、及び床部106によって囲まれる処理ゾーン92を有する処理チャンバ本体100を含む。ワークピース支持体94は、処理ゾーン92内でワークピース96を支持する。真空ポンプ108は、床部106を介して処理ゾーン92に結合することができる。上部円筒側壁126上に支持される上部天井110は、下部天井104の上にあり、ガス分配器112を支持する。下部天井104は、ガス出口孔114のアレイを含む。
図1Aの実施形態では、点源90は、誘電体円筒形キャビティ壁116に囲まれた円筒形キャビティ115のアレイであり、誘電体円筒形キャビティ壁116は、各々が円筒形側壁102の対称軸に対して平行で、ガス出口孔114のそれぞれ1つの誘電体と整列されている。円筒形キャビティ壁116は、それぞれの円筒形電極118によって囲まれている。
【0026】
各プラズマ点源90は局所的であり、その中において、各ガス出口孔114の面積は、下部天井104又は上部天井110の面積に対して、又はチャンバ本体100の直径に対して小さい。一実施形態では、各ガス出口孔114の面積は、下部天井104又は上部天井110の面積、又はチャンバ本体100の面積の5%を超えない。
【0027】
図1A及び
図1Bに図示の実施形態では、各ガス出口開口部114の形状は、円形であり、円筒形キャビティ115の形状に適合する。しかしながら、他の実施形態では、各ガス出口孔114は、任意の形状であってもよく、円筒形キャビティ115の形状に適合しなくてもよい。例えば、各ガス出口孔114は、非円形(例えば、楕円形)であってもよく、多角形又は直線状のスロット形状又はこれらの形状のいくつかの組み合わせであってもよい。ガス出口孔114の形状が、円筒形キャビティ115に適合しない場合、アダプタ(図示せず)が、一実施形態では、ガス出口孔114と円筒形キャビティ115との間にガスシールを提供するために導入されてもよい。
【0028】
上部天井110は、各々が円筒形キャビティ115のうちのそれぞれ1つと整列されるガス導入口119のアレイを有する。ガス分配器112は、ガス導入口119を介して円筒形キャビティ115内に処理ガスを供給する。個々の電力導体120は、それぞれの円筒形電極118のうちの個々の1つに電力を伝える。電力分配器122は、電源124からの電力導体120に電力を分配する。一実施形態では、電源124は、交流(AC)電力発生器、又はRFインピーダンス整合器を有する高周波(RF)電力発生器である。関連する実施形態では、電源124の周波数は、例えば、直流からUHFまでのいずれであってもよい。一実施形態では、プラズマは、円筒形電極118から誘電体円筒形キャビティ壁116を介して円筒形キャビティ115内へのRF電力の容量結合によって、円筒形キャビティ115内に生成される。下部天井104は、円筒形電極118をプラズマから分離する。
【0029】
ガス分配器112は、複数のガス供給源250から異なるガス種を受け取り、異なる円筒形キャビティ115に対する異なるユーザ指定のガスレシピに応じて、それぞれのガス導入口119を通して円筒形キャビティ115のそれぞれ1つに異なるガス混合物を配分する。例えば、ガス分配器112は、個々の円筒形キャビティ115に対してガス混合物を定義するユーザ定義の命令に応じてプロセッサ254によって個別に制御されたガスバルブ252のアレイを含むことができる。ガスバルブ252のアレイは、複数のガス供給源250と円筒形キャビティ115へのガス導入口119との間に結合される。
【0030】
電力分配器122は、一実施形態では、各電力導体120に供給される電力を個別に制御する。例えば、電力分配器122は、ユーザ定義の命令に応じてプロセッサ254によって個別に制御される電気スイッチ262のアレイを含むことができる。電力は、パルス幅変調によって制御されてもよく、ユーザ定義の命令は、個々の円筒形キャビティ115に対する電力のオン/オフ持続時間(又はデューティサイクル)を定義することができる。電気スイッチ262のアレイは、電源124と電力導体120との間に結合される。
【0031】
第1の実施形態では、下部天井104は、誘電材料で形成され、一方、上部天井110は、導電性材料で形成される。第2の実施形態では、下部天井104は、導電性材料で形成された下部プレート190に隣接しており、下部プレート190と上部天井110の両方は接地されている。このように、プラズマ源は、2つの接地されたプレート、すなわち下部プレート190と上部天井110との間に配置される。
【0032】
図3は、プラズマが直流放電によって生成される実施形態を示し、電源124は、直流電力発生器である。誘電体円筒形キャビティ壁116の各々は、円筒形電極118の対応する1つの上方で終端を迎える。この構成は、各円筒形電極118をプラズマに直接曝露させ、これによって直流放電を促進することができる。
【0033】
図4は、
図1Aの実施形態の変形例を示す。その中で、円筒形電極118は、個々の誘導コイル210によって置き換えられ、これによって各円筒形キャビティ115内に誘導結合プラズマを生成する。各誘導コイル210は、
図4に示されるように、対応する円筒形誘電体壁116の底部の周りに巻き付けられる。
図4の実施形態では、変化する磁場は、円筒形キャビティ115内に変化する電界を発生させ、これは次いで閉じた一巻きの発振するプラズマ電流を生成する。
【0034】
図5は、リモートプラズマ源220及びラジカル分配プレート280を含む
図1Aの実施形態の他の変形例を示す。ラジカル分配プレート280は、ラジカルをリモートプラズマ源220から個々の円筒形キャビティ115内へ向ける。リモートプラズマ源220は、電源224によって駆動されるプラズマ源電力アプリケータ222を含むことができる。リモートプラズマ源220は、所望のラジカル種の前駆体を含む制御されたガス源226を更に含むことができる。遠隔で生成された化学的活性ラジカルが、ウェハの処理において重要な役割を果たすいくつかの処理がある。しかしながら、プラズマ処理工程でラジカル処理をフォローする必要があるかもしれない。空間的及び時間的に制御可能なプラズマ源を有することは、ラジカルの不均一性に対処するのに役立つ。短い寿命の(再結合して不活性の中性になる)ラジカルの場合、制御可能なプラズマ密度を有することは、重要なラジカルを再生成するのを助けることができる。
【0035】
図6は、リモートプラズマ源220及びラジカル分配プレート280を含む
図4の実施形態の変形例を示す。
図6の実施形態では、リモートプラズマ源220は、
図4の誘導結合プラズマ源(すなわち、誘導結合コイル210)と組み合わされている。誘導結合プラズマ源(コイル210)は、
図1の実施形態の容量結合プラズマ源と比較して、異なる(より低い)圧力レジーム(例えば、25ミリトール以下)での動作を可能にする。
【0036】
図7は、プラズマ点源90のアレイは、より大きな非局所的誘導結合プラズマ源を組み合わされた、
図1Aの実施形態の変形例を示す。
図7の非局所的誘導結合プラズマ源は、円筒形側壁102を取り囲む螺旋状に巻かれたコイルアンテナ240を含む。螺旋状に巻かれたコイルアンテナ240は、RFインピーダンス整合器244を介してRF電力発生器242によって駆動される。
図7の実施形態では、円筒形側壁102は、非金属材料から形成され、これによって円筒形側壁102を介してRF電力の誘導結合を可能にする。下部プレート190は、(螺旋状に巻かれたコイルアンテナ240に対応する)より大きな誘導結合プラズマ源から、(個々の円筒形キャビティ115に対応する)個々のプラズマ点源を保護する。
【0037】
(個々の円筒形キャビティ115に対応する)個々のプラズマ点源90は、個別に制御可能である。これは、プラズマ分布の空間的及び時間的制御を可能にする。このような制御は、プラズマ分布の不均一性を低減するように実施することができる。
【0038】
(制御モード)
電源124は、異なるモードで各プラズマ点源90に電力を供給することができる。第1のモードでは、各プラズマ点源90は、電力の一定量を消費し、制御システムは、電気スイッチ262のアレイを用いてプラズマ点源に供給される電力をスイッチオン又はオフする。一例では、各点源は、それがオンのとき、約3ワットの一定量を消費する。電気スイッチ262のアレイは、基本的に命令で個々のプラズマの点源90に電力を印加する。プラズマ密度は、いくつのプラズマ点源90がオンされているかの関数である。このように、各プラズマ点源90へ送出される正味の電力は、パルス幅の変更によって制御することができる。
【0039】
第2のモードでは、制御されるものは、各プラズマ点源90に送出される電力のレベルである。また、個々のプラズマ点源90(又はプラズマ点源90のグループ)へのガス組成は、ガス分配器112によって変えることができる。このように、異なるプラズマ点源90は、同一のガス放電組成を有する必要はない。各プラズマ点源90は、固定のアドレスを有する。各プラズマ点源90への電力及び/又はガス流は、個別にオン又はオフすることを目的とすることができる。
【0040】
1つの方法によれば、ワークピースの表面全域に亘って処理速度の空間分布が測定される。処理速度分布の不均一性は、測定された処理速度空間分布の事実上逆であるプラズマ点源90のアレイに供給される電力のON/OFFデューティサイクルの空間分布を確立することによって補償される。換言すれば、ON/OFF電力デューティサイクルの分布は、測定された処理速度分布が最小値を有する場所で最大値を有し、測定された処理速度分布が最大値を有する場所で最小値を有する。
【0041】
別の方法によれば、処理速度分布の不均一性は、測定された処理速度空間分布の事実上逆であるプラズマ点源90のアレイに供給される処理ガス流のON/OFFデューティサイクルの空間分布を確立することによって補償される。換言すれば、ON/OFFガス流デューティサイクルの分布は、測定された処理速度分布が最小値を有する場所で最大値を有し、測定された処理速度分布が最大値を有する場所で最小値を有する。
【0042】
(利点)
主な利点は、荷電粒子及び高エネルギーラジカルの生成の空間的・時間的における完全なる制御である。これは、局所的な荷電粒子及び高エネルギーラジカルの分布に対する空間的及び時間的制御を可能にする。
【0043】
上記は本発明の実施形態を対象としているが、本発明の他の及び更なる実施形態は本発明の基本的範囲を逸脱することなく創作することができ、その範囲は以下の特許請求の範囲に基づいて定められる。