(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-11
(45)【発行日】2024-12-19
(54)【発明の名称】プラズマ処理副生成物を管理するための構成要素および処理
(51)【国際特許分類】
H01L 21/3065 20060101AFI20241212BHJP
H05H 1/46 20060101ALI20241212BHJP
【FI】
H01L21/302 101G
H05H1/46 L
【外国語出願】
(21)【出願番号】P 2023132188
(22)【出願日】2023-08-15
(62)【分割の表示】P 2020536864の分割
【原出願日】2019-01-07
【審査請求日】2023-09-07
(32)【優先日】2018-01-08
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】592010081
【氏名又は名称】ラム リサーチ コーポレーション
【氏名又は名称原語表記】LAM RESEARCH CORPORATION
(74)【代理人】
【識別番号】110000028
【氏名又は名称】弁理士法人明成国際特許事務所
(72)【発明者】
【氏名】ペン・ゴードン・ウェン-イン
(72)【発明者】
【氏名】チャトレ・アンバリシュ(リシュ)
(72)【発明者】
【氏名】マロール・ダン
(72)【発明者】
【氏名】パンドゥムソポーン・タマラク
(72)【発明者】
【氏名】チャザロ・イグナシオ(ナチョ)
【審査官】長谷川 直也
(56)【参考文献】
【文献】特開2007-095982(JP,A)
【文献】特表2007-525820(JP,A)
【文献】特開平10-163180(JP,A)
【文献】韓国公開特許第10-2004-0009959(KR,A)
【文献】特開2010-283361(JP,A)
【文献】特開平10-012551(JP,A)
【文献】特開2004-186329(JP,A)
【文献】特開平07-086258(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/3065
H05H 1/46
(57)【特許請求の範囲】
【請求項1】
プラズマ処理チャンバのポートのためのインサートライナであって、
プラズマ処理チャンバの壁を貫通して形成されたポートの内面を覆うよう構成されたインサートライナを備え、
前記インサートライナは、前記ポートへの前記インサートライナの挿入を可能にするために、前記インサートライナの外面プロファイルの圧縮に十分な機械的柔軟性を有するよう構成され、前記インサートライナは、前記インサートライナの前記外面プロファイルの圧縮の解放時に、前記ポートの前記内面に対してバネ力を加えるよう構成されて
おり、
前記インサートライナは、前記ポート内のオープン空間を取り囲み、前記プラズマ処理チャンバの前記壁の外面に近接する前記ポート内の前記オープン空間の外側境界を覆うよう構成されている、インサートライナ。
【請求項2】
請求項1に記載のプラズマ処理チャンバのポートのためのインサートライナであって、前記インサートライナは、前記インサートライナの前記外面プロファイルにおける不連続性を形成するギャップによって第2端部から分離された第1端部を備える、インサートライナ。
【請求項3】
請求項2に記載のプラズマ処理チャンバのポートのためのインサートライナであって、前記ギャップは、前記ポートへの前記インサートライナの挿入を可能にするために、前記インサートライナの前記外面プロファイルの圧縮に対する前記インサートライナの機械的柔軟性を提供する、インサートライナ。
【請求項4】
請求項1に記載のプラズマ処理チャンバのポートのためのインサートライナであって、前記インサートライナは、板金で形成される、インサートライナ。
【請求項5】
請求項1に記載のプラズマ処理チャンバのポートのためのインサートライナであって、前記インサートライナは、陽極酸化アルミニウム板金で形成される、インサートライナ。
【請求項6】
請求項1に記載のプラズマ処理チャンバのポートのためのインサートライナであって、前記インサートライナは、前記ポートの前記内面を実質的に覆うような形状である、インサートライナ。
【請求項7】
請求項1に記載のプラズマ処理チャンバのポートのためのインサートライナであって、前記インサートライナは、前記ポート内のオープン空間を取り囲み、前記ポート内の前記オープン空間を通して視界を提供するよう構成されている、インサートライナ。
【請求項8】
請求項1に記載のプラズマ処理チャンバのポートのためのインサートライナであって、前記インサートライナは、前記ポート内のオープン空間を取り囲み、前記プラズマ処理チャンバの前記壁の内面に近接する前記ポート内の前記オープン空間の内側境界を覆うよう構成されている、インサートライナ。
【請求項9】
請求項8に記載のプラズマ処理チャンバのポートのためのインサートライナであって、前記インサートライナは、前記ポートの周りの前記プラズマ処理チャンバの前記壁の前記内面の一部を覆うよう構成されている、インサートライナ。
【請求項10】
請求項1に記載のプラズマ処理チャンバのポートのためのインサートライナであって、前記ポートは、前記プラズマ処理チャンバの内部領域の観察を可能にするよう構成されたビューポートである、インサートライナ。
【請求項11】
請求項1に記載のプラズマ処理チャンバのポートのためのインサートライナであって、前記ポートの前記内面に対して前記インサートライナによって加えられる前記バネ力は、前記ポート内に前記インサートライナを物理的に固定するのに十分である、インサートライナ。
【請求項12】
請求項1に記載のプラズマ処理チャンバのポートのためのインサートライナであって、前記インサートライナは、前記インサートライナが前記ポート内に挿入された時に前記プラズマ処理チャンバの内部領域に流体的に露出される処理暴露面を備え、前記処理暴露面は、前記処理暴露面へのプラズマ処理副生成物の付着を促進するように調整される、インサートライナ。
【請求項13】
請求項12に記載のプラズマ処理チャンバのポートのためのインサートライナであって、前記処理暴露面は、
3.81マイクロメートル(
150マイクロインチ)~
12.7マイクロメートル(
500マイクロインチ)の範囲内の平均表面粗さを有する、インサートライナ。
【請求項14】
プラズマ処理システムであって、
プラズマ処理チャンバであって、前記プラズマ処理チャンバは、前記プラズマ処理チャンバの動作中にプラズマが生成されるプラズマ処理領域を備え、前記プラズマ処理チャンバは、前記プラズマ処理領域の周りのエンクロージャの一部を形成する壁を備え、前記壁は、前記壁を貫通して形成されたポートを備える、プラズマ処理チャンバと、
前記ポート内に配置されたインサートライナであって、前記インサートライナは、前記ポートの内面を覆うよう構成され、前記インサートライナは、前記ポート内の適切な位置に前記インサートライナを保持するために、前記ポートの前記内面に対してバネ力を加えるよう構成されている、インサートライナと、
を備
え、
前記インサートライナは、前記ポート内のオープン空間を取り囲み、前記プラズマ処理チャンバの前記壁の外面に近接する前記ポート内の前記オープン空間の外側境界を覆うよう構成されている、プラズマ処理システム。
【請求項15】
請求項14に記載のプラズマ処理システムであって、前記インサートライナは、前記ポートへの前記インサートライナの挿入を可能にするために、前記インサートライナの外面プロファイルの圧縮に十分な機械的柔軟性を有するよう構成されている、プラズマ処理システム。
【請求項16】
請求項15に記載のプラズマ処理システムであって、前記インサートライナは、前記インサートライナの前記外面プロファイルの圧縮の解放時に、前記ポートの前記内面に対して前記バネ力を加えるよう構成されている、プラズマ処理システム。
【請求項17】
請求項16に記載のプラズマ処理システムであって、前記インサートライナは、前記インサートライナの前記外面プロファイルにおける不連続性を形成するギャップによって第2端部から分離された第1端部を備える、プラズマ処理システム。
【請求項18】
請求項17に記載のプラズマ処理システムであって、前記ギャップは、前記ポートへの前記インサートライナの挿入を可能にするために、前記インサートライナの前記外面プロファイルの圧縮に対する前記インサートライナの機械的柔軟性を提供する、プラズマ処理システム。
【請求項19】
請求項14に記載のプラズマ処理システムであって、前記インサートライナは、板金で形成される、プラズマ処理システム。
【請求項20】
請求項14に記載のプラズマ処理システムであって、前記インサートライナは、陽極酸化アルミニウム板金で形成される、プラズマ処理システム。
【請求項21】
請求項14に記載のプラズマ処理システムであって、前記インサートライナは、前記ポートの前記内面を実質的に覆うような形状である、プラズマ処理システム。
【請求項22】
請求項14に記載のプラズマ処理システムであって、前記インサートライナは、前記ポート内のオープン空間を取り囲み、前記ポート内の前記オープン空間を通して視界を提供するよう構成されている、プラズマ処理システム。
【請求項23】
請求項14に記載のプラズマ処理システムであって、前記インサートライナは、前記ポート内のオープン空間を取り囲み、前記プラズマ処理チャンバの前記壁の内面に近接する前記ポート内の前記オープン空間の内側境界を覆うよう構成されている、プラズマ処理システム。
【請求項24】
請求項23に記載のプラズマ処理システムであって、前記インサートライナは、前記ポートの周りの前記プラズマ処理チャンバの前記壁の前記内面の一部を覆うよう構成されている、プラズマ処理システム。
【請求項25】
請求項14に記載のプラズマ処理システムであって、前記ポートは、前記プラズマ処理領域の観察を可能にするよう構成されたビューポートである、プラズマ処理システム。
【請求項26】
請求項14に記載のプラズマ処理システムであって、前記ポートの前記内面に対して前記インサートライナによって加えられる前記バネ力は、前記ポート内に前記インサートライナを物理的に固定するのに十分である、プラズマ処理システム。
【請求項27】
請求項14に記載のプラズマ処理システムであって、前記インサートライナは、前記インサートライナが前記ポート内に挿入された時に前記プラズマ処理領域に流体的に露出される処理暴露面を備え、前記処理暴露面は、前記処理暴露面へのプラズマ処理副生成物の付着を促進するように調整される、プラズマ処理システム。
【請求項28】
請求項27に記載のプラズマ処理システムであって、前記処理暴露面は、
3.81マイクロメートル(
150マイクロインチ)~
12.7マイクロメートル(
500マイクロインチ)の範囲内の平均表面粗さを有する、プラズマ処理システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体デバイス製造に関する。
[背景技術]
様々な半導体製造処理において、基板が配置された処理チャンバ内で、処理ガスがプラズマに変換される。基板は、基板から材料をエッチング/除去する、および/または、基板上に材料を蒸着する、および/または、基板上の材料の特性を改質するなどのために、基板に対して所望の効果を生み出すようにプラズマに暴露される。一部の半導体製造処理中には、不揮発性および/または低揮発性のプラズマ処理副生成物が、処理チャンバ内で生成されうる。これらの副生成物は、処理チャンバと共に様々な構成要素上に堆積して蓄積すると、様々な問題が起こりうる。例えば、副生成物は、構成要素から薄片状剥離および/または剥離し、基板支持構造および基板自体など、汚染物質のない状態のままであることが好ましい処理チャンバ内の表面上に着地する場合がある。さらに、副生成物は、処理チャンバ内の小さい開口部および機械的にアクティブな構造の中に拡散することで、動作上の問題を引き起こす、および/または、処理チャンバの洗浄に必要な時間およびコストの量を増大させる場合がある。また、処理チャンバ内での副生成物材料の堆積および脱落は、洗浄のために処理チャンバを停止しなければならない頻度を増やし、これは、処理チャンバの基板製造スループットに悪影響を与える。本発明は、この文脈で生まれたものである。
【発明の概要】
【0002】
一実施形態例において、表面テクスチャ加工プラズマ処理チャンバ構成要素が、プラズマ処理チャンバ内に配置するように構成されたセラミック構成要素として開示されており、セラミック構成要素は、プラズマ処理チャンバの動作中にセラミック構成要素がプラズマ処理チャンバ内に配置された時にプラズマ処理副生成物に暴露されるように方向付けられた少なくとも1つの粗面を備える。少なくとも1つの粗面は、セラミック構成要素へのプラズマ処理副生成物の付着を促進するよう構成される。
【0003】
一実施形態例において、プラズマ処理チャンバが開示されている。プラズマ処理チャンバは、プラズマ処理チャンバの動作中にプラズマへ暴露させて基板を保持するよう構成された基板支持構造を備える。プラズマ処理チャンバは、さらに、基板支持構造と上部窓構造との間にプラズマ処理領域を確立するように基板支持構造の上方に配置された上部窓構造を備える。上部窓構造は、セラミック材料で形成されている。上部窓構造は、プラズマ処理領域の方を向いた底面を有する。底面は、底面へのプラズマ処理副生成物の付着を促進する表面粗さを有する。
【0004】
一実施形態例において、基板のプラズマ処理のための方法が開示されている。方法は、基板支持構造および上部窓構造を備えたプラズマ処理チャンバを準備する工程を備える。基板支持構造は、プラズマへ露出させて基板を保持するよう構成される。上部窓構造は、基板支持構造と上部窓構造との間にプラズマ処理領域を確立するように、基板支持構造の上方に配置される。上部窓構造は、セラミック材料で形成されている。上部窓構造は、プラズマ処理領域の方を向いた底面を有する。底面は、底面へのプラズマ処理副生成物の付着を促進する表面粗さを有する。方法は、さらに、プラズマ処理領域においてプラズマを生成する工程を備える。プラズマの成分は、基板上の材料と相互作用して、プラズマ処理副生成物を生成し、プラズマ処理副生成物の一部は、上部窓構造の底面に付着する。
【0005】
一実施形態例において、プラズマ処理チャンバ内で利用する構成要素を製造するための方法が開示されている。方法は、プラズマ処理チャンバ内に設置するセラミック構成要素を形成する工程を備える。セラミック構成要素は、少なくとも1つの処理暴露面を有する。方法は、さらに、約150マイクロインチ(約3.81マイクロメートル)~約500マイクロインチ(約12.7マイクロメートル)の範囲内の平均表面粗さを有するように、少なくとも1つの処理暴露面を粗面化する工程を備える。
【0006】
一実施形態例において、プラズマ処理チャンバ内で利用するコーティングされた構成要素をプラズマ処理チャンバ内で利用する粗面化構成要素に変換するための方法が開示されている。方法は、セラミック構成要素からコーティングを剥離させて、セラミック構成要素を形成するセラミックベア材にする工程を備える。セラミック構成要素は、プラズマ処理チャンバ内に設置するように構成されている。セラミック構成要素は、少なくとも1つの処理暴露面を有する。方法は、さらに、約150マイクロインチ~約500マイクロインチの範囲内の平均表面粗さを有するように、少なくとも1つの処理暴露面を粗面化する工程を備える。
【0007】
一実施形態例において、プラズマ処理チャンバ内で利用するエッジリングが開示されている。フォーカスリングは、セラミック材料で形成されたリング構造を備える。リング構造は、プラズマ処理チャンバ内の基板支持構造を囲むように構成されている。リング構造は、プラズマ処理チャンバの動作中にリング構造がプラズマ処理チャンバ内に配置された時にプラズマ処理副生成物に暴露されるように方向付けられた内面を有する。内面は、内面へのプラズマ処理副生成物の付着を促進する制御された表面トポグラフィ変動を有するように形成される。
【0008】
一実施形態例において、プラズマ処理チャンバが開示されている。プラズマ処理チャンバは、プラズマ処理チャンバの動作中にプラズマへ暴露させて基板を保持するよう構成された基板支持構造を備える。プラズマ処理チャンバは、さらに、セラミック材料で形成されたリング構造を備えたフォーカスリングを備える。リング構造は、プラズマ処理チャンバ内の基板支持構造を囲むように構成されている。リング構造は、プラズマ処理チャンバの動作中にプラズマ処理副生成物に暴露されるように方向付けられた内面を有する。内面は、内面へのプラズマ処理副生成物の付着を促進する制御された表面トポグラフィ変動を有するように形成される。
【0009】
一実施形態例において、基板のプラズマ処理のための方法が開示されている。方法は、基板支持構造およびフォーカスリングを備えたプラズマ処理チャンバを準備する工程を備える。フォーカスリングは、セラミック材料で形成されたリング構造を備える。リング構造は、プラズマ処理チャンバ内の基板支持構造を囲むように構成されている。リング構造は、プラズマ処理チャンバの動作中にプラズマ処理副生成物に暴露されるように方向付けられた内面を有する。内面は、内面へのプラズマ処理副生成物の付着を促進する制御された表面トポグラフィ変動を有するように形成される。方法は、さらに、基板支持構造の上方のプラズマ処理領域においてプラズマを生成する工程を備える。プラズマの成分は、基板上の材料と相互作用して、プラズマ処理副生成物を生成し、プラズマ処理副生成物の一部は、リング構造の内面に付着する。
【0010】
一実施形態例において、プラズマ処理チャンバ内で利用するフォーカスリングを製造するための方法が開示されている。方法は、セラミック材料のリング構造を形成する工程を備える。リング構造は、プラズマ処理チャンバ内の基板支持構造を囲むように構成されている。リング構造は、プラズマ処理チャンバの動作中にリング構造がプラズマ処理チャンバ内に配置された時にプラズマ処理副生成物に暴露されるように方向付けられた内面を有する。方法は、さらに、リング構造の内面上に、制御された表面トポグラフィ変動を形成する工程を備える。制御された表面トポグラフィ変動は、内面へのプラズマ処理副生成物の付着を促進する。
【0011】
一実施形態例において、プラズマ処理チャンバ内で利用する基板アクセスポートシールドが開示されている。基板アクセスポートシールドは、シールド部分、第1支持部分、および、第2支持部分を備える。第1支持部分は、シールド部分の第1端から伸びる。第1支持部分は、プラズマ処理チャンバ内の垂直移動可能構成要素と係合するよう構成される。第2支持部分は、シールド部分の第2端から伸びる。第2支持部分は、プラズマ処理チャンバ内の垂直移動可能構成要素と係合するよう構成される。シールド部分ならびに第1および第2支持部分は、円弧に沿って伸びる一体シールド構造を形成する。垂直移動可能構成要素の垂直移動が、一体シールド構造の対応する垂直移動を引き起こす。シールド部分は、第1および第2支持部分が垂直移動可能構成要素と係合されて、垂直移動可能構成要素が下側垂直位置にある時に、プラズマ処理チャンバの基板アクセスポート開口部を少なくとも部分的に覆うよう構成される。シールド部分は、第1および第2支持部分が垂直移動可能構成要素と係合されて、垂直移動可能構成要素が上側垂直位置にある時に、プラズマ処理チャンバの基板アクセスポート開口部を覆わないよう構成される。
【0012】
一実施形態例において、プラズマ処理チャンバが開示されている。プラズマ処理チャンバは、プラズマ処理チャンバの動作中にプラズマへ暴露させて基板を保持するよう構成された基板支持構造を備える。プラズマ処理チャンバは、さらに、プラズマ処理チャンバ内の基板支持構造を囲むように構成されたフォーカスリング構造を備える。フォーカスリング構造は、中空直円筒として形成されたリング部分と、リング部分の外面から半径方向外向きに伸びるよう構成された3つの半径方向延長構造と、を備える。3つの半径方向延長構造は、リング部分の外周に沿って離間されている。プラズマ処理チャンバは、さらに、シールド部分、第1支持部分、および、第2支持部分を備えた一体シールド構造を備える。第1支持部分は、シールド部分の第1端から伸びる。第1支持部分は、フォーカスリング構造の3つの半径方向延長構造の内の第1構造と係合するよう構成される。第2支持部分は、シールド部分の第2端から伸びる。第2支持部分は、フォーカスリング構造の3つの半径方向延長構造の内の第2構造と係合するよう構成される。一体シールド構造は、円弧に沿って伸びるように形成される。シールド部分は、フォーカスリング構造が下側垂直位置にある時にプラズマ処理チャンバの基板アクセスポート開口部を少なくとも部分的に覆うよう構成される。シールド部分は、フォーカスリング構造が上側垂直位置にある時にプラズマ処理チャンバの基板アクセスポート開口部を覆わないよう構成される。
【0013】
一実施形態例において、基板のプラズマ処理のための方法が開示されている。方法は、基板支持構造、フォーカスリング構造、および、一体シールド構造を備えたプラズマ処理チャンバを準備する工程を備える。フォーカスリング構造は、基板支持構造を囲むように構成される。フォーカスリング構造は、中空直円筒として形成されたリング部分と、リング部分の外面から半径方向外向きに伸びるよう構成された3つの半径方向延長構造と、を備える。3つの半径方向延長構造は、リング部分の外周に沿って離間されている。一体シールド構造は、シールド部分、第1支持部分、および、第2支持部分を備える。第1支持部分は、シールド部分の第1端から伸びる。第1支持部分は、フォーカスリング構造の3つの半径方向延長構造の内の第1構造と係合するよう構成される。第2支持部分は、シールド部分の第2端から伸びる。第2支持部分は、フォーカスリング構造の3つの半径方向延長構造の内の第2構造と係合するよう構成される。一体シールド構造は、円弧に沿って伸びるように形成される。シールド部分は、フォーカスリング構造が下側垂直位置にある時にプラズマ処理チャンバの基板アクセスポート開口部を少なくとも部分的に覆うよう構成される。シールド部分は、フォーカスリング構造が上側垂直位置にある時にプラズマ処理チャンバの基板アクセスポート開口部を覆わないよう構成される。方法は、さらに、フォーカスリング構造を下側垂直位置に配置する工程を備える。方法は、さらに、基板支持構造の上方のプラズマ処理領域においてプラズマを生成する工程を備える。
【0014】
一実施形態例において、プラズマ処理チャンバ内で利用する基板アクセスポートシールドを製造するための方法が開示されている。方法は、シールド部分と、シールド部分の第1端から伸びる第1支持部分と、シールド部分の第2端から伸びる第2支持部分とを備えるように、一体シールド構造を形成する工程を備える。第1支持部分は、プラズマ処理チャンバ内の垂直移動可能構成要素と係合するよう構成される。第2支持部分は、プラズマ処理チャンバ内の垂直移動可能構成要素と係合するよう構成される。一体シールド構造は、円弧に沿って伸びるように形成される。シールド部分は、第1および第2支持部分が垂直移動可能構成要素と係合されて、垂直移動可能構成要素が下側垂直位置にある時に、プラズマ処理チャンバの基板アクセスポート開口部を少なくとも部分的に覆うよう構成される。シールド部分は、第1および第2支持部分が垂直移動可能構成要素と係合されて、垂直移動可能構成要素が上側垂直位置にある時に、プラズマ処理チャンバの基板アクセスポート開口部を覆わないよう構成される。
【0015】
一実施形態例において、プラズマ処理チャンバのポートのためのインサートライナが開示されている。インサートライナは、プラズマ処理チャンバの壁を貫通して形成されたポートの内面を覆うよう構成される。インサートライナは、ポートへのインサートライナの挿入を可能にするために、インサートライナの外面プロファイルの圧縮に十分な機械的柔軟性を有するよう構成される。インサートライナは、インサートライナの外面プロファイルの圧縮の解放時に、ポートの内面に対してバネ力を加えるよう構成される。
【0016】
一実施形態例において、プラズマ処理システムが開示されている。プラズマ処理システムは、プラズマ処理チャンバの動作中にプラズマが生成されるプラズマ処理領域を備えたプラズマ処理チャンバを備える。プラズマ処理チャンバは、プラズマ処理領域の周りのエンクロージャの一部を形成する壁を備える。壁は、壁を貫通して形成されたポートを備える。プラズマ処理システムは、ポート内に配置されたインサートライナを備える。インサートライナは、ポートの内面を覆うよう構成される。インサートライナは、ポート内の適切な位置にインサートライナを保持するために、ポートの内面に対してバネ力を加えるよう構成される。
【0017】
一実施形態例において、基板のプラズマ処理のための方法が開示されている。方法は、プラズマ処理チャンバの動作中にプラズマが生成されるプラズマ処理領域を備えたプラズマ処理チャンバを準備する工程を備える。プラズマ処理チャンバは、プラズマ処理領域の周りのエンクロージャの一部を形成する壁を備える。壁は、壁を貫通して形成されたポートを備える。方法は、さらに、インサートライナをポート内に配置する工程を備える。インサートライナは、ポートの内面を覆うよう構成される。インサートライナは、ポート内の適切な位置にインサートライナを保持するために、ポートの内面に対してバネ力を加えるよう構成される。方法は、さらに、基板に暴露させてプラズマ処理領域内でプラズマを生成する工程を備える。プラズマの成分が、基板上の材料と相互作用して、プラズマ処理副生成物を生成する。インサートライナは、プラズマ処理副生成物がポートの内面と接触することを防ぐ。
【0018】
一実施形態例において、プラズマ処理チャンバのポート用のインサートライナを製造するための方法が開示されている。方法は、プラズマ処理チャンバの壁を貫通して形成されたポートの内面を覆うようにインサートライナを形成する工程を備える。インサートライナは、ポートへのインサートライナの挿入を可能にするために、インサートライナの外面プロファイルの圧縮に十分な機械的柔軟性を有するよう構成される。インサートライナは、インサートライナの外面プロファイルの圧縮の解放時に、ポートの内面に対してバネ力を加えるよう構成される。
【0019】
一実施形態例において、プラズマ処理チャンバ内で利用する排気バッフルアセンブリが開示されている。排気バッフルアセンブリは、プラズマ処理チャンバの排気流路内に嵌まるよう構成された少なくとも1つのバッフル部材を備える。少なくとも1つのバッフル部材は、排気流路内に配置された時に処理排ガス流をそらすような形状である。少なくとも1つのバッフル部材の外面は、少なくとも1つのバッフル部材への処理排ガス流の中に存在するプラズマ処理副生成物の付着を促進するように調整される。
【0020】
一実施形態例において、プラズマ処理システムが開示されている。プラズマ処理システムは、プラズマ処理チャンバの動作中にプラズマが生成されるプラズマ処理領域を備えたプラズマ処理チャンバを備える。プラズマ処理システムは、さらに、プラズマ処理チャンバのための排気流路を備える。排気流路は、プラズマ処理領域に流体連通される。排気流路は、プラズマ処理領域からの処理排ガス流を方向付けるよう構成される。プラズマ処理システムは、さらに、排気流路に接続されたポンプを備える。ポンプは、排気流路の内部に陰圧を掛けるよう構成される。プラズマ処理システムは、さらに、排気流路内に配置された排気バッフルアセンブリを備える。排気バッフルアセンブリは、排気流路内の処理排ガス流をそらすような形状の少なくとも1つのバッフル部材を備える。少なくとも1つのバッフル部材の外面は、少なくとも1つのバッフル部材への処理排ガス流の中に存在するプラズマ処理副生成物の付着を促進するように調整される。
【0021】
一実施形態例において、基板のプラズマ処理のための方法が開示されている。方法は、プラズマ処理チャンバと、プラズマ処理チャンバのための排気流路とを備えたプラズマ処理システムを準備する工程を備える。プラズマ処理チャンバは、プラズマ処理チャンバの動作中にプラズマが生成されるプラズマ処理領域を備える。排気流路は、プラズマ処理領域に流体連通される。排気流路は、プラズマ処理領域からの処理排ガス流を方向付けるよう構成される。プラズマ処理システムは、さらに、排気流路に接続されたポンプを備える。ポンプは、排気流路の内部に陰圧を掛けるよう構成される。プラズマ処理システムは、排気流路内に配置された排気バッフルアセンブリを備える。排気バッフルアセンブリは、排気流路内の処理排ガス流をそらすような形状の少なくとも1つのバッフル部材を備える。少なくとも1つのバッフル部材の外面は、少なくとも1つのバッフル部材への処理排ガス流の中に存在するプラズマ処理副生成物の付着を促進するように調整される。方法は、さらに、基板に暴露させてプラズマ処理領域内でプラズマを生成する工程を備える。方法は、さらに、プラズマ処理領域から排気流路へ排気流路内の排気バッフルアセンブリを通して処理排ガス流を引き出すために、排気流路の内部に陰圧を掛けるようにポンプを作動させる工程を備える。
【0022】
一実施形態例において、プラズマ処理システム内で利用する排気バッフルアセンブリを製造するための方法が開示されている。方法は、プラズマ処理チャンバの排気流路内に嵌まるように、少なくとも1つのバッフル部材を形成する工程を備える。少なくとも1つのバッフル部材は、排気流路内に配置された時に処理排ガス流をそらすような形状である。方法は、さらに、少なくとも1つのバッフル部材への処理排ガス流の中に存在するプラズマ処理副生成物の付着を促進するように、少なくとも1つのバッフル部材の外面を調整する工程を備える。
【0023】
本発明のその他の態様および利点については、本発明を例示した添付図面を参照しつつ行う以下の詳細な説明から明らかになる。
【図面の簡単な説明】
【0024】
【
図1A】いくつかの実施形態に従って、基板にプラズマ処理を実行するためのシステムの一例を示す図。
【0025】
【
図1B】いくつかの実施形態に従って、
図1Aのシステムの一部を示す垂直断面図。
【0026】
【
図1C】いくつかの実施形態例に従って、基板支持構造を囲むようにエッジリング構造および接地リング構造が配置された基板支持構造を示す等角図。
【0027】
【
図1D】いくつかの実施形態例に従って、基板支持構造を囲むように配置されたエッジリング構造および接地リング構造を備えると共に、基板支持構造の上面の上方かつ周囲に配置されたフォーカスリング構造を備えた基板支持構造を示す等角図。
【0028】
【
図1E】いくつかの実施形態例に従って、フォーカスリング構造が基板支持構造に対して上側位置にある状態の
図1Dの構成を示す図。
【0029】
【
図1F】いくつかの実施形態例に従って、接地リング構造上に配置されたライナ構造の一例を示す等角図。
【0030】
【
図2】いくつかの実施形態に従って、上部窓構造の底面を示す等角図。
【0031】
【
図3】いくつかの実施形態に従って、ライナ構造を示す等角図。
【0032】
【
図4】いくつかの実施形態に従って、エッジリング構造を示す等角図。
【0033】
【
図5】いくつかの実施形態に従って、フォーカスリング構造を示す等角図。
【0034】
【
図6】いくつかの実施形態に従って、接地リング構造を示す等角図。
【0035】
【
図7】いくつかの実施形態に従って、基板のプラズマ処理のための方法を示すフローチャート。
【0036】
【
図8】本発明のいくつかの実施形態に従って、表面テクスチャ加工プラズマ処理チャンバ構成要素製造を製造するための方法を示すフローチャート。
【0037】
【
図9】本発明のいくつかの実施形態に従って、コーティングされたプラズマ処理チャンバ構成要素を表面テクスチャ加工プラズマ処理チャンバ構成要素に変換する方法を示すフローチャート。
【0038】
【
図10A】いくつかの実施形態に従って、フォーカスリング構造のリング部分の内面上に制御された表面トポグラフィ変動を有するフォーカスリング構造を示す等角図。
【0039】
【
図10B】いくつかの実施形態に従って、
図10Aのフォーカスリング構造を示す透視図。
【0040】
【
図10C】いくつかの実施形態に従って、
図10Aのフォーカスリング構造を示す上面図。
【0041】
【0042】
【
図10E】いくつかの実施形態に従って、2つの隣接する凸構造を示す断面図。
【0043】
【
図10F】いくつかの実施形態に従って、フォーカスリング構造を示すその中心を通る垂直断面図。
【0044】
【
図10G】いくつかの実施形態に従って、フォーカスリング構造のリング部分の内面上に矩形格子の凸構造を形成するための図。
【0045】
【
図10H】いくつかの実施形態に従って、フォーカスリング構造のリング部分の内面上に正方形格子の凸構造を形成するための図。
【0046】
【
図10I】いくつかの実施形態に従って、フォーカスリング構造のリング部分の内面上に六角形格子の凸構造を形成するための図。
【0047】
【
図10J】いくつかの実施形態に従って、フォーカスリング構造のリング部分の内面上に平行四辺形格子の凸構造を形成するための図。
【0048】
【
図10K】いくつかの実施形態に従って、フォーカスリング構造のリング部分の内面上に菱形格子の凸構造を形成するための図。
【0049】
【
図11】いくつかの実施形態に従って、基板のプラズマ処理のための方法を示すフローチャート。
【0050】
【
図12】いくつかの実施形態に従って、プラズマ処理チャンバで利用するフォーカスリング構造を製造するための方法を示すフローチャート。
【0051】
【
図13A】いくつかの実施形態に従って、開口部を覆うように配置されたアクセス制御装置を備えた
図1Aのシステムを示す図。
【0052】
【
図13B】いくつかの実施形態に従って、アクセス制御装置によって基板ハンドリングモジュールと結合されたチャンバを示す図。
【0053】
【
図14】いくつかの実施形態に従って、チャンバ内で利用する基板アクセスポートシールドを示す図。
【0054】
【
図15】いくつかの実施形態に従って、切り欠き領域を示す基板アクセスポートシールドの等角図。
【0055】
【
図16】いくつかの実施形態に従って、フォーカスリング構造が完全上側垂直位置にある時にチャンバの開口部を十分に露出させることを可能にするために、シールド部分が短い垂直距離を有する基板アクセスポートシールドの変形例を示す図。
【0056】
【
図17A】いくつかの実施形態に従って、フォーカスリング構造が完全下側位置にある状態で、フォーカスリング構造上に配意された基板アクセスポートシールドの例を示す側面図。
【0057】
【
図17B】いくつかの実施形態に従って、フォーカスリング構造が完全上側位置にある状態で、フォーカスリング構造上に配意された基板アクセスポートシールドの例を示す側面図。
【0058】
【
図18】いくつかの実施形態に従って、基板のプラズマ処理のための方法を示すフローチャート。
【0059】
【
図19】いくつかの実施形態に従って、プラズマ処理チャンバで利用する基板アクセスポートシールドを製造するための方法を示すフローチャート。
【0060】
【
図20】いくつかの実施形態に従って、チャンバへの基板の出し入れのための開口部を備えたチャンバを示す図。
【0061】
【
図21】いくつかの実施形態に従って、チャンバへの基板の出し入れのための開口部に挿入するよう構成されたインサートライナと、ビューポートのための開口部に挿入するよう構成されたインサートライナとを示す図。
【0062】
【
図22】いくつかの実施形態に従って、チャンバへの基板の出し入れのための開口部に挿入するよう構成されたインサートライナを示す等角図。
【0063】
【
図23】いくつかの実施形態に従って、ビューポートのための開口部に挿入するよう構成されたインサートライナを示す等角図。
【0064】
【
図24】いくつかの実施形態に従って、ギャップを形成するためにインサートライナの垂直側面でインサートライナが切り開かれている
図22のインサートライナの変形例を示す図。
【0065】
【
図25】いくつかの実施形態に従って、インサートライナの上面の上に形成された凸領域を備えた
図22のインサートライナの変形例を示す正面図。
【0066】
【
図26】いくつかの実施形態に従って、ビューポートのための開口部に挿入するよう構成され、チャンバ壁の内面で開口部を塞ぐ垂直表面を備えたインサートライナを示す図。
【0067】
【
図27】いくつかの実施形態に従って、ビューポートのための開口部に挿入するよう構成され、開口部を通して露出された窓の表面を実質的に覆う垂直表面を備えたインサートライナを示す図。
【0068】
【
図28】いくつかの実施形態に従って、ビューポートのための開口部に挿入するよう構成され、開口部を通して露出された窓の表面を実質的に覆う第1垂直表面を備え、チャンバ壁の内面で開口部を塞ぐ第2垂直表面を備えたインサートライナを示す図。
【0069】
【
図29】いくつかの実施形態に従って、ビューポートのための開口部内にちょうど嵌まり込み、チャンバの壁の内面のプロファイルの連続性を提供するよう構成されたインサートプラグを示す図。
【0070】
【
図30】いくつかの実施形態に従って、基板のプラズマ処理のための方法を示すフローチャート。
【0071】
【
図31】いくつかの実施形態に従って、プラズマ処理チャンバのためのインサートライナを製造するための方法を示すフローチャート。
【0072】
【
図32】いくつかの実施形態例に従って、排気アセンブリの排気流路内に配置された排気バッフルアセンブリの一例を示す図。
【0073】
【
図33】いくつかの実施形態に従って、チャンバに近接する排気流路内に配置された排気バッフルアセンブリを示す図。
【0074】
【
図34】いくつかの実施形態に従って、チャンバ、排気アセンブリ、および、排気バッフルアセンブリを通した垂直断面図で、排気バッフルアセンブリがチャンバからの排気口に配置されている様子を示す図。
【0075】
【
図35】いくつかの実施形態に従って、排気バッフルアセンブリ例を示す等角図。
【0076】
【
図36】いくつかの実施形態に従って、排気バッフルアセンブリを示す正面図。
【0077】
【
図37】いくつかの実施形態に従って、排気バッフルアセンブリを示す側面図。
【0078】
【
図38】いくつかの実施形態に従って、基板のプラズマ処理のための方法を示すフローチャート。
【0079】
【
図39】いくつかの実施形態に従って、プラズマ処理システム内で利用する排気バッフルアセンブリを製造するための方法を示すフローチャート。
【発明を実施するための形態】
【0080】
以下では、本発明を十分に理解できるように、多くの具体的な詳細事項について説明する。ただし、当業者にとって明らかなように、本発明は、これらの具体的な詳細事項の一部または全部がなくとも実施可能である。また、本発明が不必要に不明瞭となることを避けるため、周知の処理動作の詳細な説明は省略している。
【0081】
図1Aは、いくつかの実施形態に従って、基板101にプラズマ処理を実行するためのシステムの一例100を示す。
図1Bは、いくつかの実施形態に従って、システム100の一部を示す垂直断面図である。いくつかの実施形態において、本発明で言及される基板101は、半導体基板である。ただし、別の実施形態において、本明細書で言及される基板101は、サファイア、GaN、GaAs、または、SiC、もしくは、その他の基板材料で形成された基板であってもよく、ガラスパネル/基板、金属ホイル、金属シート、ポリマ材料などを含みうることを理解されたい。また、様々な実施形態において、本明細書で言及される基板101は、形態、形状、および/または、サイズが様々であってよい。例えば、いくつかの実施形態において、基板101は、200mm(ミリメートル)半導体ウエハ、300mm半導体ウエハ、または、450mm半導体ウエハに対応しうる。また、いくつかの実施形態において、基板101は、形状の中でも特に、平面パネルディスプレイ用の長方形基板など、非円形の基板に対応してもよい。
【0082】
システム100は、基板101に対してプラズマベースの処理を実行するためのプラズマ処理チャンバ102を備える。プラズマベースの処理は、所定の制御された方法で基板101の特性を改質するためにプラズマの成分が用いられる基本的に任意の処理であってよい。様々な実施形態において、プラズマベースの処理は、基板101から材料を除去するためのエッチング処理、または、基板101に材料を追加するための蒸着処理、もしくは、エッチングおよび蒸着処理の組み合わせである。
【0083】
チャンバ102は、チャンバ102の内部を囲む壁105を備える。いくつかの実施形態において、壁105は、導電材料で形成され、基準接地電位への電気接続を有する。壁105は、様々な目的のために構成された複数の開口部/ポートを備えうる。例えば、チャンバ例102の壁105は、チャンバ102への基板101の出し入れのために開口部106Aを備える。いくつかの実施形態において、開口部106Aは、開口部106Aを通してチャンバ102内へのロボット基板ハンドリング装置の通路を提供すると共にチャンバ102の動作中に開口部106Aのシーリングを提供するスリットバルブと結合する。また、チャンバ例102の壁105は、手動でまたは様々な装置(中でも特に、光学監視装置または光学エンドポイント検出装置など)によって、チャンバ102内のプラズマ処理領域109を観察するためのビューポートを提供する開口部106Bを備える。開口部106Bは、ガラスまたはプラスチックなどの任意選択的に透明な材料もしくはその他の同様な材料で形成された窓108によって密封して覆われてよい。
【0084】
基板支持構造103が、チャンバ102の内部に存在し、チャンバ102内でプラズマ処理の実行中に基板101を保持するよう構成されている。いくつかの実施形態において、基板支持構造103は、基板101を保持する静電場を生成するよう構成された静電チャックである。様々な実施形態において、基板支持構造103は、様々な構成要素およびシステムを備えうる。例えば、基板支持構造103は、高周波電力の伝送および/またはバイアス電圧の生成のために1以上の電極を備えるよう構成されうる。また、基板支持構造103は、ヒータおよび/または冷却チャネルなど、1以上の温度制御装置を備えうる。また、基板支持構造103は、ロボットハンドリング装置と基板支持構造103との間での基板101の移動を容易にするために、複数のリフトピンおよび関連メカニクスを備えうる。また、基板支持構造103は、温度を測定するため、および、電気的パラメータ(電圧および/または電流など)を測定するために、複数のセンサおよび/またはプローブを備えうる。
【0085】
上部窓構造107が、基板支持構造103の上方に配置されており、基板支持構造103と上部窓構造107との間にプラズマ処理領域109が存在するように、基板支持構造103から離されている。いくつかの実施形態において、壁105は、上部窓構造107を受け止めて支持するよう構成された上側フランジ構造111を備える。上部窓構造107は、特に石英またはセラミックなど、高周波(RF)信号を伝達できる材料で形成される。また、いくつかの実施形態において、上部窓構造107は、ガス分配プレートとして機能するよう構成される。例えば、上部窓構造107は、複数のガス入力ポートと、ガス入力ポートに流体連通された内部流体流路の配列と、内部流体流路に流体連通された複数のガス出力ポートと、を備えうる。上部窓構造107のガス入力ポートに供給された1以上の処理ガスは、内部流体流路を通して上部窓構造107のガス出力ポートに流され、そこで、処理ガスは、プラズマ処理領域109内に供給される。上部窓構造107のガス出力ポートおよび内部流体流路は、空間的に制御された方法でプラズマ処理領域109内に1以上の処理ガスを供給するよう構成されうる。
【0086】
コイルアセンブリ113が、上部窓構造107の上方に配置されている。コイルアセンブリ113は、インピーダンス整合回路117を通して高周波(RF)発生器115に接続されている。コイルアセンブリ113は、RF電力がインピーダンス整合回路117を通してRF発生器115からコイルアセンブリ113へ伝達された時に、上部窓構造107を通してプラズマ処理領域109へRF電力を伝達するよう構成されている。インピーダンス整合回路117は、インピーダンス整合回路117の入力におけるRF発生器115から見たインピーダンスが、RF発生器115が動作するよう設計された出力インピーダンス(通常、50オーム)に十分近いことを保証するよう構成されたキャパシタおよびインダクタの配列を備えており、その結果、RF発生器115によって生成および伝送されるRF電力は、例えば、許容不能または望ましくない反射なしに、効率的にプラズマ処理領域109に伝送される。
【0087】
様々な実施形態において、RF発生器115は、1以上の周波数で動作する1以上のRF信号発生器を備えうる。複数のRF信号周波数が、同時に、コイルアセンブリ113に供給されうる。いくつかの実施形態において、RF発生器115によって出力される信号周波数は、1kHz(キロヘルツ)~100MHz(メガヘルツ)の範囲内に設定される。いくつかの実施形態において、RF発生器115によって出力される信号周波数は、400kHz~60MHzの範囲内に設定される。いくつかの実施形態において、RF発生器115は、2MHz、27MHz、13.56MHz、および、60MHzの周波数のRF信号を生成するように設定される。いくつかの実施形態において、RF発生器115は、約2MHz~約60MHzの周波数範囲内の1以上の高周波数RF信号を生成すると共に、約100kHz~約2MHzの周波数範囲内の1以上の低周波数RF信号を生成するように設定される。上述のRF信号周波数範囲は、例として提供されていることを理解されたい。実際的には、RF発生器115は、プラズマ処理領域109内でプラズマを生成するために必要な基本的に任意の周波数を有する任意のRF信号を生成するよう構成されうる。さらに、RF発生器115は、指定のRF信号周波数がコイルアセンブリ113に伝送されることを保証するために、周波数ベースのフィルタリング(すなわち、ハイパスフィルタリングおよび/またはローパスフィルタリング)を備えることができる。
【0088】
チャンバ102は、処理ガス供給システム120に接続されており、それにより、1以上の処理ガスがプラズマ処理領域109へ制御された方法で供給されうる。処理ガス供給システム120は、制御された流量および制御されたフロー時間でプラズマ処理領域109へ1以上の処理ガスを提供することを可能にするために、1以上の処理ガス源と、バルブおよびマスフローコントローラの配列と、を備える。動作中、処理ガス供給システム120は、1以上の処理ガスをプラズマ処理領域109へ供給するよう動作し、RF電力が、RF発生器115からコイルアセンブリ113へ供給され、その結果、RF電力が、プラズマ処理領域109内の1以上の処理ガスをプラズマに変換するために、プラズマ処理領域109内で電磁場を生成する。次いで、プラズマの反応成分(イオンおよび/またはラジカルなど)が、基板101の一部と相互作用しうる。
【0089】
排気アセンブリ119が、プラズマ処理チャンバ102に接続されている。排気アセンブリ119は、プラズマ処理チャンバ109に流体連通された内部流領域を有する排気流路121を備える。排気アセンブリ119は、排気流路121の内部流領域に流体連通されたポンプ123も備える。いくつかの実施形態において、排気アセンブリ119は、排気流路121をポンプ123に流体連通させるためのダクト/配管122を備える。動作中、ポンプ123は、プラズマ処理領域109から排気流路121の内部流領域とダクト/配管122とを通してポンプ123へ排ガスおよび処理副生成物を導くよう動作する。
【0090】
いくつかの実施形態において、基板支持構造103は、プラズマ処理領域109内のプラズマから基板支持構造103上に保持された基板101に向かってイオンを引き付けるために、インピーダンス整合回路127を通してバイアスRF発生器125からバイアスRF電力を受信して、基板支持構造103の上(および基板101自体の上)のバイアス電圧の生成を提供するよう構成されている。インピーダンス整合回路127は、インピーダンス整合回路127の入力におけるRF発生器125から見たインピーダンスが、RF発生器125が動作するよう設計された出力インピーダンス(通常、50オーム)に十分近いことを保証するよう構成されたキャパシタおよびインダクタの配列を備えており、その結果、RF発生器125によって生成および伝送されるRF電力は、例えば、許容不能または望ましくない反射なしに、効率的に基板支持構造103に伝送される。
【0091】
様々な実施形態において、バイアスRF発生器125は、1以上の周波数で動作する1以上のRF信号発生器を備えうる。複数のRF信号周波数が、同時に、基板支持構造103に供給されうる。いくつかの実施形態において、バイアスRF発生器125によって出力される信号周波数は、1kHz~100MHzの範囲内に設定される。いくつかの実施形態において、バイアスRF発生器125によって出力される信号周波数は、400kHz~60MHzの範囲内に設定される。いくつかの実施形態において、バイアスRF発生器125は、2MHz、27MHz、13.56MHz、および、60MHzの周波数のRF信号を生成するように設定される。いくつかの実施形態において、バイアスRF発生器125は、約2MHz~約60MHzの周波数範囲内の1以上の高周波数RF信号を生成すると共に、約100kHz~約2MHzの周波数範囲内の1以上の低周波数RF信号を生成するように設定される。上述のRF信号周波数範囲は、例として提供されていることを理解されたい。実際的には、バイアスRF発生器125は、基板101において所定のバイアス電圧を生成するために必要な基本的に任意の周波数を有する任意のRF信号を生成するよう構成されうる。さらに、バイアスRF発生器125は、指定のRF信号周波数が基板支持構造103に伝送されることを保証するために、周波数ベースのフィルタリング(すなわち、ハイパスフィルタリングおよび/またはローパスフィルタリング)を備えることができる。
【0092】
システム100は、制御モジュール129も備えうる。いくつかの実施形態において、制御モジュール129は、コンピュータハードウェアおよびソフトウェアの組合せとして実装される。制御モジュール129は、処理ガス供給システム120、RF発生器115およびそれに関連するインピーダンス整合回路117、RF発生器125およびそれに関連するインピーダンス整合回路127、ポンプ123、ならびに、システム100の基本的に任意のその他の制御可能な構成要素(特に、基板支持構造103内の温度制御装置および基板リフトピンなど)、の制御を提供するように、接続および構成されうる。また、制御モジュール129は、システム100内の様々な構成要素、センサ、および、監視装置からの信号を受信するように、接続および構成されうる。例えば、制御モジュール129は、基板支持構造103から電圧および/または電流の測定信号を受信するように、接続および構成されうる。そして、制御モジュール129は、プラズマ処理領域109内から温度および圧力の測定信号を受信するように接続および構成されうる。制御モジュール129は、システム100内の基本的に任意の能動装置(すなわち、制御可能な装置)を制御するように、接続および構成されうる。そして、制御モジュール129は、システム100内の基本的に任意の位置における基本的に任意の物理的および/または電気的な状態、条件、および/または、パラメータを監視するように、接続および構成されうることを理解されたい。また、制御モジュール129は、基板101に対して上述のプラズマ処理動作を実行するために、同期的にシステム100内の様々な構成要素の動作を指示するよう構成されうる。例えば、制御モジュール129は、処理入力および制御の命令/プログラムを実行することによってシステム100を動作させるよう構成されうる。処理入力および制御の命令/プログラムは、基板101において所望の処理結果を得るために必要なパラメータ(電力レベル、タイミングパラメータ、処理ガス、基板101の機械的移動、など)のための時間依存の指示を有する処理レシピを含んでよい。
【0093】
図1Cは、いくつかの実施形態例に従って、基板支持構造103を囲むようにエッジリング構造131および接地リング構造133が配置された基板支持構造103を示す等角図である。また、エッジリング構造131および接地リング構造133の垂直断面図が、いくつかの実施形態例に従って、
図1Bに示されている。いくつかの実施形態において、エッジリング構造131は、基板支持構造103にすぐ隣接する位置で基板支持構造103を囲むよう構成されている。エッジリング構造131は、プラズマ処理領域109内のプラズマ生成における均一性を支援するために均一なRF場を提供する。いくつかの実施形態において、エッジリング構造131は、セラミック材料で形成される。いくつかの実施形態において、エッジリング構造131は、酸化アルミニウムで形成される。いくつかの実施形態において、エッジリング構造131は、炭化シリコンで形成される。様々な実施形態において、エッジリング構造131は、基板支持構造103と接地リング構造133との間の電気的分離を維持するのに十分に高い電気抵抗を有し、チャンバ102の動作中にプラズマ処理領域109内に存在する材料と化学的に適合し、チャンバ102の動作中にプラズマ処理領域109内に存在する温度および圧力の存在下で機械的および熱的な安定性を有する基本的に任意の材料で形成されてよいことを理解されたい。
【0094】
接地リング構造133は、導電材料で形成されており、基準接地電位に電気接続されるように、チャンバ壁105に電気接続される。いくつかの実施形態において、接地リング構造133は、金属材料(特に、アルミニウムまたはステンレス鋼、もしくは、それらの合金)で形成される。様々な実施形態において、接地リング構造133は、基板支持構造103の周りに基準接地電位の表面を提供するのに十分に高い導電率を有し、チャンバ102の動作中にプラズマ処理領域109内に存在する材料と化学的に適合し、チャンバ102の動作中にプラズマ処理領域109内に存在する温度および圧力の存在下で機械的および熱的な安定性を有する基本的に任意の材料で形成されてよいことを理解されたい。
【0095】
図1Dは、いくつかの実施形態例に従って、基板支持構造103を囲むように配置されたエッジリング構造131および接地リング構造133を備えると共に、基板支持構造103の上面の上方かつ周囲に配置されたフォーカスリング構造135を備えた基板支持構造103を示す等角図である。フォーカスリング構造135の垂直断面図が、いくつかの実施形態例に従って、
図1Bに示されている。いくつかの実施形態において、フォーカスリング構造135は、プラズマ処理領域109を囲むようにプラズマ処理チャンバ102内に配置されている。フォーカスリング構造135は、高さH1、内径ID1、および、壁厚WT1の中空直円筒として構成されたリング部分135Aを備える。フォーカスリング構造135は、さらに、リング部分135Aの外面から半径方向外向きに伸びるよう構成された3つの半径方向延長構造135B1、135B2、135B3を備えうる。3つの半径方向延長構造135B1、135B2、135B3は、3つの半径方向延長構造135B1、135B2、135B3によってリング部分135Aの安定した垂直移動を提供するように、リング部分135Aの外周に沿って離間されている。3つの半径方向延長構造135B1、135B2、135B3は、フォーカスリング構造135がプラズマ処理チャンバ102内に配置される時に、基板支持構造103に対してフォーカスリング構造135を上げ下げするために、3つのそれぞれのリフト構成要素137A、137B、137Cと係合するよう構成されている。例えば、フォーカスリング構造135は、基板支持構造103上への基板101の配置に備えて、および、基板支持構造103からの基板101の除去に備えて、基板支持構造103に対して持ち上げられることができる。
図1Eは、いくつかの実施形態例に従って、フォーカスリング構造135が基板支持構造103に対して上げ位置にある状態の
図1Dの構成を示す図である。基板101の処理中、フォーカスリング構造135は、
図1Dに示すように、基板101の上面に近接してフォーカスリング構造135を配置するために、基板支持構造103に対して降下されることができる。
【0096】
いくつかの実施形態において、フォーカスリング構造135は、プラズマ処理領域109内のプラズマ中に生成されたイオンの、基板支持構造103上に保持された基板101の表面上への集束を支援するよう構成される。フォーカスリング構造135によって提供されるイオンの集束は、基板101にわたって、そして、基板101のエッジにおいて、処理均一性を高めうる。いくつかの実施形態において、フォーカスリング構造135は、セラミック材料で形成される。いくつかの実施形態において、フォーカスリング構造135は、酸化アルミニウムで形成される。いくつかの実施形態において、フォーカスリング構造135は、炭化シリコンで形成される。様々な実施形態において、フォーカスリング構造135は、チャンバ102の動作中にプラズマ処理領域109内のプラズマから基板101に向かってイオンを集束することを可能にするのに適切な電気的特性を有し、チャンバ102の動作中にプラズマ処理領域109内に存在する材料と化学的に適合し、チャンバ102の動作中にプラズマ処理領域109内に存在する温度および圧力の存在下で機械的および熱的な安定性を有する基本的に任意の材料で形成されてよいことを理解されたい。
【0097】
いくつかの実施形態において、ライナ構造139が、プラズマ処理チャンバ102内に配置される。
図1Fは、いくつかの実施形態例に従って、接地リング構造133上に配置されたライナ構造139の一例を示す等角図である。いくつかの実施形態において、ライナ構造139は、接地リング構造133と物理的に接触するよう構成される。ライナ構造139は、プラズマ処理チャンバ102内のプラズマ処理領域109の少なくとも一部の周りに伸びるよう構成される。ライナ構造139は、プラズマ処理領域109の方を向いた内面139Aを有する。いくつかの実施形態において、ライナ構造139は、セラミック材料で形成される。いくつかの実施形態において、ライナ構造139は、酸化アルミニウムで形成される。いくつかの実施形態において、ライナ構造139は、炭化シリコンで形成される。様々な実施形態において、ライナ構造139は、チャンバ102の動作中にプラズマ処理領域109内でのプラズマの生成に適合する適切な電気的特性を有し、チャンバ102の動作中にプラズマ処理領域109内に存在する材料と化学的に適合し、チャンバ102の動作中にプラズマ処理領域109内に存在する温度および圧力の存在下で機械的および熱的な安定性を有する基本的に任意の材料で形成されてよいことを理解されたい。
【0098】
いくつかの実施形態において、ライナ構造139は、チャンバ102の動作中にプラズマ処理領域109内に存在する材料からチャンバ102の壁105の内面を実質的に覆うおよび/または保護するよう構成される。より具体的には、ライナ構造139は、中空直円筒として形成されてよく、複数の切り欠き部分(すなわち、開口部)を備えてよく、その部分において、ライナ構造139を通して構成要素が伸びることができる、および/または、ライナ構造139を通して視界が提供される。例えば、ライナ構造139は、排気流路121にプラズマ処理領域109を露出させるための開口部140Aを備える。また、ライナ構造139は、フォーカスリング構造135の3つの半径方向延長構造135B1、135B2、135B3を妨げることなしに垂直移動させるために、開口部140B、140C、および、140Dを備える。また、ライナ構造139は、チャンバ102への基板101の挿入およびチャンバ102からの基板101の取り出しに備えて、チャンバ102の壁105内の開口部106Aの位置に開口部140Eを備える。また、ライナ構造139は、チャンバ102の内部を遮るものなしに見ることができるように、チャンバ102の壁105内の開口部106Bの位置に開口部140Fを備える。
【0099】
チャンバ102内の基板101の処理中、不揮発性副生成物および/または低揮発性副生成物が、プラズマ処理領域109内で生成されうる。一部の処理においては、豊富な量のこれらの不揮発性および/または低揮発性副生成物が生成されうる。例えば、一部の処理において、基板101(例えば、シリコン基板)上に存在するチタン酸ジルコン酸鉛(PZT)膜がエッチングされる際に、それに対応して、大量の不揮発性および/または低揮発性副生成物が生成される。そして、別の例において、一部の処理において、基板101上に存在するプラチナ系の膜がエッチングされる際に、それに対応して、大量の不揮発性および/または低揮発性副生成物が生成される。また、基板101上に対して実行されるその他のプラズマベース処理に対応して、大量の不揮発性および/または低揮発性副生成物が生成されうることを理解されたい。不揮発性および/または低揮発性副生成物は、チャンバ102内の様々な構成要素の表面に付着しうる。しかしながら、不揮発性および/または低揮発性副生成物は、チャンバ102内の様々な構成要素の表面に付着しにくいまたは保持されにくい場合があり、チャンバ102内の様々な構成要素の表面から不揮発性および/または低揮発性副生成物が薄片状剥離および/または剥離することにつながる。チャンバ102内の表面から薄片状剥離または剥離した不揮発性および/または低揮発性副生成物は、後にデバイスの欠陥を引き起こす基板101上の粒子数の増加など、大きい歩留まり損失につながる深刻な問題を引き起こしうる。薄片状剥離または剥離した不揮発性および/または低揮発性副生成物は、基板支持構造103の上面の上、または、光学エンドポイント検出などのために、プラズマ処理領域109の光学的観察のために用いられる窓の上に留まった場合にも、問題を引き起こしうる。薄片状剥離または剥離した不揮発性および/または低揮発性副生成物は、排気ポンプおよび関連する排気機械システムに吸い込まれた場合にも、問題を引き起こしうる。
【0100】
また、チャンバ102内の構成要素の表面から薄片状剥離または剥離する傾向にある不揮発性および/または低揮発性副生成物の生成により、薄片状剥離および/または剥離が発生する可能性のあるレベルまで堆積する前に不揮発性および/または低揮発性副生成物を洗浄するために、チャンバ102を頻繁に稼働停止にする必要がありうる。チャンバ102を頻繁に稼働停止しなければならないことは、基板101の処理スループットを低下させることを理解されたい。さらに、不揮発性および/または低揮発性副生成物は、ウエハレス自動洗浄処理に耐性を示す場合ができ、これは、チャンバ102を手動で開いて洗浄する必要がありうることを意味し、それには、時間も費用も掛かる。さらに、チャンバ102内の構成要素は、外部コーティイングのあるアルミニウム系の材料で形成される場合があり、コーティングは、頻繁な洗浄処理に耐えられないことがある。例えば、チャンバ102内の一部の構成要素は、陽極酸化アルミニウムで形成されうる、および/または、コーティング(イットリアコーティングなど)を有しうる。これらの構成要素から不揮発性および/または低揮発性副生成物を除去するために必要な侵襲的な洗浄(aggressive cleaning)は、陽極酸化/コーティングを剥離させることがあり、その場合、洗浄後に構成要素を再陽極酸化/再コーティングする必要があり、費用の増加につながる。また、構成要素を再陽極酸化/再コーティング必要がある度に、構成要素のベース材料が消費され、それにより、構成要素の利用寿命が短くなる。すなわち、各構成要素が受けることのできる再陽極酸化/再コーティングサイクルの回数には制限がある。そして、構成要素を侵襲的に洗浄するおよび/または再陽極酸化/再コーティングする必要がある度に、構成要素は、損傷され、利用不能になる可能性があり、さらなる費用が生じる。
【0101】
基板101に対する様々なプラズマベースの処理の実行中にプラズマ処理領域109内で生成される不揮発性および/または低揮発性副生成物を管理するための構成要素および処理が、本明細書で開示されている。いくつかの実施形態において、チャンバ102内の様々な構成要素は、セラミック材料で形成され、粗面化/テクスチャ加工された外面を有するように形成される。例えば、様々な実施形態において、上部窓構造107および/またはライナ構造139および/またはエッジリング構造131は、セラミック材料で形成されてよく、プラズマ処理領域109に露出した粗面化/テクスチャ加工された外面を有するように形成されてよい。粗面化/テクスチャ加工された外面は、不揮発性および/または低揮発性副生成物の付着および保持を促進する。不揮発性および/または低揮発性副生成物がチャンバ102内の構成要素の表面上に付着および保持されることで、洗浄と洗浄との合間に、より長い時間にわたってチャンバ102を動作させることができることを理解されたい。例えば、粗面化/テクスチャ加工された外面を有するセラミック構成要素をチャンバ102内で利用することで、不揮発性および/または低揮発性副生成物が基板101および基板支持構造103上に薄片状剥離または剥離することを許容しないことによって、チャンバ102の平均洗浄間隔(MTBC)を最大400%以上まで延ばすことができる。したがって、粗面化/テクスチャ加工された外面を有するセラミック構成要素をチャンバ102内で利用することで、基板101上の欠陥密度を低下させ、生産性を向上させ(すなわち、チャンバ102の利用可能性を延長させ、チャンバ102による基板101の処理スループットを増大させ)、構成要素洗浄および構成要素再調整のサイクルの頻度を下げることによって構成要素寿命を改善することができる。
【0102】
また、チャンバ102内の様々な構成要素(上部窓構造107および/またはライナ構造139および/またはエッジリング構造131など)にコーティングのないセラミック材料を利用することで、陽極酸化/コーティングされた材料と比べて、表面粗さをより良好に制御できる。より具体的には、構成要素の陽極酸化/コーティングは、構成要素への粗面化処理の完了後になされなければならないので、陽極酸化/コーティングの適用が構成要素へ以前に施された表面粗さにどのように影響するのかを予測および制御するのは困難である。例えば、粗面化/テクスチャ加工された構成要素の表面へコーティングを施すと、逆に表面を滑らかにしうる。また、表面が粗面化/テクスチャ加工された後に、構成要素の表面へコーティングを施すと、構成要素のひび割れにつながりうる応力を構成要素の表面上に導入することによって、構成要素に損傷を引き起こしうる。さらに、セラミック構成要素の材料は、改修/洗浄処理およびその後の再粗面化/再テクスチャ加工処理中にあまり消費されないので、セラミック構成要素は、多くの改修/洗浄サイクル後に非セラミック構成要素よりも回復しやすい。構成要素のバルクセラミックが、多くの改修/洗浄/再粗面化/再テクスチャ加工サイクルに耐えることができるので、侵襲的な改修/洗浄処理に対するセラミック構成要素の回復力が、コストの削減を提供する。
【0103】
いくつかの実施形態において、例として、プラズマ処理領域109に露出される上部窓構造107の下面、および/または、ライナ構造139、および/または、エッジリング構造131など、チャンバ102内の様々な構成要素またはそれらの一部は、約150マイクロインチ~約500マイクロインチの範囲内の平均表面粗さ(Ra)を有するように、粗面化/テクスチャ加工処理を受ける。いくつかの実施形態において、例として、プラズマ処理領域109に露出される上部窓構造107の下面、および/または、ライナ構造139、および/または、エッジリング構造131など、チャンバ102内の様々な構成要素またはそれらの一部は、約500マイクロインチ(約12.7マイクロメートル)の平均表面粗さ(Ra)を有するように、粗面化/テクスチャ加工処理を受ける。平均表面粗さ(Ra)は、表面平均線からの表面プロファイル高さの偏差の絶対値の相加平均であり、式1に示すように、表面に沿った評価長さ内に記録される:
【0104】
【0105】
ここで、L=評価長さ、Z(x)=プロファイル高さ関数、である。
【0106】
様々な実施形態において、表面テクスチャ加工されたプラズマ処理チャンバ構成要素が開示されている。表面テクスチャ加工プラズマ処理チャンバ構成要素は、プラズマ処理チャンバ内(例として、チャンバ102内など)に配置するよう構成されたセラミック構成要素を含む。いくつかの実施形態において、表面テクスチャ加工プラズマ処理チャンバ構成要素のセラミック構成要素は、酸化アルミニウムで形成される。いくつかの実施形態において、表面テクスチャ加工プラズマ処理チャンバ構成要素のセラミック構成要素は、炭化シリコンで形成される。ただし、様々な実施形態において、表面テクスチャ加工プラズマ処理チャンバ構成要素のセラミック構成要素は、酸化アルミニウムまたは炭化シリコン以外のセラミック材料で形成されてもよいことを理解されたい。
【0107】
セラミック構成要素は、プラズマ処理チャンバの動作中にセラミック構成要素がプラズマ処理チャンバ内に配置された時にプラズマ処理副生成物に暴露されるように方向付けられた少なくとも1つの粗面を備える。少なくとも1つの粗面は、セラミック構成要素へのプラズマ処理副生成物の付着を促進するよう構成される。少なくとも1つの粗面の平均表面粗さ(Ra)は、少なくとも1つの粗面への不揮発性および/または低揮発性プラズマ処理副生成物の付着を促進するよう構成される。いくつかの実施形態において、少なくとも1つの粗面は、約150マイクロインチ~約500マイクロインチの範囲内の平均表面粗さ(Ra)を有する。いくつかの実施形態において、少なくとも1つの粗面は、約500マイクロインチ(約12.7マイクロメートル)の平均表面粗さ(Ra)を有する。また、いくつかの実施形態において、セラミック構成要素を形成するセラミックベア材が、セラミック構成要素の少なくとも1つの粗面上で露出される。
【0108】
いくつかの実施形態において、少なくとも1つの粗面への不揮発性および/または低揮発性副生成物の改善された付着は、ファンデルワールス力の増大を通して分子レベルで影響を受ける。少なくとも1つの粗面と対照的に、低い表面粗さを有する表面(すなわち、滑らかな構成要素表面)は、プラズマ処理副生成物イオンおよび/または分子の付着を拒むよう作用する高い表面張力エネルギを生み出す。いくつかの実施形態において、セラミック構成要素へのプラズマ処理副生成物の付着を促進するよう構成された少なくとも1つの粗面は、プラズマ処理副生成物イオンおよび/または分子の付着を促進するために、高い接触角および低い表面張力を有しうる。また、セラミック構成要素の少なくとも1つの粗面では、セラミック構成要素からの不揮発性および/または低揮発性副生成物の薄片剥離および/または剥離が少ない。
【0109】
いくつかの実施形態において、セラミック構成要素の少なくとも1つの粗面は、メディアブラスト処理によって粗面化される。換言すると、セラミック構成要素は、セラミック構成要素上に少なくとも1つの粗面を形成するために、メディアブラスト処理を受ける。様々な実施形態において、メディアブラスト処理は、表面粗さを増し、表面上の高い接触角を生み出し、メディアブラスト処理を受ける構成要素の表面の表面積全体を増すために、規定および実行されうる。様々な実施形態において、メディアブラスト処理は、メディアのタイプの中でも特に、酸化アルミニウム、炭化シリコン、破砕ガラスグリット、ガラスビーズ、セラミック、ガラス、クルミ殻、軽石、スチールグリット、スチールショット、アルミニウムショット、亜鉛ショット、銅ショット、カットワイヤ、ガーネット、ケイ砂、および、十字石、の内の1以上を含むメディアで、少なくとも1つの粗面が生成されるセラミック構成要素に影響を与えるように規定および実行されうる。メディアブラスト処理は、構成要素のターゲット表面領域にわたって所定の粗さ/テクスチャを実質的に均一に適用することを理解されたい。また、いくつかの実施形態において、メディアブラスト処理は、構成要素のターゲット表面領域上で所定の表面トポグラフィを生成するようにパターニングされたマスクと併せて実行されうる。例えば、パターニングされたマスクは、パターニングされたマスクが構成要素上に配置された時に、メディアブラスト材料がそこを通って構成要素の表面に到達できる開口領域の分布を含みうる。メディアブラスト材料は、パターニングされたマスクの開口領域内にある構成要素材料の一部を除去するが、パターニングされたマスクによって保護された構成要素材料は除去せず、それにより、構成要素のターゲット表面領域上で所定の表面トポグラフィを生み出す。
【0110】
粗面化/テクスチャ加工された1以上の外面を有する非コーティングセラミックで形成された構成要素を利用することで、それらの構成要素の改修の能力が改善することを理解されたい。例えば、かかる構成要素を改修するために、メディアブラスト処理を構成要素に対して実行(または再実行)することで、構成要素を洗浄すると共に構成要素の外面を再粗面化/再テクスチャ加工することができる。構成要素の再コーティングなしにメディアブラストによって構成要素を改修できることで、構成要素にコーティングを施す費用をなくし、構成要素の機械的故障につながりうる構成要素におけるコーティングによる応力の発生を回避する。さらに、多すぎる構成要素材料の除去を通して構成要素の機械的完全性を損なうことなしに、メディアブラスト処理によって、構成要素を多数回(例えば、20回以上)改修できる。また、メディアブラスト処理に加えて、または、メディアブラスト処理の代わりとして、少なくとも1つの粗面は、セラミック構成要素の焼成の前に、セラミック構成要素に対してナーリング処理を実行することによって、少なくとも部分的に形成されてもよい。
【0111】
いくつかの実施形態において、上述の表面テクスチャ加工プラズマ処理チャンバ構成要素は、チャンバ102の上部窓構造107である。
図2は、いくつかの実施形態に従って、上部窓構造107の底面107Aを示す等角図である。上部窓構造107は、底面107Aがプラズマ処理領域109と向かい合うように方向付けられた状態でチャンバ102内に設置されるセラミック構成要素である。上述のセラミック構成要素と同様に、様々な実施形態において、上部窓構造107は、酸化アルミニウム、炭化シリコン、または、チャンバ102の動作中の上部窓構造107としての機能に対して、化学的、機械的、熱的、かつ、電気的に適合する基本的に任意の他のセラミック材料、で形成されてよい。また、いくつかの実施形態において、上部窓構造107は、プラズマ処理領域109への1以上の処理ガスの供給を提供するガス分配プレートとして機能するよう構成される。これらの実施形態において、上部窓構造107は、上部窓構造107の外側(上部窓構造107の上面またはエッジ面など)に配置された1以上の入力ポートから上部窓構造107の底面107Aに配置された1以上の出力ポート107Bへ1以上の処理ガスの流れを方向付けるよう構成されたガス供給流路の内部配列を備えてよい。このように、1以上の処理ガスは、上部窓構造107を通してプラズマ処理領域109内へ流されてよく、その時、上部窓構造107は、1以上の出力ポート107Bの空間的位置およびフロー状態(開状態または閉状態)に基づいて、プラズマ処理領域109への1以上の処理ガスの供給を空間的に分散させるよう機能する。
【0112】
上部窓構造107の底面107Aは、上部窓構造107がチャンバ102の動作中にチャンバ102内に配置された時にプラズマ処理副生成物に暴露するように方向付けられた少なくとも1つの粗面107Cを備える。いくつかの実施形態において、上部窓構造107の底面107Aは、上部窓構造107がチャンバ102内に設置された時にシール構成要素と係合するよう構成された外周リング形状領域107Dを備える。いくつかの実施形態において、外周リング形状領域107Dは、約20マイクロインチ(約0.508マイクロメートル)の平均表面粗さ(Ra)を有するように滑らかにされる。いくつかの実施形態において、外周リング形状領域107Dの内側の底面107Aの領域は、約150マイクロインチ~約500マイクロインチの範囲内の平均表面粗さ(Ra)を有するように粗面化/テクスチャ加工された少なくとも1つの粗面107Cである。いくつかの実施形態において、少なくとも1つの粗面107Cは、約500マイクロインチの平均表面粗さ(Ra)を有するように粗面化/テクスチャ加工される。いくつかの実施形態において、上部窓構造107は、底面107A上に少なくとも1つの粗面107Cを形成した後に、チャンバ102内での上部窓構造107の利用中、コーティングのないベアセラミック構成要素の形態のままである。
【0113】
いくつかの実施形態において、上述の表面テクスチャ加工プラズマ処理チャンバ構成要素は、ライナ構造139である。
図3は、いくつかの実施形態に従って、ライナ構造139を示す等角図である。ライナ構造139は、チャンバ102内のプラズマ処理領域109の少なくとも一部の周りに伸びるよう構成される。いくつかの実施形態において、ライナ構造139は、ライナ構造139がチャンバ102の動作中にチャンバ102内に配置された時にプラズマ処理副生成物に暴露するように方向付けられた少なくとも1つの粗面である内面139Aを有する。いくつかの実施形態において、内面139Aおよび外面139Bを含むライナ構造139の全体が、ライナ構造139へのプラズマ処理副生成物の付着を促進するために粗面化/テクスチャ加工される。
【0114】
いくつかの実施形態において、ライナ構造139は、チャンバ102の内壁をカバーおよび保護するためにチャンバ102内に設置されるセラミック構成要素である。上述のセラミック構成要素と同様に、様々な実施形態において、ライナ構造139は、酸化アルミニウム、炭化シリコン、または、チャンバ102の動作中のライナ構造139としての機能に対して、化学的、機械的、熱的、かつ、電気的に適合する基本的に任意の他のセラミック材料、で形成されてよい。いくつかの実施形態において、ライナ構造139は、ライナ構造139上に少なくとも1つの粗面を形成した後に、チャンバ102内でのライナ構造139の利用中、コーティングのないベアセラミック構成要素の形態のままである。いくつかの実施形態において、ライナ構造139は、約150マイクロインチ~約500マイクロインチの範囲内の平均表面粗さ(Ra)を有するように粗面化/テクスチャ加工される。いくつかの実施形態において、ライナ構造139は、約500マイクロインチの平均表面粗さ(Ra)を有するように粗面化/テクスチャ加工される。
【0115】
いくつかの実施形態において、上述の表面テクスチャ加工プラズマ処理チャンバ構成要素は、チャンバ102内に設置するためのリング構造であり、ここで、リング構造は、チャンバ102内の基板支持構造103と外接するよう構成される。様々な実施形態において、リング構造は、例として、フォーカスリング構造135およびエッジリング構造131の一方または両方であってよい。リング構造は、リング構造の内面およびリング構造の上面の一方または両方である少なくとも1つの処理暴露面を有することで特徴付けられる。少なくとも1つの処理暴露面は、リング構造がチャンバ102の動作中にチャンバ102内に配置された時にプラズマ処理副生成物に暴露するように方向付けられた少なくとも1つの粗面である。
【0116】
図4は、いくつかの実施形態に従って、エッジリング構造131を示す等角図である。エッジリング構造131は、エッジリング構造131がチャンバ102の動作中にチャンバ内に配置された時にプラズマ処理副生成物に暴露するように方向付けられた少なくとも1つの粗面である処理暴露面131A(
図4の薄い灰色)を有することが図示されている。いくつかの実施形態では、エッジリング構造131の処理暴露面131Aのみが、粗面化/テクスチャ加工される。ただし、いくつかの実施形態において、処理暴露面131A以外のエッジリング構造131の部分も、製造を容易にするために粗面化/テクスチャ加工されてよい。いくつかの実施形態において、エッジリング構造131は、セラミック構成要素である。上述のセラミック構成要素と同様に、様々な実施形態において、エッジリング構造131は、酸化アルミニウム、炭化シリコン、または、チャンバ102の動作中のエッジリング構造131としての機能に対して、化学的、機械的、熱的、かつ、電気的に適合する基本的に任意の他のセラミック材料、で形成されてよい。いくつかの実施形態において、エッジリング構造131は、エッジリング構造131上に少なくとも1つの粗面を形成した後に、チャンバ102内でのエッジリング構造131の利用中、コーティングのないベアセラミック構成要素の形態のままである。いくつかの実施形態において、エッジリング構造131の処理暴露面131Aは、約150マイクロインチ~約500マイクロインチの範囲内の平均表面粗さ(Ra)を有するように粗面化/テクスチャ加工される。いくつかの実施形態において、エッジリング構造131の処理暴露面131Aは、約500マイクロインチの平均表面粗さ(Ra)を有するように粗面化/テクスチャ加工される。
【0117】
図5は、いくつかの実施形態に従って、フォーカスリング構造135を示す等角図である。いくつかの実施形態において、フォーカスリング構造135のリング部分135Aの内面135A1は、フォーカスリング構造135がチャンバ102の動作中にチャンバ102内に配置された時にプラズマ処理副生成物に暴露するように方向付けられた少なくとも1つの粗面である。いくつかの実施形態では、リング部分135Aの内面135A1に加えて、半径方向延長構造135B1、135B2、135B3の上面も、フォーカスリング構造135がチャンバ102の動作中にチャンバ102内に配置された時にプラズマ処理副生成物に暴露するように方向付けられた少なくとも1つの粗面の一部である。そして、いくつかの実施形態では、フォーカスリング構造135のリング部分135Aの全体(リング部分135Aの内面135A1および外面135A2の両方を含む)と、半径方向延長構造135B1、135B2、135B3の上面とが、フォーカスリング構造135がチャンバ102の動作中にチャンバ102内に配置された時にプラズマ処理副生成物に暴露するように方向付けられた少なくとも1つの粗面である。そして、いくつかの実施形態では、リング構造135Aおよび半径方向延長構造135B1、135B2、135B3を含むフォーカスリング構造135の外面全体が、フォーカスリング構造135がチャンバ102の動作中にチャンバ102内に配置された時にプラズマ処理副生成物に暴露するように方向付けられた少なくとも1つの粗面を構成する。
【0118】
いくつかの実施形態において、フォーカスリング構造135は、セラミック構成要素である。上述のセラミック構成要素と同様に、様々な実施形態において、フォーカスリング構造135は、酸化アルミニウム、炭化シリコン、または、チャンバ102の動作中のフォーカスリング構造135としての機能に対して、化学的、機械的、熱的、かつ、電気的に適合する基本的に任意の他のセラミック材料、で形成されてよい。いくつかの実施形態において、フォーカスリング構造135は、フォーカスリング構造135上に少なくとも1つの粗面を形成した後に、チャンバ102内でのフォーカスリング構造135の利用中、コーティングのないベアセラミック構成要素の形態のままである。いくつかの実施形態において、フォーカスリング構造135の1以上の処理暴露面は、約150マイクロインチ~約500マイクロインチの範囲内の平均表面粗さ(Ra)を有するように粗面化/テクスチャ加工される。いくつかの実施形態において、フォーカスリング構造135の1以上の処理暴露面は、約500マイクロインチの平均表面粗さ(Ra)を有するように粗面化/テクスチャ加工される。
【0119】
いくつかの実施形態において、上述の表面テクスチャ加工プラズマ処理チャンバ構成要素は、非セラミック構成要素(接地リング構造133など)であってもよい。
図6は、いくつかの実施形態に従って、接地リング構造133を示す等角図である。接地リング構造133は、チャンバ102の動作中にプラズマ処理副生成物に暴露されるいくつかの処理暴露面133A、133B、133Cを備える。処理暴露面133A、133B、133Cは、接地リング構造133への副生成物の付着を促進するために、セラミック構成要素について上述したのと同じ方法で粗面化/テクスチャ加工されてよい。いくつかの実施形態において、接地リング構造133は、アルミニウム、ステンレス鋼、または、チャンバ102内で実行されるプラズマ処理動作に対して化学的、機械的、熱的、および、電気的に適合する別の導電材料で形成される。いくつかの実施形態において、上述のメディアブラスト処理が、接地リング構造133の処理暴露面133A、133B、133Cを粗面化/テクスチャ加工するために利用されてよい。ただし、接地リング構造133に用いられるメディアのタイプは、セラミック構成要素に用いられるものとは異なっていてもよい。例えば、接地リング構造133の処理暴露面133A、133B、133Cを粗面化/テクスチャ加工するために、より大きい硬度を有するメディアが、メディアブラスト処理で用いられてよい。いくつかの実施形態において、接地リング構造131の処理暴露面133A、133B、133Cは、約150マイクロインチ~約500マイクロインチの範囲内の平均表面粗さ(Ra)を有するように粗面化/テクスチャ加工される。いくつかの実施形態において、接地リング構造133の処理暴露面133A、133B、133Cは、約500マイクロインチの平均表面粗さ(Ra)を有するように粗面化/テクスチャ加工される。いくつかの実施形態において、接地リング構造133の処理暴露面133A、133B、133Cは、粗面化/テクスチャ加工処理を受けた後に、チャンバ102内での接地リング構造133の利用中、コーティングのないままである。ただし、いくつかの実施形態において、接地リング構造133の処理暴露面133A、133B、133Cは、粗面化/テクスチャ加工処理を受けた後にコーティングされ、その後、コーティングされた接地リング構造133は、チャンバ102内で利用される。また、接地リング構造133の処理暴露面133A、133B、133Cがコーティングされる実施形態において、コーティングの前に実行される処理暴露面133A、133B、133Cの粗面化/テクスチャ加工は、所定の量の平均表面粗さ(Ra)がコーティング後に処理暴露面133A、133B、133C上に残ることを保証するように規定されうる。いくつかの実施形態において、接地リング構造133の粗面化/テクスチャ加工された処理暴露面133A、133B、133Cに施されるコーティングは、イットリアコーティング、陽極酸化コーティング、または、チャンバ102内で実行されるプラズマ処理に対して化学的、機械的、熱的、および、電気的に適合する別のタイプのコーティング、のいずれかである。
【0120】
本明細書に開示された実施形態は、処理暴露面へのプラズマ処理副生成物の付着を促進する表面粗さ/テクスチャを有するよう構成された少なくとも1つの処理暴露面を有する1以上の構成要素を備えたプラズマ処理チャンバ(例えば、チャンバ102)の実施形態を含むことを理解されたい。また、本明細書に開示された実施形態は、不揮発性および/または低揮発性副生成物を生成するプラズマ処理動作の中に、粗面化/テクスチャ加工された処理暴露面を備えた1以上の構成要素を備えるプラズマ処理チャンバの動作を含むことを理解されたい。例えば、
図7は、いくつかの実施形態に従って、基板のプラズマ処理のための方法を示すフローチャートである。方法は、基板支持構造103および上部窓構造107を備えたプラズマ処理チャンバ(すなわち、チャンバ102)を準備するための動作701を備える。基板支持構造103は、プラズマ処理領域109内で生成されるプラズマへ暴露させて基板101を保持するよう構成される。上部窓構造107は、基板支持構造103と上部窓構造107との間にプラズマ処理領域109を確立するように、基板支持構造103の上方に配置される。上部窓構造107は、セラミック材料で形成されており、プラズマ処理領域109の方を向いた底面107Aを有する。様々な実施形態において、上部窓構造107は、酸化アルミニウム、炭化シリコン、または、チャンバ102の動作に対して化学的、機械的、熱的、および、電気的に適合する別のセラミック材料で形成される。上部窓構造107の底面107Aは、底面107Aへのプラズマ処理副生成物の付着を促進する表面粗さ/テクスチャを有する。いくつかの実施形態において、上部窓構造107の底面107Aは、約150マイクロインチ~約500マイクロインチの範囲内の平均表面粗さ(Ra)を有する。いくつかの実施形態において、上部窓構造107の底面107Aは、約500マイクロインチの平均表面粗さ(Ra)を有する。いくつかの実施形態において、上部窓構造107の底面107Aは、約500マイクロインチよりも大きい平均表面粗さ(Ra)を有する。いくつかの実施形態において、上部窓構造107を形成するセラミックベア材は、上部窓構造107の底面107Aで露出されている。
【0121】
方法は、さらに、プラズマ処理領域109においてプラズマを生成するための動作703を備えており、プラズマの成分は、基板101上の材料と相互作用して、プラズマ処理副生成物を生成し、プラズマ処理副生成物の一部は、上部窓構造107の底面107Aに付着する。いくつかの実施形態において、基板101上の材料は、チタン酸ジルコン酸鉛(PZT)膜である。いくつかの実施形態において、基板101上の材料は、プラチナ(Pt)膜である。いくつかの実施形態において、基板101上の材料は、動作703で生成されたプラズマに暴露された時にチャンバ102内で大量の副生成物堆積を引き起こす膜である。
【0122】
いくつかの実施形態において、動作703でプラズマを生成する工程は、プラズマ処理領域109内の処理ガスに高周波電力を印加する工程を含んでよい。いくつかの実施形態において、印加される高周波電力は、約400ワット(W)~約1250Wの範囲内であってよい。ただし、様々な実施形態において、印加される高周波電力は、400Wより小さくても、1250Wより大きくてもよいことを理解されたい。いくつかの実施形態において、高周波電力は、約13.56MHzの周波数を有する高周波信号によって印加される。ただし、様々な実施形態において、高周波電力は、13.56MHzとは異なる周波数を有する高周波信号によって印加されてもよいことを理解されたい。そして、いくつかの実施形態において、方法は、基板支持構造103でバイアス電圧を生成するための動作を備えてもよい。いくつかの実施形態において、バイアス電圧は、約100ボルト(V)~約600Vの範囲内で生成される。ただし、様々な実施形態において、バイアス電圧は、100Vより小さくても、600Vより大きくてもよいことを理解されたい。そして、いくつかの実施形態において、バイアス電圧は、約13.56MHzの周波数を有する高周波信号によって生成されてよい。ただし、様々な実施形態において、バイアス電圧は、13.56MHzとは異なる周波数を有する高周波信号によって生成されてもよいことを理解されたい。また、様々な実施形態において、バイアス電圧は、直流源によって生成されてよい。
【0123】
また、いくつかの実施形態において、方法は、基板支持構造103の温度を、約セ氏40度(℃)~約100℃の範囲内に維持するための動作を備えてよい。ただし、様々な実施形態において、基板支持構造103の温度は、40℃より小さく、または、100℃より大きく維持されてもよいことを理解されたい。また、いくつかの実施形態において、方法は、プラズマ処理領域109内の圧力を、約5ミリTorr~約50ミリTorrの範囲内に維持するための動作を備えてよい。ただし、様々な実施形態において、プラズマ処理領域109内の圧力は、5ミリTorrより小さく、または、50ミリTorrより大きく維持されてもよいことを理解されたい。
【0124】
いくつかの実施形態において、動作703においてプラズマを生成する工程は、プラズマ処理領域109に処理ガスを供給する工程を備え、ここで、処理ガスは、塩素(Cl2)、三塩化ホウ素(BCl3)、アルゴン(Ar)、四フッ化炭素(CF4)、酸素(O2)、トリフルオロメタン(CHF3)、および、六フッ化硫黄(SF6)の内の1以上である。いくつかの実施形態において、動作703においてプラズマを生成する工程は、約20標準立方センチメートル毎分(sccm)~約300sccmの範囲内の流量でプラズマ処理領域109に塩素(Cl2)を供給する工程を含む。いくつかの実施形態において、動作703においてプラズマを生成する工程は、約50sccm~約300sccmの範囲内の流量でプラズマ処理領域109に三塩化ホウ素(BCl3)を供給する工程を含む。いくつかの実施形態において、動作703においてプラズマを生成する工程は、約50sccm~約300sccmの範囲内の流量でプラズマ処理領域109にアルゴン(Ar)を供給する工程を含む。いくつかの実施形態において、動作703においてプラズマを生成する工程は、約50sccm~約200sccmの範囲内の流量でプラズマ処理領域109に四フッ化炭素(CF4)を供給する工程を含む。いくつかの実施形態において、動作703においてプラズマを生成する工程は、約20sccm~約300sccmの範囲内の流量でプラズマ処理領域109に酸素(O2)を供給する工程を含む。いくつかの実施形態において、動作703においてプラズマを生成する工程は、約50sccm~約300sccmの範囲内の流量でプラズマ処理領域109にトリフルオロメタン(CHF3)を供給する工程を含む。いくつかの実施形態において、動作703においてプラズマを生成する工程は、約50sccm~約300sccmの範囲内の流量でプラズマ処理領域109に六フッ化硫黄(SF6)を供給する工程を含む。
【0125】
図7に示す基板のプラズマ処理のための方法は、さらに、チャンバ102内のライナ構造139を利用する工程を備えてもよく、ここで、ライナ構造139は、チャンバ102内のプラズマ処理領域109の少なくとも一部の周りに伸びるよう構成される。この方法において、ライナ構造139は、プラズマ処理副生成物に暴露するように方向付けられた内面139Aを有する。ライナ構造139の内面139Aは、ライナ構造139の内面139Aへのプラズマ処理副生成物の付着を促進する表面粗さを有する。様々な実施形態において、ライナ構造139は、酸化アルミニウム、炭化シリコン、または、チャンバ102の動作に対して化学的、機械的、熱的、および、電気的に適合する別のセラミック材料で形成される。いくつかの実施形態において、ライナ構造139の内面139Aは、約150マイクロインチ~約500マイクロインチの範囲内の平均表面粗さ(Ra)を有する。いくつかの実施形態において、ライナ構造139の内面139Aは、約500マイクロインチの平均表面粗さ(Ra)を有する。いくつかの実施形態において、ライナ構造139の内面139Aは、約500マイクロインチよりも大きい平均表面粗さ(Ra)を有する。いくつかの実施形態において、ライナ構造139を形成するセラミックベア材は、ライナ構造139の内面139Aで露出されている。
【0126】
プラズマ処理副生成物の付着を可能にして促進する加工表面粗さ/テクスチャを有するコーティングのないセラミックライナ構造139の利用により、イットリアコーティングを有する硬質陽極酸化アルミニウムライナ構造など、コーティングされたライナ構造を改修する困難および費用が無くなることを理解されたい。また、プラズマ処理副生成物の付着を可能にして促進する加工表面粗さ/テクスチャを有するコーティングのないセラミックライナ構造139の利用により、イットリアコーティングを有する硬質陽極酸化アルミニウムチャンバライナ構造と併せて用いられる改修および再コーティング処理中に発生するような、改修および再コーティング処理中にライナ構造139内で誘発される応力によって引き起こされうる機械的故障のリスクが高まることを排除することで、ライナ構造139の寿命が延びる。
【0127】
図7に示す基板のプラズマ処理のための方法は、さらに、チャンバ102内のリング構造を利用する工程も備えてもよく、ここで、リング構造は、チャンバ102内の基板支持構造103を囲むように構成される。リング構造は、リング構造の内面および上面の一方または両方である少なくとも1つの処理暴露面を有する。処理暴露面は、プラズマ処理副生成物に暴露するように方向付けられる。また、リング構造の処理暴露面は、リング構造の処理暴露面へのプラズマ処理副生成物の付着を可能にして促進する表面粗さを有する。いくつかの実施形態において、リング構造は、フォーカスリング構造135である。いくつかの実施形態において、リング構造は、エッジリング構造131である。いくつかの実施形態において、リング構造は、接地リング構造133である。いくつかの実施形態において、リング構造は、酸化アルミニウム、炭化シリコン、または、チャンバ102の動作に対して化学的、機械的、熱的、および、電気的に適合する別のセラミック材料で形成される。リング構造がセラミック材料で形成されているいくつかの実施形態において、リング構造を形成するセラミックベア材は、リング構造の粗面化/テクスチャ加工された処理暴露面で露出されている。いくつかの実施形態において、リング構造は、アルミニウム、ステンレス鋼、または、チャンバ102の動作に対して化学的、機械的、熱的、および、電気的に適合する別の金属材料など、導電材料で形成される。リング構造が導電材料で形成されているいくつかの実施形態において、リング構造の粗面化/テクスチャ加工された処理暴露面は、チャンバ102で用いられる時にコーティングされないままであってよい。あるいは、リング構造が導電材料で形成されているいくつかの実施形態において、リング構造の粗面化/テクスチャ加工された処理暴露面は、チャンバ102で用いられる時にコーティングされてもよい。いくつかの実施形態において、導電リング構造に施されるコーティングは、イットリアコーティング、陽極酸化、または、チャンバ102の動作に対して化学的、機械的、熱的、および、電気的に適合する別のタイプのコーティングである。いくつかの実施形態において、リング構造の処理暴露面は、約150マイクロインチ~約500マイクロインチの範囲内の平均表面粗さ(Ra)を有する。いくつかの実施形態において、リング構造の処理暴露面は、約500マイクロインチの平均表面粗さ(Ra)を有する。いくつかの実施形態において、リング構造の処理暴露面は、約500マイクロインチよりも大きい平均表面粗さ(Ra)を有する。
【0128】
構成要素への不揮発性および/または低揮発性副生成物の付着を促進する加工表面粗さ/テクスチャを有する構成要素をチャンバ102内で利用することは、多くの処理の改善を提供することが実証された。例えば、大量の不揮発性および/または低揮発性副生成物が生成されるPZTおよびPtエッチング処理において、加工表面粗さ/テクスチャを有する構成要素をチャンバ102内で利用すると、以下の改善を示した:
・基板101におけるエッチング均一性の改善
・主エッチング工程またはオーバーエッチング工程中のランディング層(Pt)の望ましくない除去を低減するためのより良好なエッチング制御
・基板間およびロット間のより良好なエッチング再現性
・基板支持構造103上への不揮発性および/または低揮発性副生成物の薄片状剥離および/または剥離の最小化によるより良好なエッチング結果。これは、基板101のクランピングの問題を回避するのに役立つ
・フォトレジスト細網化(reticulation)の低減
・フォトレジスト腐食のより良好な一貫性による、より良好なエッチングプロファイル制御
・マイクロマスキングに起因する基板101上のエッチング欠陥の最小化
・不十分なクランプ力による基板101のクランピングの問題の防止
・より良好な基板101背面の熱除去および冷却
・エッチングされる基板101上のホットスポットの防止
・上部窓構造107、ライナ構造139、接地リング構造133、エッジリング構造131上への不揮発性および/または低揮発性エッチング副生成物のより良好な保持。これは、基板支持構造103および/または基板101上への不揮発性および/または低揮発性エッチング副生成物の薄片状剥離および/または剥離を防止するのに役立つ
・上部窓構造107およびライナ構造139上の外部コーティングを排除することによるコストの削減
【0129】
図8は、本発明のいくつかの実施形態に従って、表面テクスチャ加工プラズマ処理チャンバ構成要素製造を製造するための方法を示すフローチャートである。方法は、プラズマ処理チャンバ内(例えば、チャンバ102内)に設置するセラミック構成要素を形成するための動作801を備え、ここで、セラミック構成要素は、少なくとも1つの処理暴露面を有する。いくつかの実施形態において、セラミック構成要素は、酸化アルミニウム、炭化シリコン、または、チャンバ102の動作に対して化学的、機械的、熱的、および、電気的に適合する別のセラミック材料で形成される。様々な実施形態において、セラミック構成要素は、上部窓構造107、ライナ構造139、フォーカスリング構造135、または、エッジリング構造131のいずれかである。
【0130】
方法は、さらに、少なくとも1つの処理暴露面へのプラズマ処理副生成物の付着を促進する表面粗さを有するように、少なくとも1つの処理暴露面を粗面化するための動作803を備える。いくつかの実施形態において、動作803は、約150マイクロインチ~約500マイクロインチの範囲内の平均表面粗さ(Ra)をセラミック構成要素の少なくとも1つの処理暴露面に付与するように実行される。いくつかの実施形態において、動作803は、500マイクロインチ(12.7マイクロメートル)より大きい平均表面粗さ(Ra)をセラミック構成要素の少なくとも1つの処理暴露面に付与するように実行される。いくつかの実施形態において、少なくとも1つの処理暴露面を粗面化するための動作803は、メディアブラスト処理によってなされる。いくつかの実施形態において、メディアブラスト処理は、酸化アルミニウム、炭化シリコン、破砕ガラスグリット、ガラスビーズ、セラミック、ガラス、クルミ殻、軽石、スチールグリット、スチールショット、アルミニウムショット、亜鉛ショット、銅ショット、カットワイヤ、ガーネット、ケイ砂、および、十字石、の内の1以上を含むメディアで、少なくとも1つの処理暴露面に影響を与える。いくつかの実施形態において、セラミック構成要素を形成するための動作801は、セラミック構成要素の焼成の前にセラミック構成要素に対してナーリング処理を実行する工程を含み、ここでナーリング処理は、セラミック構成要素の少なくとも1つの処理暴露面にテクスチャを付与するように規定される。いくつかの実施形態において、セラミック構成要素を形成するセラミックベア材料が、動作803における少なくとも1つの処理暴露面の粗面化の後に、少なくとも1つの処理暴露面で露出される。
【0131】
図9は、本発明のいくつかの実施形態に従って、コーティングされたプラズマ処理チャンバ構成要素を表面テクスチャ加工プラズマ処理チャンバ構成要素に変換する方法を示すフローチャートである。方法は、セラミック構成要素からコーティングを剥離させて、セラミック構成要素を形成するセラミックベア材にするための動作901を含む。セラミック構成要素は、プラズマ処理チャンバ内(例えば、チャンバ102)内に設置するように構成されている。また、セラミック構成要素は、少なくとも1つの処理暴露面を有する。いくつかの実施形態において、セラミック構成要素は、酸化アルミニウム、炭化シリコン、または、チャンバ102の動作に対して化学的、機械的、熱的、および、電気的に適合する別のセラミック材料で形成される。様々な実施形態において、セラミック構成要素は、上部窓構造107、ライナ構造139、フォーカスリング構造135、または、エッジリング構造131のいずれかである。
【0132】
方法は、さらに、少なくとも1つの処理暴露面へのプラズマ処理副生成物の付着を促進する表面粗さを有するように、セラミック構成要素の少なくとも1つの処理暴露面を粗面化するための動作903を備える。いくつかの実施形態において、動作903は、約150マイクロインチ~約500マイクロインチの範囲内の平均表面粗さ(Ra)をセラミック構成要素の少なくとも1つの処理暴露面に付与するように実行される。いくつかの実施形態において、動作903は、500マイクロインチより大きい平均表面粗さ(Ra)をセラミック構成要素の少なくとも1つの処理暴露面に付与するように実行される。
【0133】
いくつかの実施形態において、少なくとも1つの処理暴露面を粗面化するための動作903は、メディアブラスト処理によってなされる。いくつかの実施形態において、メディアブラスト処理は、酸化アルミニウム、炭化シリコン、破砕ガラスグリット、ガラスビーズ、セラミック、ガラス、クルミ殻、軽石、スチールグリット、スチールショット、アルミニウムショット、亜鉛ショット、銅ショット、カットワイヤ、ガーネット、ケイ砂、および、十字石、の内の1以上を含むメディアで、少なくとも1つの処理暴露面に影響を与える。いくつかの実施形態において、セラミック構成要素を形成するセラミックベア材料が、動作903における少なくとも1つの処理暴露面の粗面化の後に、少なくとも1つの処理暴露面で露出される。また、いくつかの実施形態において、セラミック構成要素からコーティングを剥離させるための動作901は、メディアブラスト処理を用いてなされる。そして、いくつかの実施形態では、動作901および903の両方が、同じメディアブラスト処理を用いて同時に実行される。
【0134】
本明細書に開示する表面粗面化/テクスチャ加工実施形態の前に、フォーカスリング構造135は、従来、リング部分135Aの内面および外面の両方の上、ならびに、半径方向延長構造135B1、135B2、135B3の上に、比較的滑らかなフィーチャのない表面を有するように形成されていた。不揮発性および/または低揮発性のプラズマ処理副生成物は、滑らかでフィーチャのない表面には付着しにくい。例えば、基板101上のPZT膜またはPt膜のプラズマベースのエッチングでは、大量の不揮発性および/または低揮発性副生成物が生成され、滑らかでフィーチャのない表面を有するように従来的に形成されたフォーカスリング構造135へはあまり付着しえない。プラズマ処理副生成物が、フォーカスリング構造135上に蓄積するにつれ、それらは、薄片状剥離および/または剥離して、基板101および基板支持構造103の両方へフォーカスリング構造135が近接していることから、基板101および/または基板支持構造103上に着地する場合がある。基板101上にプラズマ処理副生成物が着地すると、基板101へ損傷を与えるか、または、基板101上に形成される構造の欠陥の形成を引き起こしうる。また、基板支持構造103上にプラズマ処理副生成物が着地すると、特に、基板101が基板支持構造103上に存在しない場合に、基板支持構造103上への基板101の適切なクランピングを妨げる場合があり、そして、基板101の背面において(すなわち、基板101と基板支持構造103との間の領域から)不利に高いヘリウム流を引き起こす場合があり、いずれも、基板101上の欠陥の形成につながりうる。
【0135】
上述のように、様々な実施形態において、フォーカスリング構造135の表面の粗面化/テクスチャ加工は、フォーカスリング構造135からのプラズマ処理副生成物の薄片状剥離および/または剥離が発生する前に、より多くのプラズマ処理副生成物の蓄積をフォーカスリング構造135上に受け入れるために、フォーカスリング構造135へのプラズマ処理副生成物の付着を促進して実質的に改善することができる。したがって、フォーカスリング構造135の表面の粗面化/テクスチャ加工は、フォーカスリング構造135からのプラズマ処理副生成物の薄片状剥離および/または剥離の開始を遅らせるよう機能する。しかしながら、フォーカスリング構造135の粗さ/テクスチャをさらに高め続けると、フォーカスリング構造135からのプラズマ処理副生成物の薄片状剥離および/または剥離が起きるまでの平均時間を延ばすことへの効果が減少しうる。
【0136】
フォーカスリング構造135は、基板101および基板支持構造103に近接してそれらの上方に配置されるので、フォーカスリング構造135からのプラズマ処理副生成物の薄片状剥離および/または剥離を防ぐことは、特に関心のある課題である。これに関して、
図10Aは、本発明のいくつかの実施形態に従って、フォーカスリング構造135-1へのプラズマ処理副生成物の付着を促進するために、フォーカスリング構造135-1のリング部分135-1Aの内面135-1A1上に制御された表面トポグラフィ変動を有するフォーカスリング構造135-1を示す等角図である。
図1D、
図1E、および、
図5に関して記載したフォーカスリング構造135のように、フォーカスリング構造135-1は、リング部分135-1Aと、3つの半径方向延長構造135B1、135B2、135B3と、を備える。リング部分135-1Aは、チャンバ102内の基板支持構造103を囲むために、中空直円筒として構成される。半径方向延長構造135B1、135B2、135B3は、リング部分135-1Aの外面135-1A2から半径方向外向きに伸びるよう構成されている。半径方向延長構造135B1、135B2、135B3は、基板支持構造103に対するフォーカスリング構造135-1の上げ下げを可能にするために、3つのそれぞれのリフト構成要素137A、137B、137Cと係合するよう構成されている。フォーカスリング構造135-1は、セラミック材料で形成される。様々な実施形態において、フォーカスリング構造135は、酸化アルミニウム、炭化シリコン、または、チャンバ102の動作中のフォーカスリング構造135としての機能に対して、化学的、機械的、熱的、かつ、電気的に適合する基本的に任意の他のセラミック材料、で形成されてよい。
【0137】
リング部分135-1Aの内面135-1A1は、チャンバ102の動作中にフォーカスリング構造135-1がチャンバ102内に配置された時にプラズマ処理領域109内でプラズマ処理副生成物に暴露されるように方向付けられる。フォーカスリング構造135-1のリング部分135-1Aの内面135-1A1は、内面135-1A1へのプラズマ処理副生成物の付着を促進する制御された表面トポグラフィ変動を有するように形成される。いくつかの実施形態において、フォーカスリング構造135-1のリング部分135-1Aの内面135-1A1上に形成された制御された表面トポグラフィ変動は、リング部分135-1Aによって囲まれた領域に向かって内向きに伸びる(すなわち、プラズマ処理領域109に向かって内向きに伸びる)凸構造1001の格子を備える。
図10Aにおいて、凸構造1001は、格子パターンに配置された明色の構造として図示されている。典型的な凸構造1001が、
図10Aで符号1001によって示されている。
図10Bは、いくつかの実施形態に従って、
図10Aのフォーカスリング構造135-1を示す透視図である。
図10Bは、凸構造1001の格子パターンがフォーカスリング構造135-1のリング部分135-1Aの内面135-1A1の全周に伸びる様子を示す。
図10Cは、いくつかの実施形態に従って、
図10Aのフォーカスリング構造135-1を示す上面図である。
図10Dは、いくつかの実施形態に従って、
図10Cの符号1003の部分を示す詳細図である。
図10Dに示すように、いくつかの実施形態において、凸構造1001は、ドーム形状を有するように形成される。ただし、様々な実施形態において、凸構造1001は、フォーカスリング構造135-1のリング部135-1Aの内面135-1A1上へのプラズマ処理副生成物の付着および保持の促進および強化につながる基本的に任意の幾何学的形状を有するように形成されてよいことを理解されたい。
【0138】
図10Eは、いくつかの実施形態に従って、2つの隣接する凸構造1001を示す断面図である。いくつかの実施形態において、各凸構造1001は、約0.5ミリメートル(mm)~約2mmの範囲内、または、約1mm~約2mmの範囲内、または、約1mm、の距離(d1)だけ、フォーカスリング構造135-1のリング部分135-1Aによって囲まれた領域に向かって内向きに伸びる。いくつかの実施形態において、隣接する凸構造1001の間の距離(d2)は、約0.5mm~約2mmの範囲内である。いくつかの実施形態において、隣接する凸構造1001の間の距離(d2)は、約1mmである。いくつかの実施形態において、各凸構造1001は、約1mm~約3mmの範囲内、または、約2mm~約3mmの範囲内、または、約2.5mm、の底幅(d3)を有し、ここで、底幅(d3)は、フォーカスリング構造135-1のリング部分135-1Aの内面135-1A1で凸構造1001にわたって径方向に測定される。いくつかの実施形態において、凸構造1001のサイズおよび間隔の公差は、指定の寸法の約10%である。
【0139】
図10Fは、いくつかの実施形態に従って、フォーカスリング構造135-1を示すその中心を通る垂直断面図である。
図10Fの例において、凸構造1001は、5つの列を含む矩形格子に配列されている。別の実施形態において、凸構造1001は、5より少ない列または5より多い列のいずれかを含む矩形格子に配列されてもよい。
図10Gは、いくつかの実施形態に従って、フォーカスリング構造135-1のリング部分135-1Aの内面135-1A1上に矩形格子の凸構造1001を形成するための図である。矩形格子は、フォーカスリング構造135-1のリング部分135-1Aの内面135-1A1の周囲の水平方向(x)と、垂直方向(y)との両方において、矩形1005で示すように、反復する矩形パターンに配置された凸構造1001を有することで特徴付けられる。矩形格子において、凸構造1001は、距離1007だけ水平方向(x)に離間され、距離1009だけ垂直方向(y)に離間されており、ここで、距離1007は、距離1009よりも長い。いくつかの実施形態において、距離1007および1009は、約0.5mm~約2mmの範囲内である。いくつかの実施形態において、距離1009は、約1mmである。
図10Gの例において、凸構造1001の矩形格子は、5つの列(R1~R5)を有する。ただし、様々な実施形態において、凸構造1001の矩形格子は、2以上の列を有しうることを理解されたい。
【0140】
図10Gに示したような矩形格子に加えて、いくつかの実施形態において、凸構造1001は、正方形格子、六角形格子、平行四辺形格子、または、菱形格子のいずれかでフォーカスリング構造135-1のリング部分135-1Aの内面135-1A1上に配列されてもよい。
図10Hは、いくつかの実施形態に従って、フォーカスリング構造135-1のリング部分135-1Aの内面135-1A1上に正方形格子の凸構造1001を形成するための図である。正方形格子は、フォーカスリング構造135-1のリング部分135-1Aの内面135-1A1の周囲の水平方向(x)と、垂直方向(y)との両方において、正方形1011で示すように、反復する正方形パターンに配置された凸構造1001を有することで特徴付けられる。正方形格子において、凸構造1001は、距離1013だけ水平方向(x)に離間され、距離1015だけ垂直方向(y)に離間されており、ここで、距離1013は、距離1015と実質的に等しい。いくつかの実施形態において、距離1013および1015は、約0.5mm~約2mmの範囲内である。いくつかの実施形態において、距離1013および1015は、約1mmである。
図10Hの例において、凸構造1001の正方形格子は、5つの列(R1~R5)を有する。ただし、様々な実施形態において、凸構造1001の正方形格子は、2以上の列を有しうることを理解されたい。
【0141】
図10Iは、いくつかの実施形態に従って、フォーカスリング構造135-1のリング部分135-1Aの内面135-1A1上に六角形格子の凸構造1001を形成するための図である。六角形格子は、正三角形1017で示すように、パターン内の隣接する正三角形が垂直方向(y)で反転された状態で、フォーカスリング構造135-1のリング部分135-1Aの内面135-1A1の周囲の水平方向(x)と、垂直方向(y)との両方において、反復する正三角形パターンに配置された凸構造1001を有することで特徴付けられる。六角形格子において、隣接する凸構造1001は、距離1019だけ互いに離間されている。いくつかの実施形態において、距離1019は、約0.5mm~約2mmの範囲内である。いくつかの実施形態において、距離1019は、約1mmである。
図10Iの例において、凸構造1001の六角形格子は、5つの列(R1~R5)を有する。ただし、様々な実施形態において、凸構造1001の六角形格子は、2以上の列を有しうることを理解されたい。
【0142】
図10Jは、いくつかの実施形態に従って、フォーカスリング構造135-1のリング部分135-1Aの内面135-1A1上に平行四辺形格子の凸構造1001を形成するための図である。平行四辺形格子は、平行四辺形1021で示すように、パターン内の隣接する平行四辺形が一致する頂点を有する状態で、フォーカスリング構造135-1のリング部分135-1Aの内面135-1A1の周囲の水平方向(x)と、垂直方向(y)との両方において、反復する平行四辺形パターンに配置された凸構造1001を有することで特徴付けられる。平行四辺形格子を規定する平行四辺形1021は、実質的に水平方向(x)に伸びるように方向付けられた等しい長さ1023の2つの水平な平行辺と、2つの水平な平行辺の間に角度1027で伸びるように方向付けられた等しい長さ1025の2つの傾斜した平行辺と、を有する。平行四辺形格子において、隣接する凸構造1001は、3つの距離1029、1031、1033だけ互いに離間されている。いくつかの実施形態において、距離1029、1031、1033は、約0.5mm~約2mmの範囲内である。いくつかの実施形態において、距離1029、1031、1033の内の最小距離は、約1mmである。
図10Jの例において、凸構造1001の平行四辺形格子は、5つの列(R1~R5)を有する。ただし、様々な実施形態において、凸構造1001の平行四辺形格子は、2以上の列を有しうることを理解されたい。
【0143】
図10Kは、いくつかの実施形態に従って、フォーカスリング構造135-1のリング部分135-1Aの内面135-1A1上に菱形格子の凸構造1001を形成するための図である。菱形格子は、菱形1035で示すように、パターン内の隣接する菱形が一致する頂点を有する状態で、フォーカスリング構造135-1のリング部分135-1Aの内面135-1A1の周囲の水平方向(x)と、垂直方向(y)との両方において、反復する菱形パターンに配置された凸構造1001を有することで特徴付けられる。菱形格子を規定する菱形1035は、向かい合う等しい鋭角1037および向かい合う等しい鈍角1039と、等しい長さ1041の四辺と、を有する平行四辺形である。菱形格子において、隣接する凸構造1001は、2つの距離1043および1045だけ互いに離間されている。いくつかの実施形態において、距離1043および1045は、約0.5mm~約2mmの範囲内である。いくつかの実施形態において、距離1043および1045の内の最小距離は、約1mmである。
図10Kの例において、凸構造1001の菱形格子は、9つの列(R1~R9)を有する。いくつかの実施形態において、菱形1035は、列(例えば、R1~R9)の内の垂直に隣接する列における凸構造1001が垂直方向(y)で互いに重ならないように構成される。しかしながら、いくつかの実施形態において、菱形1035は、列(例えば、R1~R9)の内の垂直に隣接する列における凸構造1001が垂直方向(y)で互いに或る程度重なるように構成される。様々な実施形態において、凸構造1001の菱形格子は、3以上の列を有しうることを理解されたい。
【0144】
いくつかの実施形態において、フォーカスリング構造135-1のリング部分135-1Aの内面135-1A1上の制御された表面トポグラフィ変動は、メディアブラスト処理によって形成される。いくつかの実施形態において、保護マスクが、凸構造1001の形成される位置を覆うように、フォーカスリング構造135-1のリング部分135-1Aの内面135-1A1に施される。次いで、フォーカスリング構造135-1のリング部分135-1Aの内面135-1A1は、フォーカスリング構造135-1を形成するセラミック材料の層を内面135-1A1から除去する(すなわち、侵食する)ことによって、内面135-1A1上に凸構造1001を形成するために、メディアブラスト処理を受ける。次いで、保護マスクが除去される。いくつかの実施形態において、凸構造1001を形成するために用いられるメディアブラスト処理は、内面135-1A1へのプラズマ処理副生成物の付着を促進するために、凸構造1001の間および周囲の内面135-1A1の部分を同時に粗面化/テクスチャ加工する。様々な実施形態において、凸構造1001を形成するためにメディアブラスト処理で用いられるメディアは、特に、酸化アルミニウム、炭化シリコン、破砕ガラスグリット、ガラスビーズ、セラミック、ガラス、クルミ殻、軽石、スチールグリット、スチールショット、アルミニウムショット、亜鉛ショット、銅ショット、カットワイヤ、ガーネット、ケイ砂、および、十字石、の内の1以上を含みうる。また、いくつかの実施形態において、内面135-1A1以外のフォーカスリング構造135-1の表面が、所定の平均表面粗さ(Ra)を付与されるように、メディアブラスト処理を受けてもよい。例えば、いくつかの実施形態において、リング部分135-1Aの全体と、半径方向延長構造135B1、135B2、135B3の上面とが、約150マイクロインチ~約500マイクロインチの範囲内の所定の平均表面粗さ(Ra)を付与されるように、メディアブラスト処理を受けてよい。
【0145】
いくつかの実施形態において、凸構造1001は、フォーカスリング構造135-1のセラミック材料が、セラミックの焼成前の軟らかいグリーン状態である時に、フォーカスリング構造135-1のリング部分135-1Aの内面135-1A1に対してナーリング処理を実行することによって形成されてもよい。ナーリング処理は、軟らかい可鍛状態の材料内に或る深さのパターンが形成される加工処理である。フォーカスリング構造135-1のセラミック材料のナーリングおよび焼成の後、凸構造1001が、リング部分135-1Aの内面135-1A1上に生じる。次いで、フォーカスリング構造135-1は、フォーカスリング構造135-1のリング部分135-1Aおよび半径方向延長構造135B1、135B2、135B3に所定の平均表面粗さ(Ra)を付与するために、上述のメディアブラスト処理を施されてよい。フォーカスリング構造135-1のセラミックベア材に付与された凸構造1001および平均表面粗さ(Ra)は、コーティングされていない裸の形態でのチャンバ102内のフォーカスリング構造135-1の利用を可能にし、フォーカスリング構造135-1のコーティングおよび再コーティングに関連するコストおよびリスクを無くす。
【0146】
リング部分135-1Aの内面135-1A1上の凸構造1001の形成は、プラズマ処理副生成物が付着しうる表面積をフォーカスリング構造135-1に大幅に追加することを理解されたい。例えば、いくつかの実施形態において、凸構造1001の配列は、リング部分135-1Aの内面135-1A1の表面積を400%以上増大させるように規定されてよく、これは、大量のプラズマ処理副生成物が堆積および付着しうる意図的かつ非常に対照的な表面トポグラフィを提供する。また、フォーカスリング構造135-1にメディアブラスト処理によって付与された平均表面粗さ(Ra)は、フォーカスリング構造135-1への不揮発性および/または低揮発性プラズマ処理副生成物のより良好な付着のために頑健で高度にテクスチャ加工された表面を提供する。フォーカスリング構造135-1に対するプラズマ処理副生成物の付着および保持の強化は、チャンバ102の平均洗浄間隔(MTBC)の延長を提供し、それにより、基板101の製造スループットが改善される。また、コーティングのないベアセラミック構成要素としてチャンバ102内でフォーカスリング構造135-1を利用できることで、フォーカスリング構造135-1の改修中にフォーカスリング構造135-1からコーティング材料を除去する必要性を排除することによって、フォーカスリング構造135-1のサービス寿命が伸びる。
【0147】
図11は、いくつかの実施形態に従って、基板のプラズマ処理のための方法を示すフローチャートである。方法は、基板支持構造103およびフォーカスリング構造135-1を備えたプラズマ処理チャンバ(すなわち、チャンバ102)を準備するための動作1101を備える。フォーカスリング構造135-1は、セラミック材料で形成されたリング部分135-1Aを備える。様々な実施形態において、フォーカスリング構造135-1は、酸化アルミニウム、炭化シリコン、または、チャンバ102の動作に対して化学的、機械的、熱的、および、電気的に適合する別のセラミック材料で形成される。リング部分135-1Aは、チャンバ102内の基板支持構造103を囲むように構成される。リング部分135-1Aは、チャンバ102の動作中にプラズマ処理副生成物が生成されるプラズマ処理領域109に暴露されるように方向付けられた内面135-1A1を有する。内面135-1A1は、内面135-1A1へのプラズマ処理副生成物の付着を促進する制御された表面トポグラフィ変動を有するように形成される。いくつかの実施形態において、フォーカスリング構造135-1は、約150マイクロインチ~約500マイクロインチの範囲内の平均表面粗さ(Ra)を有する。いくつかの実施形態において、フォーカスリング構造135-1は、約500マイクロインチの平均表面粗さ(Ra)を有する。いくつかの実施形態において、フォーカスリング構造135-1を形成するセラミックベア材は、フォーカスリング構造135-1の外面で、そして、特にフォーカスリング構造135-1のリング部分135-1Aの内面135-1A1で、露出される。
【0148】
方法は、さらに、プラズマ処理領域109においてプラズマを生成するための動作1103を備えており、プラズマの成分は、基板101上の材料と相互作用して、プラズマ処理副生成物を生成し、プラズマ処理副生成物の一部は、フォーカスリング構造135-1に付着する。いくつかの実施形態において、基板101上の材料は、チタン酸ジルコン酸鉛(PZT)膜である。いくつかの実施形態において、基板101上の材料は、プラチナ(Pt)膜である。いくつかの実施形態において、基板101上の材料は、動作1103で生成されたプラズマに暴露された時にチャンバ102内で大量の副生成物堆積を引き起こす膜である。
【0149】
いくつかの実施形態において、動作1103でプラズマを生成する工程は、プラズマ処理領域109内の処理ガスに高周波電力を印加する工程を含んでよい。いくつかの実施形態において、印加される高周波電力は、約400W~約1250Wの範囲内であってよい。ただし、様々な実施形態において、印加される高周波電力は、400Wより小さくても、1250Wより大きくてもよいことを理解されたい。いくつかの実施形態において、高周波電力は、約13.56MHzの周波数を有する高周波信号によって印加される。ただし、様々な実施形態において、高周波電力は、13.56MHzとは異なる周波数を有する高周波信号によって印加されてもよいことを理解されたい。そして、いくつかの実施形態において、方法は、基板支持構造103でバイアス電圧を生成するための動作を備えてもよい。いくつかの実施形態において、バイアス電圧は、約100V~約600Vの範囲内で生成される。ただし、様々な実施形態において、バイアス電圧は、100Vより小さくても、600Vより大きくてもよいことを理解されたい。そして、いくつかの実施形態において、バイアス電圧は、約13.56MHzの周波数を有する高周波信号によって生成されてよい。ただし、様々な実施形態において、バイアス電圧は、13.56MHzとは異なる周波数を有する高周波信号によって生成されてもよいことを理解されたい。また、様々な実施形態において、バイアス電圧は、直流源によって生成されてよい。
【0150】
また、いくつかの実施形態において、方法は、基板支持構造103の温度を、約40℃~約100℃の範囲内に維持するための動作を備えてよい。ただし、様々な実施形態において、基板支持構造103の温度は、40℃より小さく、または、100℃より大きく維持されてもよいことを理解されたい。また、いくつかの実施形態において、方法は、プラズマ処理領域109内の圧力を、約5ミリTorr~約50ミリTorrの範囲内に維持するための動作を備えてよい。ただし、様々な実施形態において、プラズマ処理領域109内の圧力は、5ミリTorrより小さく、または、50ミリTorrより大きく維持されてもよいことを理解されたい。
【0151】
いくつかの実施形態において、動作1103においてプラズマを生成する工程は、プラズマ処理領域109に処理ガスを供給する工程を備え、ここで、処理ガスは、塩素(Cl2)、三塩化ホウ素(BCl3)、アルゴン(Ar)、四フッ化炭素(CF4)、酸素(O2)、トリフルオロメタン(CHF3)、および、六フッ化硫黄(SF6)の内の1以上である。いくつかの実施形態において、動作1103においてプラズマを生成する工程は、約20sccm~約300sccmの範囲内の流量でプラズマ処理領域109に塩素(Cl2)を供給する工程を含む。いくつかの実施形態において、動作1103においてプラズマを生成する工程は、約50sccm~約300sccmの範囲内の流量でプラズマ処理領域109に三塩化ホウ素(BCl3)を供給する工程を含む。いくつかの実施形態において、動作1103においてプラズマを生成する工程は、約50sccm~約300sccmの範囲内の流量でプラズマ処理領域109にアルゴン(Ar)を供給する工程を含む。いくつかの実施形態において、動作1103においてプラズマを生成する工程は、約50sccm~約200sccmの範囲内の流量でプラズマ処理領域109に四フッ化炭素(CF4)を供給する工程を含む。いくつかの実施形態において、動作1103においてプラズマを生成する工程は、約20sccm~約300sccmの範囲内の流量でプラズマ処理領域109に酸素(O2)を供給する工程を含む。いくつかの実施形態において、動作1103においてプラズマを生成する工程は、約50sccm~約300sccmの範囲内の流量でプラズマ処理領域109にトリフルオロメタン(CHF3)を供給する工程を含む。いくつかの実施形態において、動作1103においてプラズマを生成する工程は、約50sccm~約300sccmの範囲内の流量でプラズマ処理領域109に六フッ化硫黄(SF6)を供給する工程を含む。
【0152】
図12は、いくつかの実施形態に従って、プラズマ処理チャンバで利用するフォーカスリング構造を製造するための方法を示すフローチャートである。方法は、フォーカスリング構造135-1のリング部分135-1Aなど、セラミック材料のリング構造を形成するための動作1201を備え、ここで、リング構造は、プラズマ処理チャンバ(例えば、チャンバ102)内で基板支持構造(例えば、基板支持構造103)を囲むように構成される。リング構造は、プラズマ処理チャンバの動作中にリング構造がプラズマ処理チャンバ内に配置された時にプラズマ処理副生成物が生成されるプラズマ処理領域に暴露されるように方向付けられた内面(例えば、内面135-1A1)を有する。いくつかの実施形態において、リング構造は、酸化アルミニウム、炭化シリコン、または、プラズマ処理チャンバの動作に対して化学的、機械的、熱的、および、電気的に適合する別のセラミック材料で形成される。いくつかの実施形態において、動作1201においてリング構造を形成する工程は、リング構造の外面から半径方向外向きに伸びるように3つの構造(例えば、半径方向延長構造135B1、135B2、135B3)を形成する工程を含み、ここで、3つの構造は、リング構造がプラズマ処理チャンバ内に配置された時に基板支持構造に対してリング構造を上げ下げすることを可能にするために、3つのそれぞれのリフト構成要素と係合するよう構成される。いくつかの実施形態において、リング構造の外面から半径方向外向きに伸びる3つの構造の上面は、約150マイクロインチ~約500マイクロインチの範囲内の平均表面粗さ(Ra)を有するように粗面化される。
【0153】
方法は、さらに、リング構造の内面上に、制御された表面トポグラフィ変動を形成するための動作1203を備える。制御された表面トポグラフィ変動は、リング構造の内面へのプラズマ処理副生成物の付着を促進する。いくつかの実施形態において、動作1203は、リング構造の内面上に配置されたマスクを通してメディアブラスト処理を実行する工程を含む。マスクは、リング構造の内面上に制御された表面トポグラフィ変動を形成するために、除去/侵食を施すリング構造の内面の部分を露出させるよう構成される。いくつかの実施形態において、メディアブラスト処理は、特に、酸化アルミニウム、炭化シリコン、破砕ガラスグリット、ガラスビーズ、セラミック、ガラス、クルミ殻、軽石、スチールグリット、スチールショット、アルミニウムショット、亜鉛ショット、銅ショット、カットワイヤ、ガーネット、ケイ砂、および、十字石、の内の1以上を含むメディアで、リング構造の内面に影響を与える。いくつかの実施形態において、動作1203は、リング構造を形成するセラミック材料の焼成の前に、リング構造の内面に対してナーリング処理を実行する工程を含む。いくつかの実施形態において、方法は、約150マイクロインチ~約500マイクロインチの範囲内の平均表面粗さ(Ra)を有するようにリング構造の内面を粗面化する工程を含んでよい。いくつかの実施形態において、リング構造の内面の粗面化は、メディアブラスト処理によってなされ、この処理は、リング構造の内面上に制御された表面トポグラフィ変動を形成するために動作1203で用いるのと同じメディアブラスト処理であってもよいし、そうでなくてもよい。いくつかの実施形態において、リング構造を形成するセラミックベア材が、リング構造の内面で露出されたままである。
【0154】
上述のように、チャンバ102の壁105は、チャンバ102への基板101の出し入れのために開口部106Aを備える。いくつかの実施形態において、開口部106Aは、開口部106Aを通してチャンバ102内へのロボット基板ハンドリング装置の通路を提供すると共にチャンバ102の動作中に開口部106Aのシーリングを提供するアクセス制御装置(スリットバルブまたはゲートバルブまたは同様の装置など)によって覆われる。
図13Aは、いくつかの実施形態に従って、開口部106Aを覆うように配置されたアクセス制御装置1301を備えた
図1Aのシステム100を示す図である。
図13Bは、いくつかの実施形態に従って、アクセス制御装置1301によって基板ハンドリングモジュール1303と結合されたチャンバ102を示す図である。基板ハンドリングモジュール1303は、チャンバ102に基板101を出し入れするよう構成されたロボット基板ハンドリング装置1305を備えてよい。
【0155】
チャンバ102内での基板101のプラズマ処理中、プラズマ処理副生成物が、処理ガス流パターンおよび/または既存の圧力勾配に従って、チャンバ102内で自由に動き回る。不揮発性および/または低揮発性副生成物を生成するプラズマ処理動作(特に、PZTエッチング処理またはPtエッチング処理など)中、プラズマ処理副生成物が、開口部106Aに入り、アクセス制御装置1301へ至る可能性がある。これらのプラズマ処理副生成物は、開口部106A内のチャンバ壁105上、および、アクセス制御装置1301の内面上に堆積しうる。次いで、アクセス制御装置1301の後続の動作中、堆積したプラズマ処理副生成物の一部が、アクセス制御装置1301内へ、そして、おそらく基板ハンドリングモジュール1303内にまで、移動する可能性がある。アクセス制御装置1301の中に入るおよび/またはそこを通るプラズマ処理副生成物の移動は、汚染物質を拡散するため、望ましくないことを理解されたい。また、開口部106A内に堆積し、アクセス制御装置1301内に移動したプラズマ処理副生成物の洗浄/除去は、プラズマ処理副生成物の洗浄/除去を実行するために、しばしば、チャンバ102および/またはアクセス制御装置1301を分解する必要があることから、困難であり、時間が掛かり、費用が掛かる。また、基板ハンドリングモジュール1303に対してチャンバ102の開口部106Aが近いことで、任意の堆積した副生成物材料がロボット基板ハンドリング装置1305上へ薄片状剥離して移動され、製造設備の別の部分へ運ばれた場合に、交差汚染の可能性が高くなる。
【0156】
図14は、いくつかの実施形態に従って、チャンバ102内で利用する基板アクセスポートシールド1401を示す図である。基板アクセスポートシールド1401は、チャンバ102内の開口部106Aの一部の上に配置されるよう構成されたシールド部分1403を備える。基板アクセスポートシールド1401は、さらに、シールド部分1403の第1端から伸びる第1支持部分1405を備える。基板アクセスポートシールド1401は、さらに、シールド部分1403の第2端から伸びる第2支持部分1407を備える。シールド部分1403および第1支持部分1405および第2支持部分1407は、円弧に沿って伸びる一体シールド構造を形成する。いくつかの実施形態において、基板アクセスポートシールド1401の円弧は、ライナ構造139の円弧と共形である。
【0157】
第1支持部分1405は、チャンバ102内の垂直移動可能構成要素と係合するよう構成され、第2支持部分1407は、チャンバ102内の垂直移動可能構成要素と係合するよう構成されており、垂直移動可能構成要素の垂直移動が、基板アクセスポートシールド1401の対応する垂直移動を引き起こす。
図14に示すものなど、いくつかの実施形態において、チャンバ102内の垂直移動可能構成要素は、フォーカスリング構造135/135-1である。いくつかの実施形態において、基板アクセスポートシールド1401は、フォーカスリング構造135/135-1の半径方向延長構造135B1、135B2、135B3に対応する複数の切り欠き領域1409A、1409B、1409Cを備える。
図15は、いくつかの実施形態に従って、切り欠き領域1409A、1409B、1409Cを示す基板アクセスポートシールド1401の等角図である。切り欠き領域1409A、1409B、1409Cは、基板アクセスポートシールド1401が、フォーカスリング構造135/135-1の半径方向延長構造135B1、135B2、135B3上に垂直に配置されることを可能にするように形成されており、半径方向延長構造135B1、135B2、135B3は、それぞれ、切り欠き領域1409A、1409B、1409Cに挿入される。いくつかの実施形態において、切り欠き領域1409A、1409B、1409Cは、さらに、重力だけで(すなわち、その他の固定装置なしで)基板アクセスポートシールド1401がフォーカスリング構造135/135-1上にしっかりと保持されることを可能にするように形成される。ただし、別の実施形態において、1以上の固定装置を用いて、フォーカスリング構造135/135-1に基板アクセスポートシールド1401を固定してもよい。また、いくつかの実施形態において、基板アクセスポートシールド1401は、フォーカスリング構造135/135-1がプラズマ処理位置にある時に、光学エンドポイント分光分析(OES)の目的またはその他の目的などで、プラズマ処理領域109の観察に対応するために、1以上のさらなる切り欠き領域を備えてもよい。
【0158】
基板アクセスポートシールド1401がフォーカスリング構造135/135-1上に配置された実施形態において、リフト構成要素137A、137B、137Cによるフォーカスリング構造135/135-1の垂直移動が、基板アクセスポートシールド1401の対応する垂直移動を引き起こす。また、いくつかの実施形態において、基板アクセスポートシールド1401は、フォーカスリング構造135/135-1がチャンバ102内に存在しない時に、チャンバ102内で利用されることが可能であることを理解されたい。これらの実施形態において、基板アクセスポートシールド1401は、フォーカスリング構造135/135-1以外のチャンバ102内の1以上の垂直移動可能構成要素と相互作用するよう構成される。例えば、いくつかの実施形態において、基板アクセスポートシールド1401は、フォーカスリング構造135/135-1がチャンバ102内に存在しない時、リフト構成要素137A、137B、137Cに直接接続するよう構成される。このように、リフト構成要素137A、137B、137Cの垂直移動が、基板アクセスポートシールド1401の対応する垂直移動を引き起こす。
【0159】
シールド部分1403は、第1支持部分1405および第2支持部分1407が垂直移動可能構成要素(例えば、フォーカスリング構造135/135-1)と係合され、かつ、垂直移動可能構成要素が下側垂直位置にある時に、チャンバ102の開口部106Aを少なくとも部分的に覆うよう構成される。また、シールド部分1403は、第1支持部分1405および第2支持部分1407が垂直移動可能構成要素(例えば、フォーカスリング構造135/135-1)と係合され、かつ、垂直移動可能構成要素が上側垂直位置にある時に、チャンバ102の開口部106Aを覆わないよう構成される。いくつかの実施形態において、フォーカスリング構造135/135-1の構成およびフォーカスリング構造135/135-1の垂直移動距離によっては、フォーカスリング構造135/135-1が完全上側垂直位置にある時にチャンバ102の開口部106Aを十分に露出させることを可能にするために、基板アクセスポートシールド1401のシールド部分1403を垂直方向に短くする必要がありうる。例えば、
図16は、いくつかの実施形態に従って、フォーカスリング構造135/135-1が完全上側垂直位置にある時にチャンバ102の開口部106Aを十分に露出させることを可能にするために、シールド部分1403Aが短い垂直距離1411を有する基板アクセスポートシールド1401Aの変形例を示す図である。
【0160】
図17Aは、いくつかの実施形態に従って、フォーカスリング構造135/135-1が完全下側位置にある状態で、フォーカスリング構造135/135-1上に配意された基板アクセスポートシールドの例1401Aを示す側面図である。
図17Aの例において、基板アクセスポートシールド1401Aのシールド部分1403Aの垂直距離1411は、フォーカスリング構造135/135-1が完全下側位置にある時に、開口部106Aの垂直範囲の約75%を覆う。様々な実施形態において、基板アクセスポートシールド1401Aがフォーカスリング構造135/135-1上に配置され、かつ、フォーカスリング構造135/135-1が完全下側位置にある状態で、基板アクセスポートシールド1401Aは、開口部106Aの垂直範囲の少なくとも約50%を覆うよう構成される。いくつかの実施形態において、基板アクセスポートシールド1401Aがフォーカスリング構造135/135-1上に配置され、かつ、フォーカスリング構造135/135-1が完全下側位置にある状態で、基板アクセスポートシールド1401Aは、開口部106Aの垂直範囲の少なくとも3分の2を覆うよう構成される。いくつかの実施形態において、基板アクセスポートシールド1401Aがフォーカスリング構造135/135-1上に配置され、かつ、フォーカスリング構造135/135-1が完全下側位置にある状態で、基板アクセスポートシールド1401Aは、開口部106Aの垂直範囲全体を覆うよう構成される。
【0161】
図17Bは、いくつかの実施形態に従って、フォーカスリング構造135/135-1が完全上側位置にある状態で、フォーカスリング構造135/135-1上に配意された基板アクセスポートシールドの例1401Aを示す側面図である。
図17Bの例において、基板アクセスポートシールド1401Aのシールド部分1403Aの垂直距離1411は、シールド部分1403Aが開口部106Aの垂直上方に配置されるように規定される。いくつかの実施形態において、開口部106Aの隠されていない垂直範囲が、開口部106Aを通して基板101およびロボット基板ハンドリング装置1305の移動を干渉なしに提供するのに十分に大きい限りは、基板アクセスポートシールド1401Aのシールド部分1403Aの垂直距離1411は、シールド部分1403Aが開口部106Aの垂直範囲の一部をまだ覆っているように規定されてもよい。
【0162】
様々な実施形態において、基板アクセスポートシールド1401/1401Aは、中空直円筒の一部として構成される。いくつかの実施形態において、基板アクセスポートシールド1401/1401Aの半径方向の厚さは、実質的に均一である。様々な実施形態において、基板アクセスポートシールド1401/1401Aの半径方向の厚さは、約0.125インチ(約3.175ミリメートル)~約0.5インチ(約12.7ミリメートル)の範囲内、または、約0.375インチ(約9.525ミリメートル)~約0.5インチ(約12.7ミリメートル)の範囲内、または、約0.217インチ(約5.5118ミリメートル)、または、約0.375インチ、である。いくつかの実施形態において、基板アクセスポートシールド1401/1401Aの半径方向の厚さは、不均一である。例えば、いくつかの実施形態において、第1支持部分1405および第2支持部分1407が、シールド部分1403/1403Aとは異なる半径方向の厚さを有してもよい。さらに、一部のプラズマ処理動作は低圧で実行されるので、チャンバ102内のプラズマ処理副生成物の拡散が著しい場合がある。したがって、いくつかの実施形態において、基板アクセスポートシールド1401/1401Aとライナ構造139との間で副生成物が拡散しうる流路の面積を削減するために、ライナ構造139と接触せずに、半径方向においてライナ構造139のできるだけ近くに基板アクセスポートシールド1401/1401Aを配置させることに関心が持たれている。いくつかの実施形態において、基板アクセスポートシールド1401/1401Aとライナ構造139との間の半径方向の間隔1701は、例として、約0.1インチ(約2.54ミリメートル)である。
【0163】
図15および
図16に示したものなど、いくつかの実施形態において、基板アクセスポートシールド1401/1401Aのシールド部分1403/1403Aは、中空直円筒の第1部分であり、第1支持部分1405は、中空直円筒の第2部分であり、第2支持部分1407は、中空直円筒の第3部分である。また、いくつかの実施形態において、シールド部分1403/1403Aは、中空直円筒の軸方向に測定された第1垂直高さ(すなわち、垂直距離1411)を有し、第1支持部分1405は、中空直円筒の軸方向に測定された第2垂直高さを有し、第2支持部分1407は、中空直円筒の軸方向に測定された第3垂直高さを有する。いくつかの実施形態において、シールド部分1403/1403Aの第1垂直高さ、第1支持部分1405の第2垂直高さ、および、第2支持部分1407の第3垂直高さは、実質的に等しい。いくつかの実施形態において、シールド部分1403/1403Aの第1垂直高さは、第1支持部分1405の第2垂直高さおよび第2支持部分1407の第3垂直高さの各々と異なる。いくつかの実施形態において、第1支持部分1405の第2垂直高さおよび第2支持部分1407の第3垂直高さは、実質的に等しい。いくつかの実施形態において、シールド部分1403/1403Aの第1垂直高さは、第1支持部分1405の第2垂直高さおよび第2支持部分1407の第3垂直高さの各々よりも小さい。
【0164】
いくつかの実施形態において、基板アクセスポートシールド1401/1401Aは、モノリシックセラミック部品として形成される。様々な実施形態において、基板アクセスポートシールド1401/1401Aは、酸化アルミニウム、炭化シリコン、または、チャンバ102内での利用に対して、化学的、機械的、熱的、および、電気的に適合する基本的に任意のその他のセラミック材料で形成されてよい。また、いくつかの実施形態において、基板アクセスポートシールド1401/1401Aは、基板アクセスポートシールド1401/1401Aを形成する材料が、チャンバ102内で実行されるプラズマ処理動作に対して、化学的、機械的、熱的、および、電気的に適合する限りは、非セラミック材料で形成されてもよい。
【0165】
いくつかの実施形態において、基板アクセスポートシールド1401/1401Aの表面は、基板アクセスポートシールド1401/1401A上へのプラズマ処理副生成物の付着および保持を促進する所定の平均表面粗さ(Ra)を有するように粗面化/テクスチャ加工されてよい。いくつかの実施形態において、基板アクセスポートシールド1401/1401Aの少なくとも半径方向内側表面が、約150マイクロインチ~約500マイクロインチの範囲内の平均表面粗さ(Ra)を有し、ここで、半径方向内側表面は、プラズマ処理領域109の方を向く。いくつかの実施形態において、基板アクセスポートシールド1401/1401Aの外面全体が、約150マイクロインチ~約500マイクロインチの範囲内の平均表面粗さ(Ra)を有する。
【0166】
いくつかの実施形態において、基板アクセスポートシールド1401/1401Aの表面は、メディアブラスト処理によって粗面化される。様々な実施形態において、メディアブラスト処理は、表面粗さを増し、表面上の高い接触角を生み出し、基板アクセスポートシールド1401/1401Aの表面の表面積全体を増すために、規定および実行されうる。様々な実施形態において、メディアブラスト処理は、メディアのタイプの中でも特に、酸化アルミニウム、炭化シリコン、破砕ガラスグリット、ガラスビーズ、セラミック、ガラス、クルミ殻、軽石、スチールグリット、スチールショット、アルミニウムショット、亜鉛ショット、銅ショット、カットワイヤ、ガーネット、ケイ砂、および、十字石、の内の1以上を含むメディアで、基板アクセスポートシールド1401/1401Aの表面に影響を与えるように規定および実行されうる。いくつかの実施形態において、メディアブラスト処理は、基板アクセスポートシールド1401/1401Aの表面上に所定の粗さ/テクスチャを実質的に均一に付与できることを理解されたい。また、いくつかの実施形態において、メディアブラスト処理は、基板アクセスポートシールド1401/1401Aの表面上に所定の表面トポグラフィを生成するようにパターニングされたマスクと併用して実行されうる。例えば、パターニングされたマスクは、メディアブラスト材料がそこを通って基板アクセスポートシールド1401/1401Aの表面に到達できる開口領域の分布を含みうる。メディアブラスト材料は、パターニングされたマスクの開口領域内にあるセラミック材料の一部を除去するが、パターニングされたマスクによって保護されたセラミック材料は除去せず、それにより、基板アクセスポートシールド1401/1401Aの表面上で所定の表面トポグラフィを生み出す。また、メディアブラスト処理に加えて、または、メディアブラスト処理の代わりに、セラミックの焼成の前に基板アクセスポートシールド1401/1401Aのセラミックに対してナーリング処理を実行することによって、基板アクセスポートシールド1401/1401Aの表面に粗さ/テクスチャを付与してもよい。
【0167】
いくつかの実施形態において、基板アクセスポートシールド1401/1401Aを形成するセラミック材料が、基板アクセスポートシールド1401/1401Aの半径方向内側表面で露出される。より具体的には、いくつかの実施形態において、セラミック材料で形成された基板アクセスポートシールド1401/1401Aは、チャンバ102内での利用に向けてコーティングのない状態のままにされる。また、基板アクセスポートシールド1401/1401Aが非セラミック材料(例えば、アルミニウムなど)で形成されるいくつかの実施形態において、基板アクセスポートシールド1401/1401Aは、適切なコーティング材料(特に、イットリアコーティングまたは陽極酸化コーティングなど)でコーティングされてよい。
【0168】
基板アクセスポートシールド1401/1401Aは、アクセス制御装置1301が接続されたチャンバ102の開口部106Aの少なくとも部分的な閉塞/覆いを提供する受動構成要素である。基板アクセスポートシールド1401/1401Aは、受動構成要素であるが、基板アクセスポートシールド1401/1401Aは、能動構成要素と連動することにより、能動構成要素であるかのように振る舞う。例えば、基板アクセスポートシールド1401/1401Aは、フォーカスリング構造135/135-1上にあるので、基板アクセスポートシールド1401/1401Aは、フォーカスリング構想135/135-1の制御された垂直移動によって垂直に移動されうる。チャンバ102内での基板アクセスポートシールド1401/1401Aの利用は、チャンバ102内の任意の他1以上の構成要素の変形を必要とせず、チャンバ102内にさらなる作動/移動構成要素の設置を必要としない。
【0169】
基板アクセスポートシールド1401/1401Aは、不揮発性および/または低揮発性プラズマ処理副生成物の大部分が、開口部106Aに入ることと、アクセス制御装置1301内またはその付近に堆積することを防ぐよう構成されうる。また、基板アクセスポートシールド1401/1401Aは、特に、かなりの量のかかる副生成物を生成するプラズマ処理動作(PZTエッチング処理およびPtエッチング処理など)中に、不揮発性および/または低揮発性プラズマ処理副生成物をトラップおよび保持する助けとして、チャンバ102の内周にさらなる表面積を提供する。基板アクセスポートシールド1401/1401Aは、エッチング副生成物が、開口部106A内、そして、おそらく、洗浄が面倒であると共に粒子汚染の可能性が高いアクセス制御装置1301内に入らずに、その上に堆積しうるターゲット表面を提供する。開口部106A内のエッチング副生成物堆積を削減および/または防止することによって、基板アクセスポートシールド1401/1401Aは、チャンバ102の平均洗浄時間(MTTC)を削減するよう機能する。
【0170】
いくつかの実施形態において、基板アクセスポートシールド1401/1401Aは、定期的にスケジュールされたチャンバ102の開口中に廃棄および交換できる消耗品である。不揮発性および/または低揮発性プラズマ処理副生成物を捕らえることにより、基板アクセスポートシールド1401/1401Aは、チャンバ102への基板101の出し入れの間のチャンバ102内および開口部106A内での粒子生成を低減するよう機能する。また、不揮発性および/または低揮発性プラズマ処理副生成物がアクセス制御装置1301に入ることを低減および/または防止することにより、基板アクセスポートシールド1401/1401Aは、副生成物がアクセス制御装置1301またはアクセス制御装置1301の1以上のシール(すなわち、O-リング)領域に捕捉された時に引き起こされうるアクセス制御装置1301の早過ぎる損傷を防ぐよう機能する。したがって、基板アクセスポートシールド1401/1401Aは、アクセス制御装置1301の寿命を延ばすよう機能する。また、基板アクセスポートシールド1401/1401Aは、不揮発性および/または低揮発性プラズマ処理副生成物の堆積および/または捕捉によって引き起こされうるアクセス制御装置1301の領域におけるリークを防ぐのに役立ち、それにより、より良好な真空の完全性をチャンバ102に提供する。さらに、アクセス制御装置1301に副生成物が入るのを防ぐのに役立つことにより、基板アクセスポートシールド1401/1401Aは、開閉動作中のアクセス制御装置1301の不具合を低減するよう機能し、アクセス制御装置1301の物理的洗浄の頻度、持続時間、および、困難をいずれも低減するよう機能する。一部の例において、基板アクセスポートシールド1401/1401Aの利用は、アクセス制御装置1301の洗浄時間を50%以上削減できる。基板アクセスポートシールド1401/1401Aは、アクセス制御装置1301へのプラズマ処理副生成物の侵入によって引き起こされるアクセス制御装置1301の問題を低減するよう機能するので、基板アクセスポートシールド1401/1401Aは、アクセス制御装置1301の問題に起因するチャンバ102のダウンタイムを削減するよう機能する。
【0171】
図18は、いくつかの実施形態に従って、基板のプラズマ処理のための方法を示すフローチャートである。方法は、基板支持構造103と、フォーカスリング構造135/135-1と、基板アクセスポートシールド1401/1401Aと、を備えたプラズマ処理チャンバ(すなわち、チャンバ102)を準備するための動作1801を備える。フォーカスリング構造135/135-1は、基板支持構造103を囲むように構成される。フォーカスリング構造135/135-1は、中空直円筒として形成されたリング部分135Aと、リング部分135Aの外面135A2から半径方向外向きに伸びるよう構成された3つの半径方向延長構造135B1、135B2、135B3と、を備える。基板アクセスポートシールド1401/1401Aは、シールド部分1403、第1支持部分1405、および、第2支持部分1407を備える。第1支持部分1405は、シールド部分1403の第1端から伸びる。第1支持部分1405は、フォーカスリング構造135/135-1の半径方向延長構造135B1、135B2、135B3の内の第1構造と係合するよう構成される。第2支持部分1407は、シールド部分1403の第2端から伸びる。第2支持部分1407は、フォーカスリング構造135/135-1の半径方向延長構造135B1、135B2、135B3の内の第2構造と係合するよう構成される。
【0172】
いくつかの実施形態において、方法は、留め具なしで基板アクセスポートシールド1401/1401Aをフォーカスリング構造135/135-1に接続する工程を備える。いくつかの実施形態において、基板アクセスポートシールド1401/1401Aは、重力でフォーカスリング構造135/135-1に固定される。いくつかの実施形態において、留め具なしでアクセスポートシールド1401/1401Aをフォーカスリング構造135/135-1に接続する工程は、基板アクセスポートシールド1401/1401Aの第1支持部分1405内に形成された切り欠き1409A内にフォーカスリング構造135/135-1の第1半径方向延長構造135B1を挿入する工程を含む。また、留め具なしでアクセスポートシールド1401/1401Aをフォーカスリング構造135/135-1に接続する工程は、基板アクセスポートシールド1401/1401Aの第2支持部分1407内に形成された切り欠き1409B内にフォーカスリング構造135/135-1の第2半径方向延長構造135B2を挿入する工程を含む。そして、留め具なしでアクセスポートシールド1401/1401Aをフォーカスリング構造135/135-1に接続する工程は、基板アクセスポートシールド1401/1401Aの第2支持部分1407内に形成された切り欠き1409C内にフォーカスリング構造135/135-1の第3半径方向延長構造135B3を挿入する工程を含む。
【0173】
方法は、さらに、フォーカスリング構造135/135-1を下側垂直位置に配置するための動作1803を備える。いくつかの実施形態において、フォーカスリング構造135/135-1を下側垂直位置に配置する工程は、フォーカスリング構造135/135-1の3つの半径方向延長構造135B1、135B2、135B3とそれぞれ係合する3つのリフト構成要素137A、137B、137Cを作動させる工程を含む。方法は、さらに、基板支持構造103の上方のプラズマ処理領域109においてプラズマを生成するための動作1805を備える。いくつかの実施形態において、プラズマは、プラズマの成分が、基板101上の材料と相互作用して、プラズマ処理副生成物を生成するように、動作1805で生成され、ここで、プラズマ処理副生成物の一部は、開口部106Aに入らないようにアクセスポートシールド1401/1401Aによってブロックされる。いくつかの実施形態において、基板101上の材料は、チタン酸ジルコン酸鉛(PZT)膜である。いくつかの実施形態において、基板101上の材料は、プラチナ(Pt)膜である。いくつかの実施形態において、基板101上の材料は、動作1805で生成されたプラズマに暴露された時にチャンバ102内で大量の副生成物蒸着を引き起こす膜である。方法は、さらに、基板支持構造103の上方のプラズマ処理領域109におけるプラズマの生成を停止する工程と、開口部106Aを通した基板101およびロボット基板ハンドリング装置1305の遮るもののない通過を可能にするように基板アクセスポートシールド1401/1401Aを垂直に持ち上げるために、フォーカスリング構造135/135-1を上側垂直位置に配置する工程と、を備えてよい。
【0174】
いくつかの実施形態において、動作1805でプラズマを生成する工程は、プラズマ処理領域109内の処理ガスに高周波電力を印加する工程を含んでよい。いくつかの実施形態において、印加される高周波電力は、約400W~約1250Wの範囲内であってよい。ただし、様々な実施形態において、印加される高周波電力は、400Wより小さくても、1250Wより大きくてもよいことを理解されたい。いくつかの実施形態において、高周波電力は、約13.56MHzの周波数を有する高周波信号によって印加される。ただし、様々な実施形態において、高周波電力は、13.56MHzとは異なる周波数を有する高周波信号によって印加されてもよいことを理解されたい。そして、いくつかの実施形態において、方法は、基板支持構造103でバイアス電圧を生成するための動作を備えてもよい。いくつかの実施形態において、バイアス電圧は、約100V~約600Vの範囲内で生成される。ただし、様々な実施形態において、バイアス電圧は、100Vより小さくても、600Vより大きくてもよいことを理解されたい。そして、いくつかの実施形態において、バイアス電圧は、約13.56MHzの周波数を有する高周波信号によって生成されてよい。ただし、様々な実施形態において、バイアス電圧は、13.56MHzとは異なる周波数を有する高周波信号によって生成されてもよいことを理解されたい。また、様々な実施形態において、バイアス電圧は、直流源によって生成されてよい。
【0175】
また、いくつかの実施形態において、方法は、基板支持構造103の温度を、約40℃~約100℃の範囲内に維持するための動作を備えてよい。ただし、様々な実施形態において、基板支持構造103の温度は、40℃より小さく、または、100℃より大きく維持されてもよいことを理解されたい。また、いくつかの実施形態において、方法は、プラズマ処理領域109内の圧力を、約5ミリTorr~約50ミリTorrの範囲内に維持するための動作を備えてよい。ただし、様々な実施形態において、プラズマ処理領域109内の圧力は、5ミリTorrより小さく、または、50ミリTorrより大きく維持されてもよいことを理解されたい。
【0176】
いくつかの実施形態において、動作1805においてプラズマを生成する工程は、プラズマ処理領域109に処理ガスを供給する工程を備え、ここで、処理ガスは、塩素(Cl2)、三塩化ホウ素(BCl3)、アルゴン(Ar)、四フッ化炭素(CF4)、酸素(O2)、トリフルオロメタン(CHF3)、および、六フッ化硫黄(SF6)の内の1以上である。いくつかの実施形態において、動作1805においてプラズマを生成する工程は、約20sccm~約300sccmの範囲内の流量でプラズマ処理領域109に塩素(Cl2)を供給する工程を含む。いくつかの実施形態において、動作1805においてプラズマを生成する工程は、約50sccm~約300sccmの範囲内の流量でプラズマ処理領域109に三塩化ホウ素(BCl3)を供給する工程を含む。いくつかの実施形態において、動作1805においてプラズマを生成する工程は、約50sccm~約300sccmの範囲内の流量でプラズマ処理領域109にアルゴン(Ar)を供給する工程を含む。いくつかの実施形態において、動作1805においてプラズマを生成する工程は、約50sccm~約200sccmの範囲内の流量でプラズマ処理領域109に四フッ化炭素(CF4)を供給する工程を含む。いくつかの実施形態において、動作1805においてプラズマを生成する工程は、約20sccm~約300sccmの範囲内の流量でプラズマ処理領域109に酸素(O2)を供給する工程を含む。いくつかの実施形態において、動作1805においてプラズマを生成する工程は、約50sccm~約300sccmの範囲内の流量でプラズマ処理領域109にトリフルオロメタン(CHF3)を供給する工程を含む。いくつかの実施形態において、動作1805においてプラズマを生成する工程は、約50sccm~約300sccmの範囲内の流量でプラズマ処理領域109に六フッ化硫黄(SF6)を供給する工程を含む。
【0177】
図19は、いくつかの実施形態に従って、プラズマ処理チャンバで利用する基板アクセスポートシールド1401/1401Aを製造するための方法を示すフローチャートである。方法は、シールド部分1403と、シールド部分1403の第1端から伸びる第1支持部分1405と、シールド部分1403の第2端から伸びる第2支持部分1407と、を備えた基板アクセスポートシールド1401/1401Aを形成するための動作1901を備える。第1支持部分1405は、プラズマ処理チャンバ内(例えば、チャンバ102内)の垂直移動可能構成要素(例えば、フォーカスリング構造135/135-1)と係合するよう構成される。第2支持部分1407は、チャンバ102内の垂直移動可能構成要素と係合するよう構成される。基板アクセスポートシールド1401/1401Aは、円弧に沿って伸びるように、そして、第1支持部分1405および第2支持部分1407が垂直移動可能構成要素と係合され、かつ、垂直移動可能構成要素が下側垂直位置にある時に、基板アクセスポートとして機能するチャンバ102の壁105における開口部106Aを少なくとも部分的覆うように、形成される。基板アクセスポートシールド1401/1401Aは、第1支持部分1405および第2支持部分1407が垂直移動可能構成要素と係合され、かつ、垂直移動可能構成要素が上側垂直位置にある時に、開口部106Aを覆わないよう構成される。
【0178】
いくつかの実施形態において、基板アクセスポートシールド1401/1401Aを形成する工程は、垂直移動可能構成要素の第1部分を受け入れるための(例えば、半径方向延長構造135B1を受け入れるための)切り欠き1409Aを第1支持部分1405内に形成する工程を含む。また、基板アクセスポートシールド1401/1401Aを形成する工程は、垂直移動可能構成要素の第2部分を受け入れるための(例えば、半径方向延長構造135B2を受け入れるための)切り欠き1409Bを第2支持部分1407内に形成する工程を含んでもよい。また、基板アクセスポートシールド1401/1401Aを形成する工程は、垂直移動可能構成要素の第3部分を受け入れるための(例えば、半径方向延長構造135B3を受け入れるための)切り欠き1409Cを第2支持部分1407内に形成する工程を含んでもよい。
【0179】
いくつかの実施形態において、動作1901は、酸化アルミニウム、炭化シリコン、または、プラズマ処理チャンバの動作に対して化学的、機械的、熱的、および、電気的に適合する別のセラミック材料で、基板アクセスポートシールド1401/1401Aを形成する工程を含む。いくつかの実施形態において、動作1901は、約150マイクロインチ~約500マイクロインチの範囲内の平均表面粗さ(Ra)を有するように、基板アクセスポートシールド1401/1401Aの外面を粗面化する工程を含む。いくつかの実施形態において、基板アクセスポートシールド1401/1401Aの外面を粗面化する工程は、特に、酸化アルミニウム、炭化シリコン、破砕ガラスグリット、ガラスビーズ、セラミック、ガラス、クルミ殻、軽石、スチールグリット、スチールショット、アルミニウムショット、亜鉛ショット、銅ショット、カットワイヤ、ガーネット、ケイ砂、および、十字石、の内の1以上を含むメディアで、基板アクセスポートシールド1401/1401Aの外面に影響を与えるメディアブラスト処理によってなされる。いくつかの実施形態において、動作1901は、基板アクセスポートシールド1401/1401Aを形成するセラミック材料の焼成の前に、基板アクセスポートシールド1401/1401Aの外面に対してナーリング処理を実行する工程を含む。いくつかの実施形態において、基板アクセスポートシールド1401/1401Aを形成するセラミックベア材が、基板アクセスポートシールド1401/1401Aの外面で露出されたままになる。
【0180】
図1Aおよび
図1Bに関して論じたように、チャンバ102の壁105は、様々な目的のための開口部を備えうる。例えば、
図20は、いくつかの実施形態に従って、チャンバ102への基板101の出し入れのための開口部106Aを備えたチャンバ102を示す。また、
図20は、いくつかの実施形態に従って、手動でまたは様々な装置によって、チャンバ102内のプラズマ処理領域109を観察するためのビューポートを提供する開口部106Bを備えたチャンバ102を示す。開口部106Aおよび106Bは、例として提供されていることを理解されたい。様々な実施形態において、チャンバ102は、開口部106Aだけを備えてもよく、または、開口部106Aおよび106Bよりも多い開口部を備えてもよい。チャンバ102の壁105を貫通する各開口部(例えば、106A、106B)は、開口部の位置における壁105の形状によって規定される幾何学的形状(深さおよび断面形状)を有する三次元空洞または通路を形成する。
【0181】
チャンバ102内での基板101のプラズマ処理中、プラズマ処理副生成物が、処理ガス流パターンおよび/または既存の圧力勾配に従って、チャンバ102内で自由に動き回る。不揮発性および/または低揮発性副生成物を生成するプラズマ処理動作(特に、PZTエッチング処理またはPtエッチング処理など)中、プラズマ処理副生成物が、チャンバ102の壁105を通して形成された開口部(開口部106Aおよび106Bなど)に入り、開口部内の壁105の表面上に堆積する可能性がある。不揮発性および/または低揮発性プラズマ処理副生成物が形成される低真空圧プラズマ処理(PZTエッチング処理およびPtエッチング処理など)において、大量の副生成物の堆積物が、チャンバ102の壁105を通して形成された開口部(例えば、106A、106B)内に蓄積しうる。少なくとも部分的には、開口部の厳しい構成により、開口部の中に堆積したプラズマ処理副生成物の洗浄/除去は、困難で、時間が掛かり、費用が掛かりうる。また、しばしば、物理的/機械的技術を用いて開口部に堆積したプラズマ処理副生成物を洗浄/除去する必要があり、それにより、洗浄処理の困難さ、時間、および、費用が増大する。壁105の開口部内からプラズマ処理副生成物を洗浄するのに必要な時間が、チャンバ洗浄時間全体に追加され、それにより、チャンバ102の平均洗浄時間(MTTC)が増大し、半導体製造動作に対するチャンバ102の利用可能性が低下する。
【0182】
開口部内の壁105の表面の保護を提供するため、および、プラズマ処理副生成物が、開口部内の壁105の表面上に堆積せずに、その上に堆積しうる犠牲表面を提供するために、チャンバ102の壁105を通して形成された開口部(例えば、開口部106A、106B)に挿入できるインサートライナのための様々な実施形態が、本明細書に開示されている。例えば、
図21は、いくつかの実施形態に従って、開口部106Aに挿入するよう構成されたインサートライナ2101および開口部106Bに挿入するよう構成されたインサートライナ2103を示す。
図22は、本発明の一実施形態に従って、インサートライナ2101を示す等角図である。
図23は、本発明の一実施形態に従って、インサートライナ2103を示す等角図である。
【0183】
いくつかの実施形態において、インサートライナ2101、2103は、硬質陽極酸化アルミニウム板金(例えば、5056鈑金アルミニウム)など、板金で製造されてよい。板金は、インサートライナが配置されるチャンバ102の壁105を通る開口部106A、106Bと共形である構成に切断および曲げ加工されうる。いくつかの実施形態において、インサートライナ2101、2103は、約0.030インチ(約0.762ミリメートル)~約0.090インチ(約2.286ミリメートル)の範囲内の厚さを有する板金で形成される。いくつかの実施形態において、インサートライナ2101、2103は、プレート金属(硬質陽極酸化アルミニウムプレートなど)から形成されてよく、プレート金属は、インサートライナが配置されるチャンバ102の壁105を通る開口部106A、106Bと共形である構成に切断および溶接されてよい。インサートライナ2101、2103は、開口部106A、106B内の壁105の表面を実質的に覆うように形成される。
【0184】
いくつかの実施形態において、
図22および
図23に示すように、インサートライナ2101、2103は、開口部106A、106Bに挿入された時に、開口部106A、106Bの垂直断面を囲む連続的な構造(すなわち、閉じた形状)を有するように形成されてよい。ただし、いくつかの実施形態において、インサートライナ2101、2103は、不連続な構造を有するように形成されてもよい。例えば、
図24は、いくつかの実施形態に従って、インサートライナ2101の変形例であるインサートライナ2101Aを示しており、ここで、インサートライナ2101Aは、ギャップ2401を形成するためにインサートライナ2101Aの垂直側面で切り開かれている。ギャップ2401は、ギャップ2401がインサートライナ2101Aの外面プロファイルにおいて不連続性を形成するように、インサートライナ2101Aの第1端部をインサートライナ2101Aの第2端部から分離する。ギャップ2401は、開口部106Aへのインサートライナ2101Aの挿入を可能にするために、インサートライナ2101Aの外面プロファイルの圧縮に対する機械的柔軟性をインサートライナ2101Aに提供する。
【0185】
いくつかの実施形態において、インサートライナ2101Aは、インサートライナ2101Aが開口部106Aに挿入された時に、インサートライナ2101Aが壁105の表面を外向きに押すことを可能にするバネ特性を有する。例えば、インサートライナ2101Aが板金で製造される場合、板金は、インサートライナ2101Aが開口部106Aに挿入された時にインサートライナ2101Aが壁105の表面に対してバネ力を加えるように曲げ加工されることが可能である。これらの実施形態において、ギャップ2401は、開口部106Aへのインサートライナ2101Aの挿入および開口部106Aからのインサートライナ2101Aの取り外しを容易にするように、インサートライナ2101Aの圧縮を可能にする。いくつかの実施形態において、ギャップ2401を有するインサートライナ2101Aは、手で圧縮できる。また、いくつかの実施形態において、インサートライナ2101Aの1以上の表面が、開口部106Aへのインサートライナ2101Aの挿入時に壁105の表面に対して加えられるバネ力を強化する凸形状を有してもよい。例えば、
図25は、いくつかの実施形態に従って、インサートライナ2101Bの上面の上に形成された凸領域2501を備えたインサートライナ2101Aの変形例であるインサートライナ2101Bを示す正面図である。インサートライナ例2101Bも、ギャップ2401を備える。いくつかの実施形態において、インサートライナ2103は、ギャップ2401のようなギャップを備えるおよび/または凸領域2501のような凸領域を備えるよう構成されてもよいことを理解されたい。いくつかの実施形態において、インサートライナ2101、2101A、2101B、2103は、開口部106A、106Bへのインサートライナの挿入を可能にするために、インサートライナの外面プロファイルの圧縮に十分な機械的柔軟性を有するよう構成される。
【0186】
インサートライナ(例えば、2101、2101A、2101B、2103)は、開口部106A、106B内に設置される時に、必要な隙間が、開口部106A、106Bを通して維持されるように構成される。インサートライナ(例えば、2101、2101A、2101B、2103)は、インサートライナが、動かない部品であり、かつ、チャンバ102の壁105に対してインサートライナによって加えられるバネ力が、チャンバ102の動作中に開口部106A、106B内にインサートライナを保持するのに十分であることから、ハードウェア留め具、接着剤、または、その他のロック/固定装置を利用することなしに、開口部106A、106B内に設置できることを理解されたい。
【0187】
また、一部のプラズマ処理動作において、チャンバ102の壁105を通して形成された既存の開口部(例えば、106B)が必要ない場合がある。この状況に対して、インサートライナが、開口部へのインサートライナの挿入時に開口部を完全に塞ぐよう構成されてもよい。例えば、
図26は、いくつかの実施形態に従って、開口部106Bに挿入するよう構成され、チャンバ102の壁105の内面で開口部106Bを塞ぐ垂直表面2603を備えたインサートライナ2601を示す。いくつかの実施形態において、インサートライナ2601は、インサートライナ2101、2103に関して上述したように、板金で形成される。また、いくつかの実施形態において、インサートライナ2601は、開口部106Bへのインサートライナ2601の挿入および開口部106Bからのインサートライナ2601の取り外しを容易にするようにインサートライナ2601の圧縮を可能にするために、垂直側面を通して切断されたギャップ2605(ギャップ2401と同様のもの)を備えるように形成されてもよい。また、いくつかの実施形態において、インサートライナ2601は、開口部106B内の壁105に対してインサートライナ2601によって加えられるバネ力を提供/強化するために、1以上の凸領域(凸領域2501と同様のもの)を備えるように形成されてもよい。
【0188】
また、
図27は、いくつかの実施形態に従って、開口部106Bを通して露出される窓108の表面を実質的に覆う垂直表面2703を備えたインサートライナ2701を示す。インサートライナ2701は、開口部106Bが必要とされない時に利用できる。いくつかの実施形態において、インサートライナ2701は、インサートライナ2101、2103に関して上述したように、板金で形成される。また、いくつかの実施形態において、インサートライナ2701は、開口部106Bへのインサートライナ2701の挿入および開口部106Bからのインサートライナ2701の取り外しを容易にするようにインサートライナ2701の圧縮を可能にするために、垂直側面を通して切断されたギャップ2705(ギャップ2401と同様のもの)を備えるように形成されてもよい。また、いくつかの実施形態において、インサートライナ2701は、開口部106B内の壁105に対してインサートライナ2701によって加えられるバネ力を提供/強化するために、1以上の凸領域(凸領域2501と同様のもの)を備えるように形成されてもよい。
【0189】
さらに、
図28は、いくつかの実施形態に従って、開口部106Bを通して露出される窓108の表面を実質的に覆う第1垂直表面2803を備え、チャンバ102の壁105の内面で開口部106Bを塞ぐ第2垂直表面2805を備えたインサートライナ2801を示す。インサートライナ2801は、開口部106Bが必要とされない時に利用できる。いくつかの実施形態において、インサートライナ2801は、インサートライナ2101、2103に関して上述したように、板金で形成される。また、いくつかの実施形態において、インサートライナ2801は、開口部106Bへのインサートライナ2801の挿入および開口部106Bからのインサートライナ2801の取り外しを容易にするようにインサートライナ2801の圧縮を可能にするために、垂直側面を通して切断されたギャップ2807(ギャップ
2401と同様のもの)を備えるように形成されてもよい。また、いくつかの実施形態において、インサートライナ2801は、開口部106B内の壁105に対してインサートライナ2801によって加えられるバネ力を提供/強化するために、1以上の凸領域(凸領域2501と同様のもの)を備えるように形成されてもよい。
【0190】
いくつかの実施形態において、開口部106Aのためのインサートは、中実プラグとして構成されてよい。
図29は、いくつかの実施形態に従って、開口部106B内にちょうど嵌まり込み、チャンバ102の壁105の内面のプロファイルの連続性を提供するよう構成されたインサートプラグ2901を示す。インサートプラグ2901は、開口部106Bが必要とされない時に利用できる。いくつかの実施形態において、インサートプラグ2901は、アルミニウム、または、チャンバ102内での利用に対して、化学的、機械的、熱的、および、電気的に適合するその他の適切な材料、のブロックから機械加工される。
【0191】
いくつかの実施形態において、インサートライナ2101、2101A、2101B、2103、2601、2701、2801、および/または、インサートプラグ2901は、チャンバ102の洗浄中に取り外して廃棄できる使い捨ての構成要素として構成されてよい。例えば、インサートライナ2101、2101A、2101B、2103、2601、2701、2801が、硬質陽極酸化アルミニウム板金など、低コストの材料で製造された場合に、インサートライナ2101、2101A、2101B、2103、2601、2701、2801を消耗構成要素と見なすことができる。ただし、いくつかの実施形態において、インサートライナ2101、2101A、2101B、2103、2601、2701、2801、および/または、インサートプラグ2901は、チャンバ102内で再利用するために洗浄および修復されてもよい。
【0192】
インサートライナ2101、2101A、2101B、2103、2601、2701、2801、および、インサートプラグ2901は、インサートライナが開口部106A、106Bに挿入された時にチャンバ102の内部領域に流体的に露出される処理暴露面を有する。処理暴露面は、処理暴露面へのプラズマ処理副生成物の付着を促進するように調整されうる。いくつかの実施形態において、インサートライナ2101、2101A、2101B、2103、2601、2701、2801、および/または、インサートプラグ2901は、プラズマ処理副生成物の付着および保持を促進する所定の平均表面粗さ(Ra)を有するように形成されてよい。いくつかの実施形態において、インサートライナ2101、2101A、2101B、2103、2601、2701、2801、および/または、インサートプラグ2901は、約150マイクロインチ~約500マイクロインチの範囲内の平均表面粗さ(Ra)を有する。また、いくつかの実施形態において、インサートライナ2101、2101A、2101B、2103、2601、2701、2801、および/または、インサートプラグ2901は、表面コーティング(特に、イットリアコーティングまたは陽極酸化コーティングなど)を有するように形成されてもよい。
【0193】
プラズマエッチングチャンバ内でのインサートライナ2101、2101A、2101B、2103、2601、2701、2801、および/または、インサートプラグ2901の利用は、エッチング処理中(特に、PZTエッチングおよびPtエッチング中)に生成される大量の不揮発性および/または低揮発性副生成物により、特に有効であることを理解されたい。インサートライナ2101、2101A、2101B、2103、2601、2701、2801、および、インサートプラグ2901は、チャンバ102の壁105を通して形成された開口部(例えば、106A、106B)内のプラズマ処理副生成物堆積の管理のための低コストかつメンテナンス容易なソリューションを提供する。インサートライナ2101、2101A、2101B、2103、2601、2701、2801、および/または、インサートプラグ2901の利用により、技術者が、チャンバ102の洗浄中に開口部106A、106B内の到達が困難な壁105の表面を洗浄するのにかなりの時間を費やす必要はもはやないことを理解されたい。むしろ、技術者は、インサートライナ2101、2101A、2101B、2103、2601、2701、2801、および/または、インサートプラグ2901を取り外して交換するだけでよい。したがって、インサートライナ2101、2101A、2101B、2103、2601、2701、2801、および/または、インサートプラグ2901は、チャンバ102の平均洗浄時間(MTTC)を削減することによって、動作コストを削減すると共に基板101の製造スループットを改善する。いくつかの実施形態において、開口部106A、106B内の壁105の表面を洗浄するのに必要な時間は、50%以上削減される。また、インサートライナ2101、2101A、2101B、2103、2601、2701、2801、および/または、インサートプラグ2901の利用は、後のチャンバ102の動作中に脱落する可能性のある粒子が開口部106A、106B内に捕捉されたままにならないので、チャンバ102内での粒子生成を低減するのに役立つ。さらに、インサートライナ2101、2101A、2101Bは、開口部106A内に堆積する副生成物の捕捉を助けることによって、アクセス制御装置1301を通したリークを防ぎ、チャンバ102内の真空の完全性を維持するのに役立つ。
【0194】
図30は、いくつかの実施形態に従って、基板のプラズマ処理のための方法を示すフローチャートである。方法は、チャンバ102の動作中にプラズマが生成されるプラズマ処理領域109を備えたプラズマ処理チャンバ(すなわち、チャンバ102)を準備するための動作3001を備える。チャンバ102は、プラズマ処理領域109の周りのエンクロージャの一部を形成する壁105を備える。壁105は、壁105を貫通して形成されたポート(例えば、開口部106A、106B)を備える。いくつかの実施形態において、ポートは、基板101がチャンバ102へ挿入される際およびチャンバ102から除去される際に通る基板アクセスポートである。いくつかの実施形態において、ポートは、プラズマ処理領域109の観察を可能にするよう構成されたビューポートである。
【0195】
方法は、ポート内にインサートライナ(例えば、インサートライナ2101、2101A、2101B、2103、2601、2701、2801を配置するための動作3003を備える。インサートライナは、ポートの内面を覆うよう構成される。インサートライナは、インサートライナがポート内に配置された時にポートの内面を実質的に覆うような形状である。いくつかの実施形態において、インサートライナは、インサートライナがポート内に配置された時にプラズマ処理領域109に流体的に露出される処理暴露面を備え、処理暴露面は、処理暴露面へのプラズマ処理副生成物の付着を促進するように調整される。いくつかの実施形態において、インサートライナは、インサートライナがポート内に配置された時に、ポート内のオープン空間を取り囲み、ポート内のオープン空間を通して視界を提供するよう構成される。いくつかの実施形態において、インサートライナは、インサートライナがポート内に配置された時に、ポート内のオープン空間周囲を取り囲み、チャンバ102の壁105の外面に近接するポート内のオープン空間の外側境界を覆うよう構成される。いくつかの実施形態において、インサートライナは、インサートライナがポート内に配置された時に、ポート内のオープン空間を取り囲み、チャンバ102の壁105の内面に近接するポート内のオープン空間の内側境界を覆うよう構成される。いくつかの実施形態において、インサートライナは、インサートライナがポート内に配置された時に、ポートの周りのチャンバ102の壁105の内面の一部を覆うよう構成される。いくつかの実施形態において、動作3003は、ポート内にインサートプラグ(例えば、インサートプラグ2901)を配置する工程を含む。
【0196】
インサートライナは、ポート内の適切な位置にインサートライナを保持するために、ポートの内面に対してバネ力を加えるよう構成される。いくつかの実施形態において、ポートの内面に対してインサートライナによって加えられるバネ力は、さらなる固定メカニズムを利用することなしにポート内にインサートライナを物理的に固定するのに十分である。いくつかの実施形態において、動作3003は、ポートへのインサートライナの挿入を可能にするためにインサートライナの外面プロファイルを圧縮する工程を含み、インサートライナがポートの内面に対してバネ力を加えるようにインサートライナの外面プロファイルの圧縮を解放する工程を含む。いくつかの実施形態において、インサートライナは、インサートライナの外面プロファイルにおける不連続性を形成するギャップによって第2端部から分離された第1端部を備える。これらの実施形態において、動作3003は、ポートへのインサートライナの挿入を可能にするために、ギャップを閉じるようにインサートライナの外面プロファイルを圧縮する工程を含んでよい。
【0197】
方法は、さらに、基板101に暴露させてプラズマ処理領域109内でプラズマを生成するための動作3005を備えており、プラズマの成分は、基板101上の材料と相互作用して、プラズマ処理副生成物を生成する。いくつかの実施形態において、基板101上の材料は、チタン酸ジルコン酸鉛(PZT)膜である。いくつかの実施形態において、基板101上の材料は、プラチナ(Pt)膜である。いくつかの実施形態において、基板101上の材料は、動作3005で生成されたプラズマに暴露された時にチャンバ102内で大量の副生成物蒸着を引き起こす膜である。インサートライナは、プラズマ処理副生成物がポートの内面と接触することを防ぐ。また、いくつかの実施形態において、プラズマ処理副生成物の一部は、インサートライナに付着する。
【0198】
いくつかの実施形態において、動作3005でプラズマを生成する工程は、プラズマ処理領域109内の処理ガスに高周波電力を印加する工程を含んでよい。いくつかの実施形態において、印加される高周波電力は、約400W~約1250Wの範囲内であってよい。ただし、様々な実施形態において、印加される高周波電力は、400Wより小さくても、1250Wより大きくてもよいことを理解されたい。いくつかの実施形態において、高周波電力は、約13.56MHzの周波数を有する高周波信号によって印加される。ただし、様々な実施形態において、高周波電力は、13.56MHzとは異なる周波数を有する高周波信号によって印加されてもよいことを理解されたい。そして、いくつかの実施形態において、方法は、基板支持構造103でバイアス電圧を生成するための動作を備えてもよい。いくつかの実施形態において、バイアス電圧は、約100V~約600Vの範囲内で生成される。ただし、様々な実施形態において、バイアス電圧は、100Vより小さくても、600Vより大きくてもよいことを理解されたい。そして、いくつかの実施形態において、バイアス電圧は、約13.56MHzの周波数を有する高周波信号によって生成されてよい。ただし、様々な実施形態において、バイアス電圧は、13.56MHzとは異なる周波数を有する高周波信号によって生成されてもよいことを理解されたい。また、様々な実施形態において、バイアス電圧は、直流源によって生成されてよい。
【0199】
また、いくつかの実施形態において、方法は、基板支持構造103の温度を、約40℃~約100℃の範囲内に維持するための動作を備えてよい。ただし、様々な実施形態において、基板支持構造103の温度は、40℃より小さく、または、100℃より大きく維持されてもよいことを理解されたい。また、いくつかの実施形態において、方法は、プラズマ処理領域109内の圧力を、約5ミリTorr~約50ミリTorrの範囲内に維持するための動作を備えてよい。ただし、様々な実施形態において、プラズマ処理領域109内の圧力は、5ミリTorrより小さく、または、50ミリTorrより大きく維持されてもよいことを理解されたい。
【0200】
いくつかの実施形態において、動作3005においてプラズマを生成する工程は、プラズマ処理領域109に処理ガスを供給する工程を備え、ここで、処理ガスは、塩素(Cl2)、三塩化ホウ素(BCl3)、アルゴン(Ar)、四フッ化炭素(CF4)、酸素(O2)、トリフルオロメタン(CHF3)、および、六フッ化硫黄(SF6)の内の1以上である。いくつかの実施形態において、動作3005においてプラズマを生成する工程は、約20sccm~約300sccmの範囲内の流量でプラズマ処理領域109に塩素(Cl2)を供給する工程を含む。いくつかの実施形態において、動作3005においてプラズマを生成する工程は、約50sccm~約300sccmの範囲内の流量でプラズマ処理領域109に三塩化ホウ素(BCl3)を供給する工程を含む。いくつかの実施形態において、動作3005においてプラズマを生成する工程は、約50sccm~約300sccmの範囲内の流量でプラズマ処理領域109にアルゴン(Ar)を供給する工程を含む。いくつかの実施形態において、動作3005においてプラズマを生成する工程は、約50sccm~約200sccmの範囲内の流量でプラズマ処理領域109に四フッ化炭素(CF4)を供給する工程を含む。いくつかの実施形態において、動作3005においてプラズマを生成する工程は、約20sccm~約300sccmの範囲内の流量でプラズマ処理領域109に酸素(O2)を供給する工程を含む。いくつかの実施形態において、動作3005においてプラズマを生成する工程は、約50sccm~約300sccmの範囲内の流量でプラズマ処理領域109にトリフルオロメタン(CHF3)を供給する工程を含む。いくつかの実施形態において、動作3005においてプラズマを生成する工程は、約50sccm~約300sccmの範囲内の流量でプラズマ処理領域109に六フッ化硫黄(SF6)を供給する工程を含む。
【0201】
図31は、いくつかの実施形態に従って、プラズマ処理チャンバ(例えば、チャンバ102)のためのインサートライナ(例えば、インサートライナ2101、2101A、2101B、2103、2601、2701、2801)を製造するための方法を示すフローチャートである。方法は、チャンバ102の壁105を貫通して形成されたポート(例えば、開口部106A、106B)の内面を覆うようにインサートライナを形成するための動作3101を備える。インサートライナは、ポートへのインサートライナの挿入を可能にするために、インサートライナの外面プロファイルの圧縮に十分な機械的柔軟性を有するよう構成される。インサートライナは、インサートライナの外面プロファイルの圧縮の解放時に、ポートの内面に対してバネ力を加えるよう構成される。
【0202】
図1Bに戻ると、チャンバ102の動作中、処理ガスが、プラズマ処理領域109から排気流路121およびダクト/配管122を通してポンプ123へポンプ123によって引き出される。不揮発性および/または低揮発性プラズマ処理副生成物が、排気流路121およびダクト/配管122を通してポンプ123への移動する処理ガスの流れの中に取り込まれうる。システム100が動作されるにつれて、プラズマ処理副生成物は、排気流路121およびダクト/配管122およびポンプ123の中に堆積しうる。いくつかの実施形態において、ポンプ123は、タービン翼を備えたロータを備えるターボ分子ポンプである。時間と共に、プラズマ処理副生成物は、ポンプ123のタービン翼を詰まらせる場合があり、これは、ロータの運動機構の焼き付きにより、ポンプ123の動作温度上昇、電力消費上昇、摩擦、摩耗、早期の故障、および、全体的なポンプ123の故障を引き起こすことがある。したがって、特に、大量のかかる副生成物材料を生成するプラズマ処理(PZTエッチング処理およびPtエッチング処理など)において、ポンプ123に到達する不揮発性および/または低揮発性プラズマ処理副生成物の量を低減することに関心が持たれている。
【0203】
図32は、いくつかの実施形態例に従って、排気アセンブリ119の排気流路121内に配置された排気バッフルアセンブリの一例3200を示す。
図32において、排気アセンブリ119は、排気バッフルアセンブリ3200が見えるように半透明に図示されている。
図33は、いくつかの実施形態に従って、チャンバ102に近接する排気流路121内に配置された排気バッフルアセンブリ3200を示す。排気バッフルアセンブリ3200が見えるように、排気アセンブリ119の切り欠き図が
図33に示されている。
図34は、いくつかの実施形態に従って、チャンバ102、排気アセンブリ119、および、排気バッフルアセンブリ3200を通した垂直断面図で、排気バッフルアセンブリ3200がチャンバ102からの排気口に配置されている様子を示す図である。
【0204】
概して、排気バッフルアセンブリ3200は、不揮発性および/または低揮発性プラズマ処理副生成物の下流での堆積に伴うリスクを低減することによって、ポンプ123の動作寿命を延ばすよう機能する。チャンバ102とポンプ123との間の排気流路121内に排気バッフルアセンブリ3200を設置することにより、冗長な排気流路が形成され、排気バッフルアセンブリ3200が、排気流内に取り込まれた不揮発性および/または低揮発性プラズマ処理副生成物と接触して捕捉するよう機能することを理解されたい。また、排気バッフルアセンブリ3200の表面テクスチャおよび形状は、チャンバ102の洗浄処理が実行されるまで、排気バッフルアセンブリ3200への不揮発性および/または低揮発性プラズマ処理副生成物の付着および保持を促進するよう構成されてよい。チャンバ102の洗浄中、排気バッフルアセンブリ3200は、洗浄のために取り外すことができ、新しい/清浄な排気バッフルアセンブリ3200を設置できる。
【0205】
図35は、いくつかの実施形態に従って、排気バッフルアセンブリ例3200を示す等角図である。排気バッフルアセンブリ3200は、上部バー3501、底部バー3503、第1垂直支持体3505A、第2垂直支持体3505B、および、5つのバッフル部材3507A~3507Eを備える。
図36は、いくつかの実施形態に従って、排気バッフルアセンブリ3200を示す正面図である。
図37は、いくつかの実施形態に従って、排気バッフルアセンブリ3200を示す側面図である。いくつかの実施形態において、排気バッフルアセンブリ3200は、バッフル部材3507A~3507Eが第1垂直支持体3505Aおよび第2垂直支持体3505Bの中に形成されたスロット/切り欠きに挿入されるように構成されており、第1垂直支持体3505Aおよび第2垂直支持体3505Bの各々は、上部バー3501および底部バー3503の両方に固定される。様々な実施形態において、第1垂直支持体3505Aおよび第2垂直支持体3505Bの各々は、溶接によって、または、機械的ネジなどの留め具によって、もしくは、それらの組み合わせによって、上部バー3501および底部バー3503の両方に固定されてよい。プラズマ処理領域109からの排気流の基本的にすべてが、バッフル部材3507A~3507Eの組合せによって方向転換されることを、
図36および
図37から理解されたい。したがって、いくつかの実施形態において、バッフル部材3507A~3507Eの組み合せは、主な排気流方向3701を横切るように、排気流路121を通る流れの経路の基本的にすべてにわたって広がるよう構成される。
【0206】
様々な実施形態において、排気バッフルアセンブリ3200は、1以上のバッフル部材(例えば、3507A~3507E)を備えるよう構成されうることを理解されたい。様々な実施形態において、排気バッフルアセンブリ3200は、5つのバッフル部材(例えば、3507A~3507E)より少ないまたは多いバッフル部材を有してもよい。バッフル部材3507A~3507Eは、排気流内のプラズマ処理副生成物がバッフル部材3507A~3507Eに衝突するように、排気流を方向転換させるよう構成される。いくつかの実施形態において、バッフル部材3507A~3507Eは、
図37に示すように、主な排気流方向3701に対して約45度の角度に向けられる。ただし、様々な実施形態において、バッフル部材3507A~3507Eは、主な排気流方向3701に対して45度以外の角度に向けられてもよいことを理解されたい。いくつかの実施形態において、バッフル部材3507A~3507Eは、約25度~約75度の範囲内の主な排気流方向3701に対する角度に向けられてよい。さらに、いくつかの実施形態において、各バッフル部材3507A~3507Eは、主な排気流方向3701に対して実質的に同じ角度に向けられる。ただし、いくつかの実施形態において、異なるバッフル部材3507A~3507Eが、主な排気流方向3701に対して異なる角度に向けられてもよい。また、いくつかの実施形態において、バッフル部材3507A~3507Eの1以上の角度は、調節可能である。
【0207】
また、
図37に示すように、いくつかの実施形態において、バッフル部材3507A~3507Eの内の隣接する部材が、実質的に等しい垂直分離距離3703に従って配置されうる。ただし、いくつかの実施形態において、垂直分離距離3703は、バッフル部材3507A~3507Eの異なる隣接する部材の間で異なってもよい。また、
図35に示すように、いくつかの実施形態において、各バッフル部材3507A~3507Eは、実質的に同じ形状およびサイズを有する。ただし、いくつかの実施形態において、異なるバッフル部材3507A~3507Eの形状および/またはサイズが、異なってもよい、バッフル部材3507A~3507Eの形状、サイズ、および、相対位置は、十分な排気流量が維持され、排気バッフルアセンブリ3200に起因する排気流面積の制限によってポンプ123に過度な負荷が掛からないように保証しつつ、排気バッフルアセンブリ3200によってその中に取り込まれる排気流および副生成物の捕捉を最適化するように規定されうる。いくつかの実施形態において、排気バッフルアセンブリ3200は、約20%~約30%の範囲内の量だけ、排気流路121内の通常のオープン断面流面積を削減するよう構成される。
【0208】
いくつかの実施形態において、排気バッフルアセンブリ3200は、アルミニウムまたは硬質陽極酸化アルミニウムで形成される。ただし、様々な実施形態において、排気バッフルアセンブリ3200は、排気流路121内の排気流への暴露に対して、化学的、機械的、熱的、および、電気的に適した基本的に任意の材料で形成されてよいことを理解されたい。また、いくつかの実施形態において、排気バッフルアセンブリ3200の表面は、排気バッフルアセンブリ3200の表面へのプラズマ処理副生成物の付着を促進するように調整されうる。いくつかの実施形態において、排気バッフルアセンブリ3200は、プラズマ処理副生成物の付着および保持を促進する所定の平均表面粗さ(Ra)を有するように形成されてよい。いくつかの実施形態において、排気バッフルアセンブリ3200の表面は、約150マイクロインチ~約500マイクロインチの範囲内の平均表面粗さ(Ra)を有する。また、いくつかの実施形態において、排気バッフルアセンブリ3200は、表面コーティング(特に、イットリアコーティングまたは陽極酸化コーティングなど)を有するように形成されてもよい。
【0209】
いくつかの実施形態に従って、排気バッフルアセンブリ3200の表面は、メディアブラスト処理によって粗面化される。様々な実施形態において、メディアブラスト処理は、表面粗さを増し、表面上の高い接触角を生み出し、排気バッフルアセンブリ3200の表面積全体を増すために、規定および実行されうる。様々な実施形態において、メディアブラスト処理は、メディアのタイプの中でも特に、酸化アルミニウム、炭化シリコン、破砕ガラスグリット、ガラスビーズ、セラミック、ガラス、クルミ殻、軽石、スチールグリット、スチールショット、アルミニウムショット、亜鉛ショット、銅ショット、カットワイヤ、ガーネット、ケイ砂、および、十字石、の内の1以上を含むメディアで、排気バッフルアセンブリ3200の表面に影響を与えるように規定および実行されうる。いくつかの実施形態において、メディアブラスト処理は、排気バッフルアセンブリ3200の表面上に所定の粗さ/テクスチャを実質的に均一に付与できることを理解されたい。
【0210】
様々な実施形態において、排気バッフルアセンブリ3200は、固定装置を用いてまたは用いずに、排気流路121内に導入するよう構成されうる。いくつかの実施形態において、排気バッフルアセンブリ3200は、排気バッフルアセンブリ3200が、固定装置を用いることなしに排気流路121内の1以上の対応する構造によって所定の位置に保持されるように、排気流路121内の1以上の対応する構造と係合するよう構成される。例えば、いくつかの実施形態において、底部バー3503が、チャンバ102からすぐ下流の位置で排気流路121の底部内の対応する孔に嵌まる複数の突起を備えてよい、および/または、上部バー3501が、チャンバ102からすぐ下流の位置で排気流路121の上部内の対応する孔に嵌まる複数の突起を備えてよい。
【0211】
排気バッフルアセンブリ3200は、プラズマ処理領域109から排気ポンプ123へ進む排気流内に取り込まれた不揮発性および/または低揮発性プラズマ処理副生成物の物理的な捕捉および保持を提供する。排気バッフルアセンブリ3200は、排気流路121およびダクト/配管122を通して移動する不揮発性および/または低揮発性プラズマ処理副生成物の量を削減するので、排気バッフルアセンブリ3200は、システム100のMTTCを短縮するよう機能し、それにより、チャンバ102のダウンタイムを減少させ、それに対応して基板101の製造スループットを増大させる。また、いくつかの実施形態において、排気バッフルアセンブリ3200は、チャンバ102の洗浄時に、すぐに取り外して、清浄な排気バッフルアセンブリ3200と交換できるため、チャンバ102でMTTCを短縮するのに役立つ。いくつかの実施形態において、排気バッフルアセンブリ3200は、再利用のために洗浄および改修されてもよく、これは、システム100の動作コスト削減を実現する。
【0212】
また、排気バッフルアセンブリ3200は、ポンプ123に入る不揮発性および/または低揮発性プラズマ処理副生成物の量を削減するので、排気バッフルアセンブリ3200は、特に、ポンプ123内の翼上への副生成物の堆積と、ポンプ123内のベアリング領域への副生成物の侵入に関して、ポンプ123内の副生成物の侵入および堆積により、ポンプ123の稼働寿命を延ばし、ポンプ123の早期故障の可能性を低減するよう機能する。さらに、排気バッフルアセンブリ3200が副生成物の一部を捕捉するよう機能するため、ポンプ123の翼上の副生成物の堆積が少なくなるので、より長い動作時間にわたって、ポンプ123の高速回転速度を維持することができ、これは、プラズマ処理領域109からの目標排気流量を維持するのに役立ち、それにより、プラズマ処理領域109からの不十分および/または変化する排気流量に起因するプロセスインパクト/ドリフトを低減する。さらに、排気バッフルアセンブリ3200は、チャンバ102の平均洗浄間隔(MTBC)を延ばすよう機能する。ポンプ123に関する動作上の問題は、しばしば、チャンバ102の運転停止の理由になるので、副生成物の汚染からポンプ123を保護する助けとしてバッフルアセンブリ3200を利用すれば、チャンバ利用可能性を(例えば、90%以上)大幅に高め、ポンプ123の置換率を低減することができ、これは、システム100の動作コストを削減するよう作用する。
【0213】
いくつかの実施形態において、排気バッフルアセンブリ(例えば、3200)は、プラズマ処理チャンバ(例えば、102)の排気流路(例えば、121)内に嵌まるよう構成された少なくとも1つのバッフル部材(例えば、3507A~3507E)を備える。少なくとも1つのバッフル部材は、排気流路内に配置された時に処理排ガス流をそらすような形状である。少なくとも1つのバッフル部材の外面は、少なくとも1つのバッフル部材への処理排ガス流の中に存在するプラズマ処理副生成物の付着を促進するように調整される。いくつかの実施形態において、少なくとも1つのバッフル部材は、少なくとも1つのバッフル部材が排気流路内に配置された時に、排気流路を通る流れの方向を横切る角度に向けられた実質的に平坦な表面を有する。いくつかの実施形態において、少なくとも1つのバッフル部材の角度は、流れの方向に対して約45度である。いくつかの実施形態において、バッフル部材の角度は、調節可能である。いくつかの実施形態において、少なくとも1つのバッフル部材は、陽極酸化アルミニウムで形成される。いくつかの実施形態において、少なくとも1つのバッフル部材は、約150マイクロインチ~約500マイクロインチの範囲内の平均表面粗さを有する。
【0214】
いくつかの実施形態において、排気バッフルアセンブリ(例えば、3200)は、少なくとも1つのバッフル部材を保持するよう構成されたフレームを備える。いくつかの実施形態において、フレームは、底部バー(例えば、3503)、上部バー(例えば、3501)、第1端部バー(例えば、3505A)、および、第2端部バー(例えば、3505B)を備える。第1端部バーは、上部バーと底部バーとの間に伸びる。そして、第2端部バーは、上部バーと底部バーとの間に伸びる。少なくとも1つのバッフル部材は、第1端部バーから第2端部バーまで伸びる。いくつかの実施形態において、フレームは、陽極酸化アルミニウムで形成される。いくつかの実施形態において、フレームは、約150マイクロインチ~約500マイクロインチの範囲内の平均表面粗さ(Ra)を有する。
【0215】
いくつかの実施形態において、プラズマ処理システム(例えば、システム100)は、プラズマ処理チャンバの動作中にプラズマが生成されるプラズマ処理領域(例えば、109)を備えたプラズマ処理チャンバ(例えば、チャンバ102)を備える。また、プラズマ処理システムは、プラズマ処理チャンバのための排気流路(例えば、排気流路121)を備える。排気流路は、プラズマ処理領域と流体連通する。排気流路は、プラズマ処理領域からの処理排ガス流を方向付けるよう構成される。プラズマ処理システムは、さらに、排気流路に接続されたポンプ(例えば、ポンプ123)を備える。ポンプは、排気流路の内部に陰圧を掛けるよう構成される。プラズマ処理システムは、さらに、排気流路内に配置された排気バッフルアセンブリ(例えば、排気バッフルアセンブリ3200)を備える。排気バッフルアセンブリは、排気流路内の処理排ガス流をそらすような形状の少なくとも1つのバッフル部材(例えば、3507A~3507E)を備える。少なくとも1つのバッフル部材の外面は、少なくとも1つのバッフル部材への処理排ガス流の中に存在するプラズマ処理副生成物の付着を促進するように調整される。いくつかの実施形態において、排気バッフルアセンブリは、プラズマ処理領域からの処理排ガス流が、排気バッフルアセンブリを通して流れる必要があるように、排気流路内の基本的に断面流面積全体にわたって伸びるよう構成される。
【0216】
図38は、いくつかの実施形態に従って、基板のプラズマ処理のための方法を示すフローチャートである。方法は、プラズマ処理チャンバ(例えば、チャンバ102)と、プラズマ処理チャンバのための排気流路(例えば、排気流路121)とを備えたプラズマ処理システム(例えば、システム100)を準備するための動作3801を備える。プラズマ処理チャンバは、プラズマ処理チャンバの動作中にプラズマが生成されるプラズマ処理領域(例えば、109)を備える。排気流路は、プラズマ処理領域に流体連通される。排気流路は、プラズマ処理領域からの処理排ガス流を方向付けるよう構成される。プラズマ処理システムは、排気流路に接続されたポンプ(例えば、ポンプ123)を備える。ポンプは、排気流路の内部に陰圧を掛けるよう構成される。プラズマ処理システムは、排気流路内に配置された排気バッフルアセンブリ(例えば、排気バッフルアセンブリ3200)を備える。排気バッフルアセンブリは、排気流路内の処理排ガス流をそらすような形状の少なくとも1つのバッフル部材を備える。少なくとも1つのバッフル部材の外面は、少なくとも1つのバッフル部材への処理排ガス流の中に存在するプラズマ処理副生成物の付着を促進するように調整される。
【0217】
いくつかの実施形態において、排気バッフルアセンブリは、プラズマ処理領域からの処理排ガス流が、排気バッフルアセンブリを通して流れる必要があるように、排気流路内の基本的に断面流面積全体にわたって伸びるよう構成される。いくつかの実施形態において、少なくとも1つのバッフル部材は、排気流路を通る主な排気流の方向を横切る角度に向けられた実質的に平坦な表面を有する。いくつかの実施形態において、少なくとも1つのバッフル部材の角度は、主な排気流の方向に対して約45度である。いくつかの実施形態において、少なくとも1つのバッフル部材の角度は、調節可能である。いくつかの実施形態において、少なくとも1つのバッフル部材は、陽極酸化アルミニウムで形成される。いくつかの実施形態において、少なくとも1つのバッフル部材は、約150マイクロインチ~約500マイクロインチの範囲内の平均表面粗さを有する。
【0218】
方法は、さらに、基板に暴露させてプラズマ処理領域内でプラズマを生成するための動作3803を備える。方法は、さらに、プラズマ処理領域から排気流路へ排気流路内の排気バッフルアセンブリを通して処理排ガス流を引き出すために、排気流路の内部に陰圧を掛けるようにポンプを作動させるための動作3805を備える。プラズマの成分は、基板上の材料と相互作用して、プラズマ処理副生成物を生成し、プラズマ処理副生成物の一部は、排気バッフルアセンブリの少なくとも1つのバッフル部材に付着する。いくつかの実施形態において、基板上の材料は、チタン酸ジルコン酸鉛(PZT)膜およびプラチナ(Pt)膜の一方または両方である。
【0219】
図39は、いくつかの実施形態に従って、プラズマ処理システム(例えば、システム100)で利用する排気バッフルアセンブリ(例えば、排気バッフルアセンブリ3200)を製造するための方法を示すフローチャートである。方法は、プラズマ処理チャンバ(例えば、102)の排気流路(例えば、121)内に嵌まるように、少なくとも1つのバッフル部材(例えば、3507A~3507E)を形成するための動作3901を備える。少なくとも1つのバッフル部材は、排気流路内に配置された時に処理排ガス流をそらすような形状である。方法は、さらに、少なくとも1つのバッフル部材への処理排ガス流の中に存在するプラズマ処理副生成物の付着を促進するように、少なくとも1つのバッフル部材の外面を調整するための動作3903を備える。いくつかの実施形態において、少なくとも1つのバッフル部材は、少なくとも1つのバッフル部材が排気流路内に配置された時に、排気流路を通る主な排気流の方向を横切る角度に向けられた実質的に平坦な表面を有するように形成される。いくつかの実施形態において、少なくとも1つのバッフル部材は、排気流路を通る主な排気流の方向を横切る角度に向けられた実質的に平坦な表面を有する。いくつかの実施形態において、少なくとも1つのバッフル部材の角度は、主な排気流の方向に対して約45度である。いくつかの実施形態において、少なくとも1つのバッフル部材の角度は、調節可能である。いくつかの実施形態において、少なくとも1つのバッフル部材は、陽極酸化アルミニウムで形成される。いくつかの実施形態において、少なくとも1つのバッフル部材は、約150マイクロインチ~約500マイクロインチの範囲内の平均表面粗さを有する。
【0220】
いくつかの実施形態において、方法は、少なくとも1つのバッフル部材を保持するためのフレームを形成する工程を備える。フレームは、底部バー(例えば、3503)、上部バー(例えば、3501)、第1端部バー(例えば、3505A)、および、第2端部バー(例えば、3505B)を備える。第1端部バーは、上部バーと底部バーとの間に伸びる。第2端部バーは、上部バーと底部バーとの間に伸びる。少なくとも1つのバッフル部材は、第1端部バーから第2端部バーまで伸びる。いくつかの実施形態において、フレームは、陽極酸化アルミニウムで形成される。いくつかの実施形態において、フレームは、約150マイクロインチ~約500マイクロインチの範囲内の平均表面粗さを有する。
【0221】
理解を深めるために、本発明について、ある程度詳しく説明したが、添付の特許請求の範囲内でいくらかの変更と変形を行ってもよいことは明らかである。したがって、これらの実施形態は、例示的なものであって、限定的なものではないとみなされ、本発明は、本明細書に示した詳細に限定されず、記載された実施形態の範囲および等価物の範囲内で変形されてよい。
本発明は、たとえば、以下のような態様で実現することもできる。
適用例1:
表面テクスチャ加工プラズマ処理チャンバ構成要素であって、
プラズマ処理チャンバ内に配置されるよう構成されたセラミック構成要素を備え、
前記セラミック構成要素は、前記プラズマ処理チャンバの動作中に前記プラズマ処理チャンバ内に前記セラミック構成要素が配置された時にプラズマ処理副生成物に暴露するように方向付けられた少なくとも1つの粗面を備え、前記少なくとも1つの粗面は、前記セラミック構成要素への前記プラズマ処理副生成物の付着を促進するよう構成されている、構成要素。
適用例2:
請求項1に記載の表面テクスチャ加工プラズマ処理チャンバ構成要素であって、前記セラミック構成要素は、酸化アルミニウムで形成されている、構成要素。
適用例3:
請求項1に記載の表面テクスチャ加工プラズマ処理チャンバ構成要素であって、前記少なくとも1つの粗面は、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有する、構成要素。
適用例4:
請求項1に記載の表面テクスチャ加工プラズマ処理チャンバ構成要素であって、前記セラミック構成要素を形成するセラミックベア材が、少なくとも1つの粗面上で露出されている、構成要素。
適用例5:
請求項1に記載の表面テクスチャ加工プラズマ処理チャンバ構成要素であって、前記少なくとも1つの粗面は、メディアブラスト処理によって粗面化される、構成要素。
適用例6:
請求項5に記載の表面テクスチャ加工プラズマ処理チャンバ構成要素であって、前記メディアブラスト処理は、酸化アルミニウム、炭化シリコン、破砕ガラスグリット、ガラスビーズ、セラミック、ガラス、クルミ殻、軽石、スチールグリット、スチールショット、アルミニウムショット、亜鉛ショット、銅ショット、カットワイヤ、ガーネット、ケイ砂、および、十字石、の内の1以上を含むメディアで、前記少なくとも1つの粗面に影響を与える、構成要素。
適用例7:
請求項1に記載の表面テクスチャ加工プラズマ処理チャンバ構成要素であって、前記少なくとも1つの粗面は、前記セラミック構成要素の焼成の前にナーリング処理によって部分的に形成される、構成要素。
適用例8:
請求項1に記載の表面テクスチャ加工プラズマ処理チャンバ構成要素であって、前記セラミック構成要素は、前記プラズマ処理チャンバ内に設置する上部窓構造であり、前記上部窓構造は、底面を備え、前記底面は、前記上部窓構造が前記プラズマ処理チャンバの動作中に前記プラズマ処理チャンバ内に配置された時にプラズマ処理副生成物に暴露するように方向付けられた少なくとも1つの粗面領域を備える、構成要素。
適用例9:
請求項8に記載の表面テクスチャ加工プラズマ処理チャンバ構成要素であって、前記底面は、シール構成要素と係合するよう構成された外周リング形状領域を備え、前記少なくとも1つの粗面領域は、前記外周リング形状領域によって囲まれ、前記少なくとも1つの粗面領域は、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有するように粗面化され、前記外周リング形状領域は、約20マイクロインチ(約0.508ミリメートル)の平均表面粗さを有するように滑らかにされる、構成要素。
適用例10:
請求項1に記載の表面テクスチャ加工プラズマ処理チャンバ構成要素であって、前記セラミック構成要素は、前記プラズマ処理チャンバ内に設置するライナ構造であり、前記ライナ構造は、前記プラズマ処理チャンバ内のプラズマ処理領域の少なくとも一部の周りに伸びるよう構成され、前記ライナ構造は、前記ライナ構造が前記プラズマ処理チャンバの動作中に前記プラズマ処理チャンバ内に配置された時にプラズマ処理副生成物に暴露するように方向付けられた前記少なくとも1つの粗面である内面を有する、構成要素。
適用例11:
請求項1に記載の表面テクスチャ加工プラズマ処理チャンバ構成要素であって、前記セラミック構成要素は、前記プラズマ処理チャンバ内に設置するリング構造であり、前記リング構造は、前記プラズマ処理チャンバ内の基板支持構造を囲むように構成され、前記リング構造は、前記リング構造の内面および上面の一方または両方である少なくとも1つの処理暴露面を有し、前記少なくとも1つの処理暴露面は、前記リング構造が前記プラズマ処理チャンバの動作中に前記プラズマ処理チャンバ内に配置された時にプラズマ処理副生成物に暴露するように方向付けられた前記少なくとも1つの粗面である、構成要素。
適用例12:
請求項11に記載の表面テクスチャ加工プラズマ処理チャンバ構成要素であって、前記リング構造は、フォーカスリング構造またはエッジリング構造のいずれかである、構成要素。
適用例13:
プラズマ処理チャンバであって、
前記プラズマ処理チャンバの動作中にプラズマへ暴露させて基板を保持するよう構成された基板支持構造と、
上部窓構造と、
を備え、
前記上部窓構造は、前記基板支持構造と前記上部窓構造との間にプラズマ処理領域を確立するように前記基板支持構造の上方に配置され、前記上部窓構造は、セラミック材料で形成され、前記上部窓構造は、前記プラズマ処理領域の方を向いた底面を有し、前記底面は、前記底面へのプラズマ処理副生成物の付着を促進する表面粗さを有する、プラズマ処理チャンバ。
適用例14:
請求項13に記載のプラズマ処理チャンバであって、前記上部窓構造は、酸化アルミニウムで形成されている、プラズマ処理チャンバ。
適用例15:
請求項13に記載のプラズマ処理チャンバであって、前記上部窓構造の前記底面は、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有する、プラズマ処理チャンバ。
適用例16:
請求項13に記載のプラズマ処理チャンバであって、前記上部窓構造を形成するセラミックベア材が、前記上部窓構造の前記底面で露出されている、プラズマ処理チャンバ。
適用例17:
請求項13に記載のプラズマ処理チャンバであって、さらに、
前記プラズマ処理チャンバ内の前記プラズマ処理領域の少なくとも一部の周りに伸びるよう構成されたライナ構造を備え、
前記ライナ構造は、セラミック材料で形成され、前記ライナ構造は、前記プラズマ処理領域の方を向いた内面を有し、前記内面は、前記内面へのプラズマ処理副生成物の付着を促進する表面粗さを有する、プラズマ処理チャンバ。
適用例18:
請求項17に記載のプラズマ処理チャンバであって、前記ライナ構造は、酸化アルミニウムで形成されている、プラズマ処理チャンバ。
適用例19:
請求項17に記載のプラズマ処理チャンバであって、前記ライナ構造の前記内面は、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有する、プラズマ処理チャンバ。
適用例20:
請求項17に記載のプラズマ処理チャンバであって、前記ライナ構造を形成するセラミックベア材が、前記ライナ構造の前記内面で露出されている、プラズマ処理チャンバ。
適用例21:
請求項13に記載のプラズマ処理チャンバであって、さらに、
前記プラズマ処理チャンバ内の前記基板支持構造を囲むように構成されたリング構造を備え、
前記リング構造は、前記プラズマ処理領域の方を向いた前記リング構造の内面および上面の一方または両方である少なくとも1つの処理暴露面を有し、前記少なくとも1つの処理暴露面は、前記少なくとも1つの処理暴露面へのプラズマ処理副生成物の付着を促進する表面粗さを有する、プラズマ処理チャンバ。
適用例22:
請求項21に記載のプラズマ処理チャンバであって、前記リング構造は、フォーカスリング構造、接地リング構造、または、エッジリング構造のいずれかである、プラズマ処理チャンバ。
適用例23:
請求項21に記載のプラズマ処理チャンバであって、前記リング構造は、酸化アルミニウムで形成されている、プラズマ処理チャンバ。
適用例24:
請求項21に記載のプラズマ処理チャンバであって、前記リング構造の前記少なくとも1つの処理暴露面は、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有する、プラズマ処理チャンバ。
適用例25:
請求項21に記載のプラズマ処理チャンバであって、前記リング構造を形成するセラミックベア材が、前記リング構造の前記処理暴露面で露出されている、プラズマ処理チャンバ。
適用例26:
請求項13に記載のプラズマ処理チャンバであって、さらに、
前記上部窓構造の上方に配置されたコイルアセンブリを備え、
前記コイルアセンブリは、前記上部窓構造を通して前記プラズマ処理領域へ高周波電力を伝達するよう構成されている、プラズマ処理チャンバ。
適用例27:
基板のプラズマ処理のための方法であって、
基板支持構造および上部窓構造を備えたプラズマ処理チャンバを準備する工程であって、前記基板支持構造は、プラズマへ暴露させて前記基板を保持するよう構成され、前記上部窓構造は、前記基板支持構造と前記上部窓構造との間にプラズマ処理領域を確立するように前記基板支持構造の上方に配置され、前記上部窓構造は、セラミック材料で形成され、前記上部窓構造は、前記プラズマ処理領域の方を向いた底面を有し、前記底面は、前記底面へのプラズマ処理副生成物の付着を促進する表面粗さを有する、工程と、
前記プラズマ処理領域においてプラズマを生成する工程であって、前記プラズマの成分は、前記基板上の材料と相互作用して、プラズマ処理副生成物を生成し、前記プラズマ処理副生成物の一部は、前記上部窓構造の前記底面に付着する、工程と、
を備える、方法。
適用例28:
請求項27に記載の方法であって、前記基板上の前記材料は、チタン酸ジルコン酸鉛膜およびプラチナ膜の一方または両方である、方法。
適用例29:
請求項28に記載の方法であって、前記プラズマを生成する工程は、前記プラズマ処理領域内の処理ガスに高周波電力を印加する工程を含み、前記高周波電力は、約400ワット(W)~約1250Wの範囲内である、方法。
適用例30:
請求項29に記載の方法であって、前記高周波電力は、約13.56MHzの周波数を有する高周波信号によって印加される、方法。
適用例31:
請求項29に記載の方法であって、さらに、
前記基板支持構造でバイアス電圧を生成する工程を備え、
前記バイアス電圧は、約100V~約600Vの範囲内である、方法。
適用例32:
請求項29に記載の方法であって、前記処理ガスは、塩素(Cl
2
)、三塩化ホウ素(BCl
3
)、アルゴン(Ar)、四フッ化炭素(CF
4
)、酸素(O
2
)、トリフルオロメタン(CHF
3
)、および、六フッ化硫黄(SF
6
)、の内の1以上である、方法。
適用例33:
請求項32に記載の方法であって、さらに、
前記基板支持構造の温度を、約セ氏40度(℃)~約80℃の範囲内に維持する工程を備える、方法。
適用例34:
請求項32に記載の方法であって、さらに、
前記プラズマ処理領域内の圧力を、約5ミリTorr~約50ミリTorrの範囲内に維持する工程を備える、方法。
適用例35:
請求項29に記載の方法であって、前記処理ガスは、約20標準立方センチメートル毎分(sccm)~約300sccmの範囲内の流量で前記プラズマ処理領域に供給される塩素(Cl
2
)、約50sccm~約300sccmの範囲内の流量で前記プラズマ処理領域に供給される三塩化ホウ素(BCl
3
)、約50sccm~約300sccmの範囲内の流量で前記プラズマ処理領域に供給されるアルゴン(Ar)、約50sccm~約200sccmの範囲内の流量で前記プラズマ処理領域に供給される四フッ化炭素(CF
4
)、約20sccm~約300sccmの範囲内の流量で前記プラズマ処理領域に供給される酸素(O
2
)、約50sccm~約300sccmの範囲内の流量で前記プラズマ処理領域に供給されるトリフルオロメタン(CHF
3
)、および、約50sccm~約300sccmの範囲内の流量で前記プラズマ処理領域に供給される六フッ化硫黄(SF
6
)、の内の1以上を含む、方法。
適用例36:
請求項27に記載の方法であって、前記上部窓構造は、酸化アルミニウムで形成されている、方法。
適用例37:
請求項27に記載の方法であって、前記上部窓構造の前記底面は、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有する、方法。
適用例38:
請求項27に記載の方法であって、前記上部窓構造を形成するセラミックベア材が、前記上部窓構造の前記底面で露出されている、方法。
適用例39:
請求項27に記載の方法であって、さらに、
前記プラズマ処理チャンバ内のライナ構造を利用する工程であって、前記ライナ構造は、前記プラズマ処理チャンバ内の前記プラズマ処理領域の少なくとも一部の周りに伸びるよう構成され、前記ライナ構造は、前記プラズマ処理副生成物に暴露するように方向付けられた内面を有し、前記ライナ構造の前記内面は、前記ライナ構造の前記内面への前記プラズマ処理副生成物の付着を促進する表面粗さを有する、工程を備える、方法。
適用例40:
請求項39に記載の方法であって、前記ライナ構造は、酸化アルミニウムで形成されている、方法。
適用例41:
請求項39に記載の方法であって、前記ライナ構造の前記内面は、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有する、方法。
適用例42:
請求項39に記載の方法であって、前記ライナ構造を形成するセラミックベア材が、前記ライナ構造の前記内面で露出されている、方法。
適用例43:
請求項27に記載の方法であって、さらに、
前記プラズマ処理チャンバ内のリング構造を利用する工程であって、前記リング構造は、前記プラズマ処理チャンバ内の前記基板支持構造を囲むように構成され、前記リング構造は、前記リング構造の内面および上面の一方または両方である少なくとも1つの処理暴露面を有し、前記少なくとも1つの処理暴露面は、前記プラズマ処理副生成物に暴露するように方向付けられ、前記リング構造の前記処理暴露面は、前記リング構造の前記の処理暴露面への前記プラズマ処理副生成物の付着を促進する表面粗さを有する、工程を備える、方法。
適用例44:
請求項43に記載の方法であって、前記リング構造は、フォーカスリング構造、接地リング構造、または、エッジリング構造のいずれかである、方法。
適用例45:
請求項43に記載の方法であって、前記リング構造は、酸化アルミニウムで形成されている、方法。
適用例46:
請求項43に記載の方法であって、前記リング構造の前記処理暴露面は、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有する、方法。
適用例47:
請求項43に記載の方法であって、前記リング構造を形成するセラミックベア材が、前記リング構造の前記処理暴露面で露出されている、方法。
適用例48:
プラズマ処理チャンバ内で利用する構成要素を製造するための方法であって、
プラズマ処理チャンバ内に設置するセラミック構成要素を形成する工程であって、前記セラミック構成要素は、少なくとも1つの処理暴露面を有する、工程と、
約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有するように、前記少なくとも1つの処理暴露面を粗面化する工程と、
を備える、方法。
適用例49:
請求項48に記載の方法であって、前記少なくとも1つの処理暴露面を粗面化する工程は、メディアブラスト処理によってなされる、方法。
適用例50:
請求項49に記載の方法であって、前記メディアブラスト処理は、酸化アルミニウム、炭化シリコン、破砕ガラスグリット、ガラスビーズ、セラミック、ガラス、クルミ殻、軽石、スチールグリット、スチールショット、アルミニウムショット、亜鉛ショット、銅ショット、カットワイヤ、ガーネット、ケイ砂、および、十字石、の内の1以上を含むメディアで、前記少なくとも1つの処理暴露面に影響を与える、方法。
適用例51:
請求項48に記載の方法であって、前記少なくとも1つの処理暴露面を粗面化する工程は、前記セラミック構成要素の焼成の前にナーリング処理によってなされる、方法。
適用例52:
請求項48に記載の方法であって、前記セラミック構成要素は、酸化アルミニウムで形成されている、方法。
適用例53:
請求項48に記載の方法であって、前記セラミック構成要素を形成するセラミックベア材が、前記少なくとも1つの処理暴露面の粗面化の後に前記少なくとも1つの処理暴露面で露出される、方法。
適用例54:
請求項48に記載の方法であって、前記セラミック構成要素は、上部窓構造、ライナ構造、フォーカスリング構造、または、エッジリング構造のいずれかである、方法。
適用例55:
プラズマ処理チャンバ内で利用するコーティングされた構成要素を前記プラズマ処理チャンバ内で利用する粗面化構成要素に変換するための方法であって、
セラミック構成要素からコーティングを剥離させて、前記セラミック構成要素を形成するセラミックベア材にする工程であって、前記セラミック構成要素は、プラズマ処理チャンバ内に設置するように構成され、前記セラミック構成要素は、少なくとも1つの処理暴露面を有する、工程と、
約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有するように、前記少なくとも1つの処理暴露面を粗面化する工程と、
を備える、方法。
適用例56:
請求項55に記載の方法であって、前記少なくとも1つの処理暴露面を粗面化する工程は、メディアブラスト処理によってなされる、方法。
適用例57:
請求項56に記載の方法であって、前記メディアブラスト処理は、酸化アルミニウム、炭化シリコン、破砕ガラスグリット、ガラスビーズ、セラミック、ガラス、クルミ殻、軽石、スチールグリット、スチールショット、アルミニウムショット、亜鉛ショット、銅ショット、カットワイヤ、ガーネット、ケイ砂、および、十字石、の内の1以上を含むメディアで、前記少なくとも1つの処理暴露面に影響を与える、方法。
適用例58:
請求項55に記載の方法であって、前記セラミック構成要素は、酸化アルミニウムで形成されている、方法。
適用例59:
請求項55に記載の方法であって、前記セラミック構成要素を形成する前記セラミックベア材が、前記少なくとも1つの処理暴露面の粗面化の後に前記少なくとも1つの処理暴露面で露出される、方法。
適用例60:
請求項55に記載の方法であって、前記セラミック構成要素は、上部窓構造、ライナ構造、フォーカスリング構造、または、エッジリング構造のいずれかである、方法。
適用例61:
プラズマ処理チャンバ内で利用するフォーカスリングであって、
セラミック材料で形成されたリング構造を備え、
前記リング構造は、プラズマ処理チャンバ内の基板支持構造を囲むように構成され、前記リング構造は、前記プラズマ処理チャンバの動作中に前記リング構造が前記プラズマ処理チャンバ内に配置された時にプラズマ処理副生成物に暴露されるように方向付けられた内面を有し、前記内面は、前記内面への前記プラズマ処理副生成物の付着を促進する制御された表面トポグラフィ変動を有するように形成される、フォーカスリング。
適用例62:
請求項61に記載のフォーカスリングであって、前記制御された表面トポグラフィ変動は、前記リング構造によって囲まれた領域に向かって内向きに伸びる凸構造の格子を備える、フォーカスリング。
適用例63:
請求項62に記載のフォーカスリングであって、前記凸構造の格子は、正方形格子、六角形格子、矩形格子、平行四辺形格子、および、菱形格子、の内の1以上である、フォーカスリング。
適用例64:
請求項62に記載のフォーカスリングであって、各凸構造は、ドーム形状を有する、フォーカスリング。
適用例65:
請求項62に記載のフォーカスリングであって、隣接する凸構造の間の間隔は、約0.5ミリメートル~約2ミリメートルの範囲内にある、フォーカスリング。
適用例66:
請求項62に記載のフォーカスリングであって、隣接する凸構造の間の間隔は、約1ミリメートルである、フォーカスリング。
適用例67:
請求項62に記載のフォーカスリングであって、各凸構造は、約0.5ミリメートル~約2ミリメートルの範囲内の距離だけ、または、約1ミリメートル~約2ミリメートルの範囲内の距離だけ、または、約1ミリメートルの距離だけ、前記リング構造によって囲まれた前記領域に向かって内向きに伸びている、フォーカスリング。
適用例68:
請求項62に記載のフォーカスリングであって、各凸構造は、約1ミリメートル~約3ミリメートルの範囲内の底幅、または、約2ミリメートル~約3ミリメートルの範囲内の底幅、または、約2.5ミリメートルの底幅を有する、フォーカスリング。
適用例69:
請求項62に記載のフォーカスリングであって、前記内面は、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有する、フォーカスリング。
適用例70:
請求項61に記載のフォーカスリングであって、前記リング構造は、酸化アルミニウムで形成されている、フォーカスリング。
適用例71:
請求項61に記載のフォーカスリングであって、前記リング構造は、中空直円筒である、フォーカスリング。
適用例72:
請求項71に記載のフォーカスリングであって、さらに、
前記リング構造の外面から半径方向外向きに伸びるよう構成された3つの半径方向延長構造を備え、
前記3つの半径方向延長構造は、前記リング構造の外周に沿って離間され、前記3つの半径方向延長構造は、前記リング構造が前記プラズマ処理チャンバ内に配置される時に、前記基板支持構造に対して前記リング構造を上げ下げすることを可能にするために、3つのそれぞれのリフト構成要素と係合するよう構成されている、フォーカスリング。
適用例73:
請求項72に記載のフォーカスリングであって、前記リング構造の前記内面、および、前記リング構造の上面、および、前記3つの半径方向延長構造の上面は、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有する、フォーカスリング。
適用例74:
プラズマ処理チャンバであって、
前記プラズマ処理チャンバの動作中にプラズマへ暴露させて基板を保持するよう構成された基板支持構造と、
セラミック材料で形成されたリング構造を備えたフォーカスリングと、
を備え、
前記リング構造は、前記プラズマ処理チャンバ内の前記基板支持構造を囲むように構成され、前記リング構造は、前記プラズマ処理チャンバの動作中にプラズマ処理副生成物に暴露されるように方向付けられた内面を有し、前記内面は、前記内面への前記プラズマ処理副生成物の付着を促進する制御された表面トポグラフィ変動を有するように形成される、プラズマ処理チャンバ。
適用例75:
請求項74に記載のプラズマ処理チャンバであって、前記制御された表面トポグラフィ変動は、前記リング構造によって囲まれた領域に向かって内向きに伸びる凸構造の格子を備える、プラズマ処理チャンバ。
適用例76:
請求項75に記載のプラズマ処理チャンバであって、前記凸構造の格子は、正方形格子、六角形格子、矩形格子、平行四辺形格子、および、菱形格子、の内の1以上である、プラズマ処理チャンバ。
適用例77:
請求項75に記載のプラズマ処理チャンバであって、各凸構造は、ドーム形状を有する、プラズマ処理チャンバ。
適用例78:
請求項75に記載のプラズマ処理チャンバであって、隣接する凸構造の間の間隔は、約0.5ミリメートル~約2ミリメートルの範囲内にある、プラズマ処理チャンバ。
適用例79:
請求項75に記載のプラズマ処理チャンバであって、隣接する凸構造の間の間隔は、約1ミリメートルである、プラズマ処理チャンバ。
適用例80:
請求項75に記載のプラズマ処理チャンバであって、各凸構造は、約0.5ミリメートル~約2ミリメートルの範囲内の距離だけ、または、約1ミリメートル~約2ミリメートルの範囲内の距離だけ、または、約1ミリメートルの距離だけ、前記リング構造によって囲まれた前記領域に向かって内向きに伸びている、プラズマ処理チャンバ。
適用例81:
請求項75に記載のプラズマ処理チャンバであって、各凸構造は、約1ミリメートル~約3ミリメートルの範囲内の底幅、または、約2ミリメートル~約3ミリメートルの範囲内の底幅、または、約2.5ミリメートルの底幅を有する、プラズマ処理チャンバ。
適用例82:
請求項75に記載のプラズマ処理チャンバであって、前記内面は、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有する、プラズマ処理チャンバ。
適用例83:
請求項74に記載のプラズマ処理チャンバであって、前記リング構造は、酸化アルミニウムで形成されている、プラズマ処理チャンバ。
適用例84:
請求項74に記載のプラズマ処理チャンバであって、前記リング構造は、中空直円筒である、プラズマ処理チャンバ。
適用例85:
請求項84に記載のプラズマ処理チャンバであって、さらに、
前記リング構造の外面から半径方向外向きに伸びるよう構成された3つの半径方向延長構造を備え、
前記3つの半径方向延長構造は、前記リング構造の外周に沿って離間され、前記3つの半径方向延長構造は、前記基板支持構造に対して前記リング構造を上げ下げすることを可能にするために、3つのそれぞれのリフト構成要素と係合するよう構成されている、プラズマ処理チャンバ。
適用例86:
請求項85に記載のプラズマ処理チャンバであって、前記リング構造の前記内面、および、前記リング構造の上面、および、前記3つの半径方向延長構造の上面は、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有する、プラズマ処理チャンバ。
適用例87:
基板のプラズマ処理のための方法であって、
基板支持構造およびフォーカスリングを備えたプラズマ処理チャンバを準備する工程であって、前記フォーカスリングは、セラミック材料で形成されたリング構造を備え、前記リング構造は、前記プラズマ処理チャンバ内の前記基板支持構造を囲むように構成され、前記リング構造は、前記プラズマ処理チャンバの動作中にプラズマ処理副生成物に暴露されるように方向付けられた内面を有し、前記内面は、前記内面への前記プラズマ処理副生成物の付着を促進する制御された表面トポグラフィ変動を有するように形成される、工程と、
前記基板支持構造の上方のプラズマ処理領域においてプラズマを生成する工程であって、前記プラズマの成分は、前記基板上の材料と相互作用して、プラズマ処理副生成物を生成し、前記プラズマ処理副生成物の一部は、前記リング構造の前記内面に付着する、工程と、
を備える、方法。
適用例88:
請求項87に記載の方法であって、前記基板上の前記材料は、チタン酸ジルコン酸鉛膜およびプラチナ膜の一方または両方である、方法。
適用例89:
請求項88に記載の方法であって、前記プラズマを生成する工程は、前記プラズマ処理領域内の処理ガスに高周波電力を印加する工程を含み、前記高周波電力は、約400ワット(W)~約1250Wの範囲内である、方法。
適用例90:
請求項89に記載の方法であって、前記高周波電力は、約13.56MHzの周波数を有する高周波信号によって印加される、方法。
適用例91:
請求項89に記載の方法であって、さらに、
前記基板支持構造でバイアス電圧を生成する工程を備え、前記バイアス電圧は、約100V~約600Vの範囲内である、方法。
適用例92:
請求項89に記載の方法であって、前記処理ガスは、塩素(Cl
2
)、三塩化ホウ素(BCl
3
)、アルゴン(Ar)、四フッ化炭素(CF
4
)、酸素(O
2
)、トリフルオロメタン(CHF
3
)、および、六フッ化硫黄(SF
6
)、の内の1以上である、方法。
適用例93:
請求項92に記載の方法であって、さらに、
前記基板支持構造の温度を、約セ氏40度(℃)~約80℃の範囲内に維持する工程を備える、方法。
適用例94:
請求項92に記載の方法であって、さらに、
前記プラズマ処理領域内の圧力を、約5ミリTorr~約50ミリTorrの範囲内に維持する工程を備える、方法。
適用例95:
請求項89に記載の方法であって、前記処理ガスは、約20標準立方センチメートル毎分(sccm)~約300sccmの範囲内の流量で前記プラズマ処理領域に供給される塩素(Cl
2
)、約50sccm~約300sccmの範囲内の流量で前記プラズマ処理領域に供給される三塩化ホウ素(BCl
3
)、約50sccm~約300sccmの範囲内の流量で前記プラズマ処理領域に供給されるアルゴン(Ar)、約50sccm~約200sccmの範囲内の流量で前記プラズマ処理領域に供給される四フッ化炭素(CF
4
)、約20sccm~約300sccmの範囲内の流量で前記プラズマ処理領域に供給される酸素(O
2
)、約50sccm~約300sccmの範囲内の流量で前記プラズマ処理領域に供給されるトリフルオロメタン(CHF
3
)、および、約50sccm~約300sccmの範囲内の流量で前記プラズマ処理領域に供給される六フッ化硫黄(SF
6
)、の内の1以上を含む、方法。
適用例96:
請求項87に記載の方法であって、前記リング構造は、酸化アルミニウムで形成されている、方法。
適用例97:
請求項87に記載の方法であって、前記リング構造の前記内面は、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有する、方法。
適用例98:
請求項87に記載の方法であって、前記リング構造を形成するセラミックベア材が、前記リング構造の前記内面で露出されている、方法。
適用例99:
請求項87に記載の方法であって、前記リング構造は、中空直円筒である、方法。
適用例100:
請求項99に記載の方法であって、前記フォーカスリングは、前記リング構造の外面から半径方向外向きに伸びるよう構成された3つの半径方向延長構造を備え、 前記3つの半径方向延長構造は、前記リング構造の外周に沿って等間隔に離間され、前記3つの半径方向延長構造は、前記基板支持構造に対して前記リング構造を上げ下げすることを可能にするために、3つのそれぞれのリフト構成要素と係合するよう構成されている、方法。
適用例101:
請求項100に記載の方法であって、前記リング構造の前記内面、および、前記リング構造の上面、および、前記3つの半径方向延長構造の上面は、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有する、方法。
適用例102:
プラズマ処理チャンバ内で利用するフォーカスリングを製造するための方法であって、
セラミック材料のリング構造を形成する工程であって、前記リング構造は、プラズマ処理チャンバ内の基板支持構造を囲むように構成され、前記リング構造は、前記プラズマ処理チャンバの動作中に前記リング構造が前記プラズマ処理チャンバ内に配置された時にプラズマ処理副生成物に暴露されるように方向付けられた内面を有する、工程と、
制御された表面トポグラフィ変動を前記リング構造の前記内面上に形成する工程であって、前記制御された表面トポグラフィ変動は、前記内面への前記プラズマ処理副生成物の付着を促進する、工程と、
を備える、方法。
適用例103:
請求項102に記載の方法であって、前記制御された表面トポグラフィ変動を前記リング構造の前記内面上に形成する工程は、前記リング構造の前記内面の上に蒸着されたマスクを通してメディアブラスト処理を実行する工程であって、前記マスクは、前記制御された表面トポグラフィ変動を形成するために侵食する前記リング構造の前記内面の部分を露出させる、工程を含む、方法。
適用例104:
請求項103に記載の方法であって、前記メディアブラスト処理は、酸化アルミニウム、炭化シリコン、破砕ガラスグリット、ガラスビーズ、セラミック、ガラス、クルミ殻、軽石、スチールグリット、スチールショット、アルミニウムショット、亜鉛ショット、銅ショット、カットワイヤ、ガーネット、ケイ砂、および、十字石、の内の1以上を含むメディアで、前記内面に影響を与える、方法。
適用例105:
請求項103に記載の方法であって、さらに、
前記制御された表面トポグラフィ変動を前記リング構造の前記内面上に形成した後に前記リング構造の前記内面を粗面化する工程であって、前記粗面化は、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを前記リング構造の前記内面に与えるように実行される、工程を備える、方法。
適用例106:
請求項105に記載の方法であって、前記内面を粗面化する工程は、前記メディアブラスト処理によってなされる、方法。
適用例107:
請求項102に記載の方法であって、前記制御された表面トポグラフィ変動を前記リング構造の前記内面上に形成する工程は、前記セラミック材料の焼成の前にナーリング処理を前記内面に実行する工程を含む、方法。
適用例108:
請求項102に記載の方法であって、前記セラミック材料は、酸化アルミニウムである、方法。
適用例109:
請求項102に記載の方法であって、前記リング構造を形成する前記セラミック材料は、前記制御された表面トポグラフィ変動を前記リング構造の前記内面上に形成した後に、前記内面で露出される、方法。
適用例110:
請求項102に記載の方法であって、前記リング構造は、中空直円筒である、方法。
適用例111:
請求項110に記載の方法であって、前記リング構造を形成する工程は、前記リング構造の外面から半径方向外向きに伸びるように3つの半径方向延長構造を形成する工程を含み、 前記3つの半径方向延長構造は、前記リング構造の外周に沿って離間され、前記3つの半径方向延長構造は、前記リング構造が前記プラズマ処理チャンバ内に配置された時に前記基板支持構造に対して前記リング構造を上げ下げすることを可能にするために、3つのそれぞれのリフト構成要素と係合するよう構成されている、方法。
適用例112:
請求項111に記載の方法であって、さらに、
前記制御された表面トポグラフィ変動を前記リング構造の前記内面上に形成した後に前記リング構造の前記内面を粗面化する工程であって、前記粗面化は、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを前記リング構造の前記内面に与えるように実行される、工程と、
約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有するように、前記3つの半径方向延長構造の上面を粗面化する工程と、
を備える、方法。
適用例113:
プラズマ処理チャンバ内で利用する基板アクセスポートシールドであって、
シールド部分と、
前記シールド部分の第1端から伸び、プラズマ処理チャンバ内の垂直移動可能構成要素と係合するよう構成された第1支持部分と、
前記シールド部分の第2端から伸び、前記プラズマ処理チャンバ内の前記垂直移動可能構成要素と係合するよう構成された第2支持部分と、
を備え、
前記シールド部分ならびに前記第1および第2支持部分は、円弧に沿って伸びる一体シールド構造を形成し、前記垂直移動可能構成要素の垂直移動は、前記一体シールド構造の対応する垂直移動を引き起こし、前記シールド部分は、前記第1および第2支持部分が前記垂直移動可能構成要素と係合されて、前記垂直移動可能構成要素が下側垂直位置にある時に、前記プラズマ処理チャンバの基板アクセスポート開口部を少なくとも部分的に覆うよう構成され、前記シールド部分は、前記第1および第2支持部分が前記垂直移動可能構成要素と係合されて、前記垂直移動可能構成要素が上側垂直位置にある時に、前記プラズマ処理チャンバの前記基板アクセスポート開口部を覆わないよう構成されている、基板アクセスポートシールド。
適用例114:
請求項113に記載のプラズマ処理チャンバ内で利用する基板アクセスポートシールドであって、前記シールド部分は、中空直円筒の一部として構成されている、基板アクセスポートシールド。
適用例115:
請求項114に記載のプラズマ処理チャンバ内で利用する基板アクセスポートシールドであって、前記シールド部分は、前記中空直円筒の軸方向に測定した垂直高さを有し、前記シールド部分の前記垂直高さは、前記第1および第2支持部分が前記垂直移動可能構成要素と係合されて、前記垂直移動可能構成要素が下側垂直位置にある時に、前記シールド部分が、前記プラズマチャンバの前記基板アクセスポート開口部の垂直範囲の少なくとも2分の1を覆うことを可能にする、基板アクセスポートシールド。
適用例116:
請求項114に記載のプラズマ処理チャンバ内で利用する基板アクセスポートシールドであって、前記シールド部分は、前記中空直円筒の軸方向に測定した垂直高さを有し、前記シールド部分の前記垂直高さは、前記第1および第2支持部分が前記垂直移動可能構成要素と係合されて、前記垂直移動可能構成要素が下側垂直位置にある時に、前記シールド部分が、前記プラズマチャンバの前記基板アクセスポート開口部の垂直範囲の少なくとも3分の2を覆うことを可能にする、基板アクセスポートシールド。
適用例117:
請求項114に記載のプラズマ処理チャンバ内で利用する基板アクセスポートシールドであって、前記シールド部分は、前記中空直円筒の軸方向に測定した垂直高さを有し、前記シールド部分の前記垂直高さは、前記第1および第2支持部分が前記垂直移動可能構成要素と係合されて、前記垂直移動可能構成要素が前記下側垂直位置にある時に、前記シールド部分が、前記プラズマチャンバの前記基板アクセスポート開口部の垂直範囲を完全に覆うことを可能にする、基板アクセスポートシールド。
適用例118:
請求項113に記載のプラズマ処理チャンバ内で利用する基板アクセスポートシールドであって、前記シールド部分は、中空直円筒の第1部分として構成され、前記第1支持部分は、前記中空直円筒の第2部分として構成され、前記第2支持部分は、前記中空直円筒の第3部分として構成され、前記シールド部分は、前記中空直円筒の軸方向に測定した第1垂直高さを有し、前記第1支持部分は、前記中空直円筒の前記軸方向に測定した第2垂直高さを有し、前記第2支持部分は、前記中空直円筒の前記軸方向に測定した第3垂直高さを有する、基板アクセスポートシールド。
適用例119:
請求項118に記載のプラズマ処理チャンバ内で利用する基板アクセスポートシールドであって、前記第1垂直高さ、前記第2垂直高さ、および、前記第3垂直高さは、実質的に等しい、基板アクセスポートシールド。
適用例120:
請求項118に記載のプラズマ処理チャンバ内で利用する基板アクセスポートシールドであって、前記第1垂直高さは、前記第2垂直高さおよび前記第3垂直高さの各々とは異なる、基板アクセスポートシールド。
適用例121:
請求項120に記載のプラズマ処理チャンバ内で利用する基板アクセスポートシールドであって、前記第2垂直高さおよび前記第3垂直高さは、実質的に等しい、基板アクセスポートシールド。
適用例122:
請求項118に記載のプラズマ処理チャンバ内で利用する基板アクセスポートシールドであって、前記第1垂直高さは、前記第2垂直高さおよび前記第3垂直高さの各々よりも小さい、基板アクセスポートシールド。
適用例123:
請求項113に記載のプラズマ処理チャンバ内で利用する基板アクセスポートシールドであって、前記一体シールド構造は、セラミック材料で形成される、基板アクセスポートシールド。
適用例124:
請求項123に記載のプラズマ処理チャンバ内で利用する基板アクセスポートシールドであって、前記セラミック材料は、酸化アルミニウムである、基板アクセスポートシールド。
適用例125:
請求項123に記載のプラズマ処理チャンバ内で利用する基板アクセスポートシールドであって、前記一体シールド構造の少なくとも内面が、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有する、基板アクセスポートシールド。
適用例126:
請求項125に記載のプラズマ処理チャンバ内で利用する基板アクセスポートシールドであって、前記一体シールド構造を形成する前記セラミック材料は、前記一体シールド構造の前記内面で露出されている、基板アクセスポートシールド。
適用例127:
請求項113に記載のプラズマ処理チャンバ内で利用する基板アクセスポートシールドであって、前記垂直移動可能構成要素は、フォーカスリング構造である、基板アクセスポートシールド。
適用例128:
請求項127に記載のプラズマ処理チャンバ内で利用する基板アクセスポートシールドであって、前記フォーカスリング構造は、前記プラズマ処理チャンバ内の基板支持構造を囲むように構成され、前記フォーカスリング構造は、中空直円筒として形成されたリング部分と、前記リング部分の外面から半径方向外向きに伸びるよう構成された3つの半径方向延長構造とを備え、前記3つの半径方向延長構造は、前記リング部分の外周に沿って離間され、前記第1支持部分は、前記3つの半径方向延長構造の内の第1構造と係合するよう構成され、前記第2支持部分は、前記3つの半径方向延長構造の内の第2構造と係合するよう構成されている、基板アクセスポートシールド。
適用例129:
請求項128に記載のプラズマ処理チャンバ内で利用する基板アクセスポートシールドであって、前記3つの半径方向延長構造は、前記基板支持構造に対して前記フォーカスリング構造および前記一体シールド構造の組み合わせを上げ下げすることを可能にするために、3つのそれぞれのリフト構成要素と係合するよう構成されている、基板アクセスポートシールド。
適用例130:
請求項128に記載のプラズマ処理チャンバ内で利用する基板アクセスポートシールドであって、前記第1支持部分は、前記3つの半径方向延長構造の内の第3構造と係合するよう構成されている、基板アクセスポートシールド。
適用例131:
プラズマ処理チャンバであって、
前記プラズマ処理チャンバの動作中にプラズマへ暴露させて基板を保持するよう構成された基板支持構造と、
前記プラズマ処理チャンバ内の前記基板支持構造を囲むように構成されたフォーカスリング構造であって、前記フォーカスリング構造は、中空直円筒として形成されたリング部分と、前記リング部分の外面から半径方向外向きに伸びるよう構成された3つの半径方向延長構造とを備え、前記3つの半径方向延長構造は、前記リング部分の外周に沿って離間された、フォーカスリング構造と、
シールド部分、第1支持部分、および、第2支持部分を備えた一体シールド構造であって、前記第1支持部分は、前記シールド部分の第1端から伸び、前記第1支持部分は、前記フォーカスリング構造の前記3つの半径方向延長構造の内の第1構造と係合するよう構成され、前記第2支持部分は、前記シールド部分の第2端から伸び、前記第2支持部分は、前記フォーカスリング構造の前記3つの半径方向延長構造の内の第2構造と係合するよう構成され、前記一体シールド構造は、円弧に沿って伸びるように形成され、前記シールド部分は、前記フォーカスリング構造が下側垂直位置にある時に前記プラズマ処理チャンバの基板アクセスポート開口部を少なくとも部分的に覆うよう構成され、前記シールド部分は、前記フォーカスリング構造が上側垂直位置にある時に前記プラズマ処理チャンバの前記基板アクセスポート開口部を覆わないよう構成されている、一体シールド構造と、
を備える、プラズマ処理チャンバ。
適用例132:
請求項131に記載のプラズマ処理チャンバであって、前記一体シールド構造は、前記フォーカスリング構造から取り外し可能である、プラズマ処理チャンバ。
適用例133:
請求項131に記載のプラズマ処理チャンバであって、前記一体シールド構造は、重力で前記フォーカスリング構造に固定される、プラズマ処理チャンバ。
適用例134:
請求項131に記載のプラズマ処理チャンバであって、前記一体シールド構造は、留め具なしで前記フォーカスリング構造に接続する、プラズマ処理チャンバ。
適用例135:
請求項131に記載のプラズマ処理チャンバであって、前記第1支持部分は、前記フォーカスリング構造の前記3つの半径方向延長構造の内の前記第1構造を受け入れるよう構成されたスロットを備え、前記第2支持部分は、前記フォーカスリング構造の前記3つの半径方向延長構造の内の前記第2構造を受け入れるよう構成されたスロットを備える、プラズマ処理チャンバ。
適用例136:
請求項131に記載のプラズマ処理チャンバであって、前記第1支持部分または前記第2支持部分のいずれかが、前記フォーカスリング構造の前記3つの半径方向延長構造の内の第3構造と係合するよう構成される、プラズマ処理チャンバ。
適用例137:
請求項136に記載のプラズマ処理チャンバであって、前記第1支持部分は、前記フォーカスリング構造の前記3つの半径方向延長構造の内の前記第1構造を受け入れるよう構成されたスロットを備え、前記第2支持部分は、前記フォーカスリング構造の前記3つの半径方向延長構造の内の前記第2構造を受け入れるよう構成されたスロットを備え、前記第1支持部分または前記第2支持部分のいずれかが、前記フォーカスリング構造の前記3つの半径方向延長構造の内の前記第3構造を受け入れるよう構成されたスロットを備える、プラズマ処理チャンバ。
適用例138:
請求項131に記載のプラズマ処理チャンバであって、さらに、
前記フォーカスリング構造の前記3つの半径方向延長構造とそれぞれ係合するよう構成された3つのリフト構成要素を備え、
前記3つのリフト構成要素は、前記基板支持構造に対する前記フォーカスリング構造および前記一体シールド構造の組み合わせの制御された垂直移動を提供するよう構成されている、プラズマ処理チャンバ。
適用例139:
請求項131に記載のプラズマ処理チャンバであって、前記一体シールド構造の前記シールド部分は、中空直円筒の一部として構成され、前記シールド部分は、前記中空直円筒の軸方向に測定した垂直高さを有する、プラズマ処理チャンバ。
適用例140:
請求項139に記載のプラズマ処理チャンバであって、前記シールド部分の前記垂直高さは、前記フォーカスリング構造が前記下側垂直位置にある時に、前記シールド部分が、前記プラズマチャンバの前記基板アクセスポート開口部の垂直範囲の少なくとも2分の1を覆うことを可能にする、プラズマ処理チャンバ。
適用例141:
請求項139に記載のプラズマ処理チャンバであって、前記シールド部分の前記垂直高さは、前記フォーカスリング構造が前記下側垂直位置にある時に、前記シールド部分が、前記プラズマチャンバの前記基板アクセスポート開口部の垂直範囲の少なくとも3分の2を覆うことを可能にする、プラズマ処理チャンバ。
適用例142:
請求項139に記載のプラズマ処理チャンバであって、前記シールド部分の前記垂直高さは、前記フォーカスリング構造が前記下側垂直位置にある時に、前記シールド部分が、前記プラズマチャンバの前記基板アクセスポート開口部の垂直範囲を完全に覆うことを可能にする、プラズマ処理チャンバ。
適用例143:
請求項131に記載のプラズマ処理チャンバであって、前記一体シールド構造は、セラミック材料で形成されている、プラズマ処理チャンバ。
適用例144:
請求項143に記載のプラズマ処理チャンバであって、前記セラミック材料は、酸化アルミニウムである、プラズマ処理チャンバ。
適用例145:
請求項143に記載のプラズマ処理チャンバであって、前記一体シールド構造の少なくとも内面が、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有する、プラズマ処理チャンバ。
適用例146:
請求項145に記載のプラズマ処理チャンバであって、前記一体シールド構造を形成する前記セラミック材料は、前記一体シールド構造の前記内面で露出されている、プラズマ処理チャンバ。
適用例147:
基板のプラズマ処理のための方法であって、
基板支持構造、フォーカスリング構造、および、一体シールド構造を備えたプラズマ処理チャンバを準備する工程であって、前記フォーカスリング構造は、前記基板支持構造を囲むように構成され、前記フォーカスリング構造は、中空直円筒として形成されたリング部分と、前記リング部分の外面から半径方向外向きに伸びるよう構成された3つの半径方向延長構造とを備え、前記3つの半径方向延長構造は、前記リング部分の外周に沿って離間され、前記一体シールド構造は、シールド部分、第1支持部分、および、第2支持部分を備え、前記第1支持部分は、前記シールド部分の第1端から伸び、前記第1支持部分は、前記フォーカスリング構造の前記3つの半径方向延長構造の内の第1構造と係合するよう構成され、前記第2支持部分は、前記シールド部分の第2端から伸び、前記第2支持部分は、前記フォーカスリング構造の前記3つの半径方向延長構造の内の第2構造と係合するよう構成され、前記一体シールド構造は、円弧に沿って伸びるように形成され、前記シールド部分は、前記フォーカスリング構造が下側垂直位置にある時に前記プラズマ処理チャンバの基板アクセスポート開口部を少なくとも部分的に覆うよう構成され、前記シールド部分は、前記フォーカスリング構造が上側垂直位置にある時に前記プラズマ処理チャンバの前記基板アクセスポート開口部を覆わないよう構成されている、工程と、
前記フォーカスリング構造を前記下側垂直位置に配置する工程と、
前記基板支持構造の上方のプラズマ処理領域においてプラズマを生成する工程と、
を備える、方法。
適用例148:
請求項147に記載の方法であって、前記一体シールド構造の前記シールド部分は、前記フォーカスリング構造が前記下側垂直位置に配置された時に、前記基板アクセスポート開口部の垂直範囲の少なくとも2分の1を覆う、方法。
適用例149:
請求項147に記載の方法であって、前記一体シールド構造の前記シールド部分は、前記フォーカスリング構造が前記下側垂直位置に配置された時に、前記基板アクセスポート開口部の垂直範囲の少なくとも3分の2を覆う、方法。
適用例150:
請求項147に記載の方法であって、前記一体シールド構造の前記シールド部分は、前記フォーカスリング構造が前記下側垂直位置に配置された時に、前記基板アクセスポート開口部の垂直範囲を完全に覆う、方法。
適用例151:
請求項147に記載の方法であって、さらに、
留め具なしで前記一体シールド構造を前記フォーカスリング構造に接続する工程を備える、方法。
適用例152:
請求項151に記載の方法であって、前記一体シールド構造は、重力で前記フォーカスリング構造に固定される、方法。
適用例153:
請求項151に記載の方法であって、留め具なしで前記一体シールド構造を前記フォーカスリング構造に接続する工程は、前記一体シールド構造の前記第1支持部分内に形成されたスロット内に前記フォーカスリング構造の前記3つの半径方向延長構造の内の前記第1構造を挿入する工程と、前記一体シールド構造の前記第2支持部分内に形成されたスロット内に前記フォーカスリング構造の前記3つの半径方向延長構造の内の前記第2構造を挿入する工程と、を含む、方法。
適用例154:
請求項153に記載の方法であって、留め具なしで前記一体シールド構造を前記フォーカスリング構造に接続する工程は、さらに、前記一体シールド構造の前記第1支持部分または前記第2支持部分のいずれか内に形成されたスロット内に前記フォーカスリング構造の前記3つの半径方向延長構造の内の第3構造を挿入する工程を含む、方法。
適用例155:
請求項147に記載の方法であって、前記フォーカスリング構造を前記下側垂直位置に配置する工程は、前記フォーカスリング構造の前記3つの半径方向延長構造とそれぞれ係合する3つのリフト構成要素を作動させる工程を含む、方法。
適用例156:
請求項147に記載の方法であって、さらに、
前記基板支持構造の上方の前記プラズマ処理領域における前記プラズマの生成を停止する工程と、
前記フォーカスリング構造を前記上側垂直位置に配置する工程と、
を備える、方法。
適用例157:
請求項147に記載の方法であって、前記一体シールド構造は、セラミック材料で形成されている、方法。
適用例158:
請求項157に記載の方法であって、前記セラミック材料は、酸化アルミニウムである、方法。
適用例159:
請求項157に記載の方法であって、前記一体シールド構造の少なくとも内面が、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有する、方法。
適用例160:
請求項159に記載の方法であって、前記一体シールド構造を形成する前記セラミック材料は、前記一体シールド構造の前記内面で露出されている、方法。
適用例161:
請求項147に記載の方法であって、前記プラズマの成分は、前記基板上の材料と相互作用して、プラズマ処理副生成物を生成し、前記プラズマ処理副生成物の一部は、前記一体シールド構造の前記シールド部分に付着する、方法。
適用例162:
請求項161に記載の方法であって、前記基板上の前記材料は、チタン酸ジルコン酸鉛膜およびプラチナ膜の一方または両方である、方法。
適用例163:
請求項162に記載の方法であって、前記プラズマを生成する工程は、前記プラズマ処理領域内の処理ガスに高周波電力を印加する工程を含み、前記高周波電力は、約400ワット(W)~約1250Wの範囲内である、方法。
適用例164:
請求項163に記載の方法であって、前記高周波電力は、約13.56MHzの周波数を有する高周波信号によって印加される、方法。
適用例165:
請求項163に記載の方法であって、さらに、
前記基板支持構造でバイアス電圧を生成する工程を備え、
前記バイアス電圧は、約100V~約600Vの範囲内である、方法。
適用例166:
請求項163に記載の方法であって、前記処理ガスは、塩素(Cl
2
)、三塩化ホウ素(BCl
3
)、アルゴン(Ar)、四フッ化炭素(CF
4
)、酸素(O
2
)、トリフルオロメタン(CHF
3
)、および、六フッ化硫黄(SF
6
)、の内の1以上である、方法。
適用例167:
請求項166に記載の方法であって、さらに、
前記基板支持構造の温度を、約セ氏40度(℃)~約80℃の範囲内に維持する工程を備える、方法。
適用例168:
請求項166に記載の方法であって、さらに、
前記プラズマ処理領域内の圧力を、約5ミリTorr~約50ミリTorrの範囲内に維持する工程を備える、方法。
適用例169:
請求項163に記載の方法であって、前記処理ガスは、約20標準立方センチメートル毎分(sccm)~約300sccmの範囲内の流量で前記プラズマ処理領域に供給される塩素(Cl
2
)、約50sccm~約300sccmの範囲内の流量で前記プラズマ処理領域に供給される三塩化ホウ素(BCl
3
)、約50sccm~約300sccmの範囲内の流量で前記プラズマ処理領域に供給されるアルゴン(Ar)、約50sccm~約200sccmの範囲内の流量で前記プラズマ処理領域に供給される四フッ化炭素(CF
4
)、約20sccm~約300sccmの範囲内の流量で前記プラズマ処理領域に供給される酸素(O
2
)、約50sccm~約300sccmの範囲内の流量で前記プラズマ処理領域に供給されるトリフルオロメタン(CHF
3
)、および、約50sccm~約300sccmの範囲内の流量で前記プラズマ処理領域に供給される六フッ化硫黄(SF
6
)、の内の1以上を含む、方法。
適用例170:
プラズマ処理チャンバ内で利用する基板アクセスポートシールドを製造するための方法であって、
シールド部分と、前記シールド部分の第1端から伸びる第1支持部分と、前記シールド部分の第2端から伸びる第2支持部分と、を備えるように一体シールド構造を形成する工程であって、前記第1支持部分は、プラズマ処理チャンバ内の垂直移動可能構成要素と係合するよう構成され、前記第2支持部分は、前記プラズマ処理チャンバ内の前記垂直移動可能構成要素と係合するよう構成され、前記一体シールド構造は、円弧に沿って伸びるように形成され、前記シールド部分は、前記第1および第2支持部分が前記垂直移動可能構成要素と係合されて、前記垂直移動可能構成要素が下側垂直位置にある時に、前記プラズマ処理チャンバの基板アクセスポート開口部を少なくとも部分的に覆うよう構成され、前記シールド部分は、前記第1および第2支持部分が前記垂直移動可能構成要素と係合されて、前記垂直移動可能構成要素が上側垂直位置にある時に、前記プラズマ処理チャンバの前記基板アクセスポート開口部を覆わないよう構成されている、工程を備える、方法。
適用例171:
請求項170に記載の方法であって、前記一体シールド構造は、セラミック材料で形成されている、方法。
適用例172:
請求項171に記載の方法であって、前記一体シールド構造は、酸化アルミニウムで形成されている、方法。
適用例173:
請求項171に記載の方法であって、さらに、
約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有するように、前記一体シールド構造の少なくとも内面を粗面化する工程を備える、方法。
適用例174:
請求項173に記載の方法であって、前記粗面化する工程は、メディアブラスト処理によってなされる、方法。
適用例175:
請求項174に記載の方法であって、前記メディアブラスト処理は、酸化アルミニウム、炭化シリコン、破砕ガラスグリット、ガラスビーズ、セラミック、ガラス、クルミ殻、軽石、スチールグリット、スチールショット、アルミニウムショット、亜鉛ショット、銅ショット、カットワイヤ、ガーネット、ケイ砂、および、十字石、の内の1以上を含むメディアで、前記一体シールド構造の前記内面に影響を与える、方法。
適用例176:
請求項173に記載の方法であって、前記粗面化する工程は、前記セラミック材料の焼成の前にナーリング処理を実行する工程を含む、方法。
適用例177:
請求項173に記載の方法であって、前記セラミック材料は、前記粗面化の後に前記内面で露出される、方法。
適用例178:
請求項170に記載の方法であって、前記一体シールド構造を形成する工程は、前記垂直移動可能構成要素の第1部分を受け入れるためのスロットを前記第1支持部分内に形成する工程と、前記垂直移動可能構成要素の第2部分を受け入れるためのスロットを前記第2支持部分内に形成する工程と、を含む、方法。
適用例179:
請求項178に記載の方法であって、前記一体シールド構造を形成する工程は、前記垂直移動可能構成要素の第3部分を受け入れるためのスロットを前記第1支持部分または前記第2支持部分のいずれか内に形成する工程を含む、方法。
適用例180:
プラズマ処理チャンバのポートのためのインサートライナであって、
プラズマ処理チャンバの壁を貫通して形成されたポートの内面を覆うよう構成されたインサートライナを備え、
前記インサートライナは、前記ポートへの前記インサートライナの挿入を可能にするために、前記インサートライナの外面プロファイルの圧縮に十分な機械的柔軟性を有するよう構成され、前記インサートライナは、前記インサートライナの前記外面プロファイルの圧縮の解放時に、前記ポートの前記内面に対してバネ力を加えるよう構成されている、インサートライナ。
適用例181:
請求項180に記載のプラズマ処理チャンバのためのポートシールドであって、前記インサートライナは、前記インサートライナの前記外面プロファイルにおける不連続性を形成するギャップによって第2端部から分離された第1端部を備える、ポートシールド。
適用例182:
請求項180に記載のプラズマ処理チャンバのためのポートシールドであって、前記ギャップは、前記ポートへの前記インサートライナの挿入を可能にするために、前記インサートライナの前記外面プロファイルの圧縮に対する前記インサートライナの機械的柔軟性を提供する、ポートシールド。
適用例183:
請求項180に記載のプラズマ処理チャンバのためのポートシールドであって、前記インサートライナは、板金で形成される、ポートシールド。
適用例184:
請求項180に記載のプラズマ処理チャンバのためのポートシールドであって、前記インサートライナは、陽極酸化アルミニウム板金で形成される、ポートシールド。
適用例185:
請求項180に記載のプラズマ処理チャンバのためのポートシールドであって、前記インサートライナは、前記ポートの前記内面を実質的に覆うような形状である、ポートシールド。
適用例186:
請求項180に記載のプラズマ処理チャンバのためのポートシールドであって、前記インサートライナは、前記ポート内のオープン空間を取り囲み、前記ポート内の前記オープン空間を通して視界を提供するよう構成されている、ポートシールド。
適用例187:
請求項180に記載のプラズマ処理チャンバのためのポートシールドであって、前記インサートライナは、前記ポート内のオープン空間を取り囲み、前記プラズマ処理チャンバの前記壁の外面に近接する前記ポート内の前記オープン空間の外側境界を覆うよう構成されている、ポートシールド。
適用例188:
請求項180に記載のプラズマ処理チャンバのためのポートシールドであって、前記インサートライナは、前記ポート内のオープン空間を取り囲み、前記プラズマ処理チャンバの前記壁の内面に近接する前記ポート内の前記オープン空間の内側境界を覆うよう構成されている、ポートシールド。
適用例189:
請求項188に記載のプラズマ処理チャンバのためのポートシールドであって、前記インサートライナは、前記ポートの周りの前記プラズマ処理チャンバの前記壁の前記内面の一部を覆うよう構成されている、ポートシールド。
適用例190:
請求項180に記載のプラズマ処理チャンバのためのポートシールドであって、前記ポートは、前記プラズマ処理チャンバの内部領域の観察を可能にするよう構成されたビューポートである、ポートシールド。
適用例191:
請求項180に記載のプラズマ処理チャンバのためのポートシールドであって、前記ポートの前記内面に対して前記インサートライナによって加えられる前記バネ力は、前記ポート内に前記インサートライナを物理的に固定するのに十分である、ポートシールド。
適用例192:
請求項180に記載のプラズマ処理チャンバのためのポートシールドであって、前記インサートライナは、前記インサートライナが前記ポート内に挿入された時に前記プラズマ処理チャンバの内部領域に流体的に露出される処理暴露面を備え、前記処理暴露面は、前記処理暴露面へのプラズマ処理副生成物の付着を促進するように調整される、ポートシールド。
適用例193:
請求項192に記載のプラズマ処理チャンバのためのポートシールドであって、前記処理暴露面は、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有する、ポートシールド。
適用例194:
プラズマ処理システムであって、
プラズマ処理チャンバであって、前記プラズマ処理チャンバは、前記プラズマ処理チャンバの動作中にプラズマが生成されるプラズマ処理領域を備え、前記プラズマ処理チャンバは、前記プラズマ処理領域の周りのエンクロージャの一部を形成する壁を備え、前記壁は、前記壁を貫通して形成されたポートを備える、プラズマ処理チャンバと、
前記ポート内に配置されたインサートライナであって、前記インサートライナは、前記ポートの内面を覆うよう構成され、前記インサートライナは、前記ポート内の適切な位置に前記インサートライナを保持するために、前記ポートの前記内面に対してバネ力を加えるよう構成されている、インサートライナと、
を備える、プラズマ処理システム。
適用例195:
請求項194に記載のプラズマ処理システムであって、前記インサートライナは、前記ポートへの前記インサートライナの挿入を可能にするために、前記インサートライナの外面プロファイルの圧縮に十分な機械的柔軟性を有するよう構成されている、プラズマ処理システム。
適用例196:
請求項195に記載のプラズマ処理システムであって、前記インサートライナは、前記インサートライナの前記外面プロファイルの圧縮の解放時に、前記ポートの前記内面に対して前記バネ力を加えるよう構成されている、プラズマ処理システム。
適用例197:
請求項196に記載のプラズマ処理システムであって、前記インサートライナは、前記インサートライナの前記外面プロファイルにおける不連続性を形成するギャップによって第2端部から分離された第1端部を備える、プラズマ処理システム。
適用例198:
請求項197に記載のプラズマ処理システムであって、前記ギャップは、前記ポートへの前記インサートライナの挿入を可能にするために、前記インサートライナの前記外面プロファイルの圧縮に対する前記インサートライナの機械的柔軟性を提供する、プラズマ処理システム。
適用例199:
請求項194に記載のプラズマ処理システムであって、前記インサートライナは、板金で形成される、プラズマ処理システム。
適用例200:
請求項194に記載のプラズマ処理システムであって、前記インサートライナは、陽極酸化アルミニウム板金で形成される、プラズマ処理システム。
適用例201:
請求項194に記載のプラズマ処理システムであって、前記インサートライナは、前記ポートの前記内面を実質的に覆うような形状である、プラズマ処理システム。
適用例202:
請求項194に記載のプラズマ処理システムであって、前記インサートライナは、前記ポート内のオープン空間を取り囲み、前記ポート内の前記オープン空間を通して視界を提供するよう構成されている、プラズマ処理システム。
適用例203:
請求項194に記載のプラズマ処理システムであって、前記インサートライナは、前記ポート内のオープン空間を取り囲み、前記プラズマ処理チャンバの前記壁の外面に近接する前記ポート内の前記オープン空間の外側境界を覆うよう構成されている、プラズマ処理システム。
適用例204:
請求項194に記載のプラズマ処理システムであって、前記インサートライナは、前記ポート内のオープン空間を取り囲み、前記プラズマ処理チャンバの前記壁の内面に近接する前記ポート内の前記オープン空間の内側境界を覆うよう構成されている、プラズマ処理システム。
適用例205:
請求項204に記載のプラズマ処理システムであって、前記インサートライナは、前記ポートの周りの前記プラズマ処理チャンバの前記壁の前記内面の一部を覆うよう構成されている、プラズマ処理システム。
適用例206:
請求項194に記載のプラズマ処理システムであって、前記ポートは、前記プラズマ処理領域の観察を可能にするよう構成されたビューポートである、プラズマ処理システム。
適用例207:
請求項194に記載のプラズマ処理システムであって、前記ポートの前記内面に対して前記インサートライナによって加えられる前記バネ力は、前記ポート内に前記インサートライナを物理的に固定するのに十分である、プラズマ処理システム。
適用例208:
請求項194に記載のプラズマ処理システムであって、前記インサートライナは、前記インサートライナが前記ポート内に挿入された時に前記プラズマ処理領域に流体的に露出される処理暴露面を備え、前記処理暴露面は、前記処理暴露面へのプラズマ処理副生成物の付着を促進するように調整される、プラズマ処理システム。
適用例209:
請求項208に記載のプラズマ処理システムであって、前記処理暴露面は、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有する、プラズマ処理システム。
適用例210:
基板のプラズマ処理のための方法であって、
プラズマ処理チャンバを準備する工程であって、前記プラズマ処理チャンバは、前記プラズマ処理チャンバの動作中にプラズマが生成されるプラズマ処理領域を備え、前記プラズマ処理チャンバは、前記プラズマ処理領域の周りのエンクロージャの一部を形成する壁を備え、前記壁は、前記壁を貫通して形成されたポートを備える、工程と、
前記ポート内にインサートライナを配置する工程であって、前記インサートライナは、前記ポートの内面を覆うよう構成され、前記インサートライナは、前記ポート内の適切な位置に前記インサートライナを保持するために、前記ポートの前記内面に対してバネ力を加えるよう構成されている、工程と、
基板に暴露させて前記プラズマ処理領域においてプラズマを生成する工程であって、前記プラズマの成分は、前記基板上の材料と相互作用して、プラズマ処理副生成物を生成し、前記インサートライナは、プラズマ処理副生成物が前記ポートの前記内面と接触することを防ぐ、工程と、
を備える、方法。
適用例211:
請求項210に記載の方法であって、前記プラズマ処理副生成物の一部は、前記インサートライナに付着する、方法。
適用例212:
請求項210に記載の方法であって、前記基板上の前記材料は、チタン酸ジルコン酸鉛膜およびプラチナ膜の一方または両方である、方法。
適用例213:
請求項210に記載の方法であって、前記プラズマを生成する工程は、前記プラズマ処理領域内の処理ガスに高周波電力を印加する工程を含み、前記高周波電力は、約400ワット(W)~約1250Wの範囲内である、方法。
適用例214:
請求項213に記載の方法であって、前記高周波電力は、約13.56MHzの周波数を有する高周波信号によって印加される、方法。
適用例215:
請求項213に記載の方法であって、さらに、
前記基板が上に配置された基板支持構造でバイアス電圧を生成する工程を備え、
前記バイアス電圧は、約100ボルト(V)~約600Vの範囲内である、方法。
適用例216:
請求項213に記載の方法であって、前記処理ガスは、塩素(Cl
2
)、三塩化ホウ素(BCl
3
)、アルゴン(Ar)、四フッ化炭素(CF
4
)、酸素(O
2
)、トリフルオロメタン(CHF
3
)、および、六フッ化硫黄(SF
6
)、の内の1以上である、方法。
適用例217:
請求項216に記載の方法であって、さらに、
前記基板が上に配置された基板支持構造の温度を、約セ氏40度(℃)~約80℃の範囲内に維持する工程を備える、方法。
適用例218:
請求項216に記載の方法であって、さらに、
前記プラズマ処理領域内の圧力を、約5ミリTorr~約50ミリTorrの範囲内に維持する工程を備える、方法。
適用例219:
請求項213に記載の方法であって、前記処理ガスは、約20標準立方センチメートル毎分(sccm)~約300sccmの範囲内の流量で前記プラズマ処理領域に供給される塩素(Cl
2
)、約50sccm~約300sccmの範囲内の流量で前記プラズマ処理領域に供給される三塩化ホウ素(BCl
3
)、約50sccm~約300sccmの範囲内の流量で前記プラズマ処理領域に供給されるアルゴン(Ar)、約50sccm~約200sccmの範囲内の流量で前記プラズマ処理領域に供給される四フッ化炭素(CF
4
)、約20sccm~約300sccmの範囲内の流量で前記プラズマ処理領域に供給される酸素(O
2
)、約50sccm~約300sccmの範囲内の流量で前記プラズマ処理領域に供給されるトリフルオロメタン(CHF
3
)、および、約50sccm~約300sccmの範囲内の流量で前記プラズマ処理領域に供給される六フッ化硫黄(SF
6
)、の内の1以上を含む、方法。
適用例220:
請求項210に記載の方法であって、さらに、
前記ポートへの前記インサートライナの挿入を可能にするために、前記インサートライナの外面プロファイルを圧縮する工程を備える、方法。
適用例221:
請求項220に記載の方法であって、さらに、
前記インサートライナが前記ポートの前記内面に対して前記バネ力を加えるように前記インサートライナの前記外面プロファイルの圧縮を解放する工程を備える、方法。
適用例222:
請求項210に記載の方法であって、前記インサートライナは、前記インサートライナの前記外面プロファイルにおける不連続性を形成するギャップによって第2端部から分離された第1端部を備え、前記方法は、前記ポートへの前記インサートライナの挿入を可能にするために、前記ギャップを閉じるように前記インサートライナの外面プロファイルを圧縮する工程を備える、方法。
適用例223:
請求項210に記載の方法であって、前記インサートライナは、板金で形成される、方法。
適用例224:
請求項210に記載の方法であって、前記インサートライナは、陽極酸化アルミニウム板金で形成される、方法。
適用例225:
請求項210に記載の方法であって、前記インサートライナは、前記インサートライナが前記ポート内に配置された時に前記ポートの前記内面を実質的に覆うような形状である、方法。
適用例226:
請求項210に記載の方法であって、前記インサートライナは、前記インサートライナが前記ポート内に配置された時に、前記ポート内のオープン空間を取り囲み、前記ポート内の前記オープン空間を通して視界を提供するよう構成されている、方法。
適用例227:
請求項210に記載の方法であって、前記インサートライナは、前記インサートライナが前記ポート内に配置された時に、前記ポート内のオープン空間を取り囲み、前記プラズマ処理チャンバの前記壁の外面に近接する前記ポート内の前記オープン空間の外側境界を覆うよう構成されている、方法。
適用例228:
請求項210に記載の方法であって、前記インサートライナは、前記インサートライナが前記ポート内に配置された時に、前記ポート内のオープン空間を取り囲み、前記プラズマ処理チャンバの前記壁の内面に近接する前記ポート内の前記オープン空間の内側境界を覆うよう構成されている、方法。
適用例229:
請求項228に記載の方法であって、前記インサートライナは、前記インサートライナが前記ポート内に配置された時に、前記ポートの周りの前記プラズマ処理チャンバの前記壁の前記内面の一部を覆うよう構成されている、方法。
適用例230:
請求項210に記載の方法であって、前記ポートは、前記プラズマ処理領域の観察を可能にするよう構成されたビューポートである、方法。
適用例231:
請求項210に記載の方法であって、前記ポートの前記内面に対して前記インサートライナによって加えられる前記バネ力は、前記ポート内に前記インサートライナを物理的に固定するのに十分である、方法。
適用例232:
請求項210に記載の方法であって、前記インサートライナは、前記インサートライナが前記ポート内に配置された時に前記プラズマ処理領域に流体的に露出される処理暴露面を備え、前記処理暴露面は、前記処理暴露面へのプラズマ処理副生成物の付着を促進するように調整される、方法。
適用例233:
請求項232に記載の方法であって、前記処理暴露面は、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有する、方法。
適用例234:
プラズマ処理チャンバのポート用のインサートライナを製造するための方法であって、
プラズマ処理チャンバの壁を貫通して形成されたポートの内面を覆うためのインサートライナを形成する工程を備え、
前記インサートライナは、前記ポートへの前記インサートライナの挿入を可能にするために、前記インサートライナの外面プロファイルの圧縮に十分な機械的柔軟性を有するよう構成され、前記インサートライナは、前記インサートライナの前記外面プロファイルの圧縮の解放時に、前記ポートの前記内面に対してバネ力を加えるよう構成されている、方法。
適用例235:
請求項234に記載の方法であって、前記インサートライナは、前記インサートライナの前記外面プロファイルにおける不連続性を形成するギャップによって第2端部から分離された第1端部を備えるように形成されている、方法。
適用例236:
請求項235に記載の方法であって、前記ギャップは、前記ポートへの前記インサートライナの挿入を可能にするために、前記インサートライナの前記外面プロファイルの圧縮に対する前記インサートライナの機械的柔軟性を提供するよう構成されている、方法。
適用例237:
請求項234に記載の方法であって、前記インサートライナは、板金で形成される、方法。
適用例238:
請求項234に記載の方法であって、前記インサートライナは、陽極酸化アルミニウム板金で形成される、方法。
適用例239:
請求項234に記載の方法であって、前記インサートライナは、前記ポートの前記内面を実質的に覆うような形状である、方法。
適用例240:
請求項234に記載の方法であって、前記インサートライナは、前記インサートライナが前記ポート内に挿入された時に、前記ポート内のオープン空間を取り囲み、前記ポート内の前記オープン空間を通して視界を提供するように形成されている、方法。
適用例241:
請求項234に記載の方法であって、前記インサートライナは、前記インサートライナが前記ポート内に挿入された時に、前記ポート内のオープン空間を取り囲み、前記プラズマ処理チャンバの前記壁の外面に近接する前記ポート内の前記オープン空間の外側境界を覆うように形成されている、方法。
適用例242:
請求項234に記載の方法であって、前記インサートライナは、前記インサートライナが前記ポート内に挿入された時に、前記ポート内のオープン空間を取り囲み、前記プラズマ処理チャンバの前記壁の内面に近接する前記ポート内の前記オープン空間の内側境界を覆うように形成されている、方法。
適用例243:
請求項242に記載の方法であって、前記インサートライナは、前記インサートライナが前記ポート内に挿入された時に、前記ポートの周りの前記プラズマ処理チャンバの前記壁の前記内面の一部を覆うように形成されている、方法。
適用例244:
請求項234に記載の方法であって、前記ポートは、前記プラズマ処理チャンバの内部領域の観察を可能にするよう構成されたビューポートである、方法。
適用例245:
請求項234に記載の方法であって、前記ポートの前記内面に対して前記インサートライナによって加えられる前記バネ力は、前記ポート内に前記インサートライナを物理的に固定するのに十分である、方法。
適用例246:
請求項234に記載の方法であって、前記インサートライナは、前記インサートライナが前記ポート内に挿入された時に前記プラズマ処理チャンバの内部領域に流体的に露出される処理暴露面を備え、前記方法は、前記処理暴露面へのプラズマ処理副生成物の付着を促進するように前記処理暴露面を調整する工程を備える、方法。
適用例247:
請求項246に記載の方法であって、前記処理暴露面は、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有するように調整される、方法。
適用例248:
プラズマ処理チャンバで利用する排気バッフルアセンブリであって、
プラズマ処理チャンバの排気流路内に嵌まるよう構成された少なくとも1つのバッフル部材を備え、
前記少なくとも1つのバッフル部材は、前記排気流路内に配置された時に処理排ガス流をそらすような形状であり、
前記少なくとも1つのバッフル部材の外面は、前記少なくとも1つのバッフル部材への前記処理排ガス流の中に存在するプラズマ処理副生成物の付着を促進するように調整される、排気バッフルアセンブリ。
適用例249:
請求項248に記載の排気バッフルアセンブリであって、前記少なくとも1つのバッフル部材は、前記少なくとも1つのバッフル部材が前記排気流路内に配置された時に、前記排気流路を通る主な排気流の方向を横切る角度に向けられた実質的に平坦な表面を有する、排気バッフルアセンブリ。
適用例250:
請求項249に記載の排気バッフルアセンブリであって、前記角度は、前記主な排気流の方向に対して約45度である、排気バッフルアセンブリ。
適用例251:
請求項249に記載の排気バッフルアセンブリであって、前記角度は、調整可能である、排気バッフルアセンブリ。
適用例252:
請求項248に記載の排気バッフルアセンブリであって、前記少なくとも1つのバッフル部材は、陽極酸化アルミニウムで形成される、排気バッフルアセンブリ。
適用例253:
請求項248に記載の排気バッフルアセンブリであって、前記少なくとも1つのバッフル部材は、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有する、排気バッフルアセンブリ。
適用例254:
請求項248に記載の排気バッフルアセンブリであって、さらに、
前記少なくとも1つのバッフル部材を保持するよう構成されたフレームを備え、 前記フレームは、底部バー、上部バー、第1端部バー、および、第2端部バーを備え、前記第1端部バーは、前記上部バーと前記底部バーとの間に伸び、前記第2端部バーは、前記上部バーと前記底部バーとの間に伸び、前記少なくとも1つのバッフル部材は、前記第1端部バーから前記第2端部バーまで伸びる、排気バッフルアセンブリ。
適用例255:
請求項254に記載の排気バッフルアセンブリであって、前記フレームは、陽極酸化アルミニウムで形成される、排気バッフルアセンブリ。
適用例256:
請求項254に記載の排気バッフルアセンブリであって、前記フレームは、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有する、排気バッフルアセンブリ。
適用例257:
請求項254に記載の排気バッフルアセンブリであって、前記少なくとも1つのバッフル部材は、5つのバッフル部材を含み、前記5つのバッフル部材の各々は、前記第1端部バーから前記第2端部バーまで伸び、前記5つのバッフル部材の各々は、前記排気バッフルアセンブリが前記排気流路内に配置された時に前記処理排ガス流をそらすような形状であり、前記5つのバッフル部材の外面は、前記5つのバッフル部材への前記処理排ガス流の中に存在するプラズマ処理副生成物の付着を促進するように調整される、排気バッフルアセンブリ。
適用例258:
請求項257に記載の排気バッフルアセンブリであって、前記5つのバッフル部材の各々は、前記排気バッフルアセンブリが前記排気流路内に配置された時に、前記排気流路を通る主な排気流の方向に対して約45度に向けられた実質的に平坦な表面を有する、排気バッフルアセンブリ。
適用例259:
請求項257に記載の排気バッフルアセンブリであって、前記5つのバッフル部材の各々は、前記排気バッフルアセンブリが前記排気流路内に配置された時に、前記排気流路を通る主な排気流の方向を横切るように向けられた実質的に平坦な表面を有する、排気バッフルアセンブリ。
適用例260:
請求項259に記載の排気バッフルアセンブリであって、前記排気流路を通る前記主な排気流の方向に対する前記5つのバッフル部材の各々の前記実質的に平坦な表面の向きは、調整可能である、排気バッフルアセンブリ。
適用例261:
請求項257に記載の排気バッフルアセンブリであって、前記5つのバッフル部材の各々は、陽極酸化アルミニウムで形成される、排気バッフルアセンブリ。
適用例262:
請求項157に記載の排気バッフルアセンブリであって、前記5つのバッフル部材の各々は、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有する、排気バッフルアセンブリ。
適用例263:
プラズマ処理システムであって、
プラズマ処理チャンバであって、前記プラズマ処理チャンバの動作中にプラズマが生成されるプラズマ処理領域を備える、プラズマ処理チャンバと、
前記プラズマ処理チャンバのための排気流路であって、前記排気流路は、前記プラズマ処理領域と流体連通され、前記排気流路は、前記プラズマ処理領域からの処理排ガスの流れを方向付けるよう構成されている、排気流路と、
前記排気流路に接続されたポンプであって、前記ポンプは、前記排気流路の内部に陰圧を掛けるよう構成されている、ポンプと、
前記排気流路内に配置された排気バッフルアセンブリであって、前記排気バッフルアセンブリは、前記排気流路内の前記処理排ガスの流れをそらすような形状の少なくとも1つのバッフル部材を備え、前記少なくとも1つのバッフル部材の外面は、前記少なくとも1つのバッフル部材への前記処理排ガスの流れの中に存在するプラズマ処理副生成物の付着を促進するように調整される、排気バッフルアセンブリと、
を備える、プラズマ処理システム。
適用例264:
請求項263に記載のプラズマ処理システムであって、前記排気バッフルアセンブリは、前記プラズマ処理領域からの前記処理排ガスの流れが、前記排気バッフルアセンブリを通して流れる必要があるように、前記排気流路内の基本的に断面流面積全体にわたって伸びるよう構成される、プラズマ処理システム。
適用例265:
請求項263に記載のプラズマ処理システムであって、前記少なくとも1つのバッフル部材は、前記少なくとも1つのバッフル部材が前記排気流路内に配置された時に、前記排気流路を通る主な排気流の方向を横切る角度に向けられた実質的に平坦な表面を有する、プラズマ処理システム。
適用例266:
請求項265に記載のプラズマ処理システムであって、前記角度は、前記主な排気流の方向に対して約45度である、プラズマ処理システム。
適用例267:
請求項265に記載のプラズマ処理システムであって、前記角度は、調整可能である、プラズマ処理システム。
適用例268:
請求項263に記載のプラズマ処理システムであって、前記少なくとも1つのバッフル部材は、陽極酸化アルミニウムで形成される、プラズマ処理システム。
適用例269:
請求項263に記載のプラズマ処理システムであって、前記少なくとも1つのバッフル部材は、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有する、プラズマ処理システム。
適用例270:
請求項263に記載のプラズマ処理システムであって、さらに、
前記少なくとも1つのバッフル部材を保持するよう構成されたフレームを備え、
前記フレームは、底部バー、上部バー、第1端部バー、および、第2端部バーを備え、前記第1端部バーは、前記上部バーと前記底部バーとの間に伸び、前記第2端部バーは、前記上部バーと前記底部バーとの間に伸び、前記少なくとも1つのバッフル部材は、前記第1端部バーから前記第2端部バーまで伸びる、プラズマ処理システム。
適用例271:
請求項270に記載のプラズマ処理システムであって、前記フレームは、陽極酸化アルミニウムで形成される、プラズマ処理システム。
適用例272:
請求項270に記載のプラズマ処理システムであって、前記フレームは、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有する、プラズマ処理システム。
適用例273:
請求項270に記載のプラズマ処理システムであって、前記少なくとも1つのバッフル部材は、5つのバッフル部材を含み、前記5つのバッフル部材の各々は、前記第1端部バーから前記第2端部バーまで伸び、前記5つのバッフル部材の各々は、前記排気バッフルアセンブリが前記排気流路内に配置された時に前記処理排ガスの流れをそらすような形状であり、前記5つのバッフル部材の外面は、前記5つのバッフル部材への前記処理排ガスの流れの中に存在するプラズマ処理副生成物の付着を促進するように調整される、プラズマ処理システム。
適用例274:
請求項273に記載のプラズマ処理システムであって、前記5つのバッフル部材の各々は、前記排気バッフルアセンブリが前記排気流路内に配置された時に、前記排気流路を通る主な排気流の方向に対して約45度に向けられた実質的に平坦な表面を有する、プラズマ処理システム。
適用例275:
請求項273に記載のプラズマ処理システムであって、前記5つのバッフル部材の各々は、前記排気バッフルアセンブリが前記排気流路内に配置された時に、前記排気流路を通る主な排気流の方向を横切るように向けられた実質的に平坦な表面を有する、プラズマ処理システム。
適用例276:
請求項275に記載のプラズマ処理システムであって、前記排気流路を通る前記主な排気流の方向に対する前記5つのバッフル部材の各々の前記実質的に平坦な表面の向きは、調整可能である、プラズマ処理システム。
適用例277:
請求項273に記載のプラズマ処理システムであって、前記5つのバッフル部材の各々は、陽極酸化アルミニウムで形成される、プラズマ処理システム。
適用例278:
請求項273に記載のプラズマ処理システムであって、前記5つのバッフル部材の各々は、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有する、プラズマ処理システム。
適用例279:
基板のプラズマ処理のための方法であって、
プラズマ処理チャンバと、前記プラズマ処理チャンバのための排気流路とを備えたプラズマ処理システムを準備する工程であって、前記プラズマ処理チャンバは、前記プラズマ処理チャンバの動作中にプラズマが生成されるプラズマ処理領域を備え、前記排気流路は、前記プラズマ処理領域に流体連通され、前記排気流路は、前記プラズマ処理領域からの処理排ガスの流れを方向付けるよう構成され、前記プラズマ処理システムは、前記排気流路に接続されたポンプを備え、前記ポンプは、前記排気流路の内部に陰圧を掛けるよう構成され、前記プラズマ処理システムは、前記排気流路内に配置された排気バッフルアセンブリを備え、前記排気バッフルアセンブリは、前記排気流路内の前記処理排ガスの流れをそらすような形状の少なくとも1つのバッフル部材を備え、前記少なくとも1つのバッフル部材の外面は、前記少なくとも1つのバッフル部材への前記処理排ガスの流れの中に存在するプラズマ処理副生成物の付着を促進するように調整される、工程と、
基板に暴露させて前記プラズマ処理領域においてプラズマを生成する工程と、
前記プラズマ処理領域から前記排気流路へ前記排気流路内の前記排気バッフルアセンブリを通して前記処理排ガスの流れを引き出すために、前記排気流路の前記内部に前記陰圧を掛けるように前記ポンプを作動させる工程と、
を備える、方法。
適用例280:
請求項279に記載の方法であって、前記プラズマの成分は、前記基板上の材料と相互作用して、プラズマ処理副生成物を生成し、前記プラズマ処理副生成物の一部は、前記排気バッフルアセンブリの前記少なくとも1つのバッフル部材に付着する、方法。
適用例281:
請求項280に記載の方法であって、前記基板上の前記材料は、チタン酸ジルコン酸鉛膜およびプラチナ膜の一方または両方である、方法。
適用例282:
請求項280に記載の方法であって、前記プラズマを生成する工程は、前記プラズマ処理領域内の処理ガスに高周波電力を印加する工程を含み、前記高周波電力は、約400ワット(W)~約1250Wの範囲内である、方法。
適用例283:
請求項282に記載の方法であって、前記高周波電力は、約13.56MHzの周波数を有する高周波信号によって印加される、方法。
適用例284:
請求項282に記載の方法であって、さらに、
前記基板が上に配置された基板支持構造でバイアス電圧を生成する工程を備え、
前記バイアス電圧は、約100ボルト(V)~約600Vの範囲内である、方法。
適用例285:
請求項282に記載の方法であって、前記処理ガスは、塩素(Cl
2
)、三塩化ホウ素(BCl
3
)、アルゴン(Ar)、四フッ化炭素(CF
4
)、酸素(O
2
)、トリフルオロメタン(CHF
3
)、および、六フッ化硫黄(SF
6
)、の内の1以上である、方法。
適用例286:
請求項285に記載の方法であって、さらに、
前記基板が上に配置された基板支持構造の温度を、約セ氏40度(℃)~約80℃の範囲内に維持する工程を備える、方法。
適用例287:
請求項285に記載の方法であって、さらに、
前記プラズマ処理領域内の圧力を、約5ミリTorr~約50ミリTorrの範囲内に維持する工程を備える、方法。
適用例288:
請求項282に記載の方法であって、前記処理ガスは、約20標準立方センチメートル毎分(sccm)~約300sccmの範囲内の流量で前記プラズマ処理領域に供給される塩素(Cl
2
)、約50sccm~約300sccmの範囲内の流量で前記プラズマ処理領域に供給される三塩化ホウ素(BCl
3
)、約50sccm~約300sccmの範囲内の流量で前記プラズマ処理領域に供給されるアルゴン(Ar)、約50sccm~約200sccmの範囲内の流量で前記プラズマ処理領域に供給される四フッ化炭素(CF
4
)、約20sccm~約300sccmの範囲内の流量で前記プラズマ処理領域に供給される酸素(O
2
)、約50sccm~約300sccmの範囲内の流量で前記プラズマ処理領域に供給されるトリフルオロメタン(CHF
3
)、および、約50sccm~約300sccmの範囲内の流量で前記プラズマ処理領域に供給される六フッ化硫黄(SF
6
)、の内の1以上を含む、方法。
適用例289:
請求項280に記載の方法であって、前記排気バッフルアセンブリは、前記プラズマ処理領域からの前記処理排ガスの流れが、前記排気バッフルアセンブリを通して流れる必要があるように、前記排気流路内の基本的に断面流面積全体にわたって伸びるよう構成される、方法。
適用例290:
請求項280に記載の方法であって、前記少なくとも1つのバッフル部材は、前記排気流路を通る主な排気流の方向を横切る角度に向けられた実質的に平坦な表面を有する、方法。
適用例291:
請求項290に記載の方法であって、前記角度は、前記主な排気流の方向に対して約45度である、方法。
適用例292:
請求項290に記載の方法であって、前記角度は、調整可能である、方法。
適用例293:
請求項280に記載の方法であって、前記少なくとも1つのバッフル部材は、陽極酸化アルミニウムで形成される、方法。
適用例294:
請求項280に記載の方法であって、前記少なくとも1つのバッフル部材は、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有する、方法。
適用例295:
請求項280に記載の方法であって、前記排気バッフルアセンブリは、前記少なくとも1つのバッフル部材を保持するよう構成されたフレームを備え、前記フレームは、底部バー、上部バー、第1端部バー、および、第2端部バーを備え、前記第1端部バーは、前記上部バーと前記底部バーとの間に伸び、前記第2端部バーは、前記上部バーと前記底部バーとの間に伸び、前記少なくとも1つのバッフル部材は、前記第1端部バーから前記第2端部バーまで伸びる、方法。
適用例296:
請求項295に記載の方法であって、前記フレームは、陽極酸化アルミニウムで形成される、方法。
適用例297:
請求項295に記載の方法であって、前記フレームは、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有する、方法。
適用例298:
プラズマ処理システム内で利用する排気バッフルアセンブリを製造するための方法であって、
プラズマ処理チャンバの排気流路内に嵌まるように、少なくとも1つのバッフル部材を形成する工程であって、前記少なくとも1つのバッフル部材は、前記排気流路内に配置された時に処理排ガスの流れをそらすような形状を有する、工程と、
前記少なくとも1つのバッフル部材への前記処理排ガスの流れの中に存在するプラズマ処理副生成物の付着を促進するように、前記少なくとも1つのバッフル部材の外面を調整する工程と、
を備える、方法。
適用例299:
請求項298に記載の方法であって、前記少なくとも1つのバッフル部材は、前記少なくとも1つのバッフル部材が前記排気流路内に配置された時に、前記排気流路を通る主な排気流の方向を横切る角度に向けられた実質的に平坦な表面を有するように形成される、方法。
適用例300:
請求項299に記載の方法であって、前記角度は、前記主な排気流の方向に対して約45度である、方法。
適用例301:
請求項299に記載の方法であって、前記角度は、調整可能である、方法。
適用例302:
請求項298に記載の方法であって、前記少なくとも1つのバッフル部材は、陽極酸化アルミニウムで形成される、方法。
適用例303:
請求項298に記載の方法であって、前記少なくとも1つのバッフル部材は、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有する、方法。
適用例304:
請求項298に記載の方法であって、さらに、
前記少なくとも1つのバッフル部材を保持するためのフレームを形成する工程を備え、
前記フレームは、底部バー、上部バー、第1端部バー、および、第2端部バーを備え、前記第1端部バーは、前記上部バーと前記底部バーとの間に伸び、前記第2端部バーは、前記上部バーと前記底部バーとの間に伸び、前記少なくとも1つのバッフル部材は、前記第1端部バーから前記第2端部バーまで伸びる、方法。
適用例305:
請求項304に記載の方法であって、前記フレームは、陽極酸化アルミニウムで形成される、方法。
適用例306:
請求項304に記載の方法であって、前記フレームは、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有する、方法。
適用例307:
請求項304に記載の方法であって、前記少なくとも1つのバッフル部材は、5つのバッフル部材を含み、前記5つのバッフル部材の各々は、前記第1端部バーから前記第2端部バーまで伸びるように配置され、前記5つのバッフル部材の各々は、前記排気バッフルアセンブリが前記排気流路内に配置された時に前記処理排ガスの流れをそらすような形状であり、前記方法は、前記5つのバッフル部材への前記処理排ガスの流れの中に存在するプラズマ処理副生成物の付着を促進するように、前記5つのバッフル部材の外面を調整する工程を備える、方法。
適用例308:
請求項307に記載の方法であって、前記5つのバッフル部材の各々は、前記排気バッフルアセンブリが前記排気流路内に配置された時に、前記排気流路を通る主な排気流の方向に対して約45度に向けられた実質的に平坦な表面を有するように形成される、方法。
適用例309:
請求項307に記載の方法であって、前記5つのバッフル部材の各々は、前記排気バッフルアセンブリが前記排気流路内に配置された時に、前記排気流路を通る主な排気流の方向を横切るように向けられた実質的に平坦な表面を有するように形成される、方法。
適用例310:
請求項309に記載の方法であって、前記5つのバッフル部材の各々は、前記排気流路を通る前記主な排気流の方向に対する前記5つのバッフル部材の各々の前記実質的に平坦な表面の向きの調整を可能にするように形成される、方法。
適用例311:
請求項307に記載の方法であって、前記5つのバッフル部材の各々は、陽極酸化アルミニウムで形成される、方法。
適用例312:
請求項307に記載の方法であって、前記5つのバッフル部材の各々は、約3.81マイクロメートル(約150マイクロインチ)~約12.7マイクロメートル(約500マイクロインチ)の範囲内の平均表面粗さを有するように調整される、方法。