IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社イノアックコーポレーションの特許一覧 ▶ 国立大学法人 名古屋工業大学の特許一覧

<>
  • 特許-電気機器 図1
  • 特許-電気機器 図2
  • 特許-電気機器 図3
  • 特許-電気機器 図4
  • 特許-電気機器 図5
  • 特許-電気機器 図6
  • 特許-電気機器 図7
  • 特許-電気機器 図8
  • 特許-電気機器 図9
  • 特許-電気機器 図10
  • 特許-電気機器 図11
  • 特許-電気機器 図12
  • 特許-電気機器 図13
  • 特許-電気機器 図14
  • 特許-電気機器 図15
  • 特許-電気機器 図16
  • 特許-電気機器 図17
  • 特許-電気機器 図18
  • 特許-電気機器 図19
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-16
(45)【発行日】2024-12-24
(54)【発明の名称】電気機器
(51)【国際特許分類】
   H02K 35/02 20060101AFI20241217BHJP
   H01F 1/08 20060101ALI20241217BHJP
   H01F 7/02 20060101ALI20241217BHJP
【FI】
H02K35/02
H01F1/08 130
H01F7/02 Z
【請求項の数】 14
(21)【出願番号】P 2021075864
(22)【出願日】2021-04-28
(65)【公開番号】P2022170023
(43)【公開日】2022-11-10
【審査請求日】2023-11-20
(73)【特許権者】
【識別番号】000119232
【氏名又は名称】株式会社イノアックコーポレーション
(73)【特許権者】
【識別番号】304021277
【氏名又は名称】国立大学法人 名古屋工業大学
(74)【代理人】
【識別番号】100112472
【弁理士】
【氏名又は名称】松浦 弘
(74)【代理人】
【識別番号】100202223
【弁理士】
【氏名又は名称】軸見 可奈子
(72)【発明者】
【氏名】牧原 伸征
(72)【発明者】
【氏名】井門 康司
(72)【発明者】
【氏名】岩本 悠宏
【審査官】津久井 道夫
(56)【参考文献】
【文献】特開2019-022435(JP,A)
【文献】特開2017-229118(JP,A)
【文献】特開2015-027214(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02K 35/02
H01F 1/08
H01F 7/02
(57)【特許請求の範囲】
【請求項1】
電磁誘導コイルと、
着磁した磁性粉体を含有し、前記電磁誘導コイルを貫通する磁界を発生させると共に外力を受けて弾性変形すると前記磁界の磁束密度が変化する弾性体と、
前記磁束密度の変化により前記電磁誘導コイルに誘起される誘導電流を整流する整流部と、
前記整流部から受電して作動する負荷部と、を備え、
前記負荷部には、前記整流部からの受電に応じて無線信号を出力する無線回路が含まれる電気機器。
【請求項2】
前記無線回路は、前記整流部から受電する度に無線信号を出力して前記弾性体が外力を受けたことを報知する請求項1に記載の電気機器。
【請求項3】
電磁誘導コイルと、
着磁した磁性粉体を含有し、前記電磁誘導コイルを貫通する磁界を発生させると共に外力を受けて弾性変形すると前記磁界の磁束密度が変化する弾性体と、
前記磁束密度の変化により前記電磁誘導コイルに誘起される誘導電流を整流する整流部と、
前記整流部から受電して作動する負荷部と、を備え、
前記弾性体を、前記電磁誘導コイルの巻回軸を中心に捻れられるように前記外力を伝達する捻り支持機構を備える電気機器。
【請求項4】
電磁誘導コイルと、
着磁した磁性粉体を含有し、前記電磁誘導コイルを貫通する磁界を発生させると共に外力を受けて弾性変形すると前記磁界の磁束密度が変化する弾性体と、
前記磁束密度の変化により前記電磁誘導コイルに誘起される誘導電流を整流する整流部と、
前記整流部から受電して作動する負荷部と、を備え、
前記弾性体は、発泡エラストマーである電気機器。
【請求項5】
電磁誘導コイルと、
着磁した磁性粉体を含有し、前記電磁誘導コイルを貫通する磁界を発生させると共に外力を受けて軸方向に圧縮されると前記磁界の磁束密度が変化する弾性体と、
前記磁束密度の変化により前記電磁誘導コイルに誘起される誘導電流を整流する整流部と、
前記整流部から受電して作動する負荷部と、を備え、
前記弾性体の軸方向の圧縮に伴って前記磁性粉体の磁気モーメントの向きが変化して前記電磁誘導コイルを貫通する前記磁界の磁束密度が変化し、前記弾性体を軸方向に10%圧縮させたときに、磁束密度が自然長状態より5%以上大きくなる電気機器。
【請求項6】
電磁誘導コイルと、
着磁した磁性粉体を含有し、前記電磁誘導コイルを貫通する磁界を発生させると共に外力を受けて弾性変形すると前記磁界の磁束密度が変化する弾性体と、
前記磁束密度の変化により前記電磁誘導コイルに誘起される誘導電流を整流する整流部と、
前記整流部から受電して作動する負荷部と、を備え、
前記弾性体の弾性変形に伴って前記磁性粉体の磁気モーメントの向きが変化して前記電磁誘導コイルを貫通する前記磁界の磁束密度が変化し、前記弾性体が弾性変形したときの方が、弾性変形していないときに比べて磁気モーメントの向きが前記磁性誘導コイルの軸方向に揃う電気機器。
【請求項7】
電磁誘導コイルと、
着磁した磁性粉体を含有し、前記電磁誘導コイルを貫通する磁界を発生させると共に外力を受けて弾性変形すると前記磁界の磁束密度が変化する弾性体と、
前記磁束密度の変化により前記電磁誘導コイルに誘起される誘導電流を整流する整流部と、
前記整流部から受電して作動する負荷部と、
前記電磁誘導コイルと前記弾性体とを収容し、前記弾性体と共に伸縮可能なケースと、
を備える電気機器。
【請求項8】
電磁誘導コイルと、
着磁した磁性粉体を含有し、前記電磁誘導コイルを貫通する磁界を発生させると共に外力を受けて弾性変形すると前記磁界の磁束密度が変化する弾性体と、
前記磁束密度の変化により前記電磁誘導コイルに誘起される誘導電流を整流する整流部と、
前記整流部から受電して作動する負荷部と、
一部が互いに嵌合している一対の筒体を含み、前記電磁誘導コイルと前記弾性体とを収容し、前記弾性体と共に伸縮可能なケースと、
を備える電気機器。
【請求項9】
電磁誘導コイルと、
着磁した磁性粉体を含有し、前記電磁誘導コイルを貫通する磁界を発生させると共に外力を受けて弾性変形すると前記磁界の磁束密度が変化する弾性体と、
前記磁束密度の変化により前記電磁誘導コイルに誘起される誘導電流を整流する整流部と、
前記整流部から受電して作動する負荷部と、
回動を規制された状態で一部が互いに嵌合している一対の筒体を含み、前記電磁誘導コイルと前記弾性体とを収容し、前記弾性体と共に伸縮可能なケースと、
を備える電気機器。
【請求項10】
電磁誘導コイルと、
着磁した磁性粉体を含有し、前記電磁誘導コイルを貫通する磁界を発生させると共に一対の部材の間に挟まれ、前記一対の部材の接近・離間に伴って伸縮すると前記磁界の磁束密度が変化する弾性体と、
前記磁束密度の変化により前記電磁誘導コイルに誘起される誘導電流を整流する整流部と、
前記整流部から受電して作動する負荷部と、
前記一対の部材の一方と、前記弾性体との間に挟まれ、長さを調整可能なアジャスト機構と、
を備える電気機器。
【請求項11】
電磁誘導コイルと、
着磁した磁性粉体を含有し、前記電磁誘導コイルを貫通する磁界を発生させると共に一対の部材の間に挟まれ、前記一対の部材の接近・離間に伴って伸縮すると前記磁界の磁束密度が変化する弾性体と、
前記磁束密度の変化により前記電磁誘導コイルに誘起される誘導電流を整流する整流部と、
前記整流部から受電して作動する負荷部と、
前記一対の部材の一方と、前記弾性体との間に挟まれるスペーサと、
を備える電気機器。
【請求項12】
電磁誘導コイルと、
筒状をなし、内側に曲げ変形可能なシャフトが嵌合されると共に外側に前記電磁誘導コイルが嵌合され、着磁した磁性粉体を含有し、前記電磁誘導コイルを貫通する磁界を発生させると共に前記シャフトと共に曲げ変形して前記磁界の磁束密度が変化する弾性体と、
前記磁束密度の変化により前記電磁誘導コイルに誘起される誘導電流を整流する整流部と、
前記整流部から受電して作動する負荷部と、
を備える電気機器。
【請求項13】
着磁した磁性粉体を含有する複数の弾性体と、
各弾性体の外側にそれぞれ嵌合され、弾性体の弾性変形によって誘導電流が誘起される複数の電磁誘導コイルと、
前記複数の弾性体が間に並列に配置される一対の対向部材と、
前記誘導電流を整流する整流部と、
前記整流部から受電して作動する負荷部と、
を備える電気機器。
【請求項14】
同軸上に並ぶ複数の電磁誘導コイルと、
着磁した磁性体を含有して前記複数の電磁誘導コイルを貫通する磁界を発生させると共に、外力を受けて前記複数の電磁誘導コイルの内側で伸縮し、その伸縮に伴って前記磁界の磁束密度が変化する弾性体と、
前記磁束密度の変化により、前記複数の電磁誘導コイルに誘起される誘導電流を整流する整流部と、
前記整流部から受電する負荷部と、
を備える電気機器。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、自己発電型の電気機器に関する。
【背景技術】
【0002】
従来のこの種の電気機器として、外力により回転駆動される回転機にて自己発電を行うものが知られている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【文献】特表2012-515860号(図4、請求項11)
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、上記した従来の電気機器では、回転機を有するために煩雑な構造となり、それが故障の原因になり得た。そこで、本開示では、従来より簡素な構造で、外力からの振動、変位等を電力に変換する自己発電を行って負荷部を駆動することが可能な電気機器を提供する。
【課題を解決するための手段】
【0005】
上記課題を解決するためになされた本発明の一態様は、電磁誘導コイルと、着磁した磁性粉体を含有し、前記電磁誘導コイルを貫通する磁界を発生させると共に外力を受けて弾性変形すると前記磁界の磁束密度が変化する弾性体と、前記磁束密度の変化により前記電磁誘導コイルに誘起される誘導電流を整流する整流部と、前記整流部から受電して作動する負荷部と、を備える電気機器である。
【発明の効果】
【0006】
この一態様の電気機器は、着磁した磁性粉体を含有し、電磁誘導コイルを貫通する磁界を発生させる弾性体を有する。このような弾性体が外力を受けて弾性変形すると、電磁誘導コイルを貫通する磁界の磁束密度が変化し、電磁誘導による自己発電が行われる。そして、電磁誘導コイルに流れる誘導電流が整流されて負荷部に付与され、負荷部が駆動される。このように、本発明の一態様の電気機器は、従来の電気機器が有する回転機に比べ、簡素な構造を有する弾性体を用いることで自己発電を行うことができる。
【図面の簡単な説明】
【0007】
図1】本開示の第1実施形態に係る電気機器の回路図
図2】電気機器の斜視図
図3】電気機器の側断面図
図4】発電部の概念図
図5】(A)磁性弾性体内の磁性粉体を示す概念図、(B)圧縮された磁性弾性体の概念図
図6】磁性弾性体の製造方法を示すフローチャート
図7】(A)圧縮変形前の磁性弾性体の磁化を示す概念図、(B)圧縮変形されているときの磁性弾性体の磁化と誘導電流を示す概念図
図8】(A)圧縮変形前の磁性弾性体による磁場と磁性弾性体の磁化を示す概念図、(B)磁性弾性体が圧縮されたときにコイル及び回路内に生じる誘導磁場と誘導電流を示す概念図
図9】(A)圧縮変形前の磁性弾性体による磁場と磁性弾性体の磁化を示す概念図、(B)磁性弾性体が圧縮されたときに2つのコイル及び回路内に生じる誘導磁場と誘導電流を示す概念図
図10】第2実施形態に係る電気機器の回路図
図11】(A)第3実施形態の電気機器の概念図、(B)電気機器がサスペンションに取り付けられた状態の一部破断側面図
図12】第4実施形態の電気機器の概念図
図13】第5実施形態の電気機器を含んだ床構造の側断面図
図14】第6実施形態の電気機器の斜視図
図15】第7実施形態の電気機器の斜視図
図16】(A)第8実施形態の電気機器の側断面図、(B)曲げ変形した電気機器の側断面図
図17】第9実施形態の電気機器の斜視図
図18】試験装置の概念図
図19】各実験例の磁性弾性体の詳細及び特性を示すテーブル
【発明を実施するための形態】
【0008】
[第1実施形態]
図1図9を参照して本開示の一実施形態に係る電気機器100Aについて説明する。図1に示すように、本実施形態の電気機器100Aは、発電部10と整流部91と負荷部92とを有する。
【0009】
負荷部92は、例えば、無線モジュール92Aを含んでいる。その無線モジュール92Aは、例えば、RFIDを変形させたものであり、RFIDタグが無線で電力を受電し、その受電の度に識別番号を近距離無線通信のキャリアに変調して無線送信するものであるところを、無線モジュール92Aは、発電部10から整流部91を通して有線で電力を受電し、その受電の度に識別番号を所定の無線通信のキャリア波に変調して送信するようになっている。その所定の無線通信として、例えば、遠距離無線通信、Wi-Fi、赤外線通信、近距離無線通信等が挙げられる。
【0010】
なお、無線モジュール92Aは、識別番号以外の情報をキャリア波に変調して無線送信するものでもよく、また、情報をキャリア波に変調せず、情報を含まない特定の周波数の無線波のみを送信し、その無線波が送信されたこと自体が電気機器100Aからの情報であるようにしてもよい。
【0011】
整流部91は、例えば公知な倍圧整流回路になっていて、その入力側に発電部10の次述する電磁誘導コイル12が接続され、出力側に前述の無線モジュール92Aが接続されている。そして、電磁誘導コイル12に誘起される誘導電流が整流部91で整流されて無線モジュール92Aに付与される。
【0012】
なお、図1に示す整流部91には、3倍圧整流回路が例示されているが、所望の電圧に応じたn倍圧整流回路を用いればよく、第2実施形態では、2倍圧整流回路が例示されている。
【0013】
発電部10は、電磁誘導コイル12と、その内側に配置される弾性体20と、それらを収容する伸縮ケース30とを備える。図2及び図3に示すように、伸縮ケース30は、一端有底、他端開放の円筒状の筒体31と、その筒体31より外径が大きい一端有底、他端開放の円筒状の筒体32とを開口端同士を向かい合わせて嵌合させた構造をなしている。また、両筒体31,32の軸長は略同一になっていて、両筒体31,32の開口端には、互いに係合して離脱を防ぐ返し部31A,32Aが設けられている。そして、伸縮ケース30は、返し部31A,32A同士が係合する最長状態と、一方の筒体31の開口端が他方の筒体32の底部に当接する最短状態とに変化する。なお、最短状態の伸縮ケース30は、最長状態の伸縮ケース30の例えば略1/2の軸長になる。
【0014】
筒体31の外面には、上記した整流部91と負荷部92とを収容した回路ケース33が固定されている。また、一方の筒体31の底壁側端部には、周方向における複数位置から側方に張り出す複数の突片31Bが備えられ、それら各突片31Bに取付孔31Cが形成されている。また、他方の筒体32の先端部には、例えば、アジャスト機構35が備えられている。アジャスト機構35は、筒体32の底壁の外面中央から突出して内面に雌螺子部35Bを有する支持筒35Aと、その雌螺子部35Bに螺合する雄螺子部35Cを外面に有するシャフト部35Dと、シャフト部35Dの先端部に回転可能に取り付けられた当接板35Eとを備えてなる。
【0015】
なお、本実施形態の伸縮ケース30は、例えば、樹脂又はステンレス等の非磁性体であるが、伸縮ケース30及び後述するスペーサ34を鉄等の磁性体で形成して後述する弾性体20と共に伸縮ケース30が磁路を形成するようにしてもよい。また、本実施形態の筒体31,32は、後述する弾性体20を介して接続されることで互いに回転不能に連結されているが、筒体31,32の一方に縦長の係合溝を設けると共に、他方に係合溝に係合する突部を設けて、筒体31,32同士の相対的な回転を規制してもよい。
【0016】
図3に示すように、電磁誘導コイル12は、例えば一方の筒体31の内側に丁度収まる外径、軸長の円筒状をなして、筒体31内に固定されている。また、電磁誘導コイル12の1対のリード線12Aは、筒体31のうち底壁に近い側壁を貫通する貫通孔31Dを通して筒体31の側方に引き出されている。そして、それら1対のリード線12Aが回路ケース33に取り込まれて整流部91に接続されている。そして、1対のリード線12Aは、伸縮ケース30の伸縮に伴って屈曲する。なお、筒体32の開口側の端部には、1対のリード線12Aとの干渉を回避するための切り欠き32B(図2参照)が形成されている。
【0017】
弾性体20は、電磁誘導コイル12の内側に隙間を介して嵌合される円柱状をなし、伸縮ケース30の同心軸上に配置されて、両端面を筒体31,32の各底面に例えば接着材にて固定される。また、弾性体20の一端面と筒体32の底面との間には、必要に応じて弾性体20と同一外径の円柱状のスペーサ34が配置されて弾性体20の圧縮率が調整される。具体的には、スペーサ34を設けない場合には、伸縮ケース30が最長状態から最短状態に変化することで伸縮ケース30内の弾性体20は、伸縮ケース30と同様に1/2に圧縮される。これに対し、上記スペーサ34を設ければ、弾性体20を、1/2以上の任意の圧縮率になるまで圧縮率を高くすることができる。なお、図3には、スペーサ34を備えた弾性体20が1/3まで圧縮される構造が例示されている。
【0018】
弾性体20は、伸縮ケース30の最長状態で筒体31,32の両底面の間で僅かに圧縮されるようになっている。これにより、伸縮ケース30が外力を受けていない状態での筒体31,32同士の間のガタ止めが図られている。
【0019】
なお、弾性体20は、筒体31,32に接着材によって固定されていたが、固定されていなくてもよい。また、筒体31,32の各底面と、弾性体20の両端面とには、互いに凹凸嵌合して弾性体20を伸縮ケース30に対して芯出しするための凹凸を備えてもよい。
【0020】
弾性体20は、例えば、発泡エラストマーであり、内部に着磁された磁性粉体22が分散配置されている。即ち、弾性体20は、所謂、「磁性弾性体」である。以下の説明において、弾性体20のうち磁性粉体22が混合される主体となる弾性体の単体と、その弾性体と磁性粉体22とを含んだ弾性体20とを明確に区別するために、弾性体と磁性粉体22とを含む「弾性体20」全体を「磁性弾性体20」といい、弾性体の単体を、それが発泡エラストマーであることから発泡エラストマー21と呼ぶこととして両者を明確に区別する。
【0021】
発泡エラストマー21は、ポリウレタンエラストマーの発泡体であり、連続気泡構造又は半連続気泡構造になっている。また、発泡エラストマー21の発泡倍率は、1.4~6倍になっている。なお、発泡エラストマー21は、ゴムの発泡体や、ポリオレフィン系樹脂等の熱可塑性樹脂の発泡体等であってもよい。また、発泡エラストマー21は、全体が連続気泡構造又は半連続気泡構造であることが成形性や弾性変形容易性の観点から好ましいが、連続気泡構造又は半連続気泡構造となる部分は一部であってもよい。また、発泡エラストマー21は、少なくとも部分的に連続気泡構造を備えることで、成形後に発泡エラストマー21が縮む(いわゆる、シュリンクする)ことを抑制することができる。さらには、本実施形態の発泡エラストマー21の発泡倍率は、上述の通り1.4~6倍であるが、1.7~5倍であることがより好ましく、2~4倍であることが更に好ましい。ここで、発泡エラストマー21の発泡倍率が1.4倍以上であることで、クッション性が特に良好となり、発泡倍率が6倍以下であることで、成形性と耐久性が特に良好となる。また、上記発泡倍率は、磁性粉体22を含んだ発泡エラストマー21の発泡倍率ではなく、発泡エラストマー21単体の発泡倍率を示している。
【0022】
磁性粉体22は、ネオジム系磁性粉体であり、磁性粉体22の粒子径は、3~200μmになっている。なお、磁性粉体22は、特に、永久磁石化した際に強い磁力を有するネオジム系磁性粉体からなることが好ましいが、ネオジム系磁性粉体に限定されるものではなく、サマリウム系磁性粉体、アルニコ系磁性粉体、フェライト系磁性粉体等、公知の硬質磁性材料であってもよい。磁性粉体22の粒子23の形状は、限定されるものではないが、具体例としては、例えば、鱗片状、球状、針状等が挙げられる。さらには、本実施形態の磁性粉体22の粒子径は、上述の通り、3~200μmであるが、5~100μmがより好ましい。磁性粉体22の粒子径を大きくすることで、磁性弾性体20の表面磁束密度を高くすることが可能となる。磁性粉体22が、磁石粒子に表面処理がされてなる場合には、磁性粉体22の粒子径を大きくすることで、磁性粉体22における磁性成分の割合を大きくすることができ、磁性弾性体20の表面磁束密度をより高めることが可能となる。また、磁性粉体22の粒子径は、200μm以下であることが、磁性弾性体20の成形性や変形容易性の観点から好ましい。また、磁性粉体22の粒子径が200μm以下であることで成形性が特に良好となると共に、磁性粉体22が発泡エラストマー21から脱落することを一層防止可能となる。さらには、磁性粉体22の粒子径が3μm未満になると、作業性が悪くなるため、磁性粉体22の粒子径は3μm以上であることが好ましい。なお、上記粒子径は、JIS Z 8815:1994に準拠したふるい分け試験により測定される。
【0023】
本実施形態の磁性弾性体20では、発泡エラストマー21に対する磁性粉体22の質量濃度(質量比率)は、40~80%であり、発泡エラストマー21に対する磁性粉体22の体積濃度(体積比率)は1.0~3.5%になっている。これにより、磁性弾性体20を弾性変形させ易くしつつ、磁性弾性体20の磁束密度の変化を大きくすることが可能となる。なお、磁性弾性体20は、JIS K 6262:2013 A法に準拠した圧縮永久ひずみが、30%以下であることが好ましい。また、磁性弾性体20は、1Hzで10万回50%圧縮を繰返した場合の繰返し圧縮ひずみが、20%以下であることが好ましい。これらの構成によれば、発泡エラストマー21を弾性変形させた後の復元が良好である。これにより、磁性弾性体20が繰返し圧縮されて使用される用途に用いられる場合であっても、発泡エラストマー21のヘタリが低減され、磁性弾性体20が繰返しの使用に一層好適となる。
【0024】
図5に示すように、発泡エラストマー21中の磁性粉体22の粒子23は、それぞれの磁気モーメント(詳細には、粒子23内の合成磁気モーメント)が、円柱形状の磁性弾性体20の軸方向に沿うように着磁され、これにより図4に示すように磁性弾性体20の軸方向の一端部がN極、他端部がS極となっている。詳細には、磁性粉体22の粒子23の中には、磁気モーメントの方向が磁性弾性体20の軸方向と交差するものが含まれ得るが、磁性粉体22の粒子23の磁気モーメントを合成した合成磁気モーメントの方向が、磁性弾性体20の軸方向となっている。なお、図5(A)と後述する図5(B)では、磁性粉体22の粒子23の磁化方向が、矢印で模式的に示されている。
【0025】
電気機器100Aの構造に関する説明は、以上である。この電気機器100Aは、以下の方法にて製造される。即ち、図6に示すように磁性弾性体20を製造するには、まず、ポリオールとイソシアネートを混合してプレポリマー化した第1液を用意する。ここで、第1液は、イソシアネート基(NCO)を末端に有するプレポリマーである。その後、第1液に磁性粉体22を混合し、均一に分散させる(S11)。また、触媒、発泡剤等を含む第2液を用意する(S11)。その後、第1液と第2液とを混合し、その混合液を得る(S12)。ここで、イソシアネート基を末端に有するプレポリマーのNCO%は、3~7%とすることが好ましく、本実施形態では、6%とした。これにより、成形性や耐久性に優れた磁性弾性体20を得ることが可能となる。
【0026】
次に、上記混合液を、あらかじめ温調された成形型に注入して発泡硬化させ、例えば円柱状をなした発泡成形体を形成する(S13)。この発泡成形体では、磁性粉体22が、発泡エラストマー21内に分散している。また、上記発泡成形体では、磁性粉体22の各粒子23の磁気モーメントがランダムな方向を向いている。なお、上記混合液の成形型での発泡硬化工程では、閉型状態で所定時間キュア(一次キュア)を行った後、得られた発泡成形体を成形型から取り出す。一次キュアは、例えば60~120℃で10~120分間、行われる。一次キュアを行って成形型から取り出された発泡成形体については、さらに二次キュアを行うことが好ましく、二次キュアは、例えば90~180℃で8~24時間、行われる。本実施形態では、磁性粉体22が内部に分散配置される弾性部材が、ポリウレタンエラストマーであるので、原料が硬化するまでの時間が短く、磁性粉体22が原料内で沈降する前に原料を硬化させることが可能となる。これにより、磁性粉体22を均一に分散配置することが容易となる。従って、100μm以上の粒子径の磁性粉体22であっても磁性弾性体20内に容易に分散させることが可能となり、磁性弾性体20の磁束密度を高くすることが可能となる。
【0027】
なお、本実施形態では、磁性粉体22を第1液に混合した後に第2液に混合するので、磁性粉体22を第2液に混合した後に第1液に混合する場合に比べて、磁性粉体22を発泡エラストマー21内に均一に分散することができる。
【0028】
次に、上記発泡成形体を着磁する(S14)。この工程では、発泡成形体内の磁性粉体22の粒子23の磁気モーメントを、外部磁場を印加することにより揃える。本実施形態では、外部磁場を、円柱状の発泡エラストマー21の軸方向に印加する。ここで、着磁は、発泡成形体が変形していない自然長状態で行ってもよいし、自然長状態に対して軸方向に圧縮した状態(例えば50%圧縮した50%圧縮状態)で行ってもよい。以上により、発泡成形体から磁性弾性体20が得られる。
【0029】
また、磁性弾性体20は、軸方向に10%圧縮されたときに、磁束密度(表面磁束密度)が自然長状態よりも5%以上大きくなるものであることが特に好ましい。このような磁性弾性体20は、例えば、磁性粉体22を分散させた発泡エラストマー21を圧縮した状態(例えば50%圧縮した状態)で、その圧縮方向に磁性粉体22を着磁することで製造することができる。
【0030】
上述の如く製造された磁性弾性体20は、以下のようにして伸縮ケース30に組み付けられる。即ち、伸縮ケース30の筒体31,32が分離した状態に用意される。そして、一方の筒体31に電磁誘導コイル12の1対のリード線12Aを貫通孔31Dから引き出された状態で電磁誘導コイル12が固定され、その電磁誘導コイル12の内側に両端面に接着剤が塗布された磁性弾性体20が配置されて、筒体31,32の両底面に固着される。その際、必要に応じてスペーサ34が磁性弾性体20の一端面と筒体32の底面の間に接着材にて固着される。そして、一方の筒体31が、開口端を窄めるように変形されて、他方の筒体32の内側に押し込まれ、一方の筒体31が弾性復帰して両筒体31,32の返し部31A,32Aが係合する。
【0031】
次いで、電磁誘導コイル12の1対のリード線12Aが整流部91に接続されると共に、整流部91が負荷部92に接続され、それら整流部91及び負荷部92が回路ケース33に収納される。以上を以て電気機器100Aの製造が完了する。
【0032】
本実施形態の電気機器100Aの製造方法に関する説明は以上である。次に、電気機器100Aの作用効果について説明する。図3に示すように、電気機器100Aは、相互間の間隔が変動し得る1対の対向部材201,202の間の隙間にセットされて、それら1対の対向部材201,202の変形・動作等の検出を行うために使用される。そのためには、電気機器100Aは、伸縮ケース30の軸方向(電磁誘導コイル12及び磁性弾性体20の軸方向でもある)が、1対の対向部材201,202の対向方向を向くように配置される。そして、例えば、1対の対向部材201,202の間隔が通常状態であるときに、伸縮ケース30が所望の状態になるようにアジャスト機構35が調整される。具体的には、1対の対向部材201,202が通常状態から離間する場合と接近する場合の両方の検出を行う場合には、伸縮ケース30が最長状態の略1/2程度の圧縮状態になるようにアジャスト機構35が調整される。また、1対の対向部材201,202が通常状態から接近したことのみを検出したい場合には、通常状態の1対の対向部材201,202の間で伸縮ケース30が僅かに圧縮した状態になるか、アジャスト機構35の当接板35Eが一方の対向部材202から僅かに離れた状態になるようにアジャスト機構35が調整される。また、電気機器100Aが1対の対向部材201,202から横ずれしないようにするために、必要に応じて、伸縮ケース30の取付孔31Cに通したボルトを一方の磁性弾性体201の螺子孔に締め付ける等して伸縮ケース30を一方の磁性弾性体201に固定することが好ましい。
【0033】
上述の如く、電気機器100Aが1対の対向部材201,202の間にセットされた状態で、1対の対向部材201,202の間隔が変化すると、伸縮ケース30と共に磁性弾性体20が軸方向で伸縮される。すると、磁性弾性体20による磁界の磁束のうち電磁誘導コイル12を貫通する磁束の密度が変化し、誘導電流Iが発生する。即ち、発電部10にて発電が行われる。
【0034】
その発電が行われるメカニズムは、以下の通りであると考えられる。即ち、電磁誘導コイル12の軸方向において、磁性弾性体20中の磁束密度をBz、外部磁場をHz、磁性弾性体20の磁化をMz、真空の透磁率をμ0とすると、
Bz=μ0・Hz+Mz ・・・(A)
の関係があることが知られている。また、磁化Mzについては、電磁誘導コイル12の軸方向での磁性粉体22の粒子23の磁気モーメントの平均値をmz、磁性弾性体20の単位体積当たりの磁性粉体22の粒子23の数をnとすると、
Mz=n・mz ・・・(B)
の関係が成り立つことが知られている。
【0035】
ここで、磁性弾性体20は、発泡エラストマー21に磁性粉体22を混合してなるので、軸方向で圧縮されると、発泡エラストマー21の気泡が潰れ、伸びると気泡が膨らみ、径方向のサイズの変化を抑えられた状態で伸縮する。そして、磁性弾性体20が電磁誘導コイル12の軸方向で圧縮されると(図5(B))、磁性弾性体20における磁性粉体22の粒子23の分布密度が上がり(即ち、関係式(B)のnが大きくなり)、磁化Mzが大きくなると考えられ、伸びると、磁化Mzが小さくなると考えられる。
【0036】
特に、磁性弾性体20を、自然長状態に対して縮んだ圧縮状態で着磁した場合、磁性弾性体20が電磁誘導コイル12の軸方向で圧縮されると、自然長状態に比べて磁性粉体22の粒子23の磁気モーメントの向きが電磁誘導コイル12の軸方向に揃うこととなるので、磁気モーメントの平均値mzが大きくなると考えられる。
【0037】
また、上述の磁性粉体22の分布密度の変化による効果に加えて、磁気モーメントの平均値mzが増減することで、磁化Mzの変化量が更に大きくなると考えられる。詳細には、磁性弾性体20が圧縮されると、着磁されたときの圧縮量(即ち、磁性粉体22の磁気モーメントmzの向きが磁性弾性体20の軸方向に最も揃う状態となる圧縮量)の付近に達したときに磁化Mzが特に大きくなると考えられる。磁化Mzが大きくなると、上記関係式(A)から、磁性弾性体20中の磁束密度Bzが大きくなるので、電磁誘導コイル12内を貫く磁束が大きくなる。磁性弾性体20が伸びる場合には、圧縮される場合と逆の現象になる。そして、これら磁束の変化を打ち消す向き(図7では下向き)に磁場H'を発生させるように、電磁誘導コイル12に誘導電流Iが流れると考えられる。なお、図7及び図8では、誘導電流Iと、誘導電流Iにより発生する磁場H'は、灰色矢印で示されている。
【0038】
図8(A)及び図8(B)には、磁性弾性体20の変形により、磁性弾性体20のうち電磁誘導コイル12内に配置される部分の大きさが変化する場合の例が示されている。この場合には、以下で説明するように、磁性弾性体20の磁化の変化とは別の要因によっても、電磁誘導コイル12内を貫く磁束が変化すると考えられる。
【0039】
図8(A)及び図8(B)の例では、磁性弾性体20が、電磁誘導コイル12の軸方向に圧縮される。この場合、電磁誘導コイル12内の領域には、磁性弾性体20の変形前(図8(A))には磁性弾性体20が存在する一方で、変形後(図8(B))には磁性弾性体20が存在しなくなる領域Rが設けられることとなる。この領域Rでは、磁性弾性体20の変形前後で、磁束が変化することになるため、領域Rには、この磁束の変化を打ち消すように磁場H"が発生すると考えられる。この磁場H"は、上述の磁性弾性体20における磁性粉体22の粒子23の分布密度変化による磁場H'と反対向きになり得るが、これらの磁場は、磁性弾性体20を変形させる過程で常に同じ大きさとなるわけではないため、電磁誘導コイル12内を貫く磁束の変化が起きて電磁誘導コイル12に誘導電流Iを発生させることができると考えられる。なお、このように、互いに反対向きになる磁場H'、 磁場H"が発生する場合には、図9に示されるように領域Rを囲む電磁誘導コイル12Vを配置してもよい。このように、磁場H'により発生する誘導電流と、磁場H"により発生する誘導電流とを、別の回路に発生させることで、それら誘導電流が相殺されることを防ぐことが可能となる。なお、磁性弾性体20が伸長する場合も、磁性弾性体20が圧縮される場合と同様である。
【0040】
上述の如く、発電部10で発生した誘導電流Iは、整流部91で整流されて負荷部92に受電される。すると、負荷部92の無線モジュール92Aから識別番号の情報を含んだ無線信号が出力される。これにより、電気機器100Aから離れた場所の無線端末で電気機器100Aからの無線信号を受信して1対の対向部材201,202が受ける負荷や挙動を監視することができる。
【0041】
なお、本実施形態の電気機器100Aを、高架橋の橋桁と橋本体との間の隙間や、免震構造を有する建物の床下等の隙間や、道路の路面下の隙間等に複数セットして、それら各電気機器100Aの設置場所と識別番号とを対応付けて記憶しておき、監視端末で複数の電気機器100Aから無線信号を監視することで、高架橋や建物の台風や地震等による挙動や異常の有無等を監視することができる。
【0042】
以上説明したように本実施形態の電気機器100Aは、磁性弾性体20の変形にて電磁誘導コイル12を貫通する磁界の磁束密度を変化させて電磁誘導による自己発電を行うので、従来の回転機で発電を行う電気機器に比べ、発電に係る構造を簡素にすることができる。
【0043】
また、磁性弾性体20は、発泡エラストマーであるので、非発泡のエラストマーを含む一般的な樹脂や金属等の弾性体で磁性弾性体を形成した場合に比べて、大きなストロークで伸縮させることができる。そして、磁性弾性体20は大きなストロークの変形によって磁束密度を変化させて発電を行うことができるので、短いストロークでしか磁束密度を変化させることができないものに比べて、1ストローク当りの発電量を多くすることができる。また、短いストロークでしか磁束密度を変化させることができないものと同じ発電量を得るとしたら、長周期で磁束の向きを反転させた発電が可能になる。つまり、本実施形態の電気機器100Aが有する発電部10では、低周波数の交流の発電が可能になり、これにより発電部10とそれに接続される整流部91、負荷部92等との間のインピーダンス整合を容易に図られる。さらに、磁性弾性体20は、上述の通り伸縮に伴う径方向のサイズの変化を抑えられるので電磁誘導コイル12との干渉が抑えられ、磁性弾性体20とその外側の電磁誘導コイル12との間のクリアランスを狭くして発電効率を高くすることができまた、磁性弾性体20は、発泡エラストマーであるので、破損し難く、取り扱いも容易になる。
【0044】
[第2実施形態]
本実施形態の電気機器100Bは、図10に示されており、整流部91Vと負荷部92Vの構成が前記第1実施形態と異なる。即ち、整流部91Vは、2倍圧整流回路になっていて、整流部91Vの1対の出力端末の間には二次電池91Aが接続されている。また、負荷部92Vには、検出回路92Bと無線回路92Cとが備えられ、負荷部92Vには、電磁誘導コイル12に流れる誘導電流を検出するための電流検出部92Dが接続されている。さらに、検出回路92Bには、A/Dコンバータとマイコンとが含まれている。そして、電磁誘導コイル12で生成される誘導電流に基づいて電気機器100Bが受ける外力を特定するための検出データを生成し、その検出データを無線回路92Cにて無線送信する。なお、検出データとしては、例えば、誘導電流のFFTデータやスペクトルデータや誘導電流の波形に含まれるピーク値のデータ等、様々なものが挙げられる。
【0045】
本実施形態の電気機器100Bでは、発電部10にて生成される誘導電流に基づいて外力を特定するための検出データを生成してから無線送信するので、電気機器100Bから離れた遠隔値において無線送信によるノイズの影響を受け難いデータ収集が可能になる。また、二次電池91Aを備えたことで負荷部92Vへの給電が安定する。
【0046】
[第3実施形態]
本開示の第3実施形態の電気機器100Cは、図11に示されており、車両60に搭載されて、車両60のバッテリ51を充電するためのものである。以下、第1及び第2の実施形態と異なる構成に関してのみ説明する。
【0047】
本実施形態の電気機器100Cの発電部10は、車両60のサスペンション61に組み付けられる。その車両60のサスペンション61は、図11(B)に示すように、ショックアブソーバ62とサスペンションばね63を有する。サスペンションばね63は、ショックアブソーバ62のシリンダ65から外側に張り出した鍔状部65Tと車体60Bとの間に挟まれている。そして、電気機器100Cの発電部10に含まれる磁性弾性体20Vは、筒状をなしてショックアブソーバ62のピストンロッド64に嵌合され、バウンドストッパとして機能するようになっている。即ち、磁性弾性体20Vは、ショックアブソーバ62が縮むとシリンダ65と車体60Bとの間で圧縮されて車両60のバウンドを抑える役割を果たす。
【0048】
電気機器100Cの発電部10の電磁誘導コイル12は、サスペンションばね63の内側で、磁性弾性体20Vを取り巻くように配置されて上端部を車体60Bに固定されている。そして、磁性弾性体20Vが伸縮することで電磁誘導コイル12に誘導電流が流れるように発電される。
【0049】
電気機器100Cの整流部91Wは発電部10で発電された電力を、バッテリ51を充電するために必要な電圧まで昇圧する。そして、電気機器100Cの負荷部に相当するバッテリ51に、発電部10の出力が整流部91Wを通して付与されてバッテリ51が充電される。
【0050】
なお、上記実施形態では、車両60として自動車を例示したが、例えば、二輪車や電車等の車両サスペンションに適用してもよい。また、自動車としては、例えば、電気自動車、ハイブリッド自動車,プラグインハイブリッド自動車等の電動車両が挙げられる。
【0051】
[第4実施形態]
第4実施形態の電気機器100Dは、図12に示されており、前記第3実施形態の電気機器100Cと同様の発電部10を有すると共に、前記第2実施形態の電気機器100Bと同様の整流部91Vを備えると共に検出回路92Bを負荷部として備える。そして、検出回路92Bで生成した検出データを車両60の制御装置86に付与する。制御装置86は、付与された検出データに基づき、車両60の過搭載やサスペンション61の故障等の異常の有無を判別し、異常があったときには警告灯85を点灯して運転者に異常を報知する。
【0052】
なお、上記実施形態では、車両60に電気機器100Dを備え、車両60に関する異常を検知する構成であったが、例えば、工場プラントにおけるタンクや配管に上記電気機器100Dを備え、タンクや配管の異常を検出する構成であってもよい。
【0053】
[第5実施形態]
本実施形態の電気機器100Eは、図13(A)及び図13(B)に示されており、建物や乗り物の床構造71に組み込まれている。具体的には、この床構造71は、土台72の上に床パネル73が敷かれた構造となっていて、土台72と床パネル73の間には、複数の緩衝材78が敷き詰められている。床パネル73に荷重がかかると、緩衝材78が弾性変形する。そして、複数の緩衝材78の1つ又は一部複数が、磁性弾性体20Wになっていて、その磁性弾性体20Wを囲むように電磁誘導コイル12が備えられている。また、電気機器100Eは、第1実施形態と同様の整流部と無線モジュールとを回路ケース33に収容して備える。
【0054】
[第6実施形態]
本実施形態の電気機器100Fは、図14に示されており、磁性弾性体20が外力を受けて捻れ変形するようになっている。具体的には、電気機器100Fは、第1実施形態の電気機器100Aの伸縮ケース30の一方の筒体32からアジャスト機構35を排除し、他方の筒体32と同様の複数の突片31Bを備えてなるツイストケース30Vに、第1実施形態の電気機器100Aの磁性弾性体20,電磁誘導コイル12と同一形状の磁性弾性体20及び電磁誘導コイル12を備えた構造をなしている。そして、そのツイストケース30Vが、相対的に回転する1対の部材や負荷トルクを受けるシャフトの途中に取り付けられる。これにより、負荷トルクとしての外力を受けることで1対の筒体31,32が相対的に回転し、磁性弾性体20が捻られる。また、磁性弾性体20は、例えば、捻り変形した状態で磁性弾性体20の軸方向を向いた磁場に配置されて、磁性粉体22を着磁されている。その他の構造は、第1実施形態の電気機器100Aと同様になっている。
この電気機器100Fでは、磁性弾性体20が一方に捻り変形すると、磁性粉体22の磁性粉体22の磁気モーメントの方向が電磁誘導コイル12を貫通する方向に揃い、他方に捻り変形すると、磁性粉体22の磁気モーメントの向きが電磁誘導コイル12を貫通する方向と異なる方向を揃うか、ばらつく。これにより、磁性弾性体20の捻り変形に伴って電磁誘導コイル12を貫通する磁束の密度が変化して発電部10にて発電が行われ、その電力を受けて負荷部92の無線モジュール92Aから無線信号が送信される。
【0055】
[第7実施形態]
本実施形態の電気機器100Gは、図15に示されており、第6実施形態の電気機器100Fのツイストケース30Vに螺合機構を追加したツイストケース30Wを備える。具体的には、ツイストケース30Wの一方の筒体31の外面には、螺旋状に延びる溝構造又は突条構造の係合部31Mが備えられ、他方の筒体32の内面には、係合部31Mと螺合する図示しない係合部が備えられている。これにより、ツイストケース30Wの筒体31,32が相対回転すると、磁性弾性体20が捻り変形されると共に伸縮変形される。これにより、電磁誘導コイル12に誘導電流が誘起される。
【0056】
[第8実施形態]
本実施形態の電気機器100Hは、図16に示されている。図16(A)に示すように、電気機器100Hの発電部10には、曲げ変形を検出する対象であるシャフト203に丁度嵌合される円筒状の磁性弾性体20と、その磁性弾性体20の外側に嵌合される電磁誘導コイル12とが備えられている。そして、図16(B)に示すように、磁性弾性体20及び電磁誘導コイル12は、シャフト203と一緒に曲げ変形する。また、この電気機器100Hは、例えば、第1実施形態の電気機器100Aと同様の整流部91及び無線モジュール92Aを回路ケース33に収容して備えている。そして、シャフト203の曲げ変形に伴って磁性弾性体20が曲げ変形することで、電磁誘導コイル12を貫通する磁束密度が変化して発電部10にて発電が行われ、その電力を受けて負荷部92の無線モジュール92Aから無線信号が送信される。
【0057】
[第9実施形態]
本実施形態の電気機器100Iは、図17(A)に示されており、非磁性体の1対の円板39を対向した状態に備え、それら1対の円板39の間に複数の磁性弾性体20が並列に接続された構造をなしている。具体的には、複数の磁性弾性体20は、例えば円柱状をなし、1対の円板39の外縁部より内側の部分において、1対の円板39の中心軸と同心の架空の円を複数等分する位置に各磁性弾性体20の中心軸が配置され、各磁性弾性体20の両端面に塗布された接着材にて各磁性弾性体20が1対の円板39に固定されている。なお、1対の円板39の外縁部には、複数の取付孔39Aが形成されている。
【0058】
また、各磁性弾性体20の外側には、それぞれ電磁誘導コイル12が嵌合されている。そして、第1実施形態で説明した整流部91及び無線モジュール92Aが、複数の電磁誘導コイル12に対応して複数備えられて回路ケース33に収容されている。そして、各電磁誘導コイル12に所定の大きさ異常の誘導電流が流れる度に、各電磁誘導コイル12に対応する無線モジュール92Aからそれぞれに固有の識別番号の情報を含んだ無線信号が送信される。
【0059】
本実施形態の電気機器100Iは、1対の円板39を検出対象物に固定して使用される。そして、1対の円板39の間が接近及び離間するような挙動や、一方の円板39に対して他方の円板39が任意の方向に傾くような挙動や、一方の円板39に対して他方の円板39が中心軸回りに回動する挙動に応じた電力が複数の電磁誘導コイル12で発電され、その発電状態に応じた無線信号が出力される。
【0060】
また、図17(B)に示すように、円板38Cの中心部から支柱38Aが起立し、その先端部にマス38Bを有する付加部品38を用意して、その付加部品38の円板38Cを電気機器100Iの一方の円板39に重ねて固定し、他方の円板39を建物、乗り物、地面等に固定することで、電気機器100Iが受ける振動等を検出することができる。
【0061】
[確認実験]
第1実施形態で説明した電磁誘導コイル12と磁性弾性体20とにより発電が行われることを実験にて確認した。具体的には、誘導電流Iの代用値として電磁誘導コイル12に発生する誘導起電力を確認した。
【0062】
I.電磁誘導装置の構成
電磁誘導コイル12としては、銅線からなり、コイルの巻き径(内径)が36mm(36Φ)、軸長が70mm、線径が0.5mm、巻き数が1395回、抵抗が13Ωであるものを用いた。また、磁性弾性体20としては、ポリウレタンの発泡エラストマー21にネオジム系磁性粉体を分散させたものを用いた。なお、ネオジム系磁性粉体は、粒子径の異なるもの(5μmと100μm)を用いた。磁性弾性体20は、円柱状であり、磁性弾性体20の直径は23mm、軸長は23mmである。磁性弾性体20の着磁条件は、8テスラで3秒間とした。なお、磁性弾性体20の着磁は、自然長状態と軸方向における50%圧縮状態とで行った。そして、本実験では、磁性弾性体20を電磁誘導コイル12と同軸に配置すると共に、磁性弾性体20を、自然長状態で電磁誘導コイル12と中心位置が一致するように配置した。磁性弾性体20は、電磁誘導コイル12内に全体が収まっており、軸方向が上下方向となるように配置され、軸方向の一端側から(下方から)圧縮することで磁性弾性体20を弾性変形させた。
【0063】
II.各実験例の磁性弾性体の詳細
磁性弾性体20の原料の詳細は、以下の通りである。
【0064】
(1)第1液
ポリオール;ポリエステルポリオール(分子量:2000、官能基数:2、水酸基価:56mgKOH/g、品名:「ポリライト OD-X-102」、DIC社製
イソシアネート;1,5-ナフタレンジイソシアネート(NCO%:40%、品名:「コスモネートND」、三井化学株式会社製)
ネオジム系磁性粉体;(1)MQFP(5μm)、マグネクエンチ社製、(2)MQFP(100μm)、マグネクエンチ社製
【0065】
(2)第2液
触媒;アミン触媒、品名:「Addocat PP」、ラインケミージャパン社製
発泡剤; ヒマシ油と水を含む混合液、品番:「アドベードSV」(ヒマシ油と水の重量比50:50)、ラインケミージャパン社製
【0066】
また、本実験では、発泡エラストマー21の発泡倍率、ネオジム系磁性粉体の配合比率や粒子径、着磁方法の異なる磁性弾性体20を用いた(実験例1~5)。各実験例の磁性弾性体20における着磁条件や各特性値等は、図19に示す通りである。
【0067】
図19には、実験例1~5の発泡エラストマーの詳細及び特性が示されている。実験例1は、発泡エラストマー21の発泡倍率を2倍とし、自然長状態で着磁したもので、ネオジム系磁性粉体の粒子径は5μm、質量比率は50質量%、体積比率は3.3体積%である。実験例2は、発泡エラストマー21の発泡倍率を4倍としており、ネオジム系磁性粉体の体積比率は1.6体積%となっていて、それ以外は実験例1と同様である。実験例3は、ネオジム系磁性粉体の質量比率を60質量%としており、体積比率は3.9体積%となっていて、それ以外は実験例1と同様である。実験例4は、軸方向における50%圧縮状態で着磁していて、それ以外は実験例3と同様である。実験例5は、ネオジム系磁性粉体の粒子径を100μmとしていて、それ以外は実験例3と同様である。
【0068】
III.試験方法
(1)発泡エラストマーの密度、発泡倍率
発泡エラストマー21の発泡倍率は、ネオジム系磁性粉体を含まない第1液と第2液とから、直径23mm、軸長(厚さ)23mmの円柱状の磁性弾性体20の試験サンプルを作製し、JIS K6268:1998に基づき密度を測定し、この密度から発泡倍率を計算した。
【0069】
(2)ネオジム系磁性粉体の質量比率、体積比率
ネオジム系磁性粉体の質量比率は、第1液の質量に対するネオジム系磁性粉体の質量を、秤を用いて測定することで求めた。ネオジム系磁性粉体の体積比率は、ネオジム系磁性粉体の質量比率、ネオジム系磁性粉体の密度、発泡エラストマー21の密度から、以下の式を用いて算出した。ここで、ネオジム系磁性粉体の密度は、7.6g/cm3とした。
ネオジム系磁性粉体の体積比率(%)=(ネオジム系磁性粉体の質量比率×発泡エラストマーの密度)/(ネオジム系磁性粉体の密度)
【0070】
(3)圧縮永久ひずみ
圧縮永久ひずみは、直径13mm、厚さ6.3mmの磁性弾性体20の試験サンプルを作製し、JIS K 6262:2013 A法(小形試験片 70℃×22時間、25%圧縮)に準拠して、測定を行った。
【0071】
(4)繰返し圧縮ひずみ
繰返し圧縮ひずみは、直径23mm、軸長(厚さ)23mmの磁性弾性体20の試験サンプルについて、自然長状態(もとの厚さ)に対する軸方向における50%圧縮を1Hz(1回/秒)で10万回行い、この繰返し圧縮試験前後での厚さの変化量を測定して、以下の計算式から算出した。なお、この測定は、常温(23℃)で行った。
繰返し圧縮ひずみ(%)=(圧縮試験前の厚み-圧縮試験後の厚み)/(圧縮試験前の厚み)×100
【0072】
(5)表面磁束密度
表面磁束密度は、直径23mm、軸長(厚さ)23mmの磁性弾性体20の試験サンプルを作製し、軸方向の両端面である上面及び下面の中心の磁束密度を各10回(合計20回)、ガウスメーター(「MG-601」、マグナ社製)を用いて測定し、その平均値を算出することで得た。また、表面磁束密度は、自然長状態と、軸方向において自然長状態から10%、25%、50%圧縮した圧縮状態との磁性弾性体20について測定し、自然長状態に対する各圧縮状態の表面磁束密度の変化率を算出した。
【0073】
(6)発電量
発電量は、図18に示す試験装置40により、電磁誘導コイル12の軸方向で圧縮と復元を繰り返すように磁性弾性体20を振動変形させて、電磁誘導コイル12の両端間の電圧を測定して評価した。磁性弾性体20に対する振動変形の条件は、圧縮率(ストローク量)3水準、周波数3水準の組み合わせからなる9条件とし、上記電圧の測定を各条件について行った。具体的には、振幅の水準は、6mm、8mm、10mm(変位量)であり、周波数の水準は、1Hz、5Hz、10Hzである。
【0074】
試験装置40の詳細は、以下のようになっている。試験装置40は、電磁誘導コイル12の内側で、磁性弾性体20を電磁誘導コイル12の軸方向で挟むピストン41と固定部材42とを有する。ピストン41は、駆動源43からの動力を受けて電磁誘導コイル12の軸方向に振動し、磁性弾性体20を振動変形させる。固定部材42とピストン41の間隔は、ピストン41が振動のストロークにおいて最も固定部材42から遠ざかったときに、磁性弾性体20の自然長と同じになるように設定されている。即ち、本実験では、固定部材42とピストン41が、磁性弾性体20に常に接する。
【0075】
また、電磁誘導コイル12の両端は、オシロスコープ44に接続され、オシロスコープ44には、電磁誘導コイル12に発生した誘導起電力が表示される。さらに、試験装置40には、ピストン41の振動を検出するためのレーザー変位計45が設けられている。レーザー変位計45からは、ピストン41の振幅や周波数等に関する信号がアンプユニット46を介してオシロスコープ44に出力され、オシロスコープ44でピストン41の振動の振幅や周波数を確認できるようになっている。
【0076】
IV.試験結果
実験例1~5は、何れも発泡エラストマー21がポリウレタンエラストマーからなるため、圧縮永久ひずみが21~25%、繰返し圧縮ひずみが13~18%と、良好な結果となっている。
【0077】
実験例1~実験例3の自然長状態の表面磁束密度は、それぞれ9.2mT、4.6mT、10.3mTであり、ネオジム系磁性粉体の体積比率が大きい方が、表面磁束密度は大きくなっている。実験例3と実験例5の自然長状態の表面磁束密度は、10.3mTと14.6mTであり、ネオジム系磁性粉体の粒子径が大きい方が、表面磁束密度は大きくなることが分かる。実験例3と実験例4の自然長状態の表面磁束密度は、10.3mTと9.2mTであり、実験例3の方が大きいが、10%、25%、50%圧縮した状態の表面磁束密度は、それぞれ、10.5mTと9.9mT、10.7mTと10.6mT、10.9mTと12.6mTであり、その変化の割合は、それぞれ、1.9%と7.6%、3.9%と15.2%、5.8%と37.0であった。50%圧縮した状態では、実験例4の方が表面磁束密度は大きくなっている。これは、圧縮されると、ネオジム系磁性粉体の分布密度が増大することに加え、ネオジム系磁性粉体の磁気モーメントの向きが自然長状態に比べて揃うことで、上記関係式(B)の単位体積当たりのネオジム系磁性粉体の数nと磁気モーメントの平均値mzの両方が大きくなり、磁化Mzが大きくなり、自然長状態に比べ、変化の割合も大きくなったと考えられる。そして、磁化Mzが大きくなった結果、磁束密度Bzが大きくなったと考えられる(関係式(A)参照)。また、実験例3では、50%圧縮しても自然長状態に対する表面磁束密度の変化の割合が5.8%であるが、実験例4では、10%圧縮で自然長状態に対する変化の割合が7.6%となっており、弾性変形の程度が小さくても表面磁束密度(磁束密度)の変化を大きくすることが可能となる。
【0078】
実験例1と実験例3の発電量を比較すると、ネオジム系磁性粉体の質量比率(体積比率)が大きい方が、発電量が大きくなっていることが分かる。また、圧縮率(変位量)が大きく、周波数を大きくした方が、発電量がより大きくなっていることが分かる。
【0079】
[他の実施形態]
(1)磁性弾性体20の弾性変形に伴う磁束密度の変化を利用して部材の挙動等を検出する装置として、例えば、ホール素子、TMR素子(トンネル磁気抵抗効果素子)、GMR素子(巨大磁気抵抗効果素子)、AMR素子(異方性磁気抵抗効果素子)等の磁気センサを磁性弾性体20に対向配置する構成も考えられる。
【0080】
(2)前述した全ての電気機器100A~100Iは、発電部10で発電された電力で作動するようになっていたが、発電部10を発電部として利用せず、電力は電池又は外部電源(例えば、商用電源)で確保し、発電部10を、外力や部材の変形等を検出する検出部としてのみ使用する構成としてもよく、負荷部を備えなくてもよい。
【0081】
(3)上記した第9実施形態の電気機器100Iが捻り変形にも曲げ変形にも伸縮変形にも使用可能であるのと同様に、上述した全ての電気機器100A~100Iは、他の使用方法で使用してもよい。また、電気機器100A~100Iの負荷部に含まれる電気的負荷を適宜変更してもよい。
【0082】
(4)前記第1実施形態の磁性弾性体20は、電磁誘導コイル12の内側に配置されてたが、磁性弾性体20の磁性粉体22による磁界が電磁誘導コイル12の内側を貫通するものであれば、磁性弾性体20は電磁誘導コイル12の外部に配置されていてもよい。
【0083】
(5)上記実施形態では、磁性弾性体20の磁化方向が、電磁誘導コイル12の軸方向と同じであったが、電磁誘導コイル12の軸方向に対して傾斜していてもよい。
【0084】
(6)上記実施形態では、磁性弾性体20が、円柱状であったが、これに限定されるものではなく、長方形状であっても、球状であってもよい。また、上述したバウンドストッパ(図11(B)参照)等の製品形状であってもよい。
【0085】
(7)上記実施形態では、電磁誘導コイル12と磁性弾性体20が同軸に配置されていたが、電磁誘導コイル12と磁性弾性体20の中心軸が互いにずれて平行に配置されていてもよいし、互いに傾斜していてもよい。
【0086】
(8)磁性弾性体20は、発泡エラストマー21に磁性粉体22を分散配置した構造になっているので、任意の形状に容易にカットすることができ、かつ、カット体もN極とS極を有する磁石となるので、磁性弾性体20をおもちゃに用いてもよい。また、磁性弾性体20は、フェライト磁石等に比べて、軽量であるので、他の磁石等の磁力で浮かせる用途に用いることもできる。
【0087】
(9)上記実施形態では、磁性弾性体20の原料のイソシアネートとして1,5-ナフタレンジイソシアネート(NDI)を用いたが、ジフェニルメタンジイソシアネート(MDI)を用いてもよい。
【0088】
<付記>
以下、上記実施形態から抽出される発明群の特徴について、必要に応じて効果等を示しつつ説明する。なお、以下では、理解の容易のため、上記実施形態において対応する構成を括弧書き等で適宜示すが、この括弧書き等で示した具体的構成に限定されるものではない。
【0089】
[特徴A1]
電磁誘導コイルと、着磁した磁性粉体を含有し、前記電磁誘導コイルを貫通する磁界を発生させると共に外力を受けて弾性変形すると前記磁界の磁束密度が変化する弾性体と、前記磁束密度の変化により前記電磁誘導コイルに誘起される誘導電流を整流する整流部と、前記整流部から受電して作動する負荷部と、を備える電気機器。
【0090】
特徴A1の電気機器は、着磁した磁性粉体を含有し、電磁誘導コイルを貫通する磁界を発生させる弾性体を有する。このような弾性体が外力を受けて弾性変形すると、電磁誘導コイルを貫通する磁界の磁束密度が変化し、電磁誘導による自己発電が行われる。そして、電磁誘導コイルに流れる誘導電流が整流されて負荷部に付与され、負荷部が駆動される。このように、特徴A1の電気機器は、従来の電気機器が有する回転機に比べ、簡素な構造を有する弾性体で自己発電を行うことができる。
【0091】
[特徴A2]
前記負荷部には、前記整流部からの受電に応じて無線信号を出力する無線回路が含まれる特徴A1に記載の電気機器。
【0092】
特徴A2の電気機器は、自己発電を行う上に無線回路を備えるので、設置場所の自由度が高くなる。
【0093】
[特徴A3]
前記無線回路は、前記整流部から受電する度に無線信号を出力して前記弾性体が外力を受けたことを報知する特徴A2に記載の電気機器。
【0094】
特徴A3の電気機器は、外力を受ける部位に設置して、遠隔地から外力の状況を監視することができる。
【0095】
[特徴A4]
前記負荷部には、前記誘導電流に基づいて前記外力を特定するための検出データを生成する検出回路と、前記検出データを無線送信する無線回路と、が含まれる特徴A1から特徴A3の何れか1に記載の電気機器。
【0096】
特徴4の電気機器は、誘導電流に基づいて外力を特定するための検出データを生成してから無線送信するので、電気機器から離れた遠隔値において無線送信によるノイズの影響を受け難いデータ収集が可能になる。
【0097】
[特徴A5]
前記整流部には、前記誘導電流により充電されかつ前記負荷部に給電可能な二次電池が含まれる特徴A1から特徴A4の何れか1に記載の電気機器。
【0098】
特徴5では、二次電池を備えたことで負荷部への給電が安定する。
【0099】
[特徴A6]
前記弾性体の弾性変形に伴って前記磁性粉体の磁気モーメントの向きが変化して前記電磁誘導コイルを貫通する前記磁界の磁束密度が変化する特徴A1から特徴A5の何れか1に記載の電気機器。
【0100】
磁界の磁束密度を変化させるために、弾性体の変形により電磁誘導コイルを貫通する磁界を発生させる磁性粉体の分布密度を変化させてもよいし、特徴6のように、磁性粉体の磁気モーメントの向きが電磁誘導コイルの軸方向に揃った状態と揃わない状態とに変化させてもよい。
【0101】
[特徴A7]
前記電磁誘導コイルは、前記弾性体を受容する空間を内側に有する環状又は筒状をなすように巻回され、前記弾性体を、前記電磁誘導コイルの巻回軸方向に伸縮させるように前記外力を伝達する伸縮支持機構を備える特徴A1から特徴A6の何れか1に記載の電気機器。
【0102】
特徴7によれば、コンパクトな構造で効率良く発電を行うことができる。
【0103】
[特徴A8]
前記弾性体を、前記電磁誘導コイルの巻回軸を中心に捻れられるように前記外力を伝達する捻り支持機構を備える特徴A1から特徴A6の何れか1に記載の電気機器。
【0104】
特徴8では、回転する外力を利用して発電を行うことができる。
【0105】
[特徴A9]
前記弾性体は、発泡エラストマーである、特徴A1から特徴A8の何れか1に記載の電気機器。
【0106】
特徴A9の弾性体は、発泡エラストマーであるので圧縮されると気泡が潰れ、伸びると気泡が膨らむ。これにより、伸縮変形に伴った伸縮方向と直交する方向のサイズの変化が抑えられ、弾性体とその周囲の部品との干渉を抑えることができる。
【0107】
[特徴A10]
前記発泡エラストマーは、ポリウレタンエラストマーであり、前記磁性粉体の粒子径は、3~200μmである、特徴A9に記載の電気機器。
【0108】
特徴A10は、弾性体が、ポリウレタンエラストマーであるので、弾性体の原料の硬化を速くすることができる。例えば、弾性体が非発泡のシリコンゴムである場合、弾性体の硬化に時間がかかるため、弾性体の硬化中に磁性粉体が沈降し、弾性体内での磁性粉体の分散が不均一となり易い。これに対し、特徴A10では、磁性粉体が沈降する前に弾性体の原料を硬化することができ、磁性粉体を弾性体内に均一に分散させることができる。これにより、100μm以上の粒子径の磁性粉体であっても容易に分散させることが可能となり、弾性体の磁束密度を大きくすることが可能となる。また、弾性体の成形性や変形の容易性等の観点から、磁性粉体の粒子径は、200μm以下であることが好ましい。
【0109】
[特徴A11]
前記発泡エラストマーは、発泡倍率が1.4~6倍でありかつ少なくとも連続気泡構造の部分を有する、特徴A9又は特徴A10に記載の電気機器。
【0110】
特徴A11では、発泡エラストマーが、1.4~6倍の発泡倍率となっていて、少なくとも連続気泡構造を有するので、弾性体を成形し易く、かつ弾性変形させ易くすることができ、弾性体の磁束密度を変化させ易くすることができる。その結果、回路に誘導電流を発生させ易くすることが可能となる。また、発泡エラストマーが少なくとも連続気泡構造となる部分を有するため、成形後に発泡エラストマーが縮む(いわゆる、シュリンクする)ことを、抑制可能となる。なお、上記発泡倍率は、弾性体の発泡倍率ではなく、発泡エラストマー単体の発泡倍率を示している。
【0111】
[特徴A12]
前記磁性粉体は、硬質の強磁性材料からなり、前記発泡エラストマーに対する前記磁性粉体の質量濃度は、40~80%であり、前記発泡エラストマーに対する前記磁性粉体の体積濃度は、1.0~3.5%である、特徴A9から特徴A11の何れか1に記載の電気機器。
【0112】
特徴A12では、弾性体を弾性変形させ易くしつつ、弾性体の磁束密度の変化を大きくすることが可能となる。
【0113】
[特徴A13]
JIS K 6262:2013 A法に準拠した前記弾性体の圧縮永久ひずみが、30%以下である、特徴A1から特徴A12の何れか1に記載の電気機器。
【0114】
[特徴A14]
1Hzで10万回50%圧縮を繰返した場合の前記弾性体の繰返し圧縮ひずみが、20%以下である、特徴A1から特徴A13の何れか1に記載の電気機器。
【0115】
特徴A13,14によれば、発泡エラストマーを弾性変形させた後の復元が良好である。これにより、弾性体が繰返し圧縮されて使用される用途に用いられる場合であっても、発泡エラストマーのヘタリが低減され、弾性体が繰返しの使用に一層好適となる。
【0116】
[特徴A15]
特徴A1から特徴A14の何れか1に記載の電気機器を製造する製造方法であって、前記磁性粉体を前記弾性体内に分散させ、前記弾性体を弾性変形させた状態で、その圧縮方向に前記磁性粉体を着磁する電気機器の製造方法。
【0117】
特徴A15の製造方法によれば、圧縮されたときに磁束密度の変化量が大きな弾性体を容易に製造することができる。
【0118】
なお、本明細書及び図面には、特許請求の範囲に含まれる技術の具体例が開示されているが、特許請求の範囲に記載の技術は、これら具体例に限定されるものではなく、具体例を様々に変形、変更したものも含み、また、具体例から一部を単独で取り出したものも含む。
【符号の説明】
【0119】
10 発電部
12,12V 電磁誘導コイル
20,20V,20W 磁性弾性体(弾性体)
21 発泡エラストマー
22 磁性粉体
35 アジャスト機構
91,91V,91W 整流部
91A 二次電池
92.92V 負荷部
100A~100I 電気機器
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19