IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ディスコの特許一覧

特許7617803検査用ウエーハ、検査用ウエーハの使用方法および検査装置
<>
  • 特許-検査用ウエーハ、検査用ウエーハの使用方法および検査装置 図1
  • 特許-検査用ウエーハ、検査用ウエーハの使用方法および検査装置 図2
  • 特許-検査用ウエーハ、検査用ウエーハの使用方法および検査装置 図3
  • 特許-検査用ウエーハ、検査用ウエーハの使用方法および検査装置 図4
  • 特許-検査用ウエーハ、検査用ウエーハの使用方法および検査装置 図5
  • 特許-検査用ウエーハ、検査用ウエーハの使用方法および検査装置 図6
  • 特許-検査用ウエーハ、検査用ウエーハの使用方法および検査装置 図7
  • 特許-検査用ウエーハ、検査用ウエーハの使用方法および検査装置 図8
  • 特許-検査用ウエーハ、検査用ウエーハの使用方法および検査装置 図9
  • 特許-検査用ウエーハ、検査用ウエーハの使用方法および検査装置 図10
  • 特許-検査用ウエーハ、検査用ウエーハの使用方法および検査装置 図11
  • 特許-検査用ウエーハ、検査用ウエーハの使用方法および検査装置 図12
  • 特許-検査用ウエーハ、検査用ウエーハの使用方法および検査装置 図13
  • 特許-検査用ウエーハ、検査用ウエーハの使用方法および検査装置 図14
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-01-09
(45)【発行日】2025-01-20
(54)【発明の名称】検査用ウエーハ、検査用ウエーハの使用方法および検査装置
(51)【国際特許分類】
   H01L 21/301 20060101AFI20250110BHJP
   B23K 26/53 20140101ALI20250110BHJP
【FI】
H01L21/78 B
B23K26/53
【請求項の数】 4
(21)【出願番号】P 2021069904
(22)【出願日】2021-04-16
(65)【公開番号】P2022164422
(43)【公開日】2022-10-27
【審査請求日】2024-02-19
(73)【特許権者】
【識別番号】000134051
【氏名又は名称】株式会社ディスコ
(74)【代理人】
【識別番号】110002147
【氏名又は名称】弁理士法人酒井国際特許事務所
(72)【発明者】
【氏名】リー チャイ キー
(72)【発明者】
【氏名】ゴー ポー シオン
(72)【発明者】
【氏名】ゴー ジュン テック
(72)【発明者】
【氏名】清水 泰雄
【審査官】湯川 洋介
(56)【参考文献】
【文献】特開2020-136468(JP,A)
【文献】特開2020-179487(JP,A)
【文献】特開2020-004862(JP,A)
【文献】特開2017-037912(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/301
B23K 26/53
(57)【特許請求の範囲】
【請求項1】
表面に設定された複数の分割予定ラインによって区画された各領域に複数のデバイスが形成されたウエーハの裏面からウエーハを構成する基板に対して透過性を有する波長のレーザービームを該分割予定ラインに沿って照射して基板の内部に改質層を形成するレーザー加工装置において、改質層を形成する際に該ウエーハの表面側のデバイスに影響を与えるレーザービームの漏れ光を検査する検査用ウエーハであって、
検査用基板と、
該検査用基板の一方の面に所定の厚みで形成された金属層と、を有し、
該金属層は、該レーザー加工装置において自動で光量調整を行うためのターゲットを備え、
該レーザー加工装置において該ターゲットを撮像し、撮像した画像における該ターゲットの見え方が所望の見え方になるように加工領域に照射する光量を自動で調整することで、該レーザービームの漏れ光を適切に検出することが可能な検査用ウエーハ。
【請求項2】
該ターゲットは、二次元コードである、請求項1に記載の検査用ウエーハ。
【請求項3】
請求項1または請求項2に記載の検査用ウエーハの使用方法であって、
該検査用ウエーハに形成されたターゲットを撮像する撮像ステップと、
該撮像ステップで撮像したターゲット画像と、
該レーザービームの漏れ光を適切に検出することが可能な光量で予め該ターゲットを撮像した基準画像と、を比較する比較ステップと、
該比較ステップの結果に基づいて、該ターゲット画像が該基準画像と同じになるように光量を調整する調整ステップと、を備え、
該調整ステップを実施した後、
該検査用ウエーハの金属層が形成された面とは反対側の面から該検査用基板に対して透過性を有する波長のレーザービームを照射し、
該検査用基板の内部で集光させた集光点と該検査用ウエーハとを相対的に移動させて改質層を形成する改質層形成ステップと、
該改質層形成ステップの後、該検査用ウエーハの該金属層を撮像し、該金属層の変質が生じた箇所の最大幅を測定する幅測定ステップと、
を含む検査ステップを実施することを特徴とする、検査用ウエーハの使用方法。
【請求項4】
請求項1または請求項2に記載の検査用ウエーハを用いて検査を行う検査装置であって、
該検査用ウエーハを保持するチャックテーブルと、
該チャックテーブルに保持された該検査用ウエーハに対してレーザービームを集光照射する集光器を備えたレーザービーム照射ユニットと、
該チャックテーブルと該レーザービームの集光点とを相対的に移動させる移動ユニットと、
該検査用ウエーハに形成されたターゲットに対して光を照射する光源を備え該光源から光を照射してターゲットを撮像する撮像ユニットと、
制御ユニットと、を有し、
該制御ユニットは、
該レーザービームの漏れ光を適切に検出することが可能な光量で予め該ターゲットを撮像した基準画像を記憶しておく記憶部と、
該記憶部に記憶された基準画像と、該撮像ユニットによって新たに撮像されたターゲット画像と、を比較する比較部と、
該比較部による比較結果に基づいて、該光源からの光量が適切か否かを判定する判定部と、
該判定部によって光量が適切でないと判定した場合、該ターゲット画像と該基準画像が同じになるように該光源からの光量を自動で調整する光量調整部と、
を備えることを特徴とする検査装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、検査用ウエーハ、検査用ウエーハの使用方法および検査装置に関する。
【背景技術】
【0002】
半導体ウエーハ等の被加工物を個々のデバイスに分割する方法として、例えば、被加工物に対して透過性を有する波長のレーザービームの集光点を分割予定ラインに対応する被加工物の内部に位置付け、レーザービームと被加工物とを相対的に走査させることにより、ウエーハの内部に改質層を形成し、その後、強度の低下した分割予定ラインに沿って外力を加えて改質層を起点に被加工物を分割する方法がある(例えば、特許文献1参照)。
【0003】
しかし、上記特許文献1に示された方法を用いて改質層を形成すると、レーザービームを照射した面(裏面)と反対側の表面に形成されたデバイスにレーザービームが散乱しデバイスを損傷させるという問題が生じることが判明した。この問題は、改質層からウエーハ厚み方向に伸展した微細な亀裂(クラック)に当たって屈折または反射したレーザービームの漏れ光に起因すると推察される。
【0004】
そこで、本発明者らは、デバイスへのダメージを最小限にしつつウエーハを良好に分割可能な加工条件を探し出すための検査用ウエーハを開発した(例えば、特許文献2参照)。この検査用ウエーハは、基板に金属層が積層されており、改質層を形成した際にレーザービームの漏れ光によって生じる金属層の変質の最大幅を測定することで、ダメージ範囲を特定して加工条件を調整している。
【先行技術文献】
【特許文献】
【0005】
【文献】特許第3408805号公報
【文献】特開2018-64049号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、特許文献2に示された検査用ウエーハは、金属層に微小な厚みばらつきが存在するため、装置の加工領域に照射される光量の強さによっては上記の金属層の変質の見え方が変わってしまい、実際には金属層が変質しているのに見落としてしまうなどして適切な加工条件の設定が出来なくなる恐れがある。
【0007】
この問題を回避するため、現状ではオペレータが検査用ウエーハ毎に光量調整を行っているが、オペレータによって設定値が異なるなど、人的ミスの温床となっていた。
【0008】
本願発明は上記事実に鑑みてなされたものであり、その目的は、作業工数を抑制しながらも金属層の変質の検出の見落としを抑制することが可能な検査用ウエーハ、検査用ウエーハの使用方法および検査装置を提供することである。
【課題を解決するための手段】
【0009】
上述した課題を解決し、目的を達成するために、本発明の検査用ウエーハは、表面に設定された複数の分割予定ラインによって区画された各領域に複数のデバイスが形成されたウエーハの裏面からウエーハを構成する基板に対して透過性を有する波長のレーザービームを該分割予定ラインに沿って照射して基板の内部に改質層を形成するレーザー加工装置において、改質層を形成する際に該ウエーハの表面側のデバイスに影響を与えるレーザービームの漏れ光を検査する検査用ウエーハであって、検査用基板と、該検査用基板の一方の面に所定の厚みで形成された金属層と、を有し、該金属層は、該レーザー加工装置において自動で光量調整を行うためのターゲットを備え、該レーザー加工装置において該ターゲットを撮像し、撮像した画像における該ターゲットの見え方が所望の見え方になるように加工領域に照射する光量を自動で調整することで、該レーザービームの漏れ光を適切に検出することが可能なことを特徴とする。
【0010】
前記検査用ウエーハにおいて、該ターゲットは、二次元コードであっても良い。
【0011】
本発明の検査用ウエーハの使用方法は、前記検査用ウエーハの使用方法であって、該検査用ウエーハに形成されたターゲットを撮像する撮像ステップと、該撮像ステップで撮像したターゲット画像と、該レーザービームの漏れ光を適切に検出することが可能な光量で予め該ターゲットを撮像した基準画像と、を比較する比較ステップと、該比較ステップの結果に基づいて、該ターゲット画像が該基準画像と同じになるように光量を調整する調整ステップと、を備え、該調整ステップを実施した後、該検査用ウエーハの金属層が形成された面とは反対側の面から該検査用基板に対して透過性を有する波長のレーザービームを照射し、該検査用基板の内部で集光させた集光点と該検査用ウエーハとを相対的に移動させて改質層を形成する改質層形成ステップと、該改質層形成ステップの後、該検査用ウエーハの該金属層を撮像し、該金属層の変質が生じた箇所の最大幅を測定する幅測定ステップと、を含む検査ステップを実施することを特徴とする。
【0012】
本発明の検査装置は、前記検査用ウエーハを用いて検査を行う検査装置であって、該検査用ウエーハを保持するチャックテーブルと、該チャックテーブルに保持された該検査用ウエーハに対してレーザービームを集光照射する集光器を備えたレーザービーム照射ユニットと、該チャックテーブルと該レーザービームの集光点とを相対的に移動させる移動ユニットと、該検査用ウエーハに形成されたターゲットに対して光を照射する光源を備え該光源から光を照射してターゲットを撮像する撮像ユニットと、制御ユニットと、を有し、該制御ユニットは、該レーザービームの漏れ光を適切に検出することが可能な光量で予め該ターゲットを撮像した基準画像を記憶しておく記憶部と、該記憶部に記憶された基準画像と、該撮像ユニットによって新たに撮像されたターゲット画像と、を比較する比較部と、該比較部による比較結果に基づいて、該光源からの光量が適切か否かを判定する判定部と、該判定部によって光量が適切でないと判定した場合、該ターゲット画像と該基準画像が同じになるように該光源からの光量を自動で調整する光量調整部と、を備えることを特徴とする。
【発明の効果】
【0013】
本発明は、作業工数を抑制しながらも金属層の変質の検出の見落としを抑制することができるという効果を奏する。
【図面の簡単な説明】
【0014】
図1図1は、実施形態1に係る検査用ウエーハの斜視図である。
図2図2は、図1に示された検査用ウエーハを用いる検査装置であるレーザー加工装置の構成例を示す斜視図である。
図3図3は、図2に示されたレーザー加工装置がウエーハに改質層を形成する状態を模式的に示すウエーハの一部を拡大して示す断面図である。
図4図4は、図2に示されたレーザー加工装置の撮像ユニットの構成を模式的に示す断面図である。
図5図5は、図1に示された検査用ウエーハを下方からみた平面図である。
図6図6は、図5中のVI-VI線に沿う断面図である。
図7図7は、図2に示されたレーザー加工装置の制御ユニットの記憶部が記憶した基準画像の一例を示す図である。
図8図8は、図2に示されたレーザー加工装置の制御ユニットの比較部が比較するターゲット画像の一例を示す図である。
図9図9は、図2に示されたレーザー加工装置の制御ユニットの比較部が比較するターゲット画像の他の例を示す図である。
図10図10は、実施形態1に係る検査用ウエーハの使用方法の流れを示すフローチャートである。
図11図11は、図10に示されたウエーハの使用方法の撮像ステップを模式的に一部断面で示す側面図である。
図12図12は、図10に示された検査用ウエーハの使用方法の検査ステップの改質層形成ステップを模式的に一部断面で示す側面図である。
図13図13は、図12に示された検査用ウエーハの一部を拡大して示す断面図である。
図14図14は、図10に示された検査用ウエーハの使用方法の検査ステップの幅測定ステップで撮像ユニットが撮像して得た画像の一例を模式的に示す図である。
【発明を実施するための形態】
【0015】
本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成は適宜組み合わせることが可能である。また、本発明の要旨を逸脱しない範囲で構成の種々の省略、置換または変更を行うことができる。
【0016】
〔実施形態1〕
本発明の実施形態1に係る検査用ウエーハ60、検査装置であるレーザー加工装置1を図面に基づいて説明する。図1に示す実施形態1に係る検査用ウエーハ60は、図2に示された検査装置であるレーザー加工装置1に用いられるものである。図2に示されたレーザー加工装置1は、ウエーハ200に対してパルス状のレーザービーム21を照射し、ウエーハ200にレーザー加工(加工に相当)を施す加工装置である。まず、レーザー加工装置1の加工対象のウエーハ200及びレーザー加工装置1を説明する。
【0017】
図1は、実施形態1に係る検査用ウエーハの斜視図である。図2は、図1に示された検査用ウエーハを用いる検査装置であるレーザー加工装置の構成例を示す斜視図である。図3は、図2に示されたレーザー加工装置がウエーハに改質層を形成する状態を模式的に示すウエーハの一部を拡大して示す断面図である。図4は、図2に示されたレーザー加工装置の撮像ユニットの構成を模式的に示す断面図である。
【0018】
(ウエーハ)
図2に示されたレーザー加工装置1の加工対象であるウエーハ200は、シリコン、サファイア、ガリウムヒ素などの基板201を有する円板状の半導体ウエーハや光デバイスウエーハ等である。ウエーハ200は、基板201の表面202に互いに交差する分割予定ライン203が複数設定され、表面202に複数設定された分割予定ライン203によって区画された各領域にデバイス204が形成されている。
【0019】
デバイス204は、例えば、IC(Integrated Circuit)、又はLSI(Large Scale Integration)等の集積回路、CCD(Charge Coupled Device)、又はCMOS(Complementary Metal Oxide Semiconductor)等のイメージセンサである。
【0020】
また、実施形態1において、ウエーハ200は、ウエーハ200の外径よりも大径な円板状でかつ外縁部に環状のフレーム207が貼着された粘着テープ208が表面202に貼着されて、フレーム207の開口209内に支持される。また、実施形態1において、ウエーハ200は、表面202が粘着テープ208に貼着されて、表面202の裏側の裏面205を上方に向けている。
【0021】
実施形態1において、ウエーハ200は、粘着テープ208によりフレーム207の開口209内に支持された状態で、レーザー加工装置1によりレーザー加工が施されるなどして、分割予定ライン203に沿って個々のデバイス204に分割される。また、実施形態1では、ウエーハ200は、基板201がシリコンにより構成されている。
【0022】
(レーザー加工装置)
レーザー加工装置1は、ウエーハ200の裏面205からウエーハ200を構成する基板201に対して透過性を有する波長のレーザービーム21を分割予定ライン203に沿って照射して、基板201の内部に図3に示す改質層206を形成する加工装置である。なお、改質層206とは、密度、屈折率、機械的強度やその他の物理的特性が周囲のそれとは異なる状態になった領域のことを意味し、溶融処理領域、クラック領域、絶縁破壊領域、屈折率変化領域、及びこれらの領域が混在した領域等を例示できる。改質層206は、ウエーハ200の基板201の他の箇所よりも機械的な強度が低い。
【0023】
レーザー加工装置1は、図2に示すように、ウエーハ200を保持するチャックテーブル10と、検査用ウエーハ60を保持するサブチャックテーブル15と、レーザービーム照射ユニット20と、移動ユニット30と、撮像ユニット40と、制御ユニット50とを有する。
【0024】
チャックテーブル10は、ウエーハ200を水平方向と平行な保持面11で保持する。保持面11は、ポーラスセラミック等から形成された円盤形状であり、図示しない真空吸引経路を介して図示しない真空吸引源と接続されている。チャックテーブル10は、真空吸引源により吸引されることで、保持面11上に載置されたウエーハ200を吸引保持する。チャックテーブル10の周囲には、ウエーハ200を開口209内に支持するフレーム207を挟持するクランプ部12が複数配置されている。
【0025】
また、チャックテーブル10は、移動ユニット30の回転移動ユニット34により保持面11に対して直交しかつ鉛直方向と平行なZ軸方向と平行な軸心回りに回転される。チャックテーブル10は、回転移動ユニット34とともに、移動ユニット30のX軸移動ユニット31により水平方向と平行なX軸方向に移動されかつY軸移動ユニット32により水平方向と平行でかつX軸方向と直交するY軸方向に移動される。チャックテーブル10は、移動ユニット30によりレーザービーム照射ユニット20の下方の加工領域と、レーザービーム照射ユニット20の下方から離れてウエーハ200が搬入、搬出される搬入出領域とに亘って移動される。
【0026】
サブチャックテーブル15は、検査用ウエーハ60を保持面16で保持するチャックテーブルである。サブチャックテーブル15は、実施形態1では、変面形状が矩形の平板状に形成され、保持面16がポーラスセラミック等から形成されている。サブチャックテーブル15は、保持面16が、図示しない真空吸引経路を介して図示しない真空吸引源と接続されている。サブチャックテーブル15は、真空吸引源により吸引されることで、保持面16上に載置された検査用ウエーハ60を吸引保持する。実施形態1では、サブチャックテーブル15は、チャックテーブル10の周囲に複数(実施形態1では、4つ)配置されている。
【0027】
サブチャックテーブル15は、チャックテーブル10及び回転移動ユニット34とともに、移動ユニット30のX軸移動ユニット31により水平方向と平行なX軸方向に移動されかつY軸移動ユニット32により水平方向と平行でかつX軸方向と直交するY軸方向に移動される。サブチャックテーブル15は、移動ユニット30によりチャックテーブル10とともに、前述した加工領域と搬入出領域とに亘って移動される。なお、加工領域では、サブチャックテーブル15は、撮像ユニット40の下方に位置付けられることが可能である。また、搬入出領域では、サブチャックテーブル15は、保持面16に検査用ウエーハ60が搬入、搬出されることが可能である。
【0028】
レーザービーム照射ユニット20は、チャックテーブル10,15に保持されたウエーハ200又は検査用ウエーハ60に対してパルス状のレーザービーム21を集光照射する集光器23を備えて、ウエーハ200をレーザー加工するユニットである。なお、集光照射するとは、集光点22で集光したレーザービーム21を照射することをいう。
【0029】
実施形態1では、レーザービーム照射ユニット20の一部は、図2に示すように、装置本体2から立設した立設壁3に設けられた移動ユニット30のZ軸移動ユニット33によりZ軸方向に移動される昇降部材4に支持されている。レーザービーム照射ユニット20は、ウエーハ200の基板201及び検査用ウエーハ60に対して透過性を有する波長のパルス状のレーザービーム21を出射するレーザー発振器と、チャックテーブル10,15の保持面11,16に保持されたウエーハ200又は検査用ウエーハ60にレーザー発振器から出射されたレーザービーム21を集光する集光器23とを備える。
【0030】
集光器23は、チャックテーブル10,15の保持面11,16とZ軸方向に対向する位置に配置された図示しない集光レンズを備えている。集光レンズは、レーザー発振器から出射されたレーザービーム21を透過して、レーザービーム21を集光点22(図3に示す)に集光する。前述した構成のレーザービーム照射ユニット20は、チャックテーブル10,15に保持されたウエーハ200又は検査用ウエーハ60に対して透過性を有する波長のパルス状のレーザービーム21の集光点22を、ウエーハ200又は検査用ウエーハ60の内部に設定して、レーザービーム21をウエーハ200の裏面205又は検査用ウエーハ60に照射して、ウエーハ200又は検査用ウエーハ60の内部に改質層206を形成する。
【0031】
なお、ウエーハ200は、改質層206が形成されると、形成された改質層206から厚み方向に伸展した微細なクラックが生じることがある。微細なクラックが生じると、ウエーハ200に照射されたレーザービーム21は、図3に示すように、微細なクラックに当たり屈折又は反射して、表面202側に到達して、デバイス204にダメージなどの影響を与えること(即ち、デバイス204を構成する金属を変質させること)がある。微細なクラックに当たり屈折又は反射して、表面202側に到達するレーザービーム21を以下、レーザービーム21の漏れ光24と記す。
【0032】
移動ユニット30は、チャックテーブル10,15とレーザービーム照射ユニット20が照射するレーザービーム21の集光点22とをX軸方向、Y軸方向、Z軸方向及びZ軸方向と平行な軸心回りに相対的に移動させるものである。X軸方向及びY軸方向は、互いに直交し、かつ保持面11(即ち水平方向)と平行な方向である。移動ユニット30は、チャックテーブル10,15をX軸方向に移動させる加工送りユニットであるX軸移動ユニット31と、チャックテーブル10,15をY軸方向に移動させる割り出し送りユニットであるY軸移動ユニット32と、レーザービーム照射ユニット20に含まれる集光器23をZ軸方向に移動させるZ軸移動ユニット33と、チャックテーブル10をZ軸方向と平行な軸心回りに回転する回転移動ユニット34とを備える。
【0033】
Y軸移動ユニット32は、チャックテーブル10,15と、レーザービーム照射ユニット20とを相対的に割り出し送りするユニットである。実施形態1では、Y軸移動ユニット32は、レーザー加工装置1の装置本体2上に設置されている。Y軸移動ユニット32は、X軸移動ユニット31を支持した移動プレート5をY軸方向に移動自在に支持している。
【0034】
X軸移動ユニット31は、チャックテーブル10,15と、レーザービーム照射ユニット20とを相対的に加工送りするユニットである。X軸移動ユニット31は、移動プレート5上に設置されている。X軸移動ユニット31は、チャックテーブル10をZ軸方向と平行な軸心回りに回転する回転移動ユニット34を支持した第2移動プレート6をX軸方向に移動自在に支持している。第2移動プレート6は、回転移動ユニット34、チャックテーブル10及びサブチャックテーブル15を支持している。Z軸移動ユニット33は、立設壁3に設置され、昇降部材4をZ軸方向に移動自在に支持している。回転移動ユニット34は、チャックテーブル10を支持している。
【0035】
X軸移動ユニット31、Y軸移動ユニット32及びZ軸移動ユニット33は、軸心回りに回転自在に設けられた周知のボールねじ、ボールねじを軸心回りに回転させる周知のパルスモータ、移動プレート5,6をX軸方向又はY軸方向に移動自在に支持するとともに、昇降部材4をZ軸方向に移動自在に支持する周知のガイドレールを備える。回転移動ユニット34は、チャックテーブル10を軸心回りに回転するモータ等を備える。
【0036】
また、レーザー加工装置1は、チャックテーブル10のX軸方向の位置を検出するための図示しないX軸方向位置検出ユニットと、チャックテーブル10のY軸方向の位置を検出するための図示しないY軸方向位置検出ユニットと、レーザービーム照射ユニット20に含まれる集光器23のZ軸方向の位置を検出するZ軸方向位置検出ユニットとを備える。各位置検出ユニットは、検出結果を制御ユニット50に出力する。
【0037】
撮像ユニット40は、チャックテーブル10に保持されたウエーハ200又は検査用ウエーハ60を撮像するものである。撮像ユニット40は、図4に示すように、筐体41と、光源42と、対物レンズ43と、ミラー44と、撮像素子45とを備える。筐体41は、内側に空間を設けた容器であって、レーザービーム照射ユニット20の筐体の先端に取り付けられて、レーザービーム照射ユニット20の筐体とともに昇降部材4に支持されている。
【0038】
光源42は、筐体41に取り付けられ、筐体41内に光46を発する。実施形態1では、光源42が発する光46は、少なくとも赤外線を含んでいる。対物レンズ43は、筐体41内に設置され、チャックテーブル10の保持面11とZ軸方向に対向することが可能な位置に配置されている。実施形態1では、対物レンズ43は、レーザービーム照射ユニット20の集光レンズとX軸方向に並ぶ位置に配置されている。対物レンズ43は、光源42から発せられた光46をZ軸方向に対向するものに集光するとともに、Z軸方向に対向するものから反射された光47を透過する。
【0039】
ミラー44は、筐体41内に設置され、光源42から発せられた光46を対物レンズ43へと導くものである。実施形態1では、ミラー44は、2つ設けられているが、本発明では、ミラー44の数は、2つに限定されない。2つのミラー44のうち一方のミラー44は、光源42とZ軸方向に対向し、光源42の下方に配置されて、光46を対物レンズ43の上方に向けて水平方向に反射する。他方のミラー44は、対物レンズ43とZ軸方向に対向し、対物レンズ43の上方でかつ一方のミラー44の側方に配置されて、一方のミラー44が反射した光46を対物レンズ43に向けて反射する。また、他方のミラー44は、前述した光47を透過する。このように、少なくとも他方のミラー44は、光46を反射し、光47を透過するハーフミラーである。
【0040】
実施形態1において、光源42は、対物レンズ43とZ軸方向に対向するものに照射される光46が撮像素子45及び対物レンズ43の光軸と同軸になる落射照明(同軸照明ともいう)を構成する光源である。しかしながら、本発明では、撮像ユニット40は、対物レンズ43とZ軸方向に対向するものに照射される光46の光軸が、撮像素子45及び対物レンズ43の光軸と交差する斜光照明を構成する光源を備えても良い。
【0041】
撮像素子45は、対物レンズ43からみて、光46が対物レンズ43を透過する方向と逆の方向に配置されている。実施形態1では、撮像素子45は、筐体41に取り付けられ、対物レンズ43とZ軸方向に対向し、対物レンズ43の上方に配置されている。撮像素子45は、対物レンズ43を透過した光47のうちの赤外線を受光し、対物レンズ43がZ軸方向に対向するものを赤外線で撮像する。撮像素子45は、CCD(Charge Coupled Device)撮像素子又はCMOS(Complementary MOS)撮像素子等である。こうして撮像ユニット40は、筐体41により対物レンズ43及び撮像素子45等が覆われて、筐体41内に対物レンズ43を除いて外部から光が侵入しないように構成されている。
【0042】
撮像素子45は、撮像して取得した画像を制御ユニット50に出力する。なお、実施形態1では、撮像素子45が撮像して取得する画像は、光47のうち赤外線の光量が複数段階の階調(例えば256階調)で規定されたグレースケール画像である。
【0043】
撮像ユニット40は、撮像素子45が撮像した画像を取得し、取得した画像を制御ユニット50に出力する。また、撮像ユニット40は、チャックテーブル10の保持面11に保持されたウエーハ200を撮像して、ウエーハ200とレーザービーム照射ユニット20との位置合わせを行うアライメントを遂行するための画像を取得する。
【0044】
制御ユニット50は、レーザー加工装置1の上述した構成要素をそれぞれ制御して、ウエーハ200に対するレーザー加工動作をレーザー加工装置1に実施させるものである。なお、制御ユニット50は、CPU(central processing unit)のようなマイクロプロセッサを有する演算処理装置と、ROM(read only memory)又はRAM(random access memory)のようなメモリを有する記憶装置と、入出力インターフェース装置とを有するコンピュータである。制御ユニット50の演算処理装置は、記憶装置に記憶されているコンピュータプログラムに従って演算処理を実施して、レーザー加工装置1を制御するための制御信号を入出力インターフェース装置を介してレーザー加工装置1の上述した構成要素に出力して、制御ユニット50の機能を実現する。
【0045】
また、制御ユニット50は、加工動作の状態や画像などを表示する液晶表示装置などにより構成される表示ユニット51と、オペレータが加工内容情報などを登録する際に用いる入力ユニットと、音と光の少なくとも一方を発してオペレータに報知する報知ユニットとが接続されている。入力ユニットは、表示ユニット51に設けられたタッチパネルと、キーボード等の外部入力装置との少なくとも一方により構成される。
【0046】
(検査用ウエーハ)
次に、実施形態1に係る検査用ウエーハ60を説明する。図5は、図1に示された検査用ウエーハを下方からみた平面図である。図6は、図5中のVI-VI線に沿う断面図である。検査用ウエーハ60は、ウエーハ200に改質層206を形成する際にウエーハ200の表面202側のデバイス204に影響を与えるレーザービーム21の漏れ光24を検査するものである。
【0047】
検査用ウエーハ60は、レーザー加工装置1の加工対象のウエーハ200と対応するものである。検査用ウエーハ60は、図1に示すように、検査用基板61と、金属層62とを有する。
【0048】
検査用基板61は、両方の面63,64がそれぞれ平坦であり、互いに平行であって、厚みが一様の平板である。検査用基板61は、平面形状がサブチャックテーブル15の平面形状と同等の矩形状に形成されている。検査用基板61は、ウエーハ200の基板201と同様に、集光点22が内部に設定されてレーザービーム21が照射されることで、改質層206が形成される材質で構成される。検査用基板61は、例えば、検査用ウエーハ60の対応するウエーハ200の基板201と同じ材質で構成され、厚みが、検査用ウエーハ60の対応するウエーハ200の基板201の厚みと等しい。実施形態1では、検査用基板61は、対応するウエーハ200の基板201と同じシリコンで構成されている。
【0049】
金属層62は、検査用基板61の一方の面63に所定の厚みで形成されている。金属層62は、図5及び図6に示すように、ターゲット65を備え、ターゲット65を除いて、検査用基板61の一方の面63の全体に形成されている。金属層62は、検査用基板61の一方の面63に蒸着により形成され、ウエーハ200のデバイス204を構成する金属と同様に、レーザービーム21の漏れ光24が照射されると、変質可能な金属により構成されている。
【0050】
金属層62は、デバイス204を構成する金属と同じ材質、又は融点が近い金属により構成されるのが望ましい。金属層62は、例えばアルミニウム(Al)、錫(Sn)、白金(Pt)、金(Au)、銀(Ag)、インジウム(In)、鉛(Pb)、銅(Cu)、又はクロム(Cr)などの金属により構成される。また、金属層62の厚みは、特に限定されないが、レーザービーム21の漏れ光24により変質しやすい厚みに形成されるのが望ましい。実施形態1では、金属層62は、錫(Sn)により構成され、厚みが1μm以下に形成されている。
【0051】
また、本発明では、検査用ウエーハ60は、検査用基板61の一方の面63と金属層62との間に下地層を設けても良い。下地層は、検査用基板61の一方の面63に蒸着により形成され、下地層上に蒸着により金属層62が形成される。下地層は、金属層62を検査用基板61に良好に付着させることが可能な金属により構成されるのが望ましい。下地層は、例えば、チタン(Ti)、又はクロム(Cr)により構成されるのが望ましい。
【0052】
前述した構成の検査用基板61は、金属層62が保持面16に載置されて、サブチャックテーブル15の保持面16に吸引保持されて、撮像ユニット40により検査用基板61の他方の面64側から撮像されるとともに、レーザービーム照射ユニット20により検査用基板61の他方の面64側から集光点22が検査用基板61の内部に設定されてレーザービーム21が照射される。
【0053】
ターゲット65は、図5及び図6に示すように、検査用基板61の一方の面63の角部に一つのみ形成されている。ターゲット65は、検査用基板61の金属層62側がサブチャックテーブル15の保持面16に吸引されて、撮像ユニット40により他方の面64側から撮像される際に、光源42からの光46を反射する光47のうち反射する赤外線の光量が第1の光量である第1領域66(図5中に黒地で示す)と、反射する赤外線の光量が第1の光量よりも所定値以上低い第2領域67(図5中に白地で示す)とを備えている。なお、第1領域66が反射する赤外線の第1の光量は、金属層62が反射する赤外線の光量と同等である。
【0054】
実施形態1では、ターゲット65は、2次元コードと同様に第1領域66と第2領域67とを一方の面63の互いに直交する2方向に配列して構成されている。即ち、実施形態1では、ターゲット65は、第1領域66と第2領域67とを一方の面63の互いに直交する2方向に配列した2次元コードである。しかしながら、本発明では、ターゲット65は、第1領域66と第2領域67とを一方の面63の1方向に配列しかつ第1領域66及び第2領域67を配列方向に直交する棒状に形成した1次元コード(所謂、バーコード)でも良い。なお、実施形態1では、ターゲット65の第1領域66と第2領域67との配列は、検査用ウエーハ60の対応するウエーハ200が異なっていても、同じ配列である。
【0055】
実施形態1では、ターゲット65は、第1領域66が金属層62と同じ金属により構成され、金属層62が一方の面63に蒸着される際に、金属層62と同時に一方の面63に蒸着される。実施形態1では、ターゲット65は、第2領域67が、金属層62及び第1領域66が一方の面63に蒸着される際に、金属層62及び第1領域66を構成する金属が蒸着することなく形成され、検査用基板61の一方の面63を露出させる領域である。即ち、第2領域67は、検査用基板61の一方の面63により構成されている。こうして、ターゲット65は、第1領域66と第2領域67とを備えることで、レーザー加工装置1において、自動で、撮像される際の撮像ユニット40の光源42の光46の光量調整を行うために用いられる。なお、光量調整とは、撮像ユニット40の光源42の光46の光量を調整することをいう。また、本発明では、ターゲット65は、レーザーマーカーで加工を施すことで作成されても良い。この場合、レーザーマーカーで加工された箇所が、光量が小さい第2領域67となる。
【0056】
(制御ユニット)
次に、レーザー加工装置1の制御ユニット50の機能を説明する。図7は、図2に示されたレーザー加工装置の制御ユニットの記憶部が記憶した基準画像の一例を示す図である。図8は、図2に示されたレーザー加工装置の制御ユニットの比較部が比較するターゲット画像の一例を示す図である。図9は、図2に示されたレーザー加工装置の制御ユニットの比較部が比較するターゲット画像の他の例を示す図である。
【0057】
制御ユニット50は、図2に示すように、情報を記憶可能な記憶部52、比較部53、判定部54及び光量調整部55とを備える。記憶部52は、図7に示された基準画像70を記憶しておくものである。基準画像70は、レーザービーム21の漏れ光24を適切に検出することが可能な光量で予め撮像ユニット40が検査用ウエーハ60を他方の面64側からターゲット65を撮像して得た画像である。
【0058】
なお、基準画像70は、ターゲット65の第1領域66から反射された赤外線の光量が第1所定値以上で、かつ第2領域67から反射された赤外線の光量が第1所定値よりも少ない第2所定値以下の画像である。基準画像70は、ターゲット65の第1領域66から反射された赤外線の光量が第1所定値以上で、かつ第2領域67から反射された赤外線の光量が第2所定値以下であることによって、第1領域66と第2領域67とのコントラストを明確にする。
【0059】
比較部53は、記憶部52に記憶された基準画像70と、撮像ユニット40によって新たに他方の面64側から撮像されて取得された検査用ウエーハ60のターゲット65の画像71,72(図8及び図9に示し、以下、ターゲット画像と記す)とを比較するものである。比較部53は、周知のパターンマッチング等の画像処理により基準画像70と、ターゲット画像71,72とを対比する。実施形態1では、比較部53は、基準画像70のQ値とターゲット画像71,72のQ値とを算出し、これらのQ値の差を算出する。
【0060】
判定部54は、比較部53による比較結果に基づいて、光源42からの光46の光量が適切か否かを判定するものである。判定部54は、比較部53の比較結果に基づいて、基準画像70とターゲット画像71,72が近似しているか否かを判定する。判定部54は、基準画像70とターゲット画像71,72とが近似していると判定すると、光源42からの光46の光量が適切であると判定し、基準画像70とターゲット画像71,72とが近似していないと判定すると、光源42からの光46の光量が適切ではないと判定する。
【0061】
実施形態1では、判定部54は、基準画像70のQ値とターゲット画像71,72のQ値との差が予め定められた所定の値未満であると、基準画像70とターゲット画像71,72とが近似していると判定し、光源42からの光46の光量が適切であると判定する。判定部54は、基準画像70のQ値とターゲット画像71,72のQ値との差が予め定められた所定の値以上であると、基準画像70とターゲット画像71,72とが近似していないと判定し、光源42からの光46の光量が適切ではないと判定する。
【0062】
光量調整部55は、判定部54によって光源42の光46の光量が適切でないと判定した場合、ターゲット画像71,72と基準画像70とが同じになるように、光源42からの光46の光量を自動で調整するものである。光量調整部55は、判定部54が光源42の光46の光量を適切ではないと判定した場合、ターゲット画像71,72から周知の画像処理により第1領域66と第2領域67とを抽出し、第1領域66の光量の平均値と第2領域67の光量の平均値とを算出する。
【0063】
光量調整部55は、ターゲット画像71,72の第1領域66の光量の平均値が第1所定値未満であるか否か、ターゲット画像71,72の第2領域67の光量の平均値が第2所定値を超えているか否かを判定する。光量調整部55は、ターゲット画像71,72の第1領域66の光量の平均値が第1所定値未満であると判定すると、光源42の光46の光量を予め定められた所定の値増加して、光源42からの光46の光量を自動で調整する。光量調整部55は、ターゲット画像71,72の第2領域67の光量の平均値が第2所定値を超えていると判定すると、光源42の光46の光量を予め定められた所定の値減少して、光源42からの光46の光量を自動で調整する。
【0064】
なお、実施形態1において、図8に示されたターゲット画像71は、第2領域67の光量の平均値が第2所定値を超えて、光源42からの光46の光量が適切な光量よりも過度に多いときに取得された画像である。図9に示されたターゲット画像72は、第1領域66の光量の平均値が第1所定値未満で、光源42からの光46の光量が適切な光量よりも過度に少ないときに取得された画像である。
【0065】
記憶部52の機能は、前述した記憶装置により実現される。比較部53、判定部54及び光量調整部55の機能は、演算処理装置が記憶装置に記憶されているコンピュータプログラムに従って演算処理を実施することにより実現される。
【0066】
次に、実施形態1に係る検査用ウエーハの使用方法を説明する。図10は、実施形態1に係る検査用ウエーハの使用方法の流れを示すフローチャートである。検査用ウエーハの使用方法は、前述した構成の検査用ウエーハ60の使用方法であって、加工対象のウエーハ200をレーザー加工装置1がレーザー加工して、改質層206を形成する際の加工条件を設定する方法でもある。
【0067】
なお、加工条件は、レーザービーム21の波長、集光点22の光軸に対して直交する断面形状(以下、スポット形と記す)、平均出力、繰り返し周波数、パルス幅、集光器23の集光レンズの開口数、集光点22のZ軸方向の位置、レーザービーム21を照射する際のチャックテーブル10のX軸方向の移動速度(以下、加工送り速度と記す)とを含む。
【0068】
検査用ウエーハの使用方法は、レーザー加工装置1が検査用ウエーハ60を用いて検査を行う方法であって、図10に示すように、基準画像記憶ステップ301と、撮像ステップ302と、比較ステップ303と、調整ステップ304と、検査ステップ305とを備える。
【0069】
(基準画像記憶ステップ)
基準画像記憶ステップ301は、記憶部52が基準画像70を記憶するステップである。実施形態1において、基準画像記憶ステップ301では、オペレータが入力ユニット等を操作して入力した検査ステップ305の加工条件を制御ユニット50が受け付け、搬入出領域に位置付けられたサブチャックテーブル15の保持面16に所定の検査用ウエーハ60の金属層62が載置される。実施形態1において、制御ユニット50が入力ユニットからオペレータの加工条件を設定する動作の開始指示を受け付けると、加工条件を設定する動作を開始する。
【0070】
基準画像記憶ステップ301では、制御ユニット50が検査用ウエーハ60をサブチャックテーブル15の保持面16に吸引保持し、移動ユニット30を制御して検査用ウエーハ60を吸引保持したサブチャックテーブル15を加工領域に位置付け、サブチャックテーブル15に吸引保持された検査用ウエーハ60のターゲット65を撮像ユニット40の下方に位置付ける。
【0071】
基準画像記憶ステップ301では、制御ユニット50が光源42の光46の光量を検査用ウエーハ60の金属層62のレーザービーム21の漏れ光24により変質が生じた箇所68を適切に検出することが可能な光量に調整して、撮像ユニット40でサブチャックテーブル15に吸引保持された検査用ウエーハ60の裏面205側からターゲット65を撮像する(ステップ301-1)。
【0072】
基準画像記憶ステップ301では、制御ユニット50が検査用ウエーハ60の裏面205側からターゲット65を撮像して取得した画像を表示ユニット51に表示し、オペレータが表示ユニット51に表示されたターゲット65の画像を目視し、ターゲット65の画像の明るさ、即ち、撮像ユニット40の光源42の光量が適切であるか否かを確認する。
【0073】
基準画像記憶ステップ301では、ターゲット65の画像の明るさ、即ち、撮像ユニット40の光源42の光量が適切ではない場合、オペレータが入力ユニットを操作して、撮像ユニット40の光源42の光量を調整(ステップ301-2)する。具体的には、基準画像記憶ステップ301では、オペレータがターゲット65の画像が明るすぎると判定すると、入力ユニットを操作して、撮像ユニット40の光源42の光量を減少させ、ターゲット65の画像が暗すぎると判定すると、入力ユニットを操作して、撮像ユニット40の光源42の光量を増加させる。
【0074】
基準画像記憶ステップ301では、オペレータがターゲット65の画像の明るさ、即ち、撮像ユニット40の光源42の光量が適切であることを確認すると、オペレータが入力ユニットを操作して、記憶部52に撮像ユニット40が撮像して得たターゲット65の画像を基準画像70として記憶させる(ステップ301-3)。
【0075】
(撮像ステップ)
図11は、図10に示されたウエーハの使用方法の撮像ステップを模式的に一部断面で示す側面図である。撮像ステップ302は、検査用ウエーハ60に形成されたターゲット65を撮像するステップである。実施形態1において、撮像ステップ302では、サブチャックテーブル15に吸引保持され基準画像70を得た検査用ウエーハ60が、加工対象のウエーハ200と対応していない場合には、レーザー加工装置1は、一旦、サブチャックテーブル15等を搬入出領域まで移動して、サブチャックテーブル15上の検査用ウエーハ60を加工対象のウエーハ200に対応した検査用ウエーハ60に交換される。レーザー加工装置1は、サブチャックテーブル15に交換後の検査用ウエーハ60を吸引保持する。
【0076】
撮像ステップ302では、基準画像記憶ステップ301においてサブチャックテーブル15に吸引保持された検査用ウエーハ60が加工対象のウエーハ200と対応している場合、又はサブチャックテーブル15に吸引保持した検査用ウエーハ60が加工対象のウエーハ200に対応するものに交換された後、制御ユニット50が移動ユニット30を制御して検査用ウエーハ60を吸引保持したサブチャックテーブル15を加工領域に位置付ける。撮像ステップ302では、レーザー加工装置1が、図11に示すように、サブチャックテーブル15に吸引保持された検査用ウエーハ60のターゲット65を撮像ユニット40の下方に位置付ける。
【0077】
撮像ステップ302では、制御ユニット50が光源42の光46の光量を予め定められた所定の値に調整して、撮像ユニット40でサブチャックテーブル15に吸引保持された検査用ウエーハ60の他方の面64側からターゲット65を撮像する。こうして、撮像ユニット40は、検査用ウエーハ60に形成されたターゲット65に対して光46を照射する光源42を備え、光源42から光46を照射してターゲット65を撮像する。撮像ユニット40は、ターゲット65を撮像して取得したターゲット画像71,72を制御ユニット50に出力する。
【0078】
(比較ステップ)
比較ステップ303は、撮像ステップ302で撮像ユニット40が得たターゲット画像71,72と記憶部52が記憶した基準画像70と、を比較して、撮像ステップ302でターゲット画像71,72を得た時の光源42の光46の光量が適切であるか否かを判定するステップである。比較ステップ303では、比較部53が、記憶部52に記憶された基準画像70と、撮像ユニット40によって新たに他方の面64側から撮像されて取得された検査用ウエーハ60のターゲット画像71,72とを比較する(ステップ303-1)。
【0079】
比較ステップ303では、判定部54が、比較部53による比較結果に基づいて、光源42からの光46の光量が適切か否かを判定する(ステップ303-2)。比較ステップ303では、判定部54が光源42からの光46の光量が適切ではないと判定する(ステップ303-2:No)と、調整ステップ304に進む。また、比較ステップ303では、判定部54が光源42からの光46の光量が適切であると判定する(ステップ303-2:Yes)と、検査ステップ305に進む。
【0080】
(調整ステップ)
調整ステップ304は、比較ステップ303の結果に基づいて、ターゲット画像71,72と基準画像70とが同じになるように、光源42からの光46の光量を自動で調整するステップである。調整ステップ304では、光量調整部55が光源42からの光46の光量を自動で調整して、撮像ステップ302に戻る。
【0081】
なお、実施形態1に係るウエーハの検査方法は、判定部54が光源42からの光46の光量が適切であると判定するまで、撮像ステップ302、比較ステップ303及び調整ステップ304を繰り返す。また、実施形態1に係るウエーハの検査方法において判定部54が光源42からの光46の光量が適切であると判定するまで、撮像ステップ302、比較ステップ303及び調整ステップ304を繰り返することで、撮像ユニット40が撮像したターゲット画像71,72におけるターゲット65の見え方が基準画像70に近似する所望の見え方になるように、レーザー加工装置1は、検査用ウエーハ60の加工領域であるターゲット65を含む領域に照射する光源42の光46の光量を自動で調整する。検査用ウエーハ60は、レーザー加工装置1が検査用ウエーハ60の加工領域であるターゲット65を含む領域に照射する光源42の光46の光量を自動で調整することで、レーザービーム21の漏れ光24により金属層62の変質が生じた箇所68を適切に検出することが可能となる。
【0082】
(検査ステップ)
図12は、図10に示された検査用ウエーハの使用方法の検査ステップの改質層形成ステップを模式的に一部断面で示す側面図である。図13は、図12に示された検査用ウエーハの一部を拡大して示す断面図である。図14は、図10に示された検査用ウエーハの使用方法の検査ステップの幅測定ステップで撮像ユニットが撮像して得た画像の一例を模式的に示す図である。
【0083】
検査ステップ305は、比較ステップ303において、判定部54が光源42からの光46の光量が適切であると判定した後に実施される。即ち、検査ステップ305は、調整ステップ304を実施した後、実施されることもある。検査ステップ305は、改質層形成ステップ306と、幅測定ステップ307とを含む。
【0084】
改質層形成ステップ306は、検査用ウエーハ60の金属層62が形成された一方の面63とは反対側の他方の面64から検査用基板61に対して透過性を有する波長のレーザービーム21を照射し、検査用基板61の内部で集光させた集光点22と検査用ウエーハ60とを相対的に移動させて改質層206を形成するステップである。
【0085】
改質層形成ステップ306では、加工条件に基づいて、制御ユニット50が集光点22をサブチャックテーブル15に吸引保持された検査用ウエーハ60の検査用基板61の内部に設定し、図12に示すように、レーザービーム照射ユニット20及び移動ユニット30を制御して、サブチャックテーブル15をX軸方向に移動させながらレーザービーム照射ユニット20からパルス状のレーザービーム21を他方の面64側から検査用ウエーハ60に照射する。レーザービーム21が、検査用ウエーハ60の検査用基板61に対して透過性を有する波長を有しているために、検査用ウエーハ60の検査用基板61の内部に改質層206が形成される。
【0086】
なお、改質層206が形成される際に、レーザービーム21は、改質層206が伸展した微細なクラックに当たり屈折又は反射した漏れ光24が、一方の面63側に到達して、金属層62を部分的に変質させて、金属層62に変質が生じた箇所68を生じさせる。
【0087】
幅測定ステップ307は、改質層形成ステップ306の後、検査用ウエーハ60の金属層62を撮像し、金属層62の変質が生じた箇所68の最大幅を測定するステップである。幅測定ステップ307では、制御ユニット50が移動ユニット30を制御して、サブチャックテーブル15をX軸方向に移動させながら撮像ユニット40で検査用ウエーハ60の改質層206が形成された領域を他方の面64側から撮像して、図14に示す画像73を取得する。
【0088】
なお、実施形態1において、画像73では、金属層62の改質層206が形成されていなくかつ変質が生じていない領域74(図14中に白地で示す)により反射された赤外線の光量が、改質層206が形成された領域75(図14中に平行斜線で示す)及び変質が生じた箇所68(図14中に黒地で示す)が形成された領域76により反射された赤外線の光量よりも多い。
【0089】
幅測定ステップ307では、制御ユニット50の判定部54が、図14に一例を示した画像73から金属層62の変質が生じた箇所68を抽出し、Y軸方向に最も離間した2つの変質が生じた箇所68間の距離77(変質が生じた箇所68の最大幅に相当)を測定する(ステップ307-1)。幅測定ステップ307では、判定部54が、測定した2つの変質が生じた箇所68間の距離77、即ち前述した最大幅が適切か否かを判定する(ステップ307-2)。
【0090】
幅測定ステップ307では、判定部54が、測定した2つの変質が生じた箇所68間の距離77が加工対象のウエーハ200の分割予定ライン203の幅を超えているか否かを判定して、距離77、即ち前述した最大幅が適切か否かを判定する。
【0091】
幅測定ステップ307では、判定部54が、測定した2つの変質が生じた箇所68間の距離77が加工対象のウエーハ200の分割予定ライン203の幅を超えると判定すると、最大幅が適切ではないと判定(ステップ307-2:No)し、最大幅が適切になるように加工条件を変更(ステップ307-3)して、改質層形成ステップ306に戻る。
【0092】
また、幅測定ステップ307では、判定部54が、測定した2つの変質が生じた箇所68間の距離77が加工対象のウエーハ200の分割予定ライン203の幅以下であると、最大幅が適切であると判定(ステップ307-2:Yes)して、実施形態1に係る検査用ウエーハの使用方法を終了する。
【0093】
以上説明したように、実施形態1に係る検査用ウエーハは、金属層62がレーザー加工装置1において自動で光量調整を行うためのターゲット65を備えるので、レーザー加工装置1が、予め適切な光量でターゲット65を撮像した基準画像70と、新たに準備された検査用ウエーハ60のターゲット65を撮像したターゲット画像71,72とを比較して、基準画像70のターゲット65と新たに撮像したターゲット画像71,72のターゲット65が同じ見え方になるように自動で光量調整を行うことができる。その結果、検査用ウエーハ60は、オペレータの作業工数を抑制しながらも金属層62の変質の検出の見落としを抑制することができるという効果を奏する。
【0094】
また、実施形態1に係る検査用ウエーハ60の使用方法は、予め適切な光量でターゲット65を撮像した基準画像70と、新たに準備された検査用ウエーハ60のターゲット65を撮像したターゲット画像71,72とを比較して、基準画像70のターゲット65と新たに撮像したターゲット画像71,72のターゲット65が同じ見え方になるように自動で光量調整を行う。その結果、検査用ウエーハの使用方法は、オペレータの作業工数を抑制しながらも金属層62の変質の検出の見落としを抑制することができるという効果を奏する。
【0095】
また、実施形態1に係るレーザー加工装置1は、予め適切な光量でターゲット65を撮像した基準画像70と、新たに準備された検査用ウエーハ60のターゲット65を撮像したターゲット画像71,72とを比較して、基準画像70のターゲット65と新たに撮像したターゲット画像71,72のターゲット65が同じ見え方になるように自動で光量調整を行う光量調整部55を備える。その結果、レーザー加工装置1は、オペレータの作業工数を抑制しながらも金属層62の変質の検出の見落としを抑制することができるという効果を奏する。
【0096】
実施形態1に係る検査用ウエーハ60の使用方法及びレーザー加工装置1は、基準画像70とターゲット画像71,72とを比較して、基準画像70のターゲット65とターゲット画像71,72のターゲット65が同じ見え方になるように自動で光量調整を行うので、オペレータの人的ミスを抑制でき、オペレータの作業を削減しつつヒューマンエラーを防止することが可能となるという効果を奏する。
【0097】
なお、本発明は、上記実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変質して実施することができる。例えば、本発明では、ターゲット65は、一定の規則に従って第1領域66と第2領域67とを配置して、検査用ウエーハ60のロッド番号などを示す数字、文字、記号などの情報を示すものでも良い。この場合、レーザー加工装置1は、ターゲット画像71,72からターゲット65が示す情報を読み取って、読み取った情報と画像70,71,72,73とを紐付けて記憶し、後からこれらを追跡できるようにしても良い。
【符号の説明】
【0098】
1 レーザー加工装置(検査装置)
15 サブチャックテーブル(チャックテーブル)
20 レーザービーム照射ユニット(加工ユニット)
21 レーザービーム
22 集光点
23 集光器
24 漏れ光
30 移動ユニット
40 撮像ユニット
42 光源
46 光
50 制御ユニット
52 記憶部
53 比較部
54 判定部
55 光量調整部
60 検査用ウエーハ
61 検査用基板
62 金属層
63 一方の面
64 他方の面(反対側の面)
65 ターゲット
68 変質が生じた箇所
70 基準画像
71,72 ターゲット画像
77 距離(最大幅)
200 ウエーハ
201 基板
202 表面
203 分割予定ライン
204 デバイス
205 裏面
206 改質層
302 撮像ステップ
303 比較ステップ
304 調整ステップ
305 検査ステップ
306 改質層形成ステップ
307 幅測定ステップ
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14