IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エーエスエムエル ホールディング エヌ.ブイ.の特許一覧

特許7620004リソグラフィ装置および紫外放射制御システム
<>
  • 特許-リソグラフィ装置および紫外放射制御システム 図1
  • 特許-リソグラフィ装置および紫外放射制御システム 図2
  • 特許-リソグラフィ装置および紫外放射制御システム 図3
  • 特許-リソグラフィ装置および紫外放射制御システム 図4
  • 特許-リソグラフィ装置および紫外放射制御システム 図5
  • 特許-リソグラフィ装置および紫外放射制御システム 図6
  • 特許-リソグラフィ装置および紫外放射制御システム 図7
  • 特許-リソグラフィ装置および紫外放射制御システム 図8
  • 特許-リソグラフィ装置および紫外放射制御システム 図9
  • 特許-リソグラフィ装置および紫外放射制御システム 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-01-14
(45)【発行日】2025-01-22
(54)【発明の名称】リソグラフィ装置および紫外放射制御システム
(51)【国際特許分類】
   G03F 7/20 20060101AFI20250115BHJP
【FI】
G03F7/20 502
【請求項の数】 17
(21)【出願番号】P 2022509063
(86)(22)【出願日】2020-08-05
(65)【公表番号】
(43)【公表日】2022-10-19
(86)【国際出願番号】 EP2020072062
(87)【国際公開番号】W WO2021028295
(87)【国際公開日】2021-02-18
【審査請求日】2022-04-04
【審判番号】
【審判請求日】2023-12-25
(31)【優先権主張番号】62/886,532
(32)【優先日】2019-08-14
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】503195263
【氏名又は名称】エーエスエムエル ホールディング エヌ.ブイ.
(74)【代理人】
【識別番号】100105924
【弁理士】
【氏名又は名称】森下 賢樹
(74)【代理人】
【識別番号】100134256
【弁理士】
【氏名又は名称】青木 武司
(72)【発明者】
【氏名】クレマー、アレクサンダー
【合議体】
【審判長】山村 浩
【審判官】松川 直樹
【審判官】芝沼 隆太
(56)【参考文献】
【文献】特開2011-198609(JP,A)
【文献】特開2005-352250(JP,A)
【文献】米国特許第7554093(US,B1)
【文献】特開平09-210771(JP,A)
【文献】特表平1-502053(JP,A)
【文献】特開2000-151001(JP,A)
【文献】特開2002-365141(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G03F7/20
G01J1/00-1/60
H01L21/027
(57)【特許請求の範囲】
【請求項1】
ハウジングと、
前記ハウジング上または前記ハウジング内に配置され、紫外放射を蛍光放射に変換するように構成された単一の変換結晶と、
前記蛍光放射の散乱された部分の強度を検出するように構成された複数の光検出器と、
前記変換結晶上または前記変換結晶内に配置され、前記蛍光放射の散乱された部分の強度を増加させるように構成された少なくとも1つの拡散面と、を備え、
前記少なくとも1つの拡散面は、前記複数の光検出器に空間的に近接して配置されており、
前記変換結晶は、中心部が透過する前記紫外放射に曝される円盤形状を有し、
前記複数の光検出器は、前記変換結晶の環状外周縁に離間して配置されている紫外放射制御システム。
【請求項2】
前記少なくとも1つの拡散面は、リング形状を有する、請求項1に記載の紫外放射制御システム。
【請求項3】
前記少なくとも1つの拡散面は、不連続なリング形状に配列された複数のセグメントを備え、前記複数のセグメントの各々が、前記複数の光検出器のうちの所定の1つに隣接して配置されている、請求項1に記載の紫外放射制御システム。
【請求項4】
前記複数の光検出器は、前記変換結晶の第1側に配置され、
前記少なくとも1つの拡散面は、前記変換結晶の前記第1側とは反対の第2側に配置されている、請求項1に記載の紫外放射制御システム。
【請求項5】
前記複数の光検出器は、前記変換結晶の第1側に配置され、
前記少なくとも1つの拡散面は、前記変換結晶の前記第1側に配置されている、請求項1に記載の紫外放射制御システム。
【請求項6】
前記複数の光検出器は、前記変換結晶の第1側に配置され、
前記少なくとも1つの拡散面は、前記変換結晶の前記第1側に配置された第1拡散面を備え、第2拡散面が、前記変換結晶の前記第1側とは反対の第2側に配置されている、請求項1に記載の紫外放射制御システム。
【請求項7】
前記複数の光検出器は、前記変換結晶の前記環状外周縁を囲むように配置され、
前記少なくとも1つの拡散面は、前記変換結晶の前記環状外周縁に配置されている、請求項1に記載の紫外放射制御システム。
【請求項8】
前記紫外放射は、深紫外放射である、請求項1から7のいずれかに記載の紫外放射制御システム。
【請求項9】
前記紫外放射は、193nmのエキシマパルスレーザーから分岐されたビームである、請求項8に記載の紫外放射制御システム。
【請求項10】
前記複数の光検出器は、絶縁体上に配置されたリング形状のスペーサー上に配置されている、請求項1から9のいずれかに記載の紫外放射制御システム。
【請求項11】
前記リング形状のスペーサーの中心に配置され、前記紫外放射から変換される蛍光放射の量を増加するために前記変換結晶を透過した紫外放射の一部を前記変換結晶へと反射するように構成された光ダンプまたはミラーをさらに備える、請求項10に記載の紫外放射制御システム。
【請求項12】
前記ハウジングは、前記変換結晶および前記複数の光検出器を保護するように構成され、
前記システムは、
前記ハウジングに固定されたパージキャップと、
前記パージキャップ内に、または、前記ハウジングと前記パージキャップとの間に配置されたパージチャネルと、をさらに備える、請求項10または11に記載の紫外放射制御システム。
【請求項13】
前記パージキャップと前記絶縁体との間に配置された第1シール、複数のスプリング、および結晶スプリングホルダーをさらに備える、請求項12に記載の紫外放射制御システム。
【請求項14】
前記変換結晶と結晶のハウジングとの間に配置された第2シールおよびセンタリングOリングをさらに備える、請求項13に記載の紫外放射制御システム。
【請求項15】
前記少なくとも1つの拡散面は、前記蛍光放射を散乱させるように構成された前記変換結晶の層に埋め込まれた不純物を含む、請求項1から14のいずれかに記載の紫外放射制御システム。
【請求項16】
請求項1から15のいずれかに記載の紫外放射制御システムを備えるリソグラフィ装置。
【請求項17】
紫外放射を測定する方法であって、
前記紫外放射の分岐された部分を蛍光放射に変換するように単一の変換結晶を使用することと、
前記蛍光放射の散乱された部分の強度を検出するように複数の光検出器を使用することと、
前記蛍光放射の散乱された部分の強度を増加させるように、前記変換結晶上または前記変換結晶内に配置された少なくとも1つの拡散面を使用することと、を備え、
前記少なくとも1つの拡散面は、前記複数の光検出器に空間的に近接して配置されており、
前記変換結晶は、中心部が透過する前記紫外放射に曝される円盤形状を有し、
前記複数の光検出器は、前記変換結晶の環状外周縁に離間して配置されている方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2019年8月14日に出願された米国仮特許出願62/886,532の優先権を主張し、参照によりその全体が本明細書に組み込まれる。
【0002】
本開示は、リソグラフィ装置、および紫外放射制御システム、例えば、リソグラフィ装置における紫外放射を制御するためのシステムに関する。
【背景技術】
【0003】
リソグラフィ装置は、所望のパターンを基板、通例は基板の目標部分に与える機械である。リソグラフィ装置は例えば、集積回路(IC)の製造に用いられる。その場合、マスク又はレチクルとも称されるパターニングデバイスが、ICの個々の層に回路パターンを生成するために使用されうる。このパターンは、基板(例えばシリコンウェーハ)上の(例えばダイの一部、1つのダイ、又はいくつかのダイを備える)目標部分に転写されることができる。パターンの転写は典型的には基板に設けられた放射感応性材料(レジスト)層への結像により行われる。一般に、一枚の基板にはネットワーク状に隣接する目標部分が含まれ、これらは連続的に露光される。公知のリソグラフィ装置にはいわゆるステッパとスキャナとがある。ステッパにおいては、目標部分にパターン全体が一度に露光されるようにして各目標部分は照射を受ける。スキャナにおいては、所与の方向(「走査」方向)に放射ビームによりパターンを走査するとともに基板をこの方向に平行または逆平行に同期して走査するようにして各目標部分は照射を受ける。パターニングデバイスから基板へと、パターンを基板にインプリントすることによってパターンを転写することも可能である。
【0004】
深紫外(DUV)放射計は、DUV放射のビームのパワーを測定するために、リソグラフィ装置のDUV線量制御システムで使用される。そのようなDUVビームは典型的にはレーザーにより生成され、DUVレーザービームのパワーが測定され、それによりレーザーの較正が保証され、必要に応じて調整される。レーザーのパワーが正確に測定されないと、繊細な用途や精密な用途において、レーザーが望ましい性能を発揮できない場合がある。DUV放射計では、DUV放射のメインビームのごく一部が分岐され、蛍光放射に変換される。この蛍光放射を測定することで、DUV放射の入射ビームのパワーを間接的に測定することができる。
【0005】
しかしながら、従来の蛍光放射の収集は、効果的に行われておらず、また、うまく制御された方法で行われていない。したがって、リソグラフィ装置のDUV線量制御システムにおいて、蛍光光を収集するためのよりロバストで再現性のあるシステムを導入し、DUV放射の精密な制御を強化するために蛍光光の収集効率を向上させると同時に、リソグラフィ装置のDUV線量制御システムの製造コストを削減することが望まれる。
【発明の概要】
【0006】
本開示の一態様は、紫外放射制御システムを提供する。本システムは、ハウジングと、ハウジング上またはハウジング内に配置され、紫外放射を蛍光放射に変換するように構成された変換結晶と、蛍光放射の散乱された部分の強度を検出するように構成された複数の光検出器と、変換結晶上または変換結晶内に配置され、蛍光放射の散乱された部分の強度を増加させるように構成された少なくとも1つの拡散面と、を備える。
【0007】
実施形態では、少なくとも1つの拡散面は、複数の光検出器に空間的に近接して配置されている。
【0008】
実施形態では、紫外放射制御システムは、単一の変換結晶のみを備える。
【0009】
実施形態では、変換結晶は、円盤形状を有し、複数の光検出器は、変換結晶の環状外周縁に等間隔に配置されている。
【0010】
実施形態では、少なくとも1つの拡散面は、リング形状を有する。
【0011】
実施形態では、少なくとも1つの拡散面は、不連続なリング形状に配列された複数のセグメントを備え、複数のセグメントの各々が、複数の光検出器のうちの所定の1つに隣接して配置されている。
【0012】
実施形態では、複数の光検出器は、変換結晶の第1側に配置され、少なくとも1つの拡散面は、変換結晶の第1側とは反対の第2側に配置されている。
【0013】
実施形態では、複数の光検出器は、変換結晶の第1側に配置され、少なくとも1つの拡散面は、変換結晶の第1側に配置されている。
【0014】
実施形態では、複数の光検出器は、変換結晶の第1側に配置され、少なくとも1つの拡散面は、変換結晶の第1側に配置された第1拡散面を備え、第2拡散面が、変換結晶の第1側とは反対の第2側に配置されている。
【0015】
実施形態では、複数の光検出器は、変換結晶の環状外周縁を囲むように配置され、少なくとも1つの拡散面は、変換結晶の環状外周縁に配置されている。
【0016】
実施形態では、紫外放射は、深紫外放射である。
【0017】
実施形態では、紫外放射は、193nmのエキシマパルスレーザーから分岐されたビームである。
【0018】
実施形態では、複数の光検出器は、絶縁体上に配置されたリング形状のスペーサー上に配置されている。
【0019】
実施形態では、紫外放射制御システムは、リング形状のスペーサーの中心に配置され、紫外放射から変換される蛍光放射の量を増加するために変換結晶を透過した紫外放射の一部を変換結晶へと反射するように構成された光ダンプまたはミラーをさらに備える。
【0020】
実施形態では、ハウジングは、変換結晶および複数の光検出器を保護するように構成されている。紫外放射制御システムは、ハウジングに固定されたパージキャップと、パージキャップ内に、または、ハウジングとパージキャップとの間に配置されたパージチャネルと、をさらに備える。
【0021】
実施形態では、紫外放射制御システムは、パージキャップと絶縁体との間に配置された第1シール、複数のスプリング、および結晶スプリングホルダーをさらに備える。
【0022】
実施形態では、紫外放射制御システムは、変換結晶と結晶のハウジングとの間に配置された第2シールおよびセンタリングOリングをさらに備える。
【0023】
実施形態では、少なくとも1つの拡散面は、蛍光放射を散乱させるように構成された変換結晶の層に埋め込まれた不純物を含む。
【0024】
本開示の別の態様は、開示された紫外放射制御システムを備えるリソグラフィ装置を提供する。
【0025】
本開示の別の態様は、紫外放射を測定する方法を提供する。本方法は、紫外放射の分岐された部分を蛍光放射に変換するように変換結晶を使用することと、蛍光放射を散乱させるように、変換結晶上または変換結晶内に配置された少なくとも1つの拡散面を使用することと、散乱された蛍光放射の強度を測定するように複数の光検出器を使用することと、を備える。
【0026】
本発明の更なる特徴および利点は、本発明の種々の実施形態の構造および動作とともに、付属の図面を参照しつつ以下に詳しく説明される。本発明は本明細書に述べる特定の実施形態には限定されないものと留意されたい。こうした実施形態は例示の目的のために提示されるにすぎない。付加的な実施形態は、本明細書に含まれる教示に基づいて関連技術分野の当業者には明らかであろう。
【図面の簡単な説明】
【0027】
付属の図面は本明細書に組み込まれてその一部をなし、本発明を図示するものであり、発明の詳細な説明とともに本発明の原理を説明し本発明を関連技術分野の当業者が製造し使用可能とするために供されるものである。
【0028】
図1】実施形態に係るリソグラフィ装置の概略図である。
【0029】
図2】実施形態に係る透過型リソグラフィ装置の概略図である。
【0030】
図3】実施形態に係るエネルギーセンサESの概略図である。
【0031】
図4】既存のエネルギーセンサの概略断面図である。
【0032】
図5】実施形態に係るエネルギーセンサの例示的な検出器モジュールの概略断面図である。
【0033】
図6】実施形態に係り、図5の例示的な検出器モジュールの変換結晶および複数の光検出器の概略断面図である。
【0034】
図7】実施形態に係り、図5の例示的な検出器モジュールの概略的な分解斜視図を示す。
【0035】
図8】実施形態に係り、図5の例示的な検出器モジュールの変換結晶および複数の光検出器の概略上面図である。
【0036】
図9】他の実施形態に係り、例示的な検出器モジュールの変換結晶および複数の光検出器の概略断面図である。
【0037】
図10】他の実施形態に係り、他の例示的な検出器モジュールの変換結晶および複数の光検出器の概略断面図である。
【0038】
本発明の特徴および利点は、同様の参照文字が対応する要素を特定する本図面に関連付けて後述される発明の詳細な説明によって、より明らかとなろう。図面において同様の参照番号は大概、同一の要素、機能的に類似の要素、および/または、構造的に類似の要素を指し示す。また、参照番号の左端の桁は概して、その参照番号が最初に現れる図面を示す。そうではないと指示されない限り、本開示を通じて提供される図面は原寸通りの図面であると解すべきではない。
【発明を実施するための形態】
【0039】
この明細書は、この発明の特徴を組み込んだ1つ又は複数の実施形態を開示する。開示された実施形態は単に本発明を例示するにすぎない。本発明の範囲は開示された実施形態には限定されない。本発明は添付の特許請求の範囲により定義される。
【0040】
説明される実施形態、および本明細書での「一つの実施形態」、「ある実施形態」、「例示的な実施形態」等への言及は、説明される実施形態が特定の特徴、構造または特性を備えてもよいが、必ずしもあらゆる実施形態がその特定の特徴、構造または特性を備える必要はないことを示している。また、このような表現は同一の実施形態を必ずしも指し示すものではない。さらに、ある実施形態に関連してある特定の特徴、構造または特性が説明される場合、明示的に述べたか否かに関わらず、そのような特徴、構造または特性を他の実施形態に結び付けて作用させることは当業者の知識内であると理解されたい。
【0041】
本書では説明を容易にするために、「下方」、「下部」、「上方」、「上部」などの空間的に相対的な用語を使用して、図面に示されるある要素または特徴と別の要素または特徴との関係を説明することがある。このような空間的に相対的な用語は、図示される向きに加えて、使用時や動作時における装置の異なる向きを包含することを意図している。本装置は、他の向き(90度回転した状態や他の向き)とされてもよく、本書で使用される空間的に相対的な説明もそれに応じて同様に解釈されうる。
【0042】
本書で使用される「約」という用語は、特定の技術に基づいて変化しうる所与の量の値を示すものである。特定の技術に基づいて、「約」という用語は、例えば、値の10~30%(例えば、値の±10%、±20%、または±30%)の範囲内で変化する所与の量の値を示すことができる。
【0043】
本開示の実施形態は、ハードウェア、ファームウェア、ソフトウェア、またはそれらの任意の組み合わせで実装されてもよい。また、本開示の実施形態は、1つ又は複数のプロセッサにより読み込まれ、実行されうる機械可読媒体に保存された命令として実装されてもよい。機械可読媒体は、機械(例えば、コンピュータデバイス)により読み取り可能な形式の情報を保存または伝送する任意のメカニズムを含んでもよい。例えば、機械可読媒体は、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、磁気ディスク記憶媒体、光記憶媒体、フラッシュメモリ装置、電気的、光学的、音響的またはその他の形式の伝搬信号(例えば、搬送波、赤外線信号、デジタル信号)などである。さらに、ファームウェア、ソフトウェア、ルーチン、および/または命令は、特定の動作を実行するものとして本書に説明されうる。しかしながら、このような説明は単に便宜上のためだけであり、このような動作は実際には、コンピュータデバイス、プロセッサ、コントローラ、またはその他のデバイスがファームウェア、ソフトウェア、ルーチン、命令などを実行することで生じるものであると理解すべきである。
【0044】
しかしながら、こうした実施形態をより詳細に説明する前に、本開示の実施形態を実装しうる例示的な環境を提示することは有益である。
【0045】
例示的なリソグラフィシステム
【0046】
図1及び図2はそれぞれ、本開示の実施形態が実装されうるリソグラフィ装置100及びリソグラフィ装置100’の概略を示す。リソグラフィ装置100及びリソグラフィ装置100’はそれぞれ、深紫外(DUV)放射などの放射ビームBを調整するよう構成されている照明システム(イルミネータ)ILと、パターニングデバイス(例えばマスク、レチクル、または動的パターニングデバイス)MAを支持するよう構成されており、パターニングデバイスMAを正確に位置決めするよう構成された第1位置決め装置PMに接続されている支持構造(例えばマスクテーブル)MTと、基板(例えば、レジストで被覆されたウェーハ)Wを保持するよう構成されており、基板Wを正確に位置決めするよう構成された第2位置決め装置PWに接続されている基板テーブル(例えばウェーハテーブル)WTと、を含む。また、リソグラフィ装置100、100’は、パターニングデバイスMAにより放射ビームBに付与されたパターンを基板Wの(例えば1つまたは複数のダイを含む)目標部分Cに投影するよう構成されている投影システムPSを有する。リソグラフィ装置100では、パターニングデバイスMA及び投影システムPSは、反射型または透過型のいずれかであってもよい。リソグラフィ装置100’では、パターニングデバイスMA及び投影システムPSは、透過型である。
【0047】
照明システムILは、屈折光学部品、反射光学部品、反射屈折光学部品、磁気的光学部品、電磁気的光学部品、静電的光学部品、あるいは他の種類の光学部品などの各種の光学部品、またはこれらの組合せを含み得るものであり、放射ビームBの向き又は形状を整え、あるいは放射ビームBを制御するためのものである。また、照明システムILは、例えば、パルスあたりのエネルギー、光子エネルギー、強度、平均パワーなどのうちの1つまたは複数の測定値を提供するエネルギーセンサESを含むことができる。照明システムILは、放射ビームBの移動を測定するための測定センサMSと、照明スリットの均一性を制御することを可能にする均一性補償器UCとを含むことができる。
【0048】
支持構造MTは、基準フレームに対するパターニングデバイスMAの配置、リソグラフィ装置100、100’の少なくとも一方の設計、及びパターニングデバイスMAが真空環境で保持されるか否か等のその他の条件に応じた方式でパターニングデバイスMAを保持する。支持構造MAは、機械的固定、真空固定、静電固定、またはパターニングデバイスMAを保持するその他の固定技術を用いてもよい。支持構造MTは、例えばフレームまたはテーブルであってもよく、これらは固定されていてもよいし必要に応じて移動可能であってもよい。センサを使用することによって、支持構造MTは、パターニングデバイスMAが例えば投影システムPSに対して所望の位置にあることを保証することができる。
【0049】
用語「パターニングデバイス」MAは、基板Wの目標部分Cにパターンを生成するために放射ビームBの断面にパターンを与えるのに使用可能である何らかのデバイスを表すと広義に解釈すべきである。放射ビームBに付与されたパターンは、集積回路を形成すべく目標部分Cに生成されるデバイスにおける特定の機能層に対応してもよい。
【0050】
実施形態では、DUV源に適合するパターニングデバイスMAは、図2のリソグラフィ装置100’のように透過型であってもよい。パターニングデバイスMAには例えば、レチクルやマスク、プログラム可能ミラーアレイ、プログラム可能LCDパネルがある。マスクはリソグラフィにおいて周知であり、マスクの種類には、バイナリマスク、レベンソン型位相シフトマスク、減衰型位相シフトマスク、さらには各種のハイブリッド型マスクなどがある。用語「投影システム」PSは、使用される露光放射や、基板W上での液浸液の使用または真空の使用等のその他の要因に応じて適切とされる、屈折光学系、反射光学系、反射屈折光学系、磁気的光学系、電磁気的光学系、静電的光学系、またはこれらの組合せを含む何らかの投影システムを包含することができる。DUV放射または電子ビーム放射に真空環境が使用され得るのは、ガスが放射または電子を過度に吸収しうるからである。よって、真空壁及び真空ポンプの利用によってビーム経路の全体に真空環境が提供されてもよい。
【0051】
リソグラフィ装置100及び/またはリソグラフィ装置100’は、2つ(デュアルステージ)またはそれより多数の基板テーブルWT(及び/または、2つまたはそれより多数のマスクテーブル)を有する形式のものであってもよい。こうした多重ステージ型の装置においては、追加の基板テーブルWTは並行して使用されるか、あるいは1つまたは複数の基板テーブルWTが露光のために使用されている間に1または複数のテーブルで準備工程が実行されてもよい。追加のテーブルが基板テーブルWTではない場合もありうる。
【0052】
また、リソグラフィ装置は、基板の少なくとも一部分が例えば水などの比較的高い屈折率を有する液体で投影システムと基板との間の空間を満たすよう覆われうる形式のものであってもよい。液浸液は、例えばマスクと投影システムとの間などリソグラフィ装置の他の空間にも適用されてもよい。液浸技術は投影システムの開口数を増大させるために本分野において周知である。本書で使用される「液浸」との用語は、基板等の構造体が液体に浸されなければならないことを意味するのではなく、液体が投影システムと基板との間に露光中に配置されることを意味するにすぎない。
【0053】
図1及び図2を参照するに、イルミネータILは放射ソースSOから放射ビームを受け取る。ソースSOとリソグラフィ装置100、100’とは、例えばソースSOがエキシマレーザーであるとき、物理的に別個の存在であってもよい。この場合、ソースSOはリソグラフィ装置100、100’の一部を構成するとはみなされなく、放射ビームBはソースSOからイルミネータILへと(図2における)ビーム搬送系BDを介して進む。ビーム搬送系BDは例えば適当な方向変更用ミラー及び/またはビームエキスパンダを備える。他の場合においては、ソースSOはリソグラフィ装置100、100’に一体の部分であってもよい(例えば、ソースSOが水銀ランプの場合)。ソースSO及びイルミネータILは、必要とされる場合にはビーム搬送系BDも併せて、放射システムと呼ばれることもある。
【0054】
イルミネータILは放射ビームの角強度分布を調整する(図2における)アジャスタADを備えてもよい。一般には、イルミネータの瞳面における強度分布の少なくとも外径及び/または内径の大きさ(通常それぞれσアウタ、σインナとも呼ばれる)が調整される。加えてイルミネータILは、インテグレータINやコンデンサCOなどの(図2における)種々の他の要素を備えてもよい。イルミネータILはビーム断面における所望の均一性及び強度分布を得るべく放射ビームBを調整するために用いられてもよい。放射ビームBの所望の均一性は、均一性補償器UCを用いて維持することができる。均一性補償器UCは、放射ビームBの均一性を制御するために放射ビームBの経路内で調整可能な複数の突起(例えば、フィンガー)を備える。センサESは、放射ビームBの均一性を監視するために使用されてもよい。
【0055】
図1を参照するに、放射ビームBは、支持構造(例えばマスクテーブル)MTに保持されているパターニングデバイス(例えばマスク)MAに入射して、パターニングデバイスMAによりパターンが付与される。リソグラフィ装置100では放射ビームBはパターニングデバイス(例えばマスク)MAで反射される。パターニングデバイス(例えばマスク)MAで反射された放射ビームBは投影システムPSを通過する。投影システムPSは放射ビームBを基板Wの目標部分Cに集束させる。第2位置決め装置PWと位置センサIF2(例えば、干渉計デバイス、リニアエンコーダ、または静電容量センサ)により基板テーブルWTは正確に(例えば放射ビームBの経路に異なる複数の目標部分Cを位置決めするように)移動されることができる。同様に、放射ビームBの経路に対してパターニングデバイス(例えばマスク)MAを正確に位置決めするために第1位置決め装置PMと別の位置センサIF1が使用されてもよい。パターニングデバイス(例えばマスク)MAと基板Wとは、マスクアライメントマークM1、M2、及び基板アライメントマークP1、P2を使用して位置合わせされてもよい。
【0056】
図2を参照するに、放射ビームBは、支持構造(例えばマスクテーブルMT)に保持されているパターニングデバイス(例えばマスクMA)に入射して、パターニングデバイスによりパターンが付与される。マスクMAを透過した放射ビームBは投影システムPSを通過する。投影システムPSはビームを基板Wの目標部分Cに集束させる。投影システムは、照明システム瞳IPUと共役の瞳PPUを有する。放射の複数の部分は、照明システム瞳IPUでの強度分布から発せられ、マスクパターンでの回折によって影響されることなくマスクパターンを通り、照明システム瞳IPUでの強度分布の像を生成する。放射ビームBの所望の均一性は、均一性補償器UCを用いて放射ビームBの均一性を制御することによって維持することができる。センサESは、放射ビームBの均一性を監視するために使用されてもよい。
【0057】
投影システムPSは、マスクパターンMPの像MP’を投影する。ここで、像MP’は、強度分布からの放射によってマスクパターンMPから生成された回折ビームによって、基板W上にコーティングされたフォトレジスト層上に形成される。例えば、マスクパターンMPは、ラインとスペースの配列を含むことができる。この配列での0次回折とは異なる放射の回折は、ラインに垂直な方向の方向変化をもつ転換回折ビームを生成する。回折されないビーム(いわゆる0次回折ビーム)は、伝搬方向が変化することなくパターンを横切る。0次回折ビームは、投影システムPSの共役瞳PPUの上流にある投影システムPSの上部レンズまたは上部レンズ群を通って共役瞳PPUに到達する。共役瞳PPUの平面内の強度分布のうち、0次回折ビームに関連する部分は、照明システムILの照明システム瞳IPUにおける強度分布の像である。アパーチャデバイスPDは、例えば、投影システムPSの共役瞳PPUを含む平面に、または実質的にこの平面に配置される。
【0058】
投影システムPSは、レンズまたはレンズ群Lによって、0次回折ビームだけでなく、1次回折ビーム、または1次および高次回折ビーム(図示せず)も捕捉するように構成される。実施形態では、ラインに垂直な方向に広がるラインパターンの像を形成するためのダイポール照明を用いて、ダイポール照明の解像度向上効果を利用することができる。例えば、1次回折ビームは、対応する0次回折ビームとウェハWのレベルで干渉して、可能な限り良好な解像度およびプロセスウィンドウ(すなわち、使用可能な焦点深度と許容可能な露光量偏差との組み合わせ)でラインパターンMPの像を生成する。実施形態では、照明システム瞳IPUでの反対側の象限に放射の極(図示せず)を設けることによって、非点収差を低減することができる。さらに、実施形態では、非点収差は、反対側の象限にある放射極に関連付けられる投影システムの共役瞳PPU内の0次ビームを遮断することによって低減することができる。これは、2009年3月31日に発行された米国特許第7,511,799号に詳細に記載されており、この文献は参照によりその全体が本明細書に組み込まれる。
【0059】
第2位置決め装置PWと位置センサIF(例えば、干渉計デバイス、リニアエンコーダ、または静電容量センサ)により基板テーブルWTは正確に(例えば放射ビームBの経路に異なる複数の目標部分Cを位置決めするように)移動されることができる。同様に、放射ビームBの経路に対して(例えば走査中やマスクライブラリからの機械的回収後に)マスクMAを正確に位置決めするために第1位置決め装置PMと別の位置センサ(図2に示さず)が使用されてもよい。
【0060】
一般にマスクテーブルMTの移動は、第1位置決め装置PMの一部を構成するロングストロークモジュール(粗い位置決め用)及びショートストロークモジュール(精細な位置決め用)により実現される。同様に基板テーブルWTの移動は、第2位置決め装置PWの一部を構成するロングストロークモジュール及びショートストロークモジュールにより実現される。ステッパでは(スキャナとは逆に)、マスクテーブルMTはショートストロークのアクチュエータにのみ接続されているか、あるいは固定されていてもよい。マスクMAと基板Wとは、マスクアライメントマークM1、M2及び基板アライメントマークP1、P2を用いてアライメントされてもよい。基板アライメントマークが(図示されるように)専用の目標部分を占拠しているが、アライメントマークは目標部分間のスペースに配置されてもよい(これはスクライブライン・アライメントマークとして公知である)。同様に、マスクMAに複数のダイが設けられた場合にはマスクアライメントマークをダイ間に配置してもよい。
【0061】
マスクテーブルMT及びパターニングデバイスMAは真空容器V内にあってもよい。ここで、真空内ロボットIVRがマスク等のパターニングデバイスを真空容器Vの内外に移動させるために使用されてもよい。あるいは、マスクテーブルMT及びパターニングデバイスMAが真空容器の外にある場合には、真空内ロボットIVRと同様に、真空外ロボットが各種の搬送動作のために使用されてもよい。真空内及び真空外のロボットはともに、任意の運搬物(例えばマスク)の円滑な移送のために移送ステーションの固定キネマティックマウントに対し校正される必要がある。
【0062】
リソグラフィ装置100、100’は以下のモードのうち少なくとも1つで使用することができる。
【0063】
1.ステップモードにおいては、放射ビームBに付与されたパターンの全体が1回の照射で目標部分Cに投影される間、支持構造(例えばマスクテーブル)MT及び基板テーブルWTは実質的に静止状態とされる(すなわち1回の静的な露光)。そして基板テーブルWTがX方向及び/またはY方向に移動されて、異なる目標部分Cが露光される。
【0064】
2.スキャンモードにおいては、放射ビームBに付与されたパターンが目標部分Cに投影される間、支持構造(例えばマスクテーブル)MT及び基板テーブルWTは同期して走査される(すなわち1回の動的な露光)。支持構造(例えばマスクテーブル)MTに対する基板テーブルWTの速度及び方向は、投影システムPSの拡大(縮小)特性及び像反転特性により定められる。
【0065】
3.別のモードにおいては、放射ビームBに付与されたパターンが目標部分Cに投影される間、支持構造(例えばマスクテーブル)MTはプログラム可能パターニングデバイスを保持して実質的に静止状態とされ、基板テーブルWTは移動または走査される。パルス放射源SOが用いられ、プログラム可能パターニングデバイスは基板テーブルWTが移動するたびに、または走査中において連続するパルスとパルスの間に、必要に応じて更新される。この動作モードは、プログラム可能ミラーアレイ等のプログラム可能パターニングデバイスを使用するマスクレスリソグラフィに直ちに適用可能である。
【0066】
上記の使用モードを組み合わせて動作させてもよいし、使用モードに変更を加えて動作させてもよく、さらに全く別の使用モードを用いてもよい。
【0067】
例示的なエネルギーセンサ
【0068】
図3は、実施形態に係るエネルギーセンサESの概略図である。実施形態では、エネルギーセンサESは、照明システムILの線量制御サブシステムの重要な構成要素であり、DUV放射ビームなどの放射ビームBの測定値を提供するように構成される。エネルギーセンサESは、照明光学トレインの中間点に配置することができる。放射ビームB、すなわち、図3に示すようなDUV放射ビーム310の小部分(例えば、約1%)が分岐されてエネルギーセンサESのハウジング320内に送出されることができる。一例では、DUV放射ビーム310は、193nmのエキシマレーザー放射ビームとすることができる。次に、DUV放射ビーム310は、ミラー322およびレンズ324によって、検出器モジュール330上に集束されることができる。
【0069】
図4に示すように、既存のエネルギーセンサESでは、検出器モジュール330は、DUV放射ビーム310の一部を吸収してより長い波長の放射に変換するように構成された2枚の挟まれた薄い円盤形状の結晶410を含む。実施形態では、結晶410は、DUV放射を可視光または赤外放射IRなどの蛍光放射420に変換することができるサファイア結晶とすることができる。DUV放射ビーム310に曝された結晶410の中央領域で生まれた蛍光放射420は、内部全反射によって各結晶410の内部をその端まで伝播する。蛍光放射420は、Siダイオードのような複数の光検出器430によって検出することができる。
【0070】
複数の光検出器430は、蛍光放射を均質化して有用な信号を増加させるために、結晶の周囲に沿って配置することができる。しかし、複数の光検出器430による蛍光放射420の収集は効果的ではない。図4に示すように、蛍光放射420は、円盤形状の結晶410の両表面で複数回跳ね返りながら、中心部から端部へと伝播する。結晶410の表面が理想的に研磨されて平坦であると仮定すると、表面との角度が内部全反射の角度を超える蛍光光の光線は、損なわれずに結晶410の端部に到達する。端部では蛍光放射420が散乱によって漏れ出し、光検出器430で拾えるのはわずかな部分だけである。このような構成における蛍光光の収集効率は比較的低く、収集される蛍光の量は、結晶410の端部の品質に依存する。したがって、本開示は、蛍光光の収集効率を高めることができる検出器モジュールの新しい設計を提供するものである。
【0071】
図5から図8を参照すると、図5は、実施形態に係るエネルギーセンサの例示的な検出器モジュール500の概略断面図を示し、図6は、実施形態に係り、図5の例示的な検出器モジュール500の概略分解斜視図を示し、図7は、図5の検出器モジュール500の変換結晶および複数の光検出器の概略断面図を示し、図8は、図5の例示的な検出器モジュール500の変換結晶および複数の光検出器の概略上面図を示す。
【0072】
図5に示すように、検出器モジュール500は、パージキャップ510および結晶ハウジング520を含むことができる。パージチャネル515は、パージキャップ510内に、またはパージキャップ510と結晶ハウジング520との間に形成することができる。変換結晶540は、結晶ハウジング520内に配置することができる。
【0073】
実施形態では、変換結晶540は、蛍光性不純物の分布を有する円盤形状の結晶とすることができる。変換結晶540は、任意の蛍光性不純物を有する任意の結晶とすることができ、紫外放射の入射ビームの様々な波長に対する応答を高めるために、必要に応じて選択的にドープされうる。例えば、結晶は、サファイア結晶とすることができる。蛍光不純物は、ドープされていない酸化物結晶および/または希土類をドープした結晶を含むことができる。一例では、Ce3+:YAL12(YAG)などの希土類ドープガーネットが蛍光性不純物として使用されてもよい。また、希土類ドープガーネットは、ネオジム(Nd)、ランタン(La)、ユーロピウム(Eu)などの他の希土類元素を含むことができる。実施形態では、変換結晶540は、チタンをドープしたサファイア結晶とすることができる。
【0074】
変換結晶540は、図6に示すように、変換結晶540の中心部がDUV放射ビーム310に曝されることができるように配置されることができる。変換結晶540は、DUV放射ビーム310のパワーに応じて、またそれに比例して、DUV放射ビーム310を蛍光放射420に変換することができる。実施形態では、蛍光寿命が例えば5マイクロ秒未満と短く、Eセンサが6kHzの周波数でレーザーの各パルスおよび周波数を検出しなければならないので、低速結晶は、変換結晶540に適していないかもしれない。
【0075】
複数の光検出器550は、絶縁体531上に取り付けられているリング形状のスペーサー533上に取り付けることができ、蛍光放射420の散乱された部分の強度を測定するように構成されている。実施形態では、複数の光検出器550は、リング形状スペーサー533まわりに等間隔に配置することができ、したがって、変換結晶540の環状外周縁まわりにも等間隔に配置される。複数の光検出器550の測定結果に基づいて、DUV放射ビーム310のパワーを決定することができ、図1および図2に示されるような放射ビームBのパワーも決定することができる。このようにして、パルス放射源SOの較正を保証し、所望の場合には調整することができる。
【0076】
さらに、実施形態では、光ダンプ560または代替的に光ダンプ560は、リング形状スペーサー533の中心に位置するミラーを備えることができ、透過したUV放射565を変換結晶540に送り返して、UV放射から変換される蛍光放射420の量を増加させるように構成することができる。
【0077】
実施形態では、図7に示すように、パージキャップ510は、クリップまたはねじなどの締結具610によって結晶ハウジング520上に固定することができる。パージキャップ510と絶縁体531との間には、第1封止Oリング622、複数のスプリング624、および結晶スプリングホルダー626を配置することができる。光検出器550は、リング形状スペーサー533の底部に取り付けることができる。変換結晶540と結晶ハウジング520との間には、第2封止Oリング631とセンタリングOリング633とを配置することができる。複数のスプリング624は、複数の部品をパージキャップ510と結晶ハウジング520との間に固定することができる。
【0078】
図6に示すように、複数の光検出器550が配置されている変換結晶540の環状外周縁に近い変換結晶540の表面の一部を処理して、拡散面545を形成することができる。拡散面545を形成するために、例えば、無光沢研磨処理、金属化処理、またはその他の適切な処理を行うことができる。拡散面545は、蛍光放射420を散乱させることができるので、内部全反射破壊部として機能する。拡散面545で散乱した蛍光放射420は、複数の光検出器550に到達し、複数の光検出器550で検出される信号の強度を大幅に増加させることができる。したがって、単一の変換結晶540が、複数の光検出器550によって収集されるのに十分な量の蛍光放射420を提供することができる。
【0079】
実施形態では、拡散面545は、図8に示すように、リング形状を有することができる。代替実施形態では、拡散面545は、不連続なリング形状(図示せず)を有することができる。すなわち、拡散面545は、それぞれが光検出器550に対応して配置された複数のセグメントを含む。拡散面545の複数のセグメントの間にある変換結晶540の研磨された表面は、内部全反射によるさらなる光の混合に参加することができる。したがって、このような配置は、散乱された蛍光放射420の消耗をさらに減らし、それによって、複数の光検出器550の蛍光光収集効率をさらに高めることができる。
【0080】
実施形態では、拡散面545は、図6に示すように、複数の光検出器550とは反対にある変換結晶540の遠位側に配置することができる。他の実施形態では、拡散面545は、複数の光検出器550に近い変換結晶540の近位側に配置することができる。
【0081】
図9および10を参照すると、他の実施形態に係り、例示的な検出器モジュールの変換結晶および複数の光検出器の概略断面図が示されている。
【0082】
図9に示すように、他の実施形態では、2つの拡散面545を変換結晶540の両側に形成することができる。第1の拡散面は、複数の光検出器550とは反対にある変換結晶540の遠位側に配置することができ、第2の拡散面は、複数の光検出器550に近い変換結晶540の近位側に配置することができる。
【0083】
代替的な実施形態では、拡散面545は、複数の光検出器550に対応する変換結晶540の一部分に埋め込まれた不純物(散乱粒子とも呼ばれる)を含むことができる。実施形態では、変換結晶540は層状とされ、不純物がこの変換結晶のある層に隔離されてもよい。この層は、複数の光検出器550による蛍光放射420の効率的な検出のために十分な反射が達成される限り、不純物を含まない結晶層によって挟まれるか、最上層または最下層に位置するか、または他の構成(例えば、散乱粒子を有する複数の隔離された層)とすることができる。
【0084】
図10に示すように、他の実施形態では、複数の光検出器550は、変換結晶540の環状外周縁の周りに配置することができる。拡散面545は、変換結晶540の環状外周縁、および変換結晶540の両側への角部を覆うことができる。
【0085】
実施形態では、複数の光検出器550の蛍光光収集効率をさらに高めるために、任意の他の適切な構成を使用することができる。例えば、光の散乱の効果を高めるために、拡散面545に反射性コーティングを形成することができる。他の例として、複数の光検出器550は、蛍光灯の集光効率を最適化するように変換結晶540の表面に対して角度をなして配置されてもよい。
【0086】
このようにして、蛍光光の収集効率を高めることにより、開示されたエネルギーセンサESは、2枚の結晶をもつ既存の設計から、より強い信号(例えば、30%以上の強度)を生成する単一の結晶設計に切り替わる。したがって、開示されたエネルギーセンサESは、リソグラフィ装置の紫外放射制御システムにおいて蛍光光を収集するための、よりロバストで再現性のあるシステムを提供し、それによって、紫外放射の正確な制御を保証し、同時に、リソグラフィ装置の紫外放射制御システムの製造コストを低減することができる。
【0087】
実施形態では、開示された紫外放射制御システムは、ハウジングと、ハウジング上またはハウジング内に配置され、紫外放射を蛍光放射に変換するように構成された変換結晶と、蛍光放射の散乱された部分の強度を検出するように構成された複数の光検出器と、変換結晶上または変換結晶内に配置され、蛍光放射の散乱された部分の強度を増加させるように構成された少なくとも1つの拡散面と、を備える。
【0088】
実施形態では、少なくとも1つの拡散面は、複数の光検出器に空間的に近接して配置されている。
【0089】
実施形態では、紫外放射制御システムは、単一の変換結晶のみを備える。
【0090】
実施形態では、変換結晶は、円盤形状を有し、複数の光検出器は、変換結晶の環状外周縁に等間隔に配置されている。
【0091】
実施形態では、少なくとも1つの拡散面は、リング形状を有する。
【0092】
実施形態では、少なくとも1つの拡散面は、不連続なリング形状に配列された複数のセグメントを備え、複数のセグメントの各々が、複数の光検出器のうちの所定の1つに隣接して配置されている。
【0093】
実施形態では、複数の光検出器は、変換結晶の第1側に配置され、少なくとも1つの拡散面は、変換結晶の第1側とは反対の第2側に配置されている。
【0094】
実施形態では、複数の光検出器は、変換結晶の第1側に配置され、少なくとも1つの拡散面は、変換結晶の第1側に配置されている。
【0095】
実施形態では、複数の光検出器は、変換結晶の第1側に配置され、少なくとも1つの拡散面は、変換結晶の第1側に配置された第1拡散面を備え、第2拡散面が、変換結晶の第1側とは反対の第2側に配置されている。
【0096】
実施形態では、複数の光検出器は、変換結晶の環状外周縁を囲むように配置され、少なくとも1つの拡散面は、変換結晶の環状外周縁に配置されている。
【0097】
実施形態では、紫外放射は、深紫外放射である。
【0098】
実施形態では、紫外放射は、193nmのエキシマパルスレーザーから分岐されたビームである。
【0099】
実施形態では、複数の光検出器は、絶縁体上に配置されたリング形状のスペーサー上に配置されている。
【0100】
実施形態では、紫外放射制御システムは、リング形状のスペーサーの中心に配置され、紫外放射から変換される蛍光放射の量を増加するために変換結晶を透過した紫外放射の一部を変換結晶へと反射するように構成された光ダンプまたはミラーをさらに備える。
【0101】
実施形態では、ハウジングは、変換結晶および複数の光検出器を保護するように構成されている。紫外放射制御システムは、ハウジングに固定されたパージキャップと、パージキャップ内に、または、ハウジングとパージキャップとの間に配置されたパージチャネルと、をさらに備える。
【0102】
実施形態では、紫外放射制御システムは、パージキャップと絶縁体との間に配置された第1シール、複数のスプリング、および結晶スプリングホルダーをさらに備える。
【0103】
実施形態では、紫外放射制御システムは、変換結晶と結晶のハウジングとの間に配置された第2シールおよびセンタリングOリングをさらに備える。
【0104】
実施形態では、少なくとも1つの拡散面は、蛍光放射を散乱させるように構成された変換結晶の層に埋め込まれた不純物を含む。
【0105】
本開示の別の態様は、開示された紫外放射制御システムを備えるリソグラフィ装置を提供する。
【0106】
本開示の別の態様は、紫外放射を測定する方法を提供する。本方法は、紫外放射の分岐された部分を蛍光放射に変換するように変換結晶を使用することと、蛍光放射を散乱させるように、変換結晶上または変換結晶内に配置された少なくとも1つの拡散面を使用することと、散乱された蛍光放射の強度を測定するように複数の光検出器を使用することと、を備える。
【0107】
本発明の他の態様は、以下の番号を付した項に記載される。
1.ハウジングと、
前記ハウジング上または前記ハウジング内に配置され、紫外放射を蛍光放射に変換するように構成された変換結晶と、
前記蛍光放射の散乱された部分の強度を検出するように構成された複数の光検出器と、
前記変換結晶上または前記変換結晶内に配置され、前記蛍光放射の散乱された部分の強度を増加させるように構成された少なくとも1つの拡散面と、を備える紫外放射制御システム。
2.前記少なくとも1つの拡散面は、前記複数の光検出器に空間的に近接して配置されている、項1に記載の紫外放射制御システム。
3.単一の変換結晶のみを備える、項1の紫外放射制御システム。
4.前記変換結晶は、円盤形状を有し、
前記複数の光検出器は、前記変換結晶の環状外周縁に等間隔に配置されている、項2の紫外放射制御システム。
5.前記少なくとも1つの拡散面は、リング形状を有する、項4に記載の紫外放射制御システム。
6.前記少なくとも1つの拡散面は、不連続なリング形状に配列された複数のセグメントを備え、前記複数のセグメントの各々が、前記複数の光検出器のうちの所定の1つに隣接して配置されている、項4に記載の紫外放射制御システム。
7.前記複数の光検出器は、前記変換結晶の第1側に配置され、
前記少なくとも1つの拡散面は、前記変換結晶の前記第1側とは反対の第2側に配置されている、項4に記載の紫外放射制御システム。
8.前記複数の光検出器は、前記変換結晶の第1側に配置され、
前記少なくとも1つの拡散面は、前記変換結晶の前記第1側に配置されている、項4に記載の紫外放射制御システム。
9.前記複数の光検出器は、前記変換結晶の第1側に配置され、
前記少なくとも1つの拡散面は、前記変換結晶の前記第1側に配置された第1拡散面を備え、第2拡散面が、前記変換結晶の前記第1側とは反対の第2側に配置されている、項4に記載の紫外放射制御システム。
10.前記複数の光検出器は、前記変換結晶の前記環状外周縁を囲むように配置され、
前記少なくとも1つの拡散面は、前記変換結晶の前記環状外周縁に配置されている、項4に記載の紫外放射制御システム。
11.前記紫外放射は、深紫外放射である、項1に記載の紫外放射制御システム。
12.前記紫外放射は、193nmのエキシマパルスレーザーから分岐されたビームである、項11に記載の紫外放射制御システム。
13.前記複数の光検出器は、絶縁体上に配置されたリング形状のスペーサー上に配置されている、項1に記載の紫外放射制御システム。
14.前記リング形状のスペーサーの中心に配置され、前記紫外放射から変換される蛍光放射の量を増加するために前記変換結晶を透過した紫外放射の一部を前記変換結晶へと反射するように構成された光ダンプまたはミラーをさらに備える、項13に記載の紫外放射制御システム。
15.前記ハウジングは、前記変換結晶および前記複数の光検出器を保護するように構成され、
前記システムは、
前記ハウジングに固定されたパージキャップと、
前記パージキャップ内に、または、前記ハウジングと前記パージキャップとの間に配置されたパージチャネルと、をさらに備える、項13に記載の紫外放射制御システム。
16.前記パージキャップと前記絶縁体との間に配置された第1シール、複数のスプリング、および結晶スプリングホルダーをさらに備える、項15に記載の紫外放射制御システム。
17.前記変換結晶と結晶のハウジングとの間に配置された第2シールおよびセンタリングOリングをさらに備える、項16に記載の紫外放射制御システム。
18.前記少なくとも1つの拡散面は、前記蛍光放射を散乱させるように構成された前記変換結晶の層に埋め込まれた不純物を含む、項1に記載の紫外放射制御システム。
19.項1に記載の紫外放射制御システムを備えるリソグラフィ装置。
20.紫外放射を測定する方法であって、
前記紫外放射の分岐された部分を蛍光放射に変換するように変換結晶を使用することと、
前記蛍光放射を散乱させるように、前記変換結晶上または前記変換結晶内に配置された少なくとも1つの拡散面を使用することと、
散乱された蛍光放射の強度を測定するように複数の光検出器を使用することと、を備える方法。
【0108】
本書ではICの製造におけるリソグラフィ装置の使用について具体的な言及がなされている場合があるが、ここに説明したリソグラフィ装置は、集積光学システム、磁気ドメインメモリ用案内パターン及び検出パターン、フラットパネルディスプレイ、LCD、薄膜磁気ヘッド等の製造といった他の用途を有しうるものと理解されたい。当業者であればこれらの他の適用に際して、本明細書における「ウェーハ」あるいは「ダイ」という用語がそれぞれ「基板」あるいは「目標部分」という、より一般的な用語と同義であるとみなされると理解することができるであろう。本書に言及された基板は露光前または露光後において、例えばトラックユニット(典型的にはレジスト層を基板に塗布し、露光後のレジストを現像する装置)、メトロロジユニット、及び/又はインスペクションユニットにより処理されてもよい。適用可能であれば、本明細書の開示はこれらの又は他の基板処理装置にも適用され得る。また、基板は例えば多層ICを製造するために複数回処理されてもよく、その場合には本明細書における基板という用語は、処理された多数の層を既に含む基板をも意味し得る。
【0109】
上記では光リソグラフィにおける本発明の実施形態の使用について具体的に言及がなされている場合があるが、文脈が許す限り、本発明は光リソグラフィに限定されず、例えばインプリントリソグラフィなどの他の用途に使用されうることが理解されるであろう。インプリントリソグラフィでは、パターニングデバイスのトポグラフィによって、基板上に生成されるパターンが画定される。パターニングデバイスのトポグラフィを基板に供給されたレジストの層に押しつけ、その後に電磁放射、熱、圧力またはその組合せにより、レジストを硬化する。パターニングデバイスをレジストから離すと、硬化したレジストにパターンが残される。
【0110】
本開示の言葉遣いまたは専門用語は、限定ではなく説明を目的とするものであり、本書の教示を考慮して関連技術分野の当業者によって解釈されるべきものである。
【0111】
「照明調整装置」、「放射補正システム」などの用語は、本書において、放射のビームの1つまたは複数の特性を調整する装置を記述するために使用されうる。例えば、均一性補正システムは、照明調整装置と称することができる。
【0112】
また、本書に用いられる「放射」、「ビーム」、「光」、「照明」等の用語は、(例えば365nm、248nm、193nm、157nm、または126nmの波長λを有する)紫外(UV)放射、(例えば5乃至20nmの範囲内の波長(例えば13.5nm)を有する)極紫外(EUVまたは軟X線)放射、又は5nm未満で作動する硬X線、さらにはイオンビームまたは電子ビーム等の粒子ビームを含むあらゆる電磁放射を包含しうる。一般に、約400乃至約700nmの間の波長を有する放射は可視放射とみなされ、約780乃至3000nm(またはそれ以上)の間の波長を有する放射は赤外放射とみなされる。UVとはおよそ100乃至400nmの波長を有する放射をいう。リソグラフィにおいて用語「UV」は水銀放電ランプにより生成可能な波長、つまり436nmのG線、405nmのH線、365nmのI線にも用いられる。真空UVまたはVUV(つまりガスに吸収されるUV)とはおよそ100乃至200nmの波長を有する放射をいう。深紫外(DUV)とは一般に約126nmから約428nmの波長を有する放射をいう。実施形態においては、エキシマレーザーが、リソグラフィ装置内で使用されるDUV放射を生成可能である。なお、例えば5乃至20nmの範囲内の波長を有する放射とは5乃至20nmの範囲の少なくとも一部のある波長域を有する放射を言うものと理解されたい。
【0113】
本書で使用される「基板」という用語は、ある材料に複数の材料層が追加されたものを記述している。実施形態では、基板自体がパターニングされておりその上に追加される材料もパターニングされてもよいし、あるいはパターニングされずに残っていてもよい。
【0114】
本書ではICの製造における本発明に係る装置及び/またはシステムの使用について具体的な言及がなされている場合があるが、このような装置及び/またはシステムは、例えば集積光学システム、磁気ドメインメモリ用案内パターン及び検出パターン、LCDパネル、薄膜磁気ヘッド等の製造といった多くの他の用途を有しうるものと理解されたい。当業者であればこうした代替の用途の文脈において、本書における「レチクル」、「ウェーハ」、または「ダイ」という用語がそれぞれ「マスク」、「基板」、「目標部分」という、より一般的な用語に置換されるとみなされると理解することができるであろう。
【0115】
本発明の特定の実施形態が上述されたが、説明したもの以外の態様で本発明が実施されてもよい。本説明は発明を限定することを意図しない。
【0116】
「発明の概要」および「要約」の欄ではなく、「詳細な説明」の欄が特許請求の範囲の解釈に使用されるよう意図されていることを認識されたい。「発明の概要」および「要約」の欄は、発明者によって考案された実施形態のうち一つまたは複数について述べているが、全ての例示的な実施形態について述べているわけではなく、したがって、本発明および添付の特許請求の範囲をいかなる方法によっても限定する意図はない。
【0117】
上記では、本発明が特定の機能およびその関係の実装を示す機能ブロックを用いて説明されている。これらの機能ブロックの境界は、本書では説明の便宜上任意に定められている。特定の機能およびその関係が適切に実行される限り、代替の境界が定められてもよい。
【0118】
特定の実施形態についての上記説明は本発明の一般的性質を完全に公開しており、したがって、当業者の知識を適用することによって、過度の実験をすることなく、および本発明の一般概念から逸脱することなく、こうした特定の実施形態を種々の応用に対して直ちに修正しおよび/または適応させることができる。したがって、そのような修正および適応は、本書に提示された教示および助言に基づき、開示された実施形態の意義および等価物の範囲内にあるものと意図されている。
【0119】
本発明の広がりおよび範囲は、上述した例示的な実施形態のいずれによっても限定されるべきではなく、特許請求の範囲およびその等価物にしたがってのみ定められるべきである。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10